火焰原子吸收光谱法测定污泥中铜锌铅镉镍

合集下载

火焰原子吸收光谱法测定污水中的铬_镉_铅

火焰原子吸收光谱法测定污水中的铬_镉_铅

火焰原子吸收光谱法测定污水中的铬、镉、铅崔新玲 李树伟 马果花 曲刚莲 李善茂(防化指挥工程学院化学侦检分析教研室 北京 102205)摘 要 建立了一种准确的重金属元素铬(Cr)、镉(Cd)、铅(Pb)的火焰原子吸收光谱检测方法,并在优化的操作条件下,对实验室污水水样进行湿法消解,测定。

通过精密度、最低检出限及加标回收率实验,对实验方法的可靠性进行了评估。

关键词 原子吸收;污水;Cr;Cd;Pb中图分类号 O657D eterm i n a ti on of Cr,Cd and Pb i n d i rty wa ter by FAASCui Xinling,L i Shu wei,Ma Guohua,Qu Ganglian,L i Shan mao(I nstitute of Chem ical Defense,Beijing102205,China)Abstract I n this paper,an accurate method was built up for the deter m ination of heavy metal elements in2 cluding Cr,Cd and Pb.After nitrified,the samp les of dirty water of laboratory and drinking water were deter2 m ined in the op ti m ized conditi on.The credibility of the method was valuated by deter m ining p recisi on of the meth2 od,detecti on li m it and recovery.Key words FAAS;dirty water;Cr;Cd;Pb1 引 言微量元素对生命体来说是一把双刃剑,当其缺乏时,生命体不能正常代谢,会导致相应的疾病发生;但含量过高时,重金属就会对生命体产生毒害作用,甚至会造成死亡。

火焰原子吸收光谱法测定工业污泥中铜、铅、锌、镍

火焰原子吸收光谱法测定工业污泥中铜、铅、锌、镍
间 。其结 果列 于表 5 。
表 5 回收率 2 3 精 密度 .
按上 述样 品 的处 理 方 法 , 实 际 样 品 测 定 6份 对 平行样 品, 计算各被测元素测定结果 的相对标准偏
差, 测定 结 果列 于表 3 相 对标 准 偏 在 27 % , .3
4 4 %之 间。 .6
表 3 工 业污泥样 品测定 结果 n=6
3 结

本文建立 了火焰原子吸收光谱法测定工业污泥
中铜 、 、 、 铅 锌 镍元 素 的检 测方 法。方 法检 出限 为 00 1 . g L 相 对 标 准 偏 差 为 2 7 % ・ .2 ~02 m / , 5 .3 44 % , .6 回收率 为 9 .% ~150 70 0 .%。本 方 法适用 于 工业污泥重金属铜、 、 镍的检测, 铅 锌、 对环境 的保护 起到 积极 的作用 。
子水 Байду номын сангаас
I 3 样 品处理 .

试剂主要有硝 酸、 氢氟酸 、 高氯 酸、 酸 , 盐 去离
境保 护关 注 的 重 要 问题 之一 。因 此 , 于 工 业 污 泥 对
的监测 和分析方法的准确与否 , 给治理工业污泥提 供详实技术指标显得尤为重要 。本 文在文献[ ] 2 的 基 础 上建 立 了新 的分 析 方 法 , 用 将工 业 污泥 自然 采 风干 , 筛分制备样品, 烘干, 硝酸 、 氢氟 酸、 高氯酸消 解, 用火焰原子吸收光谱法测定工业污泥 中铜 、 铅、 锌、 。 镍
参考文 献 :
24 检 出限 . 本 方法 在测 定条件 下 , 4 用 %盐 酸空 白溶 液连续 测定 l 次 , 1 统计 测量 结 果 , 算 方 法 的 检 出 限 列 于 计

火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬

火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬

火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬摘要:采用微波消解法消解待测土壤,用火焰原子吸收分光光度法测定消解液中的铜、锌、铅、镍、铬5种重金属,测定结果的相对偏差分别为0.59%,0.94%,0.53%,0.30%,1.7%,标准样品的相对误差在0-8.6%之间,均在标准值可接受范围内。

关键字:火焰原子吸收分光光度法、土壤铜、锌、铅、镍、铬随着社会工业的高速发展,土壤污染问题越来越严重,土壤污染物主要分为无机污染物和有机污染物两大类。

无机污染物主要包括Cu、Hg、Zn、Pb、Ni、Cr等重金属污染,这些重金属在土壤中不易被微生物分解,易与有机质发生螯合作用而稳定存在于土壤中,难于清除[1]。

根据《土壤环境质量农用地土壤污染风险管控标准》,土壤中的Cu、Hg、Zn、Pb、Ni、Cr等重金属元素的含量应符合污染物的控制标准值。

本文探讨了火焰原子吸收分光光度法测定土壤中Cu、Zn、Pb、Ni、Cr等元素。

采用微波消解法消解土壤,与电热板消解法相比,该方法具有操作简便,用酸量少,空白值低等优点,且测定结果准确,可靠[2]。

1 实验部分1.1主要仪器与试剂(1)火焰原子吸收光谱仪:iCE 3300,赛默飞世尔科技有限公司;(2)密闭微波消解仪:WX-8000,上海屹尧仪器科技发展有限公司;(3)万分之一电子天平:GL224-1SCN,赛多利斯科学仪器(北京)有限公司;(4)乙炔:纯度99.9%,广西瑞达化工科技有限公司。

(5)标准溶液:坛墨质检科技股份有限公司,浓度100mg/L。

(6)土壤标准样品:GBW07407:中国地质科学院地球物理地球化学勘查研究所;GBW07407a:中国地质科学院地球物理地球化学勘查研究所;RMU037:东莞龙昌智能技术研究院;ERM-S-510203:生态环境部标准样品研究所;ERM-S-510204:生态环境部标准样品研究所。

(8)试剂:硝酸、盐酸、氢氟酸:优级纯,国药集团化学试剂有限公司。

锡化学分析方法 铜、铅、锌、镉、银、镍和钴含量的测定 火焰原子吸收光谱法-最新国标

锡化学分析方法 铜、铅、锌、镉、银、镍和钴含量的测定 火焰原子吸收光谱法-最新国标

锡化学分析方法第1部分:铜、铅、锌、镉、银、镍和钴含量的测定火焰原子吸收光谱法警示——使用本文件的人员应有正规实验室工作的实践经验。

本文件并未指出所有可能的安全问题。

使用者有责任采取适当的安全和健康措施,并保证符合国家有关法规规定的条件。

1范围本文件描述了锡锭中铜、铅、锌、镉、银、镍、钴含量的测定方法。

本文件适用于锡锭中铜、铅、锌、镉、银、镍、钴含量的测定方法。

各元素测定范围见表1:2规范性引用文件本文件没有规范性引用文件3术语和定义本文件没有需要界定的术语和定义。

4原理试料以盐酸,硝酸溶解,以盐酸-氢溴酸排除大量锡。

在盐酸-硝酸混合酸介质中,于原子吸收光谱仪波长Cu324.7nm、Pb283.3nm、Zn213.9nm、Cd228.8nm、Ag328.1nm、Ni232.0nm、Co240.7nm处,分别测量铜、铅、锌、镉、银、镍、钴的吸光度。

5试剂除非另有说明,在分析中仅使用确认为优级纯试剂和蒸馏水或去离子水或相当纯度的水。

5.1盐酸(ρ=1.19g/mL)。

5.2硝酸(ρ=1.42g/mL)。

5.3硫酸(1+1)。

5.4盐酸—氢溴酸混合酸:盐酸+氢溴酸(1+1)。

5.5盐酸-硝酸混合酸:盐酸+硝酸(3+1),现用现配。

5.6盐酸(1+1)。

5.7硝酸(1+1)。

5.8硝酸(2+1)。

5.9铜标准贮存溶液:称取1.0000g金属铜(w Cu≥99.99%),置于250mL烧杯中,加入40mL硝酸(5.7),盖表皿,低温加热至完全溶解,冷却。

移入1000mL容量瓶中,加入50mL硝酸(5.2),用水稀释至刻度,混匀。

此溶液1mL含1mg铜。

5.10铅标准贮存溶液:称取1.0000g金属铅(w Pb≥99.99%),置于250mL烧杯中,加入60mL硝酸(5.8),盖表皿,低温加热至完全溶解,煮沸除去氮的氧化物,冷却。

移入1000mL容量瓶中,加入30mL硝酸(5.2),用水稀释至刻度,混匀。

此溶液1mL含1mg铅。

火焰原子吸收分光光度法测定地表水中的铜、锌、铅、镉

火焰原子吸收分光光度法测定地表水中的铜、锌、铅、镉
关 键词: 火焰原子吸收分光光度法;C u ; Z n ; P b ; C d ; 浓缩;共沉淀;比对试验 中图分类号:X 83 文献标志码:A 文章编号:16乃 -9655 (2〇n ) 03 -0106 -03
铜 、锌 、铅 、镉是地表水监测的必测项目,火 焰原子吸收分光光度法可以同时测定水样中的铜、 锌 、铅 、镉 。因铜、锌的地表水环境质量标准限值 较高 ,用直接吸入火焰原子吸收分光光度法即可测 定铜、锌 ,通过消解、浓缩水样后测定,能提高测 量准确度。
0. 50 0. 0763
1.00 0. 1505
2. 00 0. 2953
y =0. 0014 +0. 1475a: r =0.9999
浓度值/ (mg/ L) A 吸光度/ ( )
0.00 0.0001
0.02 0.0127
表 2 锌校准曲线绘制表
0.05 0.0286
0. 10 0.0552
0.20 0.1060
取 1 % 硝酸溶液,按上述相同的程序操作,以 此为空白样。 1 . 3 . 2 校准曲线的配制
取 l O O O m g / L 铜标准溶液 5.00m L 、500m g / L , 锌标准溶液2. O O m L 于 l O O m L 容 量 瓶 中 ,用 1 % 硝 酸 溶 液 定 容 至 标 线 ,配 制 成 含 铜 50.0rng/ L 、锌 10. O m g / L 的混合标准溶液。分别取此混合标准溶 液 0 、 0.20、 0.50、 1.00、 2.00、 3.00、 4.00、 5. O O m L 于 l O O m L 容量瓶中,用 1 % 硝酸溶液定容, 配 制 成 含 铜 浓 度 分 别 为 〇、0.10、0.25、0.50、 1.00、2.00m g / L 的标准 系 列 和 含 锌 浓 度 0 、0.02、 0.05、0.10、0.20、0.30、0.50m g / L 的标准系列。 1 . 3 . 3 样品测定

火焰原子吸收光谱法测定污水中的铜和铅

火焰原子吸收光谱法测定污水中的铜和铅

实验三十九火焰原子吸收光谱法测定污水中的铜和铅一、实验目的1. 掌握原子吸收分析的原理和该技术在测定环境水中重金属的分析应用2. 进一步熟悉仪器的操作技术。

二、实验原理原子吸收光谱分析是根据光源发射出待测元素的锐线光谱通过样品原子蒸汽时,被样品蒸汽中待测元素的基态原子所吸收。

在控制合理的分析条件下,吸光度与原子浓度关系服从朗伯-比尔定律。

工业污水中铜和铅是排放标准受控的元素,测定前一般要进行消化预处理,处理方法根据水质污染情况可采用硝酸、硝酸-硫酸或硝酸-高氯酸进行消化。

取样量视其含量而定,如果是天然水则需要预富集后才能测定。

三、仪器试剂1.仪器日立2-2000火焰/石墨炉原子吸收分光光度计、铜和铅空心阴极灯,仪器工作参数见表5.43。

容量瓶:50mL2个,25mL7个;吸量管:2mL1支、1mL1支。

2.试剂铜、铅标准贮备液:1.0mg/mL(由准备室配制);使用液:Cu 50μg/mL,Pb 100μg.mL-1(均加入3滴1+1HNO3酸化)。

四、实验步骤1.制作校准曲线在4个25mL容量瓶中,各加入2滴1+1HNO3,按表39-2的量配制混合标准系列,用去离子水稀至刻度,摇匀后按表39-1参数分别对各元素进行测定,把测量的吸光度与对应的浓度作图,绘制铜、铅的校准曲线。

或者利用仪器浓度直读操作程序,自动绘制校准曲线。

2.水样预处理及测定量取50mL已酸化(pH≤2)保存的水样于高型烧杯中,加入5mLl+1HN03在电炉上加热至微沸并蒸发到约20mL,如果溶液清亮,盖上表面皿加热回流几分钟,取出冷却至室温,转移至25mL容量瓶中,用二次水稀释至刻度,摇匀,按表39-1的条件进行测定,将测得的数据查校准曲线,计算其含量(用μg/mL表示);若用浓度直读,则读出结果转换成原样品含量,请注意水样浓缩或稀释体积。

注意,如果水样消化不清亮或有悬浮物,需要用硝酸反复消化至清亮为止,最后用砂芯过滤器过滤后再测量。

火焰原子吸收光谱法测定污泥中铜锌铅镉镍

火焰原子吸收光谱法测定污泥中铜锌铅镉镍
密度和 准确度 。相对标 准偏 差 为 0 8 - 6 0 , 标 回收 率 为 9 ~ 1 3/ . . 加 5 0 。 9 6 关键词:火焰 原子 吸收 光谱 法 ;污 泥 ; ; ;铅 ;镉 ; 铜 锌 镍
中 图分 类 号 : 5 . 1 06 73 文 献 标 识 码 :A 文章 编 号 :10 —0 0 2 0 )000 —2 0 14 2 ( 0 2 1—5 00
对 于污泥 的监 测 和分 析 方 法 的准 确 与 否 , 是 至 关 都
重要 的。本法 在文 献 [] 1的基 础上 建立 的新 方法 , 是 将 污水处 理 厂污泥 进 行 自然 风 干 , 筛分 制 备 污 泥 样
品, 经烘 干 、 酸一 氟 酸一 氯 酸 消 解 后 , 火 焰 原 硝 氢 高 用
t ern e9 ~ 1 3 . h a g 5 0
Ke wo ds y r :FAAS ;M u d ol d ys i ;Cu n b;( ;Ni ;Z ;P






对 于污泥 处 置 , 目前 大 致有 两 种 方 法 。一 种 是
1 . m g・L 00
rl n
将 干 污泥样 品 置于 阴凉 、 通风 处晾 干 , 平铺 于硬
质 白纸 板 上 , 用玻 璃 棒等 压散 ( 勿破 坏 自然粒 径 ) 用 ,
混 合标 准 溶 液 : u 5 . rg・L , n 1. rg C O 0 a Z 0 0 a

玛瑙研 钵 研磨 至样 品全部 通 过 10 20目筛 ( 龙 6 ̄ 0 尼
维普资讯
第3卷 8
第 1 O期
理化检 验一 化学 分册

湿法消化—火焰原子吸收法测定污泥中的铜、锌、铅、镉含量

湿法消化—火焰原子吸收法测定污泥中的铜、锌、铅、镉含量

湿 法消化 一火焰 原 子吸 收 法 测 定 污 泥 中的 铜 . . . 含 量 锌城 市污水 , 产生 走量 污泥, 污泥 处置 方 法一直是 污水 处理行 业的一 个难题 。
测 定污泥 中重金 属 元 素的含量 , 污泥 的综合 开发 和利 用提供 必要 的科 学依据 。本 文利 用火焰原子 吸收 为
西 南 给 排 水
表 2 标 准 工 作 溶 液 的配 铆
C u 1 0. 0 0 Zn 0 0 0
V 12 N 20 o.4 o3 0 2
单位 :gm m/ L
P b 0 0 0 C A 0 0 0
取 泥样 于 20 5 mL三角烧 瓶 中 , 加少许 重蒸 馏水 浸润 ,
维普资讯
S U H ̄ .T WA E O T ,S T ' TR
品 犟 爨 牙 牙 撰

WA T %A E1 S E 'T I
西 南给 排 1 承
V l 4 o3 0 2 o- N . 2 0 2
襄 分析 与 监测
秣 《 世 曝 《 《
k。 g 2 仪器和试 剂
O / , 为 5 O gL 使 用 时 分 别用 02 的硝 酸 mgL 镉 .m / , .% 溶液 稀 释至所 需浓 度 。
3 实验 部分
3 1 取 样 .
为 使所 采集 的样 品具 有 最 大 代 表 性 , 采样 从脱
2 1 WF 一12 . X F B型原 子 吸 收分 光 光 度计 , 、 、 铜 锌
9 - 3

1o .0 2. 0 0
3 0 0
1 0 o 2 0 .0
3 0 .0
0 1 .0 O 2 .0
0 0 3

火焰原子吸收法测定污水处理厂四个季节污泥中铜、锌、铅、镉、铬、镍

火焰原子吸收法测定污水处理厂四个季节污泥中铜、锌、铅、镉、铬、镍
学 院 学报
j oURNAL OF XUCHANG UNI VERS TY I
Vo . 2 1 9. NO 2 .
Ma. 2 0 r 01
文 章 编 号 : 6 1— 8 4 2 1 ) 2— 0 1 5 1 7 9 2 ( 0 0 0 0 9 —0
1 实验 部 分
1 1 仪 器 与 试 剂 .
WF X一1 2 2原 子 吸收分 光光 度计 ( 京 第 二光 学 仪 器厂 ) C , n C , rP , i 心 阴极 灯 ( 京 FB 北 ;u Z , d C ,b N 空 北 第 二光 学仪器 厂 ) D Z一8 ;R D箱 式 电阻炉 ( 天津 市华 北实验 电炉厂 ) . 硝酸、 氢氟 酸 、 酸镍 、 硝 硝酸 镉 、 硝酸铜 、 酸铬 等均 为分析 纯 , 硝 硝酸铅 、 酸锌 为基 准试剂 . 硝
9 2
许 昌 学 院 学报
21 0 0年 3月
1 3 样 品 的 预 处 理 .
1 3 1 干 污泥样 品 的制备 ..
分取 春夏秋 冬 四季节 四种污 泥 ( 昌市瑞 贝卡污 水 净化 有 限公 司 ) 将 其 编号 为① ② ③④ 号 污 泥 . 许 , 湿 污 泥样 品置于 阴凉 、 风处 自然 风 干后 , 通 用瓷 坩埚研 磨 , 过 8 再 O目标 准 筛. 后放 入烘 箱 中 15℃ 烘 3h 最 0 ,
3 7 % 之 间) 样 品加 标 回收率 为 9 . % ~14 9 , .2 , 28 0 . % 测定 结果 准确 可 靠 , 出 了不 同季 节生 活 污 得
泥 中铜 、 、 、 、 、 含 量 变 化 规 律 . 锌 铅 镉 铬 镍
关键词 : 水处 理厂 污泥 ; 污 火焰 原 子 吸 收 光 谱 ; 金 属 元 素 重

火焰原子吸收法连续测定土壤样品中的铜、铅、锌、钴、镍

火焰原子吸收法连续测定土壤样品中的铜、铅、锌、钴、镍

Z n
G0
Ni
结 果发 现两 种体 系 中 c 、b z 、0 N 的测 定 结果 u P 、n c 、 i
13 实验方 法 .
与推荐值相符 , 结果令人满意。但是 H 1 H O ~ C一 N
收稿 日期 :0 8—1 20 2—1 7 作者简介 : 微 (9 1 ) 女 , 王 1 8一 , 硕士研究生 , 助理工程师 , 主要从事分析检测工作 。
火焰原子吸收法连续测定土壤样品中的铜、 锌、 镍 铅、 钴、
王 微
( 辽宁有色地质测试 中心 , 辽宁 沈阳 10 2 ) 1 11

要: 采用王水溶解土壤样品 , 用火焰原 子吸收法连续测定铜 、 、 、 、 铅 锌 钴 镍五种元 素 , 比了两 对 种消解体系 , 化了盐酸复溶 体系 , 优 优化 了仪 器的使 用条件 , 法检 出限为 C .4l 方 u11 g・ a
中 图分 类 号 :13 S5 文献 标 识 码 : A
随着 地质 调查 工 作 的进 一 步 深 入 , 对地 质实 验 室 的分析 测试 技术也 相应 的提 出 了更 准 、 快 、 方 更 更 便 的要求 。 目前检 测铜铅 锌钴镍 一般 采用 微波 消解
1 3 1 样 品 的 前 处 理 ..
移 去表 面 皿 , 发 至 干 。取 下 冷 却 , 入 浓 盐 酸 5 蒸 加 mL 用水 冲洗杯 壁 , , 加热 至 沸腾 , 冷却 后 移 入 5 0mL
l 实验部分
1 1 仪器 与试 剂 .
Hale Waihona Puke 容量瓶中, 用水稀释到刻度 , 摇匀 , 澄清后与原子荧
光 同时测 定 。
将土壤样品风干、 粉碎 , 10目筛。称取经过 过 0

火焰原子吸收光谱法测定污水中的铜实验报告

火焰原子吸收光谱法测定污水中的铜实验报告

火焰原子吸收光谱法测定污水中的铜摘要本实验采用火焰原子吸收光谱法,以空心阴极灯为光源,通过制作校准曲线,定量分析废水样品中铜的含量。

并通过实验研究该方法的最佳实验条件,同时测定该分析方法的灵敏度、检出限和精密度。

最终测得废水样品中铜的含量为0.70 μg·mL-1,符合国家关于废水排放标准中铜含量的二级标准;灵敏度为0.17 μg·mL-1/1%,检出限为0.04 μg·mL-1,精密度为5.3%。

本实验方法具有操作简单,进样量少,灵敏度高,定量准确迅速,成本低的优点。

关键词火焰原子吸收光谱法校准曲线废水铜Determination of Cu in Wastewater by Flame AtomicAbsorption SpectrotometryCHEN Jia-jun(School of Chemistry and Chemical Engineering, Sun Yat-Sen University,Guangzhou, 510275)Abstract Copper content in the wastewater sample was determined by Flame Atomic Absorption Spectrotometry. Different experimental conditions were adjusted to confirm apparatus's optimal experimental and analytic state. Response rate, detection limit, RSD and accuracy of the analytical method were explored through a series of tests in terms of normal and experimental sample. Experimental results showed that copper content of the wastewater sample is 0.70 μg·mL-1, the response rate is 0.17 μg·mL-1/1%, the detection limit is 0.04 μg·mL-1 and RSD is 5.3%. This method has many advantages such as sensitive, accurate, low cost and so on.Keyword FAAS Wastewater Copper content Determine1.引言铜是一种带有紫红色光泽的过渡金属。

水质中铜、锌、铅、镉的测定──火焰原子吸收法

水质中铜、锌、铅、镉的测定──火焰原子吸收法

实验五 水质中铜、锌、铅、镉的测定──火焰原子吸收法一、目的意义(1)熟悉原子吸收分光光度计的使用方法。

(2)掌握原子吸收分光光度法测定铜、锌、铅、镉的定量方法。

二、方法原理火焰原子吸收法。

其原理是,在使用锐线光源和在低浓度的情况下,基态原子蒸气对共振线的吸收符合比耳定律:A=lgII 0=KLN 0 式中:A ——吸光度;I 。

——入射光强度;I ——经原子蒸气吸收后的透射光强度; K ——吸光系数;L ——光穿过原子蒸气的光程长度; N 。

——基态原子密度。

当试样原子化,火焰的绝对温度低于30000K 时,可以认为原子蒸气中基态原子的数目实际上接近于原子总数,在固定的实验条件下,原子总数与试样浓度C 的比例是恒定的,因此,A =K ′C上式是原子吸收分光光度法的定量基础,其中K ′是与K 、L 等有关的常数。

定量方法可用标准曲线法或标准加入法等。

火焰原子化法是目前使用最广泛的原子化技术。

火焰中原子的生成是一个复杂的过程, 其最大吸收部位是出该处原子生成和消失速度决定的。

它不仅和火焰的类型及喷出效率有 关,并且还因元素的性质及火焰燃料气与助燃气的比例不同而异。

三、仪器(1)原子吸收分光光度计(附铜、锌、铅、镉空心阴极灯); (2)空气钢瓶或无油气体压缩机。

(3)乙炔钢瓶。

(4)容量瓶。

(5)移液管。

四、试剂(1)硝酸(优级纯)。

(2)高氯酸(优级纯)。

(3)金属标准贮备溶液:各准确称取0.5000g 干燥后的光谱纯金属,分别用适量硝酸(1+1)溶解,必要时加热直至溶解完全。

用水稀即至500.0mL ,此溶液每mL 含1.00mg 金属(铜、锌、铅、镉)。

(4)混合标准使用溶液:用0.2%硝酸稀释金属标准贮备液,使配成的混合标准使用液每mL 含铜、锌、铅、镉分别为50.0、10.0、100.0、10.0ug 。

(5)去离子水。

(6)燃气:乙炔,纯度不低于99.6%。

五、操作步骤1.样品预处理取l00mL水样放入200mL烧杯中,加入硝酸5mL,在电热板上加热消解(不要沸腾)。

火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定

火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定

火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定发布时间:2023-03-10T02:56:23.532Z 来源:《科技潮》2022年35期作者:张仰华[导读] 本文主要研究火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定。

西部黄金克拉玛依哈图金矿有限责任公司新疆克拉玛依 834025摘要:本文主要研究火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定。

研究过程中,针对火焰原子吸收分光光度法原理和优势进行探讨。

并且实践研究了该方法在土壤中铜、锌、铅、镍、铬中的具体测定步骤,分析了测定过程中的注意事项,旨在推广该方法应用。

关键词:火焰原子吸收分光光度法;土壤;铜、锌、铅、镍、铬土壤中铜、锌、铅、镍、铬测定时土壤金属测定的主要内容,也是现代土壤污染测定的关键。

测定结果的精确度,对于确认土壤是否污染,土壤保护都有重要意义。

因此,当前土壤污染检测工作实施过程中,要求采用更多新技术进行土壤金属污染检测。

如,火焰原子吸收分光光度法就是当前能够对土壤污染实施精准检测,高效检测的有效方法,并且已经得到推广验证,证明该方法在检测中行之有效。

1.火焰原子吸收分光光度法的简要分析火焰原子吸收分光光度法是现代检测工作中常用的检测方法。

该方法适合应用于金属和部分非金属的检测。

在检测过程中,待测元素灯发出的特征谱线通过供试品经原子化产生的原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。

该检测方法在实施的过程中,也已经开始实施多项检测技术。

该检测技术也具有良好的检测优势,以下是本文研究后对该检测方法的应用优势进行分析:①检测灵敏度比较高,适合应用于精细化检测工作。

研究发现,火焰原子吸收分光光度法在检测中应用,能够对绝大部分金属元素的检测达到ppm级别,检测工作实施的过程中,利用特殊手段也可以使检测灵敏度达到ppb级别。

②检测实施过程中,精度也非常高。

如,研究发现,利用火焰原子吸收分光光度法进行检测,具有高精度特点,检测精度在1%-3%左右,最低精度也能够控制在1%以下。

土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法

土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法

土壤和沉积物铜、锌、铅、镍、铬的测定
火焰原子吸收分光光度法
土壤和沉积物中铜、锌、铅、镍、铬等金属元素含量的测定通常
使用火焰原子吸收分光光度法(FAAS)。

FAAS利用原子在火焰中的特
定吸收光谱线来定量分析样品中金属元素的含量。

具体操作步骤如下:
1. 样品的制备:
将土壤或沉积物样品收集后,将其经过干燥、研磨、筛选等处理。

然后将样品加入溶剂中(如硝酸或王水)进行消解,可以用微波消解
仪或加热消解仪消解。

待消解完成后,将溶液用去离子水或磷酸盐缓
冲液稀释到一定的体积后即可分析。

2. 分析仪器:
火焰原子吸收分光光度计由火焰、光路、光源和检测器四部分组成。

其中,火焰是将样品中的铜、锌、铅、镍、铬等金属元素原子化
的关键部分。

火焰的燃料和氧化剂通常是丙烷和空气。

3. 标准曲线绘制:
利用标准金属元素溶液分别进行浓度逐渐加大的稀释,测量各浓
度下的吸收浓度并绘制标准曲线。

标准曲线通常包括几个标准浓度点,通过外推法计算样品中金属元素的浓度。

4. 测量:
将样品溶液静置后,用特定方法从中取出一定的体积,将其通过
火焰原子吸收分光光度计进行测量,如有需要可以与标准曲线对照计
算出样品中金属元素的浓度。

火焰原子吸收分光光度法测定环境水中的铜锌铅镉等有害元素

火焰原子吸收分光光度法测定环境水中的铜锌铅镉等有害元素

火焰原子吸收分光光度法测定环境水中的铜锌铅镉等有害元素[摘要]本文采用火焰原子吸收分光光度法直接测定水样的铜、锌、铅、镉等有害元素的含量,其结果符合要求,易于操作,值得推广。

[关键字]原子吸收分光光度法铜锌铅镉水0 前言铜、锌、铅、镉等重金属元素会危害人体健康及生态环境。

人的肌体如果受到有害金属的侵入就会让一些酶丧失活性而出现不同程度的中毒症状,不同的金属种类、浓度产生的毒性不一样。

铜是人体必须的微量元素,缺少铜元素就会发生贫血等情况,但过量掺入也会危害人体。

铜对水生生物影响甚大,电镀、五金加工、工业废水等都是铜的主要污染源;适量的锌有益于人体,但影响鱼类及其他水生生物。

另一方面,锌会抑制水的自净过程。

冶金、颜料、工业废水是锌的主要污染来源;铅对人体及动物都是有毒的,其存在于人体有可能会使人出现贫血、神经机能失调等症状。

蓄电池、五金、电镀工业废水等都是铅的主要污染源;镉的毒性也非常强,积累在人的肝肾里面会损害肾脏等内脏器官,引发骨质疏松。

电镀、采矿、电池等是镉的主要污染源。

所以为了防止环境污染采取行之有效的分析方法检测铜、锌、铅、镉等重金属元素的含量具体特殊意义。

一般时候,江、河、水库及地下水仅含有非常少的铜、锌、铅、镉等金属元素,对于测定水样采用火焰原子吸收分光光度法进行检测很难检验出来,一般要采用富集的方法如用鳌合萃取或离子交换等方法才进行检测,但是这些方法比较复杂,容易受到干扰、测算量也比较大,测算效果达不到预期。

将水样进行10倍的富集浓缩,采用火焰原子吸收分光光度法可以对测样里面的铜、铅、锌、镉等微量元素进行直接测定,这种方法容易操作、精密度及准确度也比较理想,环境监测实验室常常用这种方法监测江、河、水库及地下水的铜、锌、铅、镉等金属元素。

1 实验1.1 关键仪器及试剂介绍(1)采用GGX—600型的原子吸收仪,由北京科创海光光学仪器厂生产;(2)采用:北京瑞利普光电器件厂生产的铜、铅、锌、镉空心阴极灯;(3)准备浓度为每升1000毫克的铜、铅、锌、镉标准混合储备液。

火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉

火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉

火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉龙先鹏(湘西水文水资源勘测局,吉首市416000)摘要将水样浓缩10倍处理,用空气-乙炔火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉元素的含量,在0~1.00mg/L范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于0.9990。

最低检出限分别为0.001、0.01、0.0008、0.0005m g/L,相对标准偏差分别为1.16%、1.22%、1.15%、1.16%。

该方法对标准样品的测试结果与国家标准方法基本一致,相对偏差均不大于7.0%。

关键词空气-乙炔火焰原子吸收水铜铅锌镉通常情况下,江河、湖、库及地下水中的铜、铅、锌、镉金属元素含量较低,用火焰原子吸收分光光度法直接测定原水样往往不能检出,一般采用鳌合萃取或离子交换等方法富集后测定,但这些方法分析过程复杂,操作繁琐,干扰因素多,测定效果不理想。

采取水样富集浓缩10倍处理后,用火焰原子吸收分光光度法直接测定试样中的微量铜、铅、锌、镉,该方法可以大幅度提高检出限,并且具有较高的精密度和准确度,操作简便,易于掌握,适用于环境监测实验室对江河、湖、水库及地下水中微量铜、铅、锌、镉元素的日常监测。

1实验部分1.1主要仪器与试剂原子吸收仪:W FX-1E2型,北京第二光学仪器厂;铜、铅、锌、镉空心阴极灯:北京瑞利普光电器件厂;铜、铅、锌、镉标准混合储备液:铜、铅、锌、镉的浓度均为1000m g/L。

分别称取铜、铅、锌、镉光谱纯1.0000g,用优级硝酸溶解,必要时可以适当加热,直至完全溶解,于1000mL容量瓶定容,摇匀。

铜、铅、锌、镉标准混合使用液:10m g/L。

用2j的优级硝酸溶液对铜、铅、锌、镉标准混合储备液逐级稀释而成;硝酸溶液:优级纯;实验用水为去离子水。

1.2仪器工作条件原子吸收仪的最佳工作条件列于表1。

1.3水样处理与富集浓缩水样正常采集后,立即用0.45L m滤膜过滤,滤液加入优级硝酸防腐(p H<2)。

火焰原子吸收分光光度法测定铜锌镉铬锰及镍

火焰原子吸收分光光度法测定铜锌镉铬锰及镍

火焰原子吸收分光光度法测定铜、锌、镉、铬、锰及镍悬浮颗粒物(SP)中痕量金属(如Pb、Cd、Zn等)是重要的大气污染物之一。

这些颗粒中的金属元素多来源于人为污染,主要存在于《2.5um的细小颗粒物中。

目前已证实颗粒物中至少有10种痕量金属具有生物毒性,以Cd、As等为代表的无机金属元素及其化合物,不但对人体具有毒害,而且具有致癌作用。

在一些城市中Pb、Cd已达有害水平。

可用大流量采样器或中流量采样器将SP采集在滤料山,样品酸消解处理后,用原子吸收分光光度法作颗粒物各组分分析。

通过采集在过氯乙烯滤膜上的颗粒物,用硫酸-灰化法消化,制备成样品溶液,然后将溶液引入火焰或石墨炉原子化器内,用标准曲线法或标准加入法测定溶液中各元素的浓度。

除镉外,其他元素均未见到明显的干扰。

测定镉时,用碘化钾-甲基异丁基酮进行萃取分离以消除干扰。

如用石墨炉测定,则可用氘灯扣除背景,消除干扰。

方法所需仪器:总悬浮颗粒物采样器:大流量采样器或中流量采样器;马弗炉;铂坩埚或裂解石墨坩埚:20~30ml;原子吸收分光光度计:具有火焰。

火焰原子吸收工作条件表:测定:样品溶液制备,硫酸-灰化法:取适量样品滤膜于铂坩埚货裂解石墨坩埚中,加入0.7%硫酸溶液2ml,使样品充分润湿,浸泡1h,然后再电热板上加热,小心蒸干。

将坩埚置于马弗炉中400℃±10℃加热4h,至有机物完全烧尽。

停止加热,待炉温降至300℃以下时,取出坩埚,冷却至室温,加4~6滴氢氟酸,摇动使其中残渣溶解。

在电热板上小心加热至干,再加7~8滴硝酸,继续加热至干,用0.16mol/L硝酸溶液将样品定量转移至10ml容量瓶中,并稀释至标线,摇匀,即为待测样品溶液。

按与标准曲线绘制相同的仪器工作条件测定样品溶液的吸光度。

取同批号、等面积的空白滤膜,按样品测定步骤测定空白值。

火焰原子吸收光谱法测定污泥中铜锌铅镉镍

火焰原子吸收光谱法测定污泥中铜锌铅镉镍

火焰原子吸收光谱法测定污泥中铜锌铅镉镍
董仁杰
【期刊名称】《理化检验-化学分册》
【年(卷),期】2002(038)010
【摘要】污水处理厂污泥进行自然风干,筛分制备污泥样品,经烘干、硝酸-氢氟酸-高氯酸消解后,用火焰原子吸收光谱法测定污泥中铜、锌、铅、镉、镍含量.方法简便、快速、实用,具有较高的精密度和准确度.相对标准偏差为0.8%~6.0%,加标回收率为95%~103%.
【总页数】2页(P500-501)
【作者】董仁杰
【作者单位】苏州工业园区,污水处理厂,苏州,215126
【正文语种】中文
【中图分类】O657.31
【相关文献】
1.火焰原子吸收光谱法测定底泥中铜铅镍锌镉铬的10种消解方法的比较 [J], 孙国明;吴敏
2.火焰原子吸收光谱法测定工业污泥中铜、铅、锌、镍 [J], 叶义昌;云作敏;孟红
3.ICP-AES法测定污泥中痕量杂质元素铜、锌、铅、镉、镍 [J], 李化全
4.火焰原子吸收法测定污水处理厂四个季节污泥中铜、锌、铅、镉、铬、镍 [J], 王丽娜;司红岩;付华峰
5.双硫腙萃取-火焰原子吸收光谱法测定水中痕量镉、锌、铅、铜、镍、铁与锰 [J], 迟锡增;陈伯涛;张玉鸾;甄谓先;陈维杰
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火焰原子吸收光谱法测定污泥中铜锌铅镉镍
作者:董仁杰
作者单位:苏州工业园区,污水处理厂,苏州,215126
刊名:
理化检验-化学分册
英文刊名:PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS
年,卷(期):2002,38(10)
被引用次数:24次
1.李苏峰;马运宏;独霖火焰原子吸收光谱法测定污泥中铜和锌[期刊论文]-理化检验-化学分册 2000(06)
2.环保局<水和废水监测分析方法>编委会水和废水监测分析方法 1989
3.李述信原子吸收光谱分析中的干扰及其消除方法 1986
1.陈雨艳.张金生.李丽华.CHEN Yu-yan.ZHANG Jin-sheng.LI Li-hua微波消解-火焰原子吸收光谱法测定污泥中铅[期刊论文]-理化检验-化学分册2006,42(10)
2.叶义昌.云作敏.孟红.YE Yi-chang.YUN Zuo-min.MENG Hong火焰原子吸收光谱法测定工业污泥中铜、铅、锌、镍[期刊论文]-湖南有色金属2007,23(3)
3.李化全.Li Huaquan ICP-AES法测定污泥中痕量杂质元素铜、锌、铅、镉、镍[期刊论文]-分析仪器2009(2)
1.周静.王静萍原子吸收光谱法测定污水处理后污泥中的Hg、As、Pb、Cd和Cr[期刊论文]-光谱实验室 2013(1)
2.李桂华.柳全文.刘军深.崔旭忠原子吸收分光光度法连续测定锰粉中微量Fe、Pb、Sb、Ca和Cd[期刊论文]-分析仪器 2006(3)
3.唐杰.夏娟.魏成富.杨梨蓉.陈飞.姚江火焰原子吸收光谱法测定某城区污泥中4种重金属元素[期刊论文]-理化检验-化学分册 2011(5)
4.赵清华.冯素萍微波消解/ICP-AES法测定污水处理厂污泥中的重金属[期刊论文]-化学分析计量 2008(2)
5.徐争启.倪师军.庹先国.张成江火焰原子吸收光谱法分析沉积物中重金属元素的形态[期刊论文]-分析试验室2006(4)
6.赵阳.焦健.李乐污泥焚烧中二氧化硫检测新方法及污泥处理探讨[期刊论文]-环境科学导刊 2012(3)
7.宋应球.崔德海.吴东华.宗屹.毛晓红.李兵火焰原子吸收光谱法测定锑品中微量镉[期刊论文]-湖南有色金属2012(4)
8.王丽娜.司红岩.付华峰火焰原子吸收法测定污水处理厂四个季节污泥中铜、锌、铅、镉、铬、镍[期刊论文]-许昌学院学报 2010(2)
9.陈宗保.蔡恩钦.刘林海石墨炉原子吸收法测定废水中多种痕量金属[期刊论文]-上饶师范学院学报 2009(6)
10.卓琳.傅敏.陈盛明火焰原子吸收光谱法测定污泥中金属元素含量[期刊论文]-三峡环境与生态 2008(1)
11.王永青火焰原子吸收法连续测定铜镉渣中的铜镉铅锌[期刊论文]-湖南有色金属 2010(6)
12.张志凡.王光辉.于冰.张洪林城市污泥中重金属稳定性的研究[期刊论文]-矿冶 2007(3)
13.关明添关于环境监测中电镀废水重金属含量分析——原子吸收分光光度法[期刊论文]-科技资讯 2007(20)
14.张美琴.陈和平.诸永志.葛家春.吴光红微波消解-原子荧光光谱法测定水产品中镉[期刊论文]-江苏农业学报2004(2)
15.赵丽霞污泥样品前处理方法比较研究[期刊论文]-太原师范学院学报(自然科学版) 2003(4)
16.邹腊梅环境水中的连续测定及环境保护[期刊论文]-湖南环境生物职业技术学院学报 2003(2)
17.马堃.孙红杰.赵倩火焰原子吸收光谱法测定城市污泥中重金属元素[期刊论文]-广东化工 2010(8)
18.余清.陈贺海.张爱珍.王宝钢火焰原子吸收光谱法快速测定铁矿石中铅锌铜[期刊论文]-岩矿测试 2009(6)
19.陈秋丽.张朝升.张可方.李淑更城市污水厂污泥处置研究中重金属测定的前处理方法[期刊论文]-广州大学学报(自然科学版) 2007(6)
20.唐杰.魏成富.杨梨容.白林.王怀柳.朱贤忠原子吸收光谱法测定TC11钛合金中微量Fe[期刊论文]-绵阳师范学院学报 2010(11)
21.唐杰.魏成富.杨梨容.白林.王怀柳.朱贤忠原子吸收光谱法测定TC11钛合金中微量Fe[期刊论文]-绵阳师范学院学报 2010(11)
22.李雯.杜秀月原子吸收光谱法及其应用[期刊论文]-盐湖研究 2003(4)
23.李玲霞.刘克林.强洪.邹洪痕量镍的分析进展[期刊论文]-中国稀土学报 2003(z1)
24.李玉环贝类体内重金属镉的富集和消除规律及食用安全性的研究[学位论文]硕士 2005
25.邱海鸥.郑洪涛.汤志勇原子吸收及原子荧光光谱分析[期刊论文]-分析试验室 2003(1)
本文链接:/Periodical_lhjy-hx200210006.aspx。

相关文档
最新文档