注射模具设计强度和刚度计算例_.
注射模设计步骤
注射模设计步骤:1、工艺性分析从塑件尺寸、精度等级、塑件要求、方便加工和热处理等方面对塑件型腔数目、浇口型式、型芯与型腔结构形式作出分析。
2、确定型腔数目根据塑件的生产批量及尺寸精度要求确定型腔数目。
按照任务书塑件图(图附在计算说明书上),计算塑件体积(小沟、槽等部位简化),单位为3cm。
塑件体积:≈Vs根据查表4-1得知的塑料ABS密度,计算单件塑件重量,单位为g。
m单件塑件重量:=s3、型腔、型芯工作部位尺寸的确定ABS塑料的收缩率是%3.0,计算平均收缩率k。
%8.0~平均收缩率:=k分别计算型腔径向尺寸L、型腔深度尺寸H、型芯径向尺寸l、型芯高度尺寸h(按照教材P74~75计算公式计算)。
型腔径向尺寸:L=型腔深度尺寸:H=型芯径向尺寸:l=型芯高度尺寸:h=加收缩率后各工作部位尺寸计算结果附图表示。
通常,塑件中1mm和小于1mm并带有大于0.05mm公差的部位以及2mm和小于2mm并带有大于0.1mm公差的部位不需要进行收缩率计算。
4、浇注系统设计(1)确定分型面位置根据塑件结构,确定分型面形式。
必须加粗标出分型面位置。
(2)确定浇口型式及位置浇口直径可以根据经验公式计算:42)20.0~14.0(A d δ=式中 d —浇口直径(mm );δ—塑件在浇口处的壁厚(mm );A —型腔表面积(2mm )分型面及浇口位置附图表示。
(3)确定型腔位置的排布布置形式附图表示。
(4)初步设计主流道及分流道形状和尺寸由教材P 77~80确定主流道及分流道形状和尺寸,并附图表示。
根据流道设计参数校核流动比∑=Φi i t L /式中 Φ —流动距离比;i L —模具中各段料流通道及各段模腔的长度(mm );i t —模具中各段料流通道及各段模腔的截面厚度(mm )。
影响流动比的因素主要是塑料的流动性,ABS 塑料与聚甲醛的流动性均为中等,查表4-3参考聚甲醛的允许流动比[Φ]=210~110,判断是否满足Φ<[Φ]。
第二章注射模具设计实例样稿.doc
第二章 注塑模具设计实例实例一:单分型面注塑模具设计一、塑件工艺性分析该塑件是一塑料瓶盖,如图2一1所示,塑件壁厚属薄壁塑件,生产批量很大,材料为聚乙烯(PE ,在高密度聚乙烯中掺入了部分低密度聚乙烯,改善塑件的柔韧性),成型工艺性很好,可以注射成型。
二、塑成型设备的选择与成型工艺规程的编制 1. 注射机的选用 1)注射量的计算通过计算或Pro/E 建模分析,塑件质量m 为2.8g ,塑件体积V 1=3.077cm 3流道凝料的质量m 2还是个未知数,可按塑件质量的0.6倍来估算。
从上述分析中确定为一模八腔,所以注射量为:m =1.6nm = 1.6 ×8 ×2.8=35. 84g2)塑件和流道凝料在分型面上的投影面积及所需锁模力的计算流道凝料(包括浇口)在分型面上的投影面积A 2,在模具设计前是个未知值,根据多型腔模的统计分析,A 2是每个塑件在分型面上的投影面积A 1的0.2倍~0.5倍,因此可用0. 35 nA 1来进行估算,所以A=nA 1+A 2=nA 1+0. 35nA 1=1.35nA 1=8412. 336mm2式中 A 1=24d= 0. 785 ×31. 52=778. 92mm 2F m =A p 型=8412. 336 ×30=252370N =252. 37kN 式中型腔压力p 型取30MPa (因是薄壁塑件,浇口又是潜伏式浇口,压力损失大,取大一些)。
3)选择注射机根据每一生产周期的注射量和锁模力的计算值,可选用SZ 一60/450卧式注射机,见表2一12. 注塑成型工艺参数选用图2—1三、塑模具结构方案设计1.型腔数量的确定及型腔的排列1)型腔数量的确定该塑件精度要求不高,又是大批大量生产,可以采用一模多腔的形式。
考虑到模具制造费用、设备运转费用低一些,初定为一模八腔的模具形式。
2)型腔排列形式的确定该塑件有两圈内螺纹,要使螺纹型芯从塑件上脱出,必须设计一套自动脱螺纹的齿轮传动结构,并且型腔的分布圆直径和齿轮分布圆直径相吻合,若采用一模八腔,型腔分布圆直径就相当大了,这样模具结构尺寸就比较大,加上齿轮传动系统,模具结构复杂,制造费用也很高。
注塑成型工艺实例
1.塑件结构及工艺分析图1是我公司开发的某冰箱上的门控开关盒零件,门控开关盒用于固定门控开关,是冰箱上的可见外观件,要求外表面光亮美观,无外观缺陷,材料为ABS,乳白色,一模多腔,采用HT-500注射成型机生产。
从产品结构上分析,塑件外形为长方形盒状,大小尺寸适中,壁厚均匀,成型的难点在于一是普通浇口难以成型,二是塑件两侧面分别有三处侧凹槽需要侧向抽芯。
要实现一模多腔,合理的模具结构和布局及抽芯机构的合理选择是简化模具结构,降低模具成本的关键所在。
2.棋具结构分析和确定根据产品的工艺分析,结合现有设备和产品外观要求及从产品的生产效率和经济性能考虑,模具采用一模四腔进行设计。
分型面选在D-D处。
根据产品形状,若采用侧浇口进料,会造成塑件进料不平衡,远离浇口的一侧不易成型,且产品边沿处会留有浇口痕迹,为保证产品外观质量和考虑到进料均匀平衡及便于成型,模具采用点浇口进料,双分型面结构。
若两侧面的抽芯均采用斜导柱抽芯,会造成模板尺寸外形增大,加工成本增大。
为使模具外形紧凑,节省模具空间,减小模具外形尺寸,充分利用现有设备,一侧的大长方形凹槽采用斜导柱外侧抽芯,另一侧的两个小方形凹槽采用斜滑块内侧抽芯来实现,从而达到简化模具结构,减小模具外形的目的。
产品分位置布置如图2所示3.模具结构及工作过程模具工作过程:当模具开启时,在拉钩的作用下,型腔板随动模板一起运动,模具沿Ⅰ-Ⅰ面分型,同时开模力通过斜导柱作用于侧滑块,驱动侧滑块在动模板上的导滑槽内作侧向移动,完成长方凹槽的侧向抽芯动作。
当型腔板运动到型腔板中孔的台肩与拉杆导柱的台肩相碰时,型腔板不动,模具沿Ⅱ-Ⅱ面分型。
当模具开启到终点位置时,在型芯包紧力的作用下,塑件被留在了动模一侧,注射机推动顶出机构运动,顶出板带动斜滑块及顶杆同时向前运动,斜滑块完成两个方凹槽的内侧抽芯,顶杆将塑件顶出。
闭模时,斜导柱带动侧滑块恢复至原位。
至此,一个工作循环结束。
4.模具关键部位的设计4.1浇注系统设计浇注系统的设计,应考虑到进料均衡,为保证各腔的充注压力始终保持一致,流道的布置采用平衡进料的方式,采用点浇口进料,使熔体流动均匀,填充迅速,不仅可以便于成型,提高塑件的成型质量,而且可以有效降低翘曲变形。
模具设计与制造模块三任务6
(2)组合式型腔 组合式型腔由两个以上的零部件组合而成,按组合方 式不同有以下几种结构形式。 1)整体嵌入式型腔:
图3-92
整体嵌入式型腔
2)局部镶嵌式型腔:如图3-93所示。 为了加工方便或由于型腔的某一部分容易损坏,需要 经常更换,应采用局部镶嵌的办法。
图3-93
局部镶嵌组合式型腔
3)底部镶拼式型腔:图3-94 底部镶拼式型腔为了机械加工、研磨、抛光、热处理 方便,形状复杂的型腔底部可以设计成镶拼式,如图3-94 所示。
1.任务要求 现有一防护罩制件,如图3-90所示,材料为ABS,采 用注射成型大批量生产。现要求对该注射成型模具的成型 零部件进行设计计算。
图3-90
防护罩
2.任务分析 防护罩的几何形状比较简单,型腔和型芯的尺寸计算 较方便。但由于塑料有收缩性,型腔和型芯的制作与装配 会有误差,型腔和型芯在注射过程中会出现磨损,因此在 设计计算防护罩注射模具的型腔与型芯时,要参照有关技 术参数综合考虑。 防护罩上φ 10 mm侧孔的成型则需要侧向抽芯机构来完 成,其结构与计算在任务8学习。
以上是仅考虑塑料收缩时计算模具成型零件工作尺寸 的公式,在考虑其他因素时,则模具成型工作尺寸的计算 公式就会有不同形式。现介绍一种常用的按平均收缩率、 平均磨损量和平均制造公差为基准的计算方法。查表可得 到常用塑料的最大收缩率Smax和最小收缩率Smin,由此该塑 料的平均收缩率为: S max S min (3-14)
图3-97
组合式主型芯结构
(2)小型芯结构 小型芯是用来成型制件上的小孔或槽。小型芯单独制造 后,再嵌入模板中。图3-98所示的结构为小型芯常用的几种 固定方法。
图3-98 圆形小型芯的固定方法 1-圆形小型芯;2-固定板;3-垫板;4-圆柱垫;5-螺塞
注塑机设计中常用的计算规范(个人从实践经验总结)
注塑机设计中常用的计算规范一、螺杆塑化能力:G = 0.017682D·h3·n·ρSD/4*L理论注射容积:V=π2S式中:D s——螺杆直径(cm)L——螺杆行程(cm)实际注射量:G1=ρV式中:ρ—熔料的密度(g/cm3),计算时选PS料,ρ= 0.92。
V——理论注射容积(cm3)注1:计算公式来源于经验公式。
二、螺杆的强度根据螺杆最常见的破坏,是在加料段螺槽根径处发生断裂,所以螺杆的强度计算就以此处计算其应力。
σr =224τσ+c≤〔σ〕 式中:压缩应力σc =sF P 0= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中三、熔胶筒的壁厚:(按厚壁筒计算中的能量理论,校核其强度或计算壁厚)熔胶筒的总应力σr = P 1322-K K ≤ 〔σ〕熔胶筒壁厚 δ= 2b D (P3-〔σ〕〔σ〕- 1 ) 式中部分熔胶筒的K 值四、螺杆驱动功率:采用经验公式计算N s = C·5.2D·n4.1S式中:N s——螺杆驱动功率(kw)C ——与螺杆结构参数及传动方式有关的系数取C=0.00016D s——螺杆直径(cm)n ——螺杆转速(r/min)螺杆所需扭矩与直径及转速之间的关系,可用下式表示:M t = 10α·D mS式中:M t——螺杆扭矩(N·m)——螺杆直径(cm)DSα——比例系数,对于热塑性塑料α=1.2~1.5m ——由树脂性能而定的指数,m=2.7~3螺杆的驱动功率一般需留20~30%的余量,以作备用。
五、传动轴的强度:传动轴最常见的破坏是在承受扭矩的最小截面处发生断裂,所以传动轴的强度计算就以此处进行计算:σr =224τσ+c ≤〔σ〕 式中:压缩应力σc = sF P= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中六、轴 承1、基本额定动负荷计算:C =Tn dm h f f f f f ·P < C r (或C a ) 式中C ——基本额定动负荷计算值(N ); P ——当量动负荷,见下式(N ); h f ——寿命系数,按表7-2-4选取; n f ——速度系数,按表7-2-5选取;m f ——力矩负荷系数,力矩负荷较小时1.5,力矩负荷较大时2; d f ——冲击负荷系数,按表7-2-6选取; T f ——温度系数,按表7-2-7选取;C r ——轴承尺寸及性能表中所列径向基本额定动负荷(N ); C a ——轴承尺寸及性能表中所列轴向基本额定动负荷(N )。
注射模具设计实例
7. 导向机构的确定: 采用有肩导柱导向;导柱设在动模侧,以防损 坏型芯;不对称布置以保证正确的合模位置; 8.排气机构:利用分型面和推杆间缝隙排气; 9.温度控制方式: 冷却水管直径8mm;采用单一矩形冷却回路 10.模具材料: 型腔、型芯、镶块等成形部分零件采用强度、 耐磨性较好的专用模具合金钢如T8A,Cr12, Cr12MoV,P20等;模板、垫板、固定板、支撑块 等可采用普通45钢或Q235,Q275钢等
4)浇口:宽度b=2mm,厚 度h1=0.8mm; 5)定位环及浇口套:根据 注射机定模板中心孔尺 寸,选取定位环直径为 φ55mm,浇口套公称直 径为φ22mm。
4. 确定成形零件的结构
1)型腔、型芯的结构设计: 为便于热处理和节约优质模具钢,型腔 采用整体镶块式结构;为便于制造,型芯 采用局部镶拼结构; 2)固定方式: 型腔和型芯均通过套板以台阶方式固定, 型芯中的小镶件用台阶或铆接固定。
(一)产品工艺性分析
3. 结构工艺性: 零件壁厚基本均匀,塑件的最小壁厚0.8mm,注 射成型时应不会发生充填不足现象;塑件有侧孔, 注射模具应有侧抽芯机构。 4. 零件体积及质量估算 1)单个塑件 体积V=1649.46mm3,质量 m=V×ρ=1.73g; 2)两个塑件和浇注系统凝料:总体积V总≈4.95cm3, 总质量m总=5.2g;
模具与注射机的相关尺寸校核最大注射模具与注射机的相关尺寸校核最大注射量注射压力安装尺寸开模及顶出行量注射压力安装尺寸开模及顶出行锁模力的校核七根据校核计算结果修改完善模具装配图七根据校核计算结果修改完善模具装配图
注射模具设计实例
大连理工大学材料学院 陈国清
2.1.2 注射模具设计实例
塑料旋钮
塑料旋钮相关参数及技术要求
塑料成型工艺与注射模具设计 (4)
2
相关知识点
(2)嵌件 的预热
为了满足装配和使用强度的要求,塑件内经常要嵌入金属嵌 件。由于金属和塑料收缩率相差较大,因而在塑件冷却时,嵌 件周围产生较大的内应力,导致嵌件周围塑料层强度下降和出 现裂纹。因此,成型前应对金属嵌件进行预热,以降低它与塑 料熔体的温差,减小内应力。
2
相关知识点
(3)料筒 的清洗
2
相关知识点
螺杆式注射机注射成型工作循环,如图4-3所示。
图4-3
2
相关知识点
与柱塞式注射机注射成型相比 较,螺杆式注射机注射成型由于 螺杆的剪切作用,塑料混合均匀, 塑化效果好,改善了成型工艺, 提高了塑件质量。同时扩大了注 射成型塑料品种的范围和最大注 射量。因此,对于热敏性和流动 性差的塑料和大、中型塑件,一 般可用移动螺杆式注射机成型。
2
相关知识点
当残余压力为正值时,脱模比较困 难,塑件容易被刮伤甚至破裂;当残 余压力为负值时,塑件表面易出现凹 陷或内部有真空泡。因此,只有残余 庄力接近为零时.脱模较顺利,而且 可获得较满意的塑件。 ◆塑件的冷却速率应适中,冷却速率 过快或模温不均匀,都会导致冷却不 均和收缩的不一致,使塑件内部产生 内应力,出现翘曲变形。
2
相关知识点
完整的注射过程包括加料、塑化、 注射、保压、冷却和脱模等几个阶段。 (1)加料 将粉状或粒状的塑料加入注射机料 斗,由柱塞或螺杆带入料筒内加热。 (2)塑化 成型塑料在注射机料筒内经加热、 压实以及混料等作用,由松散的粉状 颗粒或粒状的固态转变为连续的均匀 塑化熔体的过程。对塑化的要求是: 在规定的时间内塑化出足够数量的熔 融塑料;塑料熔体进入模具型腔内之 前应达到规定的成型温度,而且熔体 各点温度应均匀一致,避免局部温度 过低或温度过高。
(毕业设计论文)塑料注射模具设计
塑料注射模具设计目录第1章绪论 (1)1.1模具在加工工业中的地位 (1)1.2塑料模工艺与注塑模具 (1)1.3本课题研究的意义 (3)第2章注塑模的工艺分析 (4)2.1注塑模组成部分 (4)2.2模具的毛坯、制造特点和使用关系 (5)2.3注塑模结构分析 (6)2.4注塑模工作原理及装配图 (7)第3章定模板的制造加工 (9)3.1定模板的加工 (9)3.1.1制定定模板加工步骤 (9)3.1.2 选择加工设备 (12)3.2加工工艺过程 (12)第4章型芯的加工制造 (13)4.1型芯的加工 (13)4.1.1制定动模板加工步骤 (13)4.1.2 加工工艺过程 (16)第5章定模座板、动模座板的加工 (18)5.1定模座板的加工 (18)5.1.1制定定模座板加工步骤 (18)5.1.2 选择加工设备 (20)5.1.3工工艺过程 (20)5.2动模座板的加工 (20)5.2.1制定动模座板加工步骤 (21)5.2.2 选择加工设备 (22)5.2.3工工艺过程 (22)第6章型芯固定板的加工 (23)6.1制定型芯固定板加工步骤 (23)6.1.1分析型芯固定板的结构 (24)6.1.2 确定加工方法 (24)6.1.3 选择加工设备 (24)6.2加工工艺过程 (24)第7 章支承零部件的加工 (26)7.1支承板的加工 (26)7.1.1制定支承板加工步骤 (26)7.1.2 加工工艺过程 (27)7.2垫块的加工 (28)7.2.1制定垫块加工步骤 (28)7.1.2 加工工艺过程 (29)第8章推出机构的制造 (30)8.1推件板的加工步骤 (30)8.1.1制定推件板加工步骤 (30)8.1.2 加工工艺过程 (34)8.2推板的制造 (34)8.2.1制定推板加工步骤 (35)8.2.2 加工工艺过程 (35)8.3推杆固定板的加工 (36)8.3.1制定动模板加工步骤 (36)8.3.2 加工工艺过程 (37)第9章标准件的选用 (38)9.1导柱的选用 (38)9.2浇口套的选用 (39)第10章模具装配、试模与调试 (41)10.1模具装配工艺过程 (41)10.2连接件的调试与修整 (43)10.3注塑模中出现的问题 (44)10.4成型设备的参数 (44)结论 (46)参考文献 (47)致谢 (48)附录 (49)第1章绪论1.1模具在加工工业中的地位模具是工业生产的重要装备,是国民经济的基础设备,是衡量一个国家和地区工业水平的重要标志。
塑料模设计计算过程(例题)
榨汁机上盖塑料模设计摘要:本文通过对榨汁机上盖的结构、生产及材料工艺性分析,论述了材料的选用、生产工艺的制定及设备型号的选择,确定模具结构及相关成型的零件图、装配图的设计及三维造型,以及工厂模具零件的加工工艺。
关键词:ABS塑料、榨汁机上盖、塑料模具设计、模具零件加工工艺、数控编程、模具报价、工厂实用模具术语。
一、塑件工艺性分析(一)塑件原材料分析(二)塑件尺寸精度分析(加塑件图)(三)塑件表面质量分析(四)塑件结构工艺分析三、成型设备选择与模具工艺参数编制(一)(二)(三)一般工厂的塑胶部都拥有从小到大各种型号的注射机。
中等型号的占大部分,小型和大型的只占一小部分。
所以我们不必过多的考虑注射机型号。
具体到这套模具,厂方提供的注射机型号和规格以及各参数如下:最大注射量:95g最大锁模力:120T拉杆内间距:模板大小:400×550最大模具厚度:最小模具厚度:最大开合模行程:120推出形式:顶针顶杆中心距:顶杆直径:推出位置:产品离开后模最大顶出行程:60定位圈直径:喷嘴球面半径:sr20四、拟定模具结构形式(一)确定型腔数量及排列方式型腔的数量是由厂方给定,为“一出二”即一模二腔,他们已考虑了本产品的生产批量(小批量生产)和自己的注射机型号。
因此我们设计的模具为多型腔的模具。
考虑到模具成型零件和抽芯结构以及出模方式的设计,模具的型腔排列方式如下图所示:图 (2)(二)模具结构形式的确定由于塑件外观质量要求高,尺寸精度要求一般,且装配精度要求高,因此我们设计的模具采用多型腔单分型面。
根据本塑件榨汁机上盖的结构,模具将会采用单个分模面,二个行位的结构。
(三)分型面位置的确定如下图所示,采用A-A平直的分型面,前模(即定模)做成平的就行了,胶位全部做在后模(即动模),大简化了前模的加工。
A-A分型面也是整个模具的主分模面。
下图中虚线所示的B -B和C-C分型面是行位(即滑块)的分型面。
这样选择行位分型面,有利于线切割行位以及后模仁和后模镶件这些成型零件。
设计注射模具成型零件课件
成型过程中无动作要求的成型零件,一般采用过渡配合 安装。要求动作的零件,如型芯,要求间隙配合安装,则对 制品尺寸带来误差,动模与定模合模时,会产生合模位置误 差。
学习交流PPT
40
(4)模具成型零件的磨损δc
—— 型腔尺寸变大,型芯尺寸减小,中心距基本保持不变
➢造成磨损的原因:
学习交流PPT
34
3.螺纹成型零件技术要求
材料:T8A、T10A、Cr12 凹模热处理:HRC40~45 表面粗糙度:成型表面:Ra0.2~Ra0.1μm
配合面:Ra0.8~Ra0.4μm 表面处理:表面镀铬、抛光
学习交流PPT
35
学习交流PPT
36
四)模具成型零件的工作尺寸计算
• 模具成型零件的工作尺寸是指直接用来构成塑件型 面的尺寸。
• 适用范围:塑件尺寸较小的多型腔小多模型型具塑腔的件, 模而具且,是各
单个型腔采用机加
工、冷挤压、电加
工等方法加工制成,
然后压入模板中。
这种结构加工效率
学习交流PPT 高,拆装方便,可
7
通孔台肩式:凹模带有台肩
若凹模镶件是回转体,而型腔是非回转体, 则需要用销钉或键定位 。
学习交流PPT
8
通孔无台肩式
Scp = (S m a x + S m i n )/ 2
学习交流PPT
44
规定:对塑件尺寸和成型零件的尺寸偏差统一按凸负凹正 原则标注,即
➢孔按基孔制,公差下限为零,公差等于上偏差; ➢轴按基轴制,公差上限为零,公差等于下偏差; ➢中心距尺寸采用双向对称偏差标注
学习交流PPT
45
2、型腔和型芯尺寸的计算
衬套注塑模具设计说明书
南京农业大学工学院课程设计课题名称:塑料模塑成型技术题目名称:衬套注塑模具设计专业班级:材料成型及控制工程04班学号:学生姓名:指导教师:聂信天夏荣霞史立新徐秀英2013年10 月28 日目录一.塑件成型工艺性分析 (3)1.1 塑件的分析 (3)1.2 PP的性能分析 (3)1 .3 PP的注射成型过程及工艺参数 (3)二.拟定模具的结构形式 (4)2.1 分型面位置的确定 42.2 确定型腔数量和排列方式 42.3 注塑机型号的确定4三.浇注系统的确定 63.1 主流道设计 63.2 浇口的设计7 四.成型零件的结构设计和计算94.1 成型零件的机构设计94.2 成型零件的钢材选用94.3 成型零件工作尺寸的计算94.4 模架的确定和标准件的选用11五.脱模推出机构设计11六.模架的确定13 七.排气槽的设计14 八.冷却系统的设计 (14)九.导向和定位结构的设计.........................................................错误!未定义书签。
十.总装图错误!未定义书签。
总结 (18)参考文献 (18)一.塑件成型工艺性分析1.1.塑件的分析(1)外形尺寸:壁厚6mm,结构对称,适合注射成型。
(2)精度等级:MT5,查表确定每个尺寸的公差。
(3)脱模斜度:PP 为无定型塑料,流动性好,选择该塑件上型芯和凹模的统一脱模斜度为45分。
(4)圆角过渡:半径1.5mm.1.2.PP 的性能分析(1)使用性能:密度小,强度高耐热性均优于聚乙烯,可在100°C 左右使用,具有优良的耐腐蚀性高频绝缘性,不受湿度影响,(2)但低温时变脆,不耐磨,易老化。
(3)成型性能:1.结晶料,吸湿性小,易发生熔体破裂,长期与热金属接触易分解。
2.流动性好,但收缩范围和收缩大,易发生缩孔,凹痕,变形。
3.冷却速度快,浇注系统和冷却系统应缓慢散热。
4.塑料壁厚需均匀,避免缺口,尖角。
基于有限元分析软件的注塑模具刚度和强度分析
・
2 0 1 3年 第 2 5 卷 第 4期
4 4 ・
M ODERN PLAS TI CS PRoCESS I
基 于 有 限 元 分 析 软 件 的 注 塑 模 具 刚 度 和 强 度 分 析
mi ne d . Th e n, t h e l o a d i n g o f s i f f ne s s a n d s t r e ng t h i s r e g a r d e d a s a i npu t c on d i t i o n, a nd
t h e s t r e s s a n d d e f o r ma t i o n o f mo l d c a v i t y a r e c a l c u l a t e d u s i n g s o f t wa r e o f An s y s wo r k —
注塑模 具是 一种 高技术 含量 、 高经验 附加值 的成 型装备 。在 注塑 模具 行业 , 运 用计 算机 辅 助
工程 ( C A E ) 技术取得 了许 多研究成 果_ 1 ] , 对模具
腔 3 D 几 何 模 型 导 入 有 限 元 分 析 软 件 An s y s Wo r k b e n c h中 , 选 取其 所用 的材 料 为模 具 钢 , 材 料 参数 : 弹性模 量 2 . 2 ×1 0 MP a , 柏松 比 0 . 2 5 , 密度 7 . 8 ×1 0 g / mm。 , 许 用 应用 3 0 0 MP a 。采
Ge n g Ti e Tu We i q i n g Ya n L i q u n Lv J u n z h i
( Co l l a g e o f Me c h a n i c a l El e c t r i c a l En g i n e e r i n g。
注射模具成型零件的设计.pptx
第四节 成型零件尺寸的确定
一、影响塑件尺寸的因素 成型收缩率的选择和成型收缩的波动引起的尺寸误差 成型零件的制造误差、组装误差及相对移动引起的误差; 成型零件脱模斜度引起的误差 成型零件磨损及化学腐蚀引起的误差 二、确定成型零件尺寸的原则
1.综合考虑以下因素,确定合适的塑料收缩率 塑件壁厚、形状及嵌件:壁厚较大、形状较复杂或有时嵌件取偏小值 熔料流向:与进料方向平行的尺寸取偏小值 浇口截面积:浇口截面积小的比大的收缩率大,应取偏大值 与浇口的距离:近的部位比远的部位收缩率小,应选较小值 型腔尺寸取小于平均收缩率的值,型芯尺寸取大于平均收缩率的值 2.据成型零件的性质决定各部分成型尺寸:图5-17 3.脱模斜度的取向:型腔尺寸以大端为准,脱模斜度向缩小方向取得;型
第二节 型芯的结构设计
型芯又叫凸模,是构成塑件内部几何形状的零件。包括主体型芯、小型芯、侧 抽芯和成型杆及螺纹型芯等
一、型芯的结构形式 完全整体式图5-11 主体型芯与动模板做成一体。结构简单,强度、刚度较
好;费工费材,不易修复和更换,只用于形状简单的单型腔或强度、刚度要 求很高的注射模 整体嵌入式图5-12 将主体型芯镶嵌在模板上并固定 局部组合式图5-13、图5-14 塑件局部有不同形状的孔或沟槽不易加工时, 在主体型芯上局部镶嵌与之对应的形状,以简化加工工艺,便于制造和维修 完全组合式图5-15由多块分解的小型芯镶拼组合而成,用于形状规则又难于 整体加工的塑件 二、小型芯的固定形式 图5-16
Δ
2.型芯尺寸
d——型芯径向最大基本寸 d0—塑件径向最小基本尺寸
h —— 型芯高度最大尺寸 h0—塑件内形深度最小尺寸
3.中心距尺寸
保证同心度和尺寸精度,且便于热处理 局部组合式图5-3 型腔由整块材料制成,局部镶有成型嵌件。用于型腔较深、
塑料仪表盖注射模设计说明书
题目:塑料仪表盖注射模设计说明书系别:机械工程系专业:模具设计与制造学号:设计:指导:二00七年元月目录一零件的工艺分析二模具结构设计三成型零部件四侧向分型与推出机构的设计五模具零件的加工六参考文献七心得体会一.零件的工艺分析1.塑件的有关分析结构特点:该塑件大体是一个2mm厚的壳体,由于该塑件较小,采用一模多腔比较合适。
塑件的体积 =2.8cm³塑件的密度 =1.02~1.05kg/cm³塑件的重量 =3g所用材料:丙烯腈——丁二烯——苯乙共聚物(ABS)工程材料2.ABS塑料基本特性:ABS是由丙烯腈、丁二烯、苯乙烯共聚而成的。
这三种组分的各自特性,使ABS 具有良好的综合力学性能。
丙烯腈使ABS有良好的耐化学腐蚀性及表面硬度,丁二烯使ABS坚韧,苯乙烯使它有良好的加工性和染色性能。
ABS无毒、无味,呈微黄色,成形的塑料件有较好的光泽。
密度为1.02~1.05g/cm³。
ABS有极好的抗冲压强度,且在低温下也不迅速下降。
有良好的机械强度和一定的耐磨性、耐油性、耐水性、化学稳定性和电气性能。
ABS有一定的硬度和尺寸稳定性,易于成型加工。
经过调色可配成任何颜色。
其缺点是耐热性不高,连续工作温度为70°C左右,热变形温度为93°C 左右。
耐气候性差,在紫外线作用下变硬变脆。
主要用途:ABS广泛用于水表壳、纺织器材、电器零件、文教体育用品、玩具等。
成型特点:ABS在升温时粘度增高,所以成型压力比较高,塑料上的脱模斜度宜稍大,ABS易吸水,成型加工前应进行干燥处理;易产生熔接痕,模具设计时应注意尽量减少浇口对流道的阻力;在正常的成型条件下,壁厚、熔料温度及收缩率影响极小。
要求塑件精度高时,模具温度可控制在50~60°C,要求塑件光泽和耐用时,应控制在60~80°C。
(具体参数见下页)3. 产品工艺性与结构分析(1) 尺寸的精度塑件的尺寸公差推荐值参考《模具设计与制造手册》的2-17,塑件的精度等级参考表2-18。
浅谈注塑模具的计算
浅谈注塑模具的计算1.引言工业设计的目的,就是通过对产品的合理规划,而使人们能更方便地使用它们,使其更好地发挥效力。
在研究产品性能的基础上,工业设计还通过合理的造型手段,使产品能够具备富有时代精神,符合产品性能、与环境协调的产品形态,使人们得到美的享受。
工业设计强调技术与艺术相结合,所以它是现代科学技术与现代文化艺术融合的产物。
它不仅研究产品的形态美学问题,而且研究产品的实用性能和产品所引起的环境效应,使它们得到协调和统一,更好地发挥其效用。
丛林法则(the law of the jungle)是自然界里生物学方面的物竞天择、适者生存、优胜劣汰、弱肉强食的规律法则。
激烈的市场竞争让塑料制品在利用工业设计的同时,不得不引入丛林法则,正是工业设计和丛林法则促使塑料制品的外观造型越来越复杂,而电脑技术的发展,特别是计算机辅助设计和制造使这一切复杂的设计造型都有了实现的可能性。
塑料制品的成型,绝大多数都离不开模具。
近年来,计算机辅助设计和制造的发展,对塑料制品的设计和模具制造带来了翻天覆地的变化。
模具制造的技术已经由过去的以钳工手工为主发展到以数控机床加工为主,塑料产品的设计也从手工制图发展到完全利用电脑绘图,产品制图的表现手法也由过去2D图纸转向3D数据为主,产品的造型也从过去的方形、三角形和圆形等规则形状变化为复杂的空间曲面造型,这些变化都使得产品的外观形状越来越复杂,也给模具设计和制造带来了极大的挑战。
因此要求我们的.模具设计必须适应这种挑战,与时俱进。
对于注塑模具的计算,模具专业教科书、技术资料、论文和设计手册已经有很多公式和资料,在过去几十年的岁月里,这些公式在模具行业得到广泛的应用,现在利用计算机辅助设计与制造的情况下,这些公式的局限性也凸显出来,因而有些传统的模具设计计算公式在实际中已经失去使用价值,继续使用某些公式可能会给模具设计专业的新生带来困扰,本文旨在探讨在模具设计的实践中哪些内容需要计算,哪些内容不需要计算,如何选择计算公式等问题。
塑料模成型零部件强度和刚度是计算
第三节成型零部件的设计成型零部件的强度与刚度的计算一、模具强度及刚度概念从工程力学的角度上讲:构件刚度—是指构件抵抗变形的能力构件强度—是指某种材料抵抗破坏的能力,即材料破坏时所需要的应力。
模塑成型过程中,型腔受到塑料熔体的压力会产生一定的内应力及变形。
若型腔或底板壁厚不够,当内应力超过材料的许用应力时,型腔会因强度不够而破裂。
若型腔刚度不足也会发生过大的弹性变形,因此导致溢料、影响塑件尺寸和精度、脱模困难。
型腔刚度计算的依据可归纳为以下几个方面:(1)防止溢料(2)保证塑件精度(3)有利于脱模二、壁厚的受力分析1.模塑过程中模具承受的力设备施加的锁模力注射过程中塑料流动的注射压力浇口封闭前一瞬间的保压压力开模时的拉应力2.型腔受内压力作用发生膨胀变形影响塑件的尺寸精度配合面处产生溢料飞边小型腔的许用变形量小,压力作用会导致其破坏3.型腔壁厚的最大允许变形量δ从中小型塑件的尺寸精度考虑:δ≤Δ/5从不产生溢料飞边考虑:δ﹤塑料的溢料值(表5-3)保证塑件的顺利脱模:δ≤S·t(收缩量腔力学计算的特征和性质:大型腔以刚度为主计算,小型腔以强度为主计算圆形凹模直径:D﹤67~86mm时以强度计算为主矩形凹模长边:L﹤108~136mm时以强度计算为主4.型腔壁厚和底板壁厚的校核型腔要承受塑料融体的高压作用若壁厚不够可表现为:刚度不够——产生过大的弹性变形。
强度不够——型腔发生塑性变形、破裂型腔壁厚计算以最大压力为准大型模具以刚度计算为主小型模具以强度计算为主刚度与强度的校核目的保证强度和刚度(1).刚度——防止过大弹性变形⑴从保证塑件精度要求方面出发:要求弹性变形δ<1/5Δ弹性变形量[δ]由塑件的尺寸公差值决定⑵从保证模具型腔不发生溢料方面出发:由塑料粘度特性决定弹性变形值应小于制件收缩值型腔尺寸+弹性变形=制件尺寸+热膨胀(收缩)值当变形大于热收缩值时,冷却减压后,型腔弹性恢复,塑件收缩导致制件尺寸大于型腔尺寸以致难以脱模2.强度——防止型腔变形、破裂刚度和强度校核,其选择以一分解值为标准影响因素:(1) 型腔形状(2) 模具材料的许用应力(3) 型腔的允许变形量(4) 塑料融体压力单型腔侧壁厚度tc的经验计算公式为:tc=0.20t+17(型腔压力PM<49MPa)。
模具强度和刚度计算
模具强度和刚度计算首先,我们先来了解一下模具强度和刚度的概念。
模具强度是指模具在工作过程中所能承受的最大应力。
模具在使用过程中会受到来自冲压和挤压等力的作用,如果应力超过了模具材料的强度极限,就会发生破裂或变形。
因此,合理设计模具强度对保证模具的正常使用非常重要。
模具刚度是指模具在受到外力作用下所产生的形变程度。
模具刚度的大小直接影响加工精度,刚度越大,模具的形变越小,加工出来的产品精度越高,反之亦然。
因此,正确计算模具刚度也是模具设计和制造的关键。
下面我们将分别介绍模具强度和刚度的计算方法。
一、模具强度的计算方法:1.应力分析法:根据模具的受力情况,通过应力分析方法计算模具在工作过程中所受到的最大应力。
应力分析方法包括数值分析、有限元分析等。
通过这些分析方法,我们可以了解到模具在不同位置所受到的应力大小,并结合模具材料的强度参数,来评估模具的强度是否足够。
2.强度校核法:根据模具的设计要求,利用模具工程手册中提供的强度校核公式来计算模具的强度。
不同类型的模具有不同的强度校核公式,如冲压模具校核公式、挤压模具校核公式等。
这些公式是根据实验数据和经验总结得出的,可以用来快速评估模具的强度。
3.试制验证法:通过试制一些样件来验证模具的强度。
在试制过程中,观察模具是否发生破裂或变形,通过样件的质量和加工精度来判断模具的强度是否足够。
这种方法的优点是简单、直观,但是需要进行多次试制验证才能得到准确的结果。
二、模具刚度的计算方法:1.刚度公式法:根据模具的结构和材料参数,利用刚度公式来计算模具的刚度。
模具刚度公式包括单元法、单弯杆法、整体法等,不同的方法适用于不同的模具结构。
这些公式是根据弹性力学原理推导得出的,可以用来快速计算模具的刚度。
2.有限元分析法:通过有限元分析软件对模具进行建模,并进行有限元分析,来计算模具的刚度。
有限元分析是目前模具设计中常用的一种方法,通过数值计算的方式可以较准确地预测模具的刚度和形变情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注射模具设计的习题
10、有一壳形塑件,如图7-37所示,所用模具结构如图7-38所示,选用HDPE 塑料成型,型腔压力取40MPa,模具材料选45钢,其许用应力[σ]=160MPa,其余尺寸见图7-38。
计算定模型腔侧壁厚度S和型芯垫板厚度H。
1
1、定模型腔侧壁厚度的计算:
分析:该零件为矩形零件,凹模置于定模侧,且采用了底部镶拼组合式结构,模板形状为矩形,所以采用组合式凹模的侧壁厚度的计算公式。
刚度计算公式为P156中(6.20)
p⨯H1⨯l4
S= 32⨯E⨯H⨯[δ]
参数取值 p=40MPa;H1=80mm,l=120mm
E=2.06*105Mpa,H=120mm
[δ]=?
其中:许用变形量[δ]的确定,满足以下三个原则
型腔不发生溢料
HDPE的许用变形量为0.025~0.04mm,HDPE的粘度相对较高,取为0.03mm
保证塑件精度
塑件的外轮廓尺寸中长度尺寸为120mm,没有标公差等级,按MT7取公差,即
δ=∆i/[5(1+∆i)]=2.4/[5(1+2.4)],所以保证塑件精度的许用变形量为0.14mm
保证塑件顺利脱模
[δ]≤2⨯2%+4%
2=0.06mm
所以许用变形量[δ]=0.03mm
6.20)可得到
S=40⨯80⨯1204
32⨯2.06⨯105⨯120⨯0.03=30.35mm
4 由刚度计算公式(
强度计算公式:(公式6.22)
S=p⨯H1⨯l2
2⨯H⨯[σ]
参数取值[σ]=160MPa,p=40MPa;H1=80mm,l=120mm
=40⨯80⨯1202
S2⨯120⨯160=34.64mm
但考虑应力中第二项的影响,S稍放大,取为40mm
比较强度和刚度计算的结果,将定模型腔的侧壁厚度暂取为40mm
因此凹模周界尺寸为:B0=65+2*40=145mm L=120+2*40=200mm 查看中小型标准模架,将本模具与模架模型对比: 6
初选B0*L=160*200的模架
● 本模具中定模板厚度为120mm,该系列模架中定模板最大厚度为80mm,不能满足要求;
● 模具中垫块厚度C必须满足以下关系式:C≥(80-2)+推板厚度+推出固定板厚度+该系列模架中垫块厚(5~10)mm,
度为80mm,不能满足要求;
● 导柱会削弱模具的强度;
所以考虑选用周界尺寸更大的标准模架,选用B0*L=200*250mm的模架
(该模架满足模具总体放大需求,满足推板尺寸要求,但定模板和垫板的厚度仍需单独定制。
)
各部分的尺寸如下图所标:
✧定模座板(零件1):250*250*25
✧定模板(零件3、4): 200*250*120
✧动模板(零件7): 200*250*40
(动模板厚度由型芯直径(116*61)和型芯高度(78
一般厚度为0.2~2反之,取上限,在此取为40)
动模支撑板(零件7):200*250*32
校核动模支撑板的厚度h=32是否满足强度和刚度要求?刚度计算公式:
h
参数取值:p=40MPa;b=65mm; L(B2)=118mm;E=2.06*105Mpa,B(B0)=200mm 许用变形量[δ]的确定,参考教材P158 [δ]=0.05mm 13
刚度计算可得:
h==mm
强度计算:
各参数取值为:p=40MPa;b=65mm; L=118mm;
B=200mm;[σ]=160MPa
h==mm
所以动模支撑板的厚度32mm不满足其强度和刚度要求,两种解决方案:
一、加厚动模支撑板;二、减小双支脚间距
在此采用一,将动模支撑板厚度增加到40mm
✧动模模脚(零件9)尺寸如右图所示
⏹推板:250*148*20
⏹推出固定板(零件8):148*250*16
⏹动模模脚(垫块与动模座板合二为一)到动模支
撑板的距离) = 推板厚度+推出固定板厚度+塑
件推出高度(塑件包覆在型芯上的高度)+5~10 (mm)本示例中取为120mm ⏹模脚总高为125mm,内侧(动模模脚靠推板侧)底部厚度为5mm,外侧(动模模脚靠压板固定侧)底部厚度为25mm(与定模座板1的厚度保持一致)
模具总高=25+120+40+40+125
=350mm
由上述模具结构可以推出:
推杆长度=120-20+40+40+78=258mm。