半导体物理知识点

合集下载

半导体物理(微电子器件基础 )知识点总结

半导体物理(微电子器件基础 )知识点总结

第一章●能带论:单电子近似法研究晶体中电子状态的理论●金刚石结构:两个面心立方按体对角线平移四分之一闪锌矿●纤锌矿:两类原子各自组成的六方排列的双原子层堆积而成(001)面ABAB顺序堆积●禁带宽度:导带底与价带顶之间的距离脱离共价键所需最低能量●本征激发:价带电子激发成倒带电子的过程●有效质量(意义):概括了半导体内的势场作用,使解决半导体内电子在外力作用下运动规律时,可以不涉及半导体内部势场作用●空穴:价带中空着的状态看成是带正电的粒子●准连续能级:由于N很大,每个能带的能级基本上可以看成是连续的●重空穴带:有效质量较大的空穴组成的价带●窄禁带半导体:原子序数较高的化合物●导带:电子部分占满的能带,电子可以吸收能量跃迁到未被占据的能级●价带:被价电子占满的满带●满带:电子占满能级●半导体合金:IV族元素任意比例熔合●能谷:导带极小值●本征半导体:完全不含杂质且无晶格缺陷的纯净半导体●应变半导体:经过赝晶生长生成的半导体●赝晶生长:晶格失配通过合金层的应变得到补偿或调节,获得无界面失配位错的合金层的生长模式●直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置●间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置●允带:允许电子能量存在的能量范围.●同质多象体:一种物质能以两种或两种以上不同的晶体结构存在的现象第二章●替位杂质:杂质原子取代晶格原子而位于晶格点处。

●间隙杂质:杂质原子位于晶格的间隙位置。

●杂质浓度:单位体积中的杂质原子数。

●施主(N型)杂质:释放束缚电子,并成为不可动正电荷中心的杂质。

●受主(P型)杂质:释放束缚空穴,并成为不可动负电荷中心的杂质。

● 杂质电离:束缚电子被释放的过程(N )、束缚空穴被释放的过程(P )。

● 杂质束缚态:杂质未电离时的中性状态。

● 杂质电离能:杂质电离所需的最小能量:● 浅能级杂质:施(受)主能级很接近导(价)带底(顶)。

(完整word版)半导体物理知识点总结.doc

(完整word版)半导体物理知识点总结.doc

一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。

主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。

阐述本征半导体的导电机构,引入了空穴散射的概念。

最后,介绍了Si、Ge 和 GaAs 的能带结构。

在 1.1 节,半导体的几种常见晶体结构及结合性质。

(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。

介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。

(重点掌握)在 1.3 节,引入有效质量的概念。

讨论半导体中电子的平均速度和加速度。

(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。

(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。

(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。

(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。

(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

半导体物理知识点

半导体物理知识点

半导体物理知识点1.前两章:1、半导体、导体、绝缘体的能带的定性区别2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。

注意随着原子序数的增大,还原性增大,得到的电子稳固,便能提供更多的空穴。

所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋)3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导)4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点,mt是沿垂直轴方向的质量,ml是沿轴方向的质量。

锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。

砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。

此能谷可以造成负微分电阻效应。

2.第三章载流子统计规律:1、普适公式ni^2 = n*pni^2 = (NcNv)^0.5*exp(-Eg/(k0T))n = Nc*exp((Ef-Ec)/(k0T))p = Nv*exp((Ev-Ef)/(k0T))Nv Nc与 T^1.5成正比2、掺杂时。

注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意Ef前的符号!nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度3、掺杂时,电离情况。

电中性条件: n + na- = p + nd+N型的电中性条件: n + = p + nd+(1)低温弱电离区:记住是忽略本征激发。

由n = nd+推导,先得费米能级,再代入得电子浓度。

Ef从Ec和Ed中间处,随T增的阶段。

半导体物理知识点总结

半导体物理知识点总结

半导体物理知识点总结5、半导体中电子的准动量:经典意义上的动量是惯性质量与速度的乘积,即v。

根据教材式(1-1)和式(1-10),对于自由电子v=hk,这是自由电子的真实动量,而在半导体中hk=v;有效质量与惯性质量有质的区别,前者隐含了晶格势场的作用(虽然有质量的量纲)。

因为v与v具有相同的形式,因此称v为准动量。

6、本征激发:共价键上的电子激发成为准自由电子,亦即价带电子吸收能量被激发到导带成为导带电子的过程,称为本征激发。

这一概念今后经常用到。

7、载流子:晶体中荷载电流(或传导电流)的粒子。

金属中为电子,半导体中有两种载流子即电子和空穴,而影响半导体导电性的主要是导带电子和价带空穴。

8、回旋共振实验:目的是测量电子的有效质量,以便采用理论与实验相结合的方法推出半导体的能带结构。

为能观测出明显的共振吸收峰,就要求样品纯度要高,而且实验一般在低温下进行,交变电磁场的频率在微波甚至在红外光的范围。

实验中常是固定交变电磁场的频率,改变磁感应强度以观测吸收现象。

磁感应强度约为零点几T。

等能面的形状与有效质量密切相关,对于球形等能面,有效质量各向同性,即只有一个有效质量;对于椭球等能面,有效质量各向异性,即在不同的波矢方向对应不同的有效质量。

9、横向有效质量沿椭球短轴方向,纵向有效质量沿椭球长轴方向。

10、直接带隙半导体是指导带极小值与价带极大值对应同一波矢;间接带隙半导体是指导带极小值与价带极大值对应不同的波矢。

本章要求掌握的内容及考点:——本章要求熟练掌握基本的物理原理和概念——考题主要涉及填空、名词解释和简答题(物理过程的解释)1、以上基本概念和名词术语的解释。

2、熟悉金刚石型结构与闪锌矿型结构晶胞原子的空间立体分布及硅、锗、砷化镓晶体结构特点,晶格常数,原子密度数量级(1022个原子/立方厘米)。

3、掌握能带形成的原因及电子共有化运动的特点;掌握实际半导体的能带的特点。

4、掌握有效质量的意义及计算公式,速度的计算方法,正确理解半导体中电子的加速度与外力及有效质量的关系,正确理解准动量及其计算方法,准动量的变化量应为。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理考点归纳一·1.金刚石1) 结构特点:a. 由同类原子组成的复式晶格.其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。

c. 配位数为4,较低,较稳定.(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。

2) 代表性半导体:IV 族的C,Si ,Ge 等元素半导体大多属于这种结构。

2.闪锌矿1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性.2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。

3.电子共有化运动:原子结合为晶体时,轨道交叠。

外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。

4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x )为一个与晶格同周期的周期性函数,5.布里渊区:禁带出现在k=n/2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k 〈1/2a (简约布里渊区) 第二布里渊区:-1/a 〈k<-1/2a ,1/2a 〈k 〈1/aE (k)也是k 的周期函数,周期为1/a ,即E(k )=E (k+n/a ),能带愈宽,共有化运动就更强烈.6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为ED.施主能级离导带很近。

8.受主杂质:III 族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。

9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记为EA 。

受主能级离价带很近。

半导体物理知识要点总结

半导体物理知识要点总结

第一章 半导体的能带理论1. 基本概念✧ 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不在局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而电子可以在整个晶体中运动,这种运动称为电子的共有化运动。

✧ 单电子近似:假设每个电子是在大量周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场也是周期性变化的。

✧ 能带的形成:原子相互接近,形成壳层交替→电子共有化运动→能级分裂(分成允带、禁带)→形成能带✧ 能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

✧ 价带:P6✧ 导带:P6✧ 禁带:P5✧ 导体✧ 半导体✧ 绝缘体的能带✧ 本征激发:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。

✧ 空穴:具有正电荷q 和正有效质量的粒子✧ 电子空穴对✧ 有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k 关系决定。

✧ 载流子及载流子浓度2. 基本理论✧ 晶体中的电子共有化运动✧ 载流子有效质量的物理意义 :当电子在外力作用下运动时,它一方面受到外电场力f的作用,同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势场和外电场作用的综合效果。

但是,要找出内部势场的具体形式并且求得加速度遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中的杂质与缺陷能级1. 基本概念✧ 杂质存在的两种形式:间隙式杂质:杂质原子位于晶格原子间的间隙位置。

替位式杂质:杂质原子取代晶格原子而位于晶格点处。

半导体物理知识点

半导体物理知识点

半导体物理知识点1.前两章:1、半导体、导体、绝缘体的能带的定性区别2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。

注意随着原子序数的增大,还原性增大,得到的电子稳固,便能提供更多的空穴。

所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋)3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导)4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点,mt是沿垂直轴方向的质量,ml是沿轴方向的质量。

锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。

砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。

此能谷可以造成负微分电阻效应。

2.第三章载流子统计规律:1、普适公式ni^2 = n*pni^2 = (NcNv)^0.5*exp(-Eg/(k0T))n = Nc*exp((Ef-Ec)/(k0T))p = Nv*exp((Ev-Ef)/(k0T))Nv Nc与 T^1.5成正比2、掺杂时。

注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意Ef前的符号!nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度3、掺杂时,电离情况。

电中性条件: n + na- = p + nd+N型的电中性条件: n + = p + nd+(1)低温弱电离区:记住是忽略本征激发。

由n = nd+推导,先得费米能级,再代入得电子浓度。

Ef从Ec和Ed中间处,随T增的阶段。

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结半导体物理是现代电子学中的重要领域,涉及到半导体材料的电学、热学和光学等性质,以及半导体器件的工作原理和应用。

本文将对半导体物理的一些重要知识点进行总结,并附带相应的重点习题,以帮助读者更好地理解和掌握相关知识。

一、半导体材料的基本性质1. 半导体材料的能带结构半导体材料的能带结构决定了其电学性质。

一般而言,半导体材料具有禁带宽度,可以分为导带(能量较高)和价带(能量较低)。

能量在禁带内的电子处于被限制的状态,称为束缚态,能量在导带中的电子可以自由移动,称为自由态。

2. 掺杂和杂质掺杂是将少量的杂质原子引入纯净的半导体材料中,以改变其导电性质。

掺入价带原子的称为施主杂质,掺入导带原子的称为受主杂质。

施主杂质会增加导电子数,受主杂质会增加载流子数。

3. P型和N型半导体掺入施主杂质的半导体为P型半导体,施主杂质的电子可轻易地跳出束缚态进入导带,形成载流子。

掺入受主杂质的半导体为N型半导体,受主杂质的空穴可轻易地跳出束缚态进入价带,形成载流子。

二、PN结和二极管1. PN结的形成和特性PN结是P型和N型半导体的结合部分,形成的原因是P型半导体中的空穴与N型半导体中的电子发生复合。

PN结具有整流作用,使得电流在正向偏置时能够通过,而在反向偏置时被阻止。

2. 二极管的工作原理二极管是基于PN结的器件,正向偏置时,在PN结处形成正电压,使得电子流能够通过。

反向偏置时,PN结处形成反电压,使得电流无法通过。

3. 二极管的应用二极管广泛用于整流电路、电压稳压器、振荡器和开关等领域。

三、晶体管和放大器1. 晶体管的结构和工作原理晶体管是一种三端器件,由三个掺杂不同的半导体构成。

其中,NPN型晶体管由N型掺杂的基区夹在两个P型掺杂的发射极和集电极之间构成。

PNP型晶体管的结构与之类似。

晶体管的工作原理基于控制发射极和集电极之间电流的能力。

2. 放大器和放大倍数晶体管可以作为放大器来放大电信号。

半导体物理基础知识

半导体物理基础知识

半导体物理基础知识目录1. 基本概念 (2)1.1 半导体的定义与分类 (2)1.2 반도체材料的结构与性质 (3)1.3 晶体结构与晶格常数 (4)1.4 能带理论与电子跃迁 (5)1.5 费米能级与电子的填充 (6)2. 电子输运机制 (7)2.1 能带结构与导电特性 (8)2.2 漂移电流与散乱 (9)2.3 扩散电流与载流子浓度梯度 (10)2.4 霍尔效应与霍尔系数 (11)3. 半导体器件物理 (12)4. 半导体材料与工艺 (14)4.1 元素掺杂与输运特性 (16)4.2 晶体生长法与缺陷控制 (18)4.3 半导体氧化与金属沉积 (19)5. 电力电子器件 (20)5.1 功率二极管与肖特基二极管 (22)5.2 功率晶体管与MOSFET (23)5.3 整流桥与交流调制 (25)6. 可见光与光电子器件 (26)6.1 半导体光吸收与发射 (27)6.2 光电二极管与光电晶体管 (28)6.3 激光器与光放大器 (29)7. 量子力学与半导体 (31)7.1 量子点与量子阱结构 (33)7.2 量子计算机与量子力学计算 (34)1. 基本概念半导体物理是研究半导体材料和器件的电子性质、能带结构以及其在电磁场中的行为的一门学科。

半导体是一种介于导体和绝缘体之间的材料,其电导率介于导体和绝缘体之间。

半导体物理的基本概念包括:本征载流子、费米能级、载流子浓度、迁移率、漂移速度等。

本征载流子是指处于基态的半导体原子或分子所具有的自由电子和空穴。

费米能级是指在半导体中,电子和空穴的能量相等且低于或高于价带顶的能级。

载流子浓度是指单位体积内半导体中存在的电子和空穴的数量。

迁移率是指载流子在半导体中从高能级向低能级跃迁时的速度。

漂移速度是指载流子在半导体中受到电场作用而发生漂移的速度。

半导体物理的研究涉及到许多重要的现象,如结、整流效应、光电效应、热效应等。

这些现象在实际应用中具有广泛的应用,如二极管、晶体管、太阳能电池等。

半导体物理知识整理

半导体物理知识整理

基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体:能带中一定有不满带半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带禁带宽度较小,一般小于2eV绝缘体:能带中只有满带和空带禁带宽度较大,一般大于2eV在外场的作用下,满带电子不导电,不满带电子可以导电总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。

当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴3.半导体材料的一般特性。

电阻率介于导体与绝缘体之间对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力)性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力)4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。

为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述。

费米分布受到了泡利不相容原理的限制,而在E-EF>>k0T的条件下,泡利原理失去作用,可以化简为玻尔兹曼分布。

在半导体中,最常遇到的情况是费米能级EF位于禁带内,而且与导带底和价带顶的距离远大于k0T,所以,对导带中的所有量子态来说,被电子占据的概率一般都满足f(E)<<1,故半导体导带中的电子分布可以用电子的玻尔兹曼分布函数描写5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。

半导体物理知识点

半导体物理知识点

半导体物理知识点半导体是现代电子技术的核心材料,从我们日常使用的手机、电脑到各种高科技设备,都离不开半导体器件的应用。

了解半导体物理的基本知识点对于理解和掌握现代电子技术至关重要。

一、半导体的基本概念半导体是一种导电性能介于导体和绝缘体之间的材料。

常见的半导体材料有硅(Si)、锗(Ge)等。

在纯净的半导体中,导电能力较弱,但通过掺入杂质可以显著改变其导电性能。

半导体中的载流子包括电子和空穴。

电子带负电,空穴带正电。

在半导体中,电子和空穴都能参与导电。

二、晶体结构半导体材料通常具有晶体结构。

以硅为例,其晶体结构是金刚石结构。

在晶体中,原子按照一定的规律排列,形成晶格。

晶格常数是描述晶体结构的重要参数。

对于硅,晶格常数约为 0543 纳米。

三、能带结构在量子力学的框架下,半导体的电子能量状态形成能带。

包括导带和价带。

导带中的电子能够自由移动,从而导电;价带中的电子被束缚,不能自由导电。

导带和价带之间存在禁带宽度,也称为能隙。

能隙的大小决定了半导体的导电性能。

能隙较小的半导体,如锗,在常温下就有一定的导电能力;而能隙较大的半导体,如硅,在常温下导电性能较差。

四、施主杂质和受主杂质为了改变半导体的导电性能,常常掺入杂质。

施主杂质能够提供电子,使半导体成为n 型半导体。

例如,在硅中掺入磷(P)等五价元素,就形成了 n 型半导体。

受主杂质能够接受电子,形成空穴,使半导体成为 p 型半导体。

例如,在硅中掺入硼(B)等三价元素,就形成了 p 型半导体。

五、pn 结pn 结是半导体器件的基本结构之一。

当 p 型半导体和 n 型半导体接触时,会形成一个特殊的区域,即 pn 结。

在 pn 结处,存在内建电场,阻止多数载流子的扩散,但促进少数载流子的漂移。

pn 结具有单向导电性,这是二极管的工作基础。

六、半导体的导电性半导体的电导率与温度、杂质浓度等因素密切相关。

随着温度的升高,本征半导体的电导率会增加,因为更多的电子会从价带跃迁至导带。

半导体物理知识点总结

半导体物理知识点总结

半导体物理知识点总结
1. 能带和价带:半导体中电子带有能量,能量随轨道高低而不同,能带包含在价带和导带中。

2. 能隙:能量带的差值,该值越小,材料越容易被激发。

3. 电子结构:材料中的电子布局,包括离子能、波函数、能态等。

4. 掺杂:向半导体中添加不同类型的掺杂,可改变材料的电学性质,如导电性能和半导体的唯一性。

5. pn结:半导体材料中,p型和n型结合,形成一个有峰值的pn结,可以用于制作二极管、场效应管或光电转换器等电子器件。

6. 入射光:当入射光击中半导体上,产生光伏效应,电子被激发并向两侧移动,形成电流。

7. 电子迁移率:电子在半导体中移动速度的度量,影响材料的导电性质。

8. 本征载流子:半导体中由温度效应造成的材料中存在的自由电子和空穴,这些载流子决定着材料的导电性质。

9. 孪晶:半导体材料结构中的孪晶对材料电学性质造成影响,不同方向的孪晶对应不同的导电性和多晶性。

10. 激发态:半导体中的电子在受到激发后,进入能带中的激发态,相应的能级决定着电子能量的状态。

半导体物理基本知识

半导体物理基本知识

半导体物理基本知识一、导体、半导体和绝缘体物质就其导电性来说,可以分为绝缘体、半导体、和导体。

电阻率大于109欧姆·厘米的物体称为绝缘体,小于10-4欧姆·厘米的物体为导体,电阻率介于10-4~109欧姆·厘米的物体为半导体。

二、半导体材料的种类半导体材料种类繁多,从单质到化合物,从无机物到有机物,从单晶体到非晶体,都可以作为半导体材料。

半导体材料大致可以分为以下几类:1、元素半导体元素半导体又称为单质半导体。

在元素周期表中介于金属与非金属之间的Si、Ge、Se、Te、B、C、P等元素都有半导体的性质。

在单质元素半导体中具有实用价值的只有硅、锗、硒。

而硅和锗是最重要的两种半导体材料。

尤其半导体硅材料已被广泛地用来制造各种器件、数字和线性集成电路以及大规模集成电路等。

硒作为半导体材料主要用做整流器,但由于硅、锗制造的整流器比硒整流器性能良好,所以硒逐渐被硅、锗取代。

2、化合物半导体化合物半导体是AⅢBⅤ型化合物,由元素中期表中ⅢA族的Al、Ga、和ⅤA族的P、As、Sb等合成的化合物成为AⅢBⅤ型化合物。

如AlP、GaAs、GaSb、InAs、InSb。

在这一类化合物半导体中用最广泛的是GaAs,它可以用来制作GaAs晶体管、场效应管、雪崩管、超高速电路及微波器件等。

3、氧化物半导体许多金属的氧化物具有半导体性质,如Cu2O、CuO、ZnO、MgO、Al2O3等等。

4、固溶体半导体元素半导体和无机化合物半导体相互溶解而成的半导体材料成为固溶体半导体。

如:Ge-Si、GaAs-GaP,而GaAs-GaP是发光二极管的材料。

5、玻璃半导体玻璃半导体是指具有半导体性质的一类玻璃。

如氧化物玻璃半导体和元素玻璃半导体,氧化物玻璃半导体是由V2O5、P2O5、Bi2O3、FeO、CaO、PbO等中的某几种按一定配比熔融后淬冷而成。

元素玻璃半导体是由S、Se、Te、As、Sb、Ge、Si、P等元素中的某几种,一定配比熔融后淬冷而成。

半导体物理学基础知识

半导体物理学基础知识

1半导体中的电子状态1.2半导体中电子状态和能带1.3半导体中电子的运动有效质量1半导体中E与K的关系2半导体中电子的平均速度3半导体中电子的加速度1.4半导体的导电机构空穴1硅和锗的导带结构对于硅,由公式讨论后可得:I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰II.磁感应沿【1 1 0】方向,有两个吸收峰III.磁感应沿【1 0 0】方向,有两个吸收峰IV磁感应沿任意方向时,有三个吸收峰2硅和锗的价带结构重空穴比轻空穴有较强的各向异性。

2半导体中杂质和缺陷能级缺陷分为点缺陷,线缺陷,面缺陷(层错等)1.替位式杂质间隙式杂质2.施主杂质:能级为E(D),被施主杂质束缚的电子的能量状态比导带底E(C)低ΔE(D),施主能级位于离导带底近的禁带中。

3.受主杂质:能级为E(A),被受主杂质束缚的电子的能量状态比价带E(V)高ΔE(A),受主能级位于离价带顶近的禁带中。

4.杂质的补偿作用5.深能级杂质:⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。

⑵这些深能级杂质能产生多次电离。

6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。

肖特基缺陷:只在晶体内部形成空位而无间隙原子。

空位表现出受主作用,间隙原子表现出施主作用。

3半导体中载流子的分布统计电子从价带跃迁到导带,称为本征激发。

一、状态密度状态密度g(E)是在能带中能量E附近每单位间隔内的量子态数。

首先要知道量子态,每个量子态智能容纳一个电子。

导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。

二、费米能级和载流子的统计分布在T=0K时,费米能级E(f)可看作是量子态是否被电子占据的一个界限。

附图:随着温度的升高,电子占据能量小于费米能级的量子态的概率下降,占据高于费米能级的量子态的概率上升。

2波尔兹曼分布函数在E-E(f)>>K(0)T时,服从波尔兹曼分布(是费米能级的一种简化形式)。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理知识点梳理1.半导体材料的能带结构:半导体材料的能带结构是理解其物性的基础。

在二维的能带图中,包含导带和价带之间的能隙。

导带中的电子可以自由移动,而价带中的电子需要外加能量才能进入导带。

2.纯半导体和杂质半导体:纯半导体指的是没有杂质掺杂的半导体材料,其导电能力较弱。

而杂质半导体是通过引入适量的杂质原子来改变半导体材料的导电性质,其中掺入的杂质原子被称为施主或受主。

3.载流子输运:半导体中的电导主要是由自由载流子贡献的,包括n型半导体中的电子和p型半导体中的空穴。

当施主杂质掺杂进入p型半导体时,会产生附加的自由电子;相反,当受主杂质掺杂进入n型半导体时,会产生附加的空穴。

这些自由载流子通过材料中的散射、漂移和扩散等方式进行输运。

4. pn结和二极管:pn结是由p型半导体和n型半导体结合而成的电子器件。

在pn结中,发生了空穴从p区向n区的扩散和电子从n区向p区的扩散,导致p区和n区的空间电荷区形成。

当正向偏置时,电流可以通过pn结,而反向偏置时,电流很小。

这种特性使得二极管可以用作整流器件。

5.晶体管:晶体管是一种三层结构的半导体器件,由一个n型区和两个p型区或一个p型区和两个n型区构成。

晶体管可以用作放大器和开关,其工作原理是通过控制基极电流来调节集电极电流。

6.MOSFET:金属-绝缘体-半导体场效应晶体管,即MOSFET,是一种三层结构的半导体器件。

MOSFET具有较高的输入阻抗和较低的功耗,广泛应用于集成电路中。

MOSFET的工作原理是通过调节栅极电压来调节通道中的电荷密度。

7.光电二极管和光电导:光电二极管和光电导是基于光电效应的半导体器件。

光电二极管是将光信号转换为电压信号的器件,而光电导则是将光信号转换为电流信号。

这两种器件在通信和光电探测等领域有广泛的应用。

8.半导体激光器:半导体激光器是一种利用半导体材料的发光原理来产生激光束的器件。

半导体激光器具有体积小、效率高和工作电流低等优势,广泛应用于光通信和光存储等领域。

物理学中的半导体物理知识点

物理学中的半导体物理知识点

物理学中的半导体物理知识点半导体物理学是物理学领域中的一个重要分支,研究半导体材料及其性质与行为。

本文将介绍几个半导体物理学中的知识点,包括半导体的基本概念、载流子行为、PN结及其应用。

一、半导体的基本概念半导体是一种介于导体和绝缘体之间的材料。

它的导电能力介于导体和绝缘体之间,可以通过控制外加电场或温度来改变其电导率。

根据能带理论,半导体材料中存在一个禁带,将价带和导带分开,如果半导体材料的价带被填满,而导带是空的,那么半导体就没有导电能力;当半导体材料的温度升高或者施加电场时,一些电子会跃迁到导带中,形成可以导电的载流子。

二、载流子行为在半导体中,载流子是指能够输送电流的带电粒子,可以分为自由电子和空穴两种类型。

1. 自由电子:自由电子是指在半导体晶格中脱离原子束缚的电子,它具有负电荷。

在纯净的半导体中,自由电子的数量较少。

2. 空穴:空穴是指由于半导体中某个原子缺少一个电子而形成的一个正电荷,可以看作是受激发的价带上的空位。

载流子的行为受到材料的类型和掺杂等因素的影响。

三、PN结及其应用PN结是半导体中最基本的器件之一,由P型半导体和N型半导体的结合构成。

P型半导体中的空穴浓度较高,N型半导体中的自由电子浓度较高,当这两种类型的半导体材料接触时,自由电子和空穴会发生复合,形成一个耗尽区域。

PN结的特性使得它在半导体器件中有着广泛的应用,例如:1. 整流器:利用PN结的单向导电性质,将交流电信号转换为直流电信号。

2. 发光二极管(LED):在PN结中注入电流可以激发电子跃迁,从而产生光线,实现发光效果。

3. 晶体管:晶体管是一种基于PN结的三端口器件,通过调控PN结的导电状态,实现信号放大和开关控制。

PN结的应用广泛且多样化,是现代电子技术中不可或缺的一个元件。

总结:半导体物理学作为物理学中的重要分支,研究的是半导体材料及其性质与行为。

本文介绍了半导体的基本概念,包括能带理论和禁带,以及载流子行为,其中自由电子和空穴是半导体中的两种重要载流子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理知识点
1.前两章:
1、半导体、导体、绝缘体的能带的定性区别
2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。

注意随着原子序数的增大,
还原性增大,得到的电子稳固,便能提供更多的空穴。

所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点
常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋)
3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导)
4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点,
mt是沿垂直轴方向的质量,ml是沿轴方向的质量。

锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。

砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。

此能谷可以造成负微分电阻效应。

2.第三章载流子统计规律:
1、普适公式
ni^2 = n*p
ni^2 = (NcNv)^0.5*exp(-Eg/(k0T))
n = Nc*exp((Ef-Ec)/(k0T))
p = Nv*exp((Ev-Ef)/(k0T))
Nv Nc与 T^1.5成正比
2、掺杂时。

注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意
Ef前的符号!
nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度
nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度
na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度
na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度
3、掺杂时,电离情况。

电中性条件: n + na- = p + nd+
N型的电中性条件: n + = p + nd+
(1)低温弱电离区:记住是忽略本征激发。

由n = nd+推导,先得费米能级,再代
入得电子浓度。

Ef从Ec和Ed中间处,随T增的阶段。

(2)中间电离区:(亦满足上面的条件,即n = nd+),当T高于某一值时,Ef递减
的阶段。

当Ef = Ed时,1/3的施主电离。

(注意考虑简并因子!)
(3)强电离区:杂质全部电离,且远大于本征激发,n = Nd,再利用2.1推导
(4)过渡区:杂质全部电离,本征激发加剧,n = Nd + p和n*p=ni^2联立
4、非简并条件
电子浓度exp((Ef-Ec)/(k0T))<<1
空穴浓度exp((Ev-Ef)/(k0T))<<1
这意味着有效态密度Nc和Nv中只有少数态被占据,近似波尔兹曼分布。

不满足这
个条件时,即Ef在Ec之上或Ev之下则是简并情况。

弱简并是指还在Eg之内,但
距边界小于2K0T。

3.第四章导电性
1、迁移率
定义u = average(v)/E
决定u = t0*q/m,理解为平均自由时间内乘以加速度.m是电导有效质量
2、散射
电离杂质散射 t01 正比于 Ni*T^1.5(温度升高,电子加速,散射概率变小)
声学波散射 t02 正比于 T^(-1.5)(温度升高,晶格震动剧烈)
光学波散射 t03 正比于exp(hw/(k0T))-1
注意:散射几率可加,即总平均自由时间倒数是各个自由时间倒数相加
注意:硅锗等原子半导体中,主要是电离杂质散射和声学波散射,掺杂浓度高时
u可能虽时间先增后减,可推导出。

砷化镓等35族化合物半导体,也需考虑光学
波散射。

3、电阻率。

电导率是u(up*p + un*n)。

电阻率随温度的变化图须记住,首先是不计本
征激发而电离率虽温度升高,散射以电离杂质为主,然后是全部电离后晶格散射虽
温度增加,随后是本征激发虽温度剧增。

4.第五章非平衡载流子
1、普适公式
detn = detp (如光照、电脉冲等,非平衡载流子成对激发)
detp = detp0 * exp(-t/t0)
t0 是平均载流子寿命
1/t0是载流子复合几率
准费米能级:在空穴和电子的复合(稍慢)未完成时,认为价带和导带之间不平
衡,而带内平衡,所以有各自的“准费米能级”。

少子的准费米能级偏离原来较大。

可推导。

2、直接复合
(1)价带中电子浓度和导带中空穴浓度几乎为定值,所以产生率rn’p’=G为常数
(2)复合率 R = rnp
(3)净复合率 U = R – G = r(n0+p0)detp+r*r*detp
(4)寿命t0 = detp/U = 1/(r(n0 + p0) + r*r*detp)
注意只有小注入时,t0 = 1/(r*(n0 + p0))
N型P型各可以简化
3、间接复合
(a)俘获电子 rn*n*(Nt-nt)
(b)发射电子s-*nt(导带几乎满空穴)
利用平衡时(nt0~Ef)得s-=rn*n1,n1是费米能级等于Et时导带电子浓度与(c)俘获空穴 rp*p*nt
(d)发射空穴 s+*(Nt-nt)(价带几乎满电子)
利用平衡时(nt0~E)得s+=rp*p1,p1是费米能级等于Et是价带空穴的浓度方程:(b) + (c) = (a) + (d)
复合率 U =(a)–(b)=Nt*rn*rp*(n*p-ni*ni)/[rn*(nh+n1)+rp*(p+p1)]
而寿命t0 = detp/U
推论1:在小注入时,U、t0与detp无关,公式可推
推论2(设Et靠近价带):在小注入时,n型可分为强n区(n0最大),高阻区(p1
最大)。

p型类似
推论3:Et靠近Ei时复合中心最有效
4、俄歇复合
5、陷阱
6、漂移扩散电流
J漂移=E*q*up*p 或 E*q*un*n (注意二者均是正号,E=-dV/dx)
J扩散= -Dn*q*dp/dx 或 Dn*q*dn/dx (注意二者符号相反)
爱因斯坦关系Dn/un=k0T/q可以由二者相加为0得出,用到Ef = const + V
连续性方程:dp/dt = -J漂移的散度 - J扩散的散度 - detp/t0 + g
(右侧共有5项,第二项取散度成两项,此式物理含义明确)注意:一般题目中,认为E由外场决定,与载流子无关。

若考虑与载流子有关,
则亦是一种自洽方程:泊松方程和连续性方程的自洽。

注意:非平衡载流子空间不均匀,平衡载流子空间均匀。

所以漂移电流中二者均
有贡献,而扩散电流中只有非平衡载流子有贡献。

7、扩散
不考虑漂移电流,(若不考虑载流子对势场的影响,即无外场时)
扩散稳定后(不时变):-J扩散的散度 = detp/t0,可求解
后样品:detp = detp0*exp(-x/Lp), Lp=sqrt(t0*Dp)称扩散长度
薄样品:detp = detp0*(1-x/W), W是厚度
另有牵引长度,是指自由时间的移动距离,为E*u*t0
*8、Au在硅中,双重能级Eta 和 Etd,前者在上后者在下,两个之中只有与Ef靠近的那个起作用,n型时Ef在前者之上,Au带负电,显示受主型;p型时Ef在后者之
下,Et带正电,显示施主型。

这两种情况都是有效的复合中心,加快器件速度。

5.第七章金半接触
6.第八章 MIS结
2、C-V曲线的定性分析,Vg是指加在金属上的电压
Vg = Vo + Vs = E*d0 + Vs = Qm/(e0*er)*d0 + Vs = -Qs/Co + Vs
则C = dQm/dVg= Co // Cs,这里利用了高斯定理、金属的相对点解常数为0两点
P型:
Vg<<0 时多子堆积,半导体相当于直接导通,C -> C0
Vg -> 0 时多子耗尽,半导体电容由耗尽层决定
Vg>>0 时反型,对于低频相当于导通,C->Co;对于高频,复合时间大于电信号周
期,耗尽层达到最大(电容最小),总电容由耗尽层决定;对于深耗尽,耗尽区域
进一步扩展,电容进一步减小。

N型,Vg>>0时是多子堆积……
3、不理想情况的C-V曲线,需在金属上加Vbf来抵消使至平带
功函数之差:假设绝缘层压降为0,压降全在空间电荷区,有Vm-Vs=(Wm-Ws)/-q。

因此应加上偏压Vbf = -(Vm-Vs) = (Wm-Ws)/q。

绝缘层存在电荷:假设距金属x处有Q(单位面积上),假设此处到半导体无压降。

其在半导体内感应出电荷-Q(金属内也是-Q),所以需要通过加偏压,使得金属上再带上-Q半导体上带上Q。

E是由偏压引起的电场,则-Q=E*e0*er=(Vbf/x)*e0*er,所以Vbf = -Q*x/(e0er),对于一般情况此式变积分。

相关文档
最新文档