统计学名词解释 (1)
统计学名词解释
统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。
2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。
3.个体:构成总体的每个基本单元称为个体。
4.样本:从总体中抽取的一部分个体,称为总体的一个样本。
5.次数:指某一事件在某一类别中出现的数目,又称为频数。
6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
7.概率:某一事物或某一情在某一总体中出现的比率。
8.观测值:一旦确定了某个值。
就称这个值为某一变量的观测值。
9.参数:又称为总体参数,是描述一个总体情况的统计指标。
10.统计量:样本的那些特征值叫做统计量,又称特征值。
第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。
一般由表号、名称、标目、数字、表注组成。
2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。
纵轴表示事物出现的次数或因变量,称为数值轴。
一般由图号及图题、图目、图尺、图形、图例、图组成。
3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。
4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。
5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。
B.可显示一组数据的集中情况和差异情况等。
(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。
统计学名词解释
1、统计包括三方面的涵义:统计活动、统计资料、统计学;2、统计活动:是在一定的理论指导下,采用适宜的科学方法搜集、处理统计资料的一系列调查研究过程。
3、统计资料:即统计信息,它集中、全面、综合地反应国民经济和社会发展的现象和过程4、统计学:即统计理论,是一门独立的方法论科学,它根据自己的研究对象,系统的阐述统计理论的方法5、统计总体:是根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的,具有某种共同性质的许多个别单位构成的整体。
6、总体单位:是指构成总体的个体单位,它是总体的基本单位。
(又称个体)7、同质性:指总体各单位在某一标志上的共同性8、变异性:指总体所有单位至少有一个以上的可变品质标志或数量标志9、大量性:指统计总体中的单位应有足够的数量,如果总体单位应有足够的数量,如果总体单位数量很少,就难以揭示总体的规律性10、标志:是指统计总体中各单位所具同具有的属性和特征11、品质标志:表明总体单位属性方面的特征,用文字表示12、数量标志:数量方面的特征13、指标:是反映社会经济现象总体数量特征的概念和数值。
14、变异:统计中的标志和指标都是可变的15、变量:可以取不同值得量,在社会经济统计学中,各种数量标志和全部统计指标都是变量16、连续变量:数值是连续不断的,相邻两值之间可作无限分割,即可去无限数值17、离散变量:数值都是以整数位断开的,其数值要用计算的方法取得18、确定性变量:变量值的变动受制于某种决定性因素,致使其沿着一定的方向变动19、随机变量:影响变量值变动的因素有很多,作用不同,因而变量值变动无确定方向20、统计法:国家制定和认可的调整参与统计活动的各方面——统计主体、客体、宿体在统计活动中形成的社会关系的法律规范的总称21、统计设计:对一个完整的统计工作涉及各个方面和各个环节的通盘考虑和适当安排22、统计指标体系:将反映社会经济现象数量特征的一系列相互依存、相互联系的统计指标有机结合所组成的整体;23、指标名称:指标质的规定,它反映一定的社会经济范畴24、指标数值:根据指标的内容所计算出来的具体数值25、数量指标:反映总体总规模、总水平或总工作量的统计指标,又称总量指标26、质量指标:反映总体内部数量关系、单位一般水平、工作质量的统计指标27、描述指标:对总体及其组成部分的规模水平和数量关系进行客观描述的统计指标28、评价指标:反映社会经济总体的结构、比例、速度以及利用状况和效益、效果的统计指标29、监测指标:对社会经济总体运行进行跟踪监测,看其是否偏离既定目标,是否保持平衡的统计指标30、预警指标:可以对总体运行中出现的偏离进行及时的调控31、统计调查:是按照统计的任务和调查的目的要求,运用科学的方法搜集或者收集被研究对象的各个标志值的过程。
统计学复习资料(名词解释、简答)
统计学复习资料(名词解释、简答)计算题:以老师圈的重点,以及之前布置的作业为主,重点复习11/12章一、名词解释:时间序列数据:是在不同时间收集到的数据,这些数据是按时间顺序收集到的,用于所描述现象随时间变化的情况.总体:是包含所研究的全部个体(数据)的集合样本:是从总体中抽取的一部分元素的集合样本量:构成样本的元素的数目统计量:用来描述样本特征的概括性数字度量参数:用来描述总体特征的概括性数字度量概率抽样:即随机抽样,遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本非概率抽样:抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查简单随机抽样:指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
分层抽样:将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本整群抽样:是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
系统抽样:根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式抽样误差:由抽样的随机性引起的样本结果与总体真值之间的误差分组数据:根据统计研究的需要,将原始数据按照某种标准化分成不同的组别,分组后的数据称为分组数据。
方法有单变量值分组和组距分组两种。
众数:是一组数据中出现次数最多的变量值中位数:是一组数据排序后处于中间位置上的变量值平均数:也称均值,是一组数据相加后除以数据的个数得到的结果算术平均数:是指在一组数据中所有数据之和再除以数据的个数。
几何平均数:是n个变量乘积的n次方根方差:各变量值与其平均数离差平方的平均数经验法则:当一组数据对称分布时,经验法则表明:约有68%的数据在平均数1个标准差的范围之内。
约有95%的数据在平均数2个标准差的范围之内。
约有99%的数据在平均数3个标准差的范围之内。
统计学(名词解释及简答)
统计学名词解释统计量:用来描述样本特征的概括性数字度量简单随机抽样:指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
整群抽样:是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
系统抽样:根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式众数:是一组数据中出现次数最多的变量值中位数:是一组数据排序后处于中间位置上的变量值平均数:也称均值,是一组数据相加后除以数据的个数得到的结果标准差:离均差平方和平均后的方根区间估计:在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减抽样误差得到。
假设检验:利用样本信息,对提出的命题进行检验的一套程序和方法。
双侧假设检验:当统计量U的观测值的绝对值大于临界值Uα/2即|u0|>Uα/2时,则拒绝原假设H0,此时假设检验的拒绝域在统计量分布的两侧尾部,则称这种假设检验为双侧假设检验。
相关系数:是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
回归模型:描述因变量y如何依赖于自变量x和误差项的方程。
回归方程:描述因变量y的期望值如何依赖于自变量x的方程。
估计的回归方程:根据估计数据求出的回归方程的估计。
多重共线性:是指线性回归模型中的两个或两个以上的自变量彼此相关。
时间序列:是同一现象在不同时间上的相继观察值排列而成的序列。
趋势:是时间序列在长时期内呈现出来的某种持续上升或持续下降的变动,也称长期趋势。
季节变动(季节性):时间序列在一年内重复出现的周期性波动。
指数:广义的讲,任何两个数值对比形成的相对数都可以称作指数,狭义的讲,指数是用于测定多个项目在不同场合下综合变动的一种相对数。
消费者价格指数(CPI):反映一定时期内消费者所购买的生活消费品价格和服务项目价格的变动趋势和程度的一种相对数。
简答一、概率抽样与非概率抽样比较答:非概率抽样不是依据随机原则抽选样本,样本统计量的分布是不确切的,因而无法使用样本的结果对总体相应的参数进行推断。
医学统计学名词解释 (1)
1.统计学(Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学2.医学统计学:是以医学理论为指导,借助统计学的原理和方法研究医学现象中的数据搜集、整理、分析和推断的一门综合性学科。
3.变量:是指观察个体的某个指标或特征,统计上习惯用大写拉丁字母表示4.同质:是指事物的性质、影响条件或背景相同或相近。
5.变异:是指同质的个体之间的差异6.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
7.样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
8.参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。
总体参数是固定的常数。
多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。
9.统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。
样本统计量可用来估计总体参数。
总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
10.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
11.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
12.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。
统计学名词解释
1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。
具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。
这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。
医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
统计学名词解释
名词解释:1、分类数据:是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示的。
(P5)2、四分位数:也称四分位点,它是一组数据排序后处于25%和75%位置上的值。
(P89)3、方差分析:是通过检验个总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。
(P264)4、相关系数:是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
(P304)5、居民消费价格指数:是度量居民消费品和服务项目价格随时间变动的相对数,反映居民家庭购买的消费品和服务价格水平的变动情况。
(420)6、顺序数据:是只能归于某一有序类别的非数字型数据。
(P6)7、抽样误差:是由于抽样的随机性引起的样本结果与总体真值之间的误差。
(P33)8、离散系数:也称变异系数,它是一组数据的标准差与其相应的平均数之比。
计算公式为:(P103)1.v s= s/⎺x9、置信区间:在区间估计中,由样本统计量所构成的总体参数的估计区间。
(P177)10、点估计:用样本统计量^θ的某个取值直接作为总体参数θ的估计值。
(P176)11、系统抽样:将总体中的所有单位(抽样单位)按一定的顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按后按事先规定好的规则确定其他样本单位。
(P19)12、中心极限定理:设从均值为μ、方差为σ2(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值⎺X的抽样分布近似服从均值为μ、方差为σ2/n的正态分布。
(P165)13、回归模型:描述因变量y如何依赖于自变量x和误差项的方程。
对于只涉及一个自变量的一元线性回归模型可表示为y=β0+β1x+ε。
(P308)14、指数平滑法:是通过对过去的观察值加权平均进行预测的一种方法,该方法是t+1期的预测值等于t期的实际观察值与t期的预测值的加权平均值。
(P378)15、非概率抽样:是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
统计学名词解释
1第一章1.统计数据:即统计信息,是指通过统计工作过程中取得的各项数据资料以及与之相关的其他资料的总称。
2.统计学:即统计理论,是指系统地阐述统计实践活动根本原理和研究方法的理论。
它是一门研究如何搜集、整理和分析统计资料的理论和方法论科学。
4.统计学的研究对象:客观事物中的数量特征、数量关系和数量变化。
5.统计学包括商务管理统计的研究对象特点:数量性〔根本特点〕、总体性、变异性。
7.商务管理统计研究方法大量观察法统计分组法比照分析法综合指标法统计推断法动态测定法8.统计总体。
又称“调查总体〞简称“总体〞,在数理统计中又称母体,与样本相对应。
但凡客观存在的、具有共同性质的个体所构成的整体就是统计总体。
其形成必须具备以下条件:客观性:即统计总体必须是客观存在的,并且能实际观察到的。
同质性:即构成统计总体的所有单位至少具有某一个共同性质是统计总体的前提条件。
变异性:即构成统计总体的各总单位至少在某一性质上具有共同特征外,在其他性质上应具有差异性,变异性是统计研究的重点。
9.总体单位:构成统计总体的每个根本单位称为总体单位,简称单位或个体,它是各项统计特征的原始承当者。
10.统计总体分类:按其包含的单位数是否可计分为有限总体与无限总体按总体单位的形态分为实体总体和行为总体。
11.总体与总体单位的关系:a.总体是由总体单位组成,总体单位是组成总体的个别事物。
b.根据研究目的不同,总体和总体单位是可以相互转化的。
12.标志:表示总体单位特征的名称。
如性别、年龄、籍贯、企业所有制、规模等。
13.标志表现:即标志特征在各单位的具体表现。
如性别标志的表现有“女〞、“男〞,年龄标志用“30〞岁“50〞岁等数量来表现。
14.标志的分类a.根据标志表现的形式不同。
数量标志,说明总体单位数量特征的标志,是可以用数值表示的。
品质标志,说明总体单位属性特征的标志,不能用数值表现。
b.按照各总体单位标志的具体表现是否一样。
不变标志:某一标志的具体表现在总体中各总体单位都一样。
统计学名词解释
1、统计学统计学是一门说明怎样去收集、整理、显示、描绘、剖析数据和由数据得出结论的一系列观点、原理、原则、方法和技术的科学,是一门独立的、适用性很强的通用方法论科学。
2、指标和标记标记是说明整体单位属性或特色的名称。
指标是说明整体综合数目特色和数目关系的数字资料。
3、整体、样本和单位统计整体是统计所要研究的对象的全体,它是由客观存在的、拥有某种共同性质的很多个体所构成的整体。
简称整体。
构成整体的个体则称为整体单位,简称单位。
样本是从整体中抽取的一部分单位。
4、统计检查统计检查是依据统计研究的目的和要求、采纳科学的方法,有组织有计划的收集统计资料的工作过程。
它是获得统计数据的重要手段。
5、统计绝对数和统计相对数反应整体规模的绝对数目值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反应现象间的联系和对照关系。
6、期间指标和时点指标期间指标是反应整体在一段期间内累计总量的数字资料,是流量。
时点指标是反应整体在某一时辰上拥有的总量的数字资料,是存量。
7、抽样预计和假定查验抽样预计是指依据所抽取的样本特色来预计整体特色的统计方法。
假定查验是先对整体的某一数据提出假定,而后抽取样本,运用样本数据来查验假定建立与否。
8、变量和变异标记的详细表现和指标的详细数值会有差异,这类差异就称为变异。
数目标记和指标在统计中称为变量。
9、参数和统计量参数是反应整体特色的一些变量,包含整体均匀数、整体方差、整体标准差等。
统计量是反应样本特色的一些变量,包含样本均匀数、样本方差、样本标准差等。
10、抽样均匀偏差样本均匀数与整体均匀数之间的均匀失散程度称之为抽样均匀偏差,简称为抽样偏差。
重复抽样的抽样均匀偏差为整体标准差的1/n 。
11、抽样极限偏差抽样极限偏差是指样本统计量和整体参数之间抽样偏差的可能范围。
我们用样本统计量改动的上限或下限与整体参数的绝对值表示抽样偏差的可能范围,称为极限偏差或同意偏差。
(完整版)统计学名词解释
统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。
2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。
3.个体:构成总体的每个基本单元称为个体。
4.样本:从总体中抽取的一部分个体,称为总体的一个样本。
5.次数:指某一事件在某一类别中出现的数目,又称为频数。
6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
7.概率:某一事物或某一情在某一总体中出现的比率。
8.观测值:一旦确定了某个值。
就称这个值为某一变量的观测值。
9.参数:又称为总体参数,是描述一个总体情况的统计指标。
10.统计量:样本的那些特征值叫做统计量,又称特征值。
第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。
一般由表号、名称、标目、数字、表注组成。
2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。
纵轴表示事物出现的次数或因变量,称为数值轴。
一般由图号及图题、图目、图尺、图形、图例、图组成。
3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。
4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。
5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。
B.可显示一组数据的集中情况和差异情况等。
(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。
统计学 名词解释
统计学名词解释1. 啥是总体呀?比如说咱全校学生就是一个总体呀!总体就是包含所研究的全部个体的集合。
就像一片森林,所有的树木加起来就是总体。
2. 样本呢,就是从总体里抽出来的一部分呀!比如从全校学生里随机选出来的 100 个学生就是样本呀。
这不就像从那片森林里砍几棵树出来研究一样嘛!3. 平均数大家都懂吧?就是一组数据的平均值呀!像咱班这次考试成绩的平均数,能反映出咱班的整体水平呢!这不就像大家一起走路,平均数就是大家走的平均速度嘛。
4. 中位数呢,就是按顺序排好中间的那个数呀!比如 1、2、3、4、5,那 3 就是中位数呀。
这就好比排队,站在中间的那个人的位置就是中位数呀!5. 众数可有意思啦!就是一组数据中出现次数最多的那个数呀!比如咱班同学最喜欢的颜色,出现最多的那个颜色就是众数呀。
这就好像一堆糖果里,数量最多的那种糖果嘛!6. 方差呀,就是用来衡量数据波动大小的呀!方差大,说明数据波动大;方差小,说明数据稳定呀。
就像天气,有时晴天有时雨天,波动大;一直晴天,波动就小呀!7. 标准差呢,和方差有关系,其实就是方差的平方根呀!它也能看出数据的离散程度呢。
就好像跑步的步幅,步幅变化大,标准差就大嘛!8. 概率,哇,这个可重要啦!就是某件事发生的可能性大小呀!比如抛硬币正面朝上的概率是二分之一呀。
这不就像抽奖,中不中奖都有个概率在那嘛!9. 相关系数呢,就是衡量两个变量之间关系的呀!要是相关系数大,说明关系紧密;要是小,说明关系不那么密切呀。
就像两个好朋友,关系好的相关系数就大嘛!10. 回归分析呢,就是找变量之间的关系呀!通过一些数据,找出它们之间的规律呀。
这就像找宝藏,通过一些线索找到宝藏的位置嘛!我的观点结论:统计学的这些名词都好有意思呀,能帮助我们更好地理解和分析数据呢!。
统计学重点名词解释
1、数据类型:分类数据:只能归于某一类别的非数字型数据,它是对事物进行匪类的结果,数据表现为类别,是用文字来表述。
(定性数据或品质数据)顺序数据:只能归于某一有序类别的非数字型数据。
有类别,但类别是有序的。
(定性数据或品质数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
现实中所处理的大多数都是数值型数据。
(定量数据或数量数据)2、截面数据:在相同或近似相同的时间点上收集的数据,这类数据通常是在不同的空间上获得的,用于描述现象在某一时刻的变化情况。
3、总体:是包含所研究的全部个体(数据)的集合,它通常由所研究的一些个体组成。
可分为有限总体和无限总体。
4、样本:从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量。
5、参数(对应总体)是用来描述总体特征的概括性数字度量,是研究者想要了解总体的某种特征值。
6、统计量(对应样本)是用来描述样本特征的概括性数字度量。
是根据样本数据计算出来来的一个量,由于抽样时随机的,因此统计量是样本的函数。
7、调查方法:普查,抽样调查,统计报表8、抽样采集数据的方式分为概率抽样和非概率抽样。
9、概率抽样:简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样。
10、非概率抽样:方便抽样、判断抽样、自愿样本、滚雪球抽样、配额抽样。
11、搜集数据的基本方法:自填式、面访式、电话式12、数据的误差:抽样误差和非抽样误差抽样误差:是有抽样的随机性引起的样本结果与总体真值的误差。
非抽样误差:相对抽样误差而言的,初抽样误差之外的,由于其他原因引起的样本观察结果与总体真值之间的差异。
13、集中趋势:一组数据向某一中心值靠拢的程度,反映了一组数据中心点的位置所在表示。
众数主要用于14、众数(分类数据):是一组数据中出现次数最多的变量值,用M测度分类数据的集中趋势,当然也适用于作为顺序数据以及数值型数据集中趋势的测度值。
众数是一个位置代表值,他不受数据中极端值的影响。
统计学名词解释
名词解释1.备择假设(alternative hypothesis):与原假设逻辑上反面的假设。
2.标准分数(standard score):也称标准化值或分数,它是变量值与其平均数的离差除以标准差后的值。
3.残值(residual):因变量的观测值y i与根据估计的回归方程求出的预测值y i之差,用e表示。
对于第i个观测值,残差为e i=y i-y i。
4.α错误(αerror):原假设为真却在检验中将原假设被拒绝,又称弃真错误或者第一类错误(type I error),用α表示其概率。
5.β错误(βerror)原假设为伪却在检验中未拒绝的原假设,又称取伪错误或者第二类错误(type II error),用β表示其概率。
6.对照组(control group):随记选取的实验对象的子集。
在这个子集中,每个单元不接受实验组成员所接受的某种特别的处理。
7.多重共线性(multicollinearity)回归模型中两个或两个以上的自变量彼此相关。
8.多重判定系数(multiple coefficient of determination)回归平方和占总平方和的比例,反映因变量y取值的变差中,能被估计的多元回归方程所解释的比例。
9.峰态(kurtosis)对数据分布平峰或尖峰的程度的测度。
10.假设检验(hypothesis testing)根据样本信息,对提出的命题进行检验的一套程序和方法。
11.离散系数(coefficient variation)也称变异系数,一组数据的标准差与其相对应的平均数之比,是测度数据离散程度的相对值。
12.拟合优度实验(goodness of fit test)对多个总体比例是否等于其期望概率的检验。
当期望概率相同时,表现为对多个总体的比例是否相等的检验。
13.偏态(skewness)对数据分布对称性的测度。
14.异众比率(variation ratio)非众数组的频数占总频数的比例。
《统计学》名词解释,简答
名词解释:统计学:是指从总体上阐述客观现象数量方面的特征与相互关系的方法论科学。
总体:指客观存在的,在某一相同性质基础上结合起来的许多个别事物的整体。
总体单位:是构成统计总体的个别事物或基本单位。
统计指标体系:是指若干个相互联系的统计指标所构成的总体,用以说明被研究现象各个方面相互依存和相互制约的关系,从不同角度、不同侧面全面反映研究对象的总体状况。
统计调查:是按照预定的统计任务,运用科学的调查方法,有组织、有计划地向社会实际搜集资料的过程。
普查:专门组织的一次性全面调查,可以用来搜集某些不能够或不适宜用定期全面统计报表搜集的统计资料。
统计报表:是按照国家有关部门的有关规定,由国家有关部门统一制定的表格形式、指标内容、报送时间和程序,自上而下地布置,然后由填报单位自上而下地提供国民经济基本统计资料的一种调查方法。
重点调查:是指在调查对象总体中,只选择其中一部分重点单位进行调查,以了解总体基本情况的一种调查方法,是非全面调查。
抽样误差:是指仅根据总体的一部分单元而不是全面单元的调查来估计总体特征所引起的误差。
统计整理:根据研究目的,将统计调查所取得的原始资料进行科学的分组与汇总,使其系统化、合理华,得出反映总体特征的综合性资料的工作过程。
次数分布:在统计分组的基础上,将总体的所有单位按组归类整理,并按一定顺序排列,形成总体单位在各组间的分布。
是非标志:是指表现为“是”与“否”或“有”与“无”两种属性额品质标志,又叫交替标志。
必要样本容量:是指既能够满足抽样推断精确性和可靠性的要求,又不会造成浪费样本的单位数目。
纯随机抽样:是按照随机原则直接从总体N个单位中抽取n个单位作为样本,然后通过对样本单位的调查观测,计算出样本指标,据以对相应的总体指标作出推断。
相关关系:指变量之间存在的一种不严格的不确定的依存关系。
相关分析:是研究一个变量与另一个变量或另一组变量之间相互关系密切程度和相关方向的一种统计分析方法。
统计学名词解释
1、统计学:有关统计数据的搜集、整理、归纳和分析的方法论科学。
2、统计总体:根据统计研究目的确定的所研究对象的全体。
样本:从总体中抽取出来的,作为总体的代表,由部分单位组成的集合体。
3、总体单位:指构成总体的个别单位。
统计总体的特征:同质大量差异4、标志:总体各单位所具有的属性或特征。
5、指标:说明总体单位数量特征的科学概念和具体数值。
7、普查:专门组织的一次性的全面调查。
8、统计调查:根据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的手机统计原始资料的工作过程,是统计认识过程的第二个阶段,即定量认识的阶段。
9、统计报表:按照国家统一规定的表格形式,统一规定的指标内容,统一规定的报送程序和报送时间,由填报单位自上而下逐级提供统计资料的一种统计调查方式。
10、统计整理:根据统计研究目的和统计分析的要求,使统计调查所获得的原始资料进行科学的分类和汇总,或对简单加工过的资料进行再加工,使之系统化、条理化,从而得出能够反映事物总体特征资料的工作过程。
11、统计分组:根据统计研究的目的和客观现象的内在特点,将统计总体按照一定的标志划分为若干组成部分的一种统计方法。
12、分类数列:将各组别与次数按一定的次序排列所形成的数列。
13、统计表:以表格来表现统计数据资料的一种形式。
14、总量指标:反映社会经济现象发展的总规模、总水平的综合指标。
15、平均指标:平均指标又称平均或均值,反映的是现象在某一空间或时间上的平均数量状况。
变异指标:综合反映总体各单位标志值变异程度的指标。
16、时期指标:指反映某种社会经济现象在一段时间发展变化结果的总量指标。
17、时点指标:反映社会经济现象在某一时间状况上的总量指标。
18、时间序列:指社会经济现象在不同时间生的一系列同类指标值按时间先后顺序加以排列后形成的数列19、发展水平:动态数列中的每一项具体指标数值。
20、增长量:用来说明社会经济现象在一定时期内所增长的绝对数量的指标。
统计学名词解释
7、抽样估计和假设检验
抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异
标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。数量标志和指标在统计中称为变量。
1
9、"时间序列的最初水平、处水平,最后一个观察值称为最末水平,其余各个观察值称为中间水平。
20、"调查对象、调查单位和填报单位
调查对象是所要研究对象的总体。调查单位是所要研究对象的个体。填报单位是提交调查资料的单位。调查单位和填报单位有时相同,有时不同。
4、统计调查
统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。它是取得统计数据的重要手段。
5、统计绝对数和统计相对数
反映总体规模的绝对数量值,在社会经济统计中称为总量指标。统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标
总体单位总量和总体标志总量。
(2)按其反映不同的时间状况不同分:
时期指标和时点指标。
(3)按其采用的计量单位的不同分:
实物指标、价值指标和劳动指标。
5、时期指标和时点指标的区别
时期指标:
(1)连续记数,其值可以相加
(2)具有时间xx,与时间长短有关
(3)是流量时点指标:
(1)间断记数,其值不可以相加,相加无实际意义
算总体相应指标
了解被研究对象的特征及发展变化
趋势,可近似推算总体数量,无法估计误差用样本指标数值推断总体指标数值,
统计学名词解释与简答题
名词解释总体——由研究目的确定的同质研究对象全体。
样本——从总体中随机抽取的,对总体有代表性的一部分。
随机抽样原则——总体中每一个体被抽取的机会均等。
概率——指事件发生的可能性,用符号“P”表示。
小概率事件——P≤0.05( 5% )的事件。
标准正态分布——是μ为0,δ为1的正态分布,又称U分布。
中位数——将一组数据按大小顺序排列,居中数据之数值。
均数可信区间——是估计总体均数所在的一个数值范围。
相对数——通常指两个相关数据或指标之比。
率——说明现象或事件发生的强度指标。
构成比——说明事物内部各部分所占的比重指标。
率的标准化——消除总率相互比较时内部构成不同而作的统计处理。
简答题计量资料分布与集中趋势和离散程度的关系?(均数、几何均数和中位数的适用范围是什么?)资料分布类型首选集中趋势指标首选离散程度指标正态分布对数正态分布其他分布算术均数几何均数中位数标准差几何标准差四分位数间距标准差与标准误有何区别与联系标准差是反映观察值变异程度的指标,标准误是反映均数抽样误差的指标。
当 n →∞时,标准差趋向稳定;而标准误→0 。
两者联系见公式:S=S/ n简述对抽样误差的认识?抽样误差是指由于随机抽样引起的样本指标与总体指标,或样本指标之间存在的差别。
抽样误差不可避免(因个体差异是客观存在,不可避免的),但可以通过增加样本含量使之缩小。
其大小由标准误表示。
何谓假设检验?其基本原理是什么?假设检验,是根据小概率事件原理,判断所比较的样本指标是否源于同一总体的统计分析方法。
步骤如下:①建立假设和确定检验水准: H0:无效假设,H1:备择假设;检验水准α一般取0.05;②计算统计量:根据资料选用适宜的公式计算;③确定P值,推断结论:通过相应的界值(查表)来确定P值。
如P>α,则接受H,;如P≤α,则拒绝H0。
④以文字表达统计结论:如P>α,表达为差别无统计学意义等;如P≤α,则表达为差别有统计学意义等。
假设检验的注意事项1、资料应具可比性2.根据资料选择适宜的统计方法3、判断结论不能绝对化4、统计指标差别应有实际意义相对数应用的注意事项?1、分母不宜过小2、正确区分构成比和率3、正确选择分子与分母4、正确计算总率5、资料应具可比性6、总率作比较时常需作率的标准化处理7、相对数作比较时应进行假设检验率的标准化的基本思想?以标准化法消除资料内部构成不同,使资料具可比性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料。
3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位。
4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。
它是取得统计数据的重要手段。
5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。
时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。
7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。
假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。
数量标志和指标在统计中称为变量。
9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。
统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。
10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。
重复抽样的抽样平均误差为总体标准差的1/n。
11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。
我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。
12、重复抽样和不重复抽样重复抽样也称为回置抽样,是从总体中随机抽取一个样本时,每次抽取一个样本单位时都放回的抽样方式。
不重复抽样也叫不回置抽样,它是在每次抽取样本单位时都不放回的抽样方式。
13、点估计和区间估计点估计也叫定值估计,就是直接用抽样平均数代替总体平均数,用抽样成数代替总体成数。
区间估计是在一定概率保证下,用样本统计量和抽样平均误差去推断总体参数的可能范围的估计方法。
14、统计指数广义上来说,它是表明社会经济现象的数量对比关系的相对指标。
狭义上来说,它是反映不能直接相加对比的复杂总体综合变动的动态相对数。
15、综合法总指数凡是一个总量指标可以分解为两个或两个以上的因素指标时,将其中一个或一个以上的因素指标固定下来,仅观察另一个因素指标的变动程度,这样的总指数就叫综合法指数。
16、平均法总指数平均法总指数是通过对个体指数进行加权平均而求得的反映不能直接加总的多个个体所组成的复杂总体综合变动的指数。
分为两种:加权算术平均法总指数和加权调和平均法总指数。
17、时间数列时间数列是指同一观察现象的观察值按其发生的时间先后顺序排列而形成的数列。
时间数列也称为时间序列和动态数列。
18、相关分析和回归分析相关分析是一种分析几个变量之间是否存在关系以及它们的关系如何的统计方法。
回归分析是指对具有显着相关关系的现象,根据其关系形态,选择一合适的数学模式,用来近似地表达变量见的平均变动关系的统计分析的方法。
19、时间序列的最初水平、中间水平和最末水平时间数列中第一个观察值称为最处水平,最后一个观察值称为最末水平,其余各个观察值称为中间水平。
20、调查对象、调查单位和填报单位调查对象是所要研究对象的总体。
调查单位是所要研究对象的个体。
填报单位是提交调查资料的单位。
调查单位和填报单位有时相同,有时不同。
21、环比发展速度和定基发展速度环比发展速度是以报告期水平与其前一期水平对比,所得到的动态相对数。
表明现象逐期的发展变动程度。
定基发展速度是用报告期水平与某一固定基期水平(通常为最初水平)对比,所得到的动态相对数。
它表明所观察现象在一段时期内发展的总速度。
22、经常性调查与一次性调查的区别两者的区分是以调查单位的登记在时间上是否具有连续性为依据的。
经常性调查的对象本身具有连续不断变化的特点。
商品零售额。
一次性调查的对象是时点现象。
如人口普查。
二、简答题1、指标和标志的区别与联系两者的区别:(1)指标是反映总体特征的,而标志是反映总体单位特征的。
(2)标志可以用文字来反映,也可以用数字来表示。
而指标都是用数量来表示的。
两者的联系:(1)指标是指标的汇总和综合。
(2)根据研究目的的不同,两者有时可以互换。
2、统计总体的特点(1)同质性。
即总体单位都必须具有某些共同的品质标志属性或数量标志属性。
这是构成总体的前提。
(2)大量性。
即构成总体的总体单位数目要足够多。
这是形成总体的充分条件。
(3)差异性。
即总体单位必须具有一个或若干个可变的品质标志或数量标志。
这是形成总体的必要条件。
3、重点调查、抽样调查、典型调查的区别与联系联系:都是非全面调查,调查对象都是总体中的一部分4、统计绝对数的分类(1)按其反映总体内容的不同分:总体单位总量和总体标志总量。
(2)按其反映不同的时间状况不同分:时期指标和时点指标。
(3)按其采用的计量单位的不同分:实物指标、价值指标和劳动指标。
5、时期指标和时点指标的区别时期指标:(1)连续记数,其值可以相加(2)具有时间长度,与时间长短有关(3)是流量时点指标:(1)间断记数,其值不可以相加,相加无实际意义(2)不具有时间长度,与时间长短无关(3)是存量6、抽样技术的特点(1)在调查单位的抽取上,遵循随机原则。
(2)以样本数据估计总体数据。
(3)以概率估计的方法对总体进行估计。
(4)在推断理论上,以大数定律和中心极限定理为基础。
(5)抽样误差可以计算并加以控制。
7、抽样误差的种类(1)登记性误差。
又称调查误差或工作性误差,是完全可以避免的。
(2)代表性误差。
它又可以分为系统性误差和随机性误差。
系统性误差是破坏随机原则造成的偏差,也是可以避免的。
随机性误差包括抽样个体误差和抽样平均误差。
抽样个体误差不确定,难以计算。
抽样平均误差无法避免,但可以计算和控制。
8、影响抽样误差的因素(1)总体总变量值X间的差异大小。
差异越大,误差越大。
(2)样本容量。
样本容量越大,抽样误差越小。
(3)抽样方法。
重复抽样误差一般大于不重复抽样误差。
(4)抽样调查的组织形式。
不同的组织形式,误差不同。
9、统计相对数的种类(1)计划完成相对数。
是实际完成数与计划数的比值。
(2)结构相对数。
是总体各组成部分数值与总体总数值的比值。
(3)比例相对数。
总体中某一组的指标数值与总体中另一组的指标数值的比值。
(4)动态相对数。
某现象报告期数值与同一现象基期数值的比值。
(5)比较相对数。
某类现象的数值与不同空间同类现象的数值的比值。
(6)强度相对数。
某一现象数值与另一有联系但性质不同的现象数值的比值。
10、强度相对数与平均数的区别(1)概念含义不同。
平均数=总体标志总量/总体单位总量。
强度相对数是某一现象数值与另一有联系但性质不同的现象数值的比值。
(2)作用不同。
强度相对数是反映某现象在另一现象中的强度、密度或普遍程度,反映现象间依存性的比例关系。
而平均数是反映总体各单位的某一变量的各个变量值一般水平的代表值。
(3)表现形式不同。
强度相对数的单位多是复合单位,由分子、分母的指标单位复合而成。
平均数则是和标志总量单位的一致。
(4)强度相对数分子、分母可以互换,平均数的分子、分母不可以互换,互换无意义。
11、统计指数的种类(1)按反映对象的范围不同分:个体指数、类指数和总指数。
(2)按反映统计指标的不同内容分:质量指标指数和数量指标指数。
(3)按所采用的基期不同分:定基指数和环比指数。
(4)按表现形式不同分:综合法总指数和平均法总指数。
12、相关关系的种类(1)从涉及的因素多少来分,可分为单相关和复相关。
只研究两个因素之间的相关关系叫单相关。
两个以上的为复相关。
(2)从相关关系所呈现形态来分,可分为直线相关和曲线相关。
(3)直线单相关按呈现相关关系的方向划分,又可分为正相关和负相关。
正相关表明两个因素的变动方向是相同的,负相关表明两个因素的变动方向是不同的。