白光扫描干涉测量
白光干涉仪使用方法
白光干涉仪使用方法
白光干涉仪是一种用来测量光学元件表面形貌或者材料折射率的工具。
它利用分束器将一束白光分成两束,并分别经过待测样品和参考面后再合成在一起,产生干涉条纹,通过观察和分析干涉条纹的形态、数量和间距等特征来推导出被测物体的表面高度差或者折射率信息。
白光干涉仪使用方法:
1、调整平面反射镜:将左边的平面反射镜向右移动,直到上方的光源像在左下角。
2、调整分束器:将分束器向右缓慢旋转,观察左侧和右侧的屏幕上是否出现亮度变化。
找到最亮的位置。
3、调整平行度:将右侧镜子稍微调整一下,使得两个屏幕上的波纹条纹清晰、平行。
4、观察干涉图案:在右侧镜子前加入待测物品,观察干涉图案。
如果需要进行更精细的测量,可以通过调整平面反射镜的位置来改变干涉图案。
基于白光干涉的绝对距离测量
第一章绪论1.1测量绝对距离技术概论绝对距离测量指无导轨测长。
激光干涉仪测量过程中虽然可以达到纳米级甚至亚纳米级的测量精度,但也有种种局限性,如只能进行增量式测量,测量过程不能间断,以及需要导轨作为参考标准等等。
这些缺点限制了激光干涉仪的应用场合。
所以在实际测量中迫切需要无导轨绝对距离测量。
1.1.1绝对距离干涉测量(无导轨测量)方法无导轨测量的研究历史应该追溯到迈克尔逊时代。
在1892年把国际标准米尺与Cd红线波长相比较提高了小数重合法。
在激光出现之后,激光光谱学的研究结果向人们展示了极为丰富的谱线系列和令人振奋的相干特性。
1976年,C.R.Ti lford和A.G.0rszag首先报导了使用CO2激光器进行多波长干涉测长而不必求助于其他初测手段,成为严格意义上的激光多波长无导轨测量的开端。
1977年C.R.Ti 1ford对于由条纹尾数确定长度的分析法进行了系统的理论分析,并且提供了合成波长的概念,对激光多波长干涉测量起了重要的推动作用。
此后各国科学家开展研究。
无导轨测量比有导轨测量有明显的优点,因为它不但省去了导轨,也避免了在累加计数过程中出现的误差甚至是错误,省去了滑板移动的时间等等。
另一个更为重要的优点是在三维跟踪控制中应用更为方便和避免余弦误差的不断累积。
激光多波长无导轨测量技术无疑会推动测量机器人的发展。
1.2绝对距离测量原理用光学干涉仪测量长度时,干涉仪的干涉条纹与被测光程差之间的关系下:其中L为被测长度,N,ε分别为干涉条纹的整数级次和小数部分。
它们都是正数,λ是光波波长。
上式中ε可以直接通过干涉仪精确测量出来,N可以有两种方法获得:一是利用条纹计数。
二是利用L的已知初始值,通过计算估计,确定N即无导轨绝对距离测量法。
设被测长度L的粗测值为L0,其测量的不确定度为△L,即L= L0+△L,那么:两式相减得:要使整数唯一确定,只需使m1-m2<1,即△L <λs/4。
白光干涉仪测量显示高度的原理_解释说明以及概述
白光干涉仪测量显示高度的原理解释说明以及概述1. 引言1.1 概述在现代科学和工程领域中,测量显示高度是非常重要的任务之一。
白光干涉仪作为一种精密的测量仪器,被广泛应用于各个领域,如光学、材料科学、半导体制备等。
它通过干涉现象来实现对表面高度差异的精确测量。
本篇文章将详细介绍白光干涉仪的原理,并解释说明其测量显示高度的原理。
1.2 文章结构本文主要分为五个部分。
引言部分对白光干涉仪测量显示高度的原理进行了概述,并阐明本文的目的。
第二部分将详细讨论白光干涉现象以及干涉仪组成与工作原理。
第三部分将介绍使用和操作白光干涉仪时需要注意的设置、调整、测量步骤以及数据记录与分析方法。
第四部分将讨论白光干涉仪在不同应用领域中的应用情况,并探讨其技术局限性。
最后,结论与展望部分将总结本文所述内容,并展望白光干涉仪在未来的改进与发展方向。
1.3 目的本文的目的是为读者提供一个全面且清晰的了解白光干涉仪测量显示高度原理的资料。
通过阐述白光干涉现象、干涉仪的组成与工作原理,以及使用和操作方法,让读者能够更好地理解白光干涉仪这一测量仪器,并掌握其在实际应用中的技术要点和注意事项。
同时,对于白光干涉仪在不同领域的应用情况和技术局限性进行详细阐述,以期引发读者对该领域未来发展方向的思考。
2. 白光干涉仪的原理2.1 白光干涉现象白光干涉是指当宽谱连续光通过两个光学路径,再经过重合时所产生的干涉现象。
这是由于不同波长的光在不同程度上会产生相位差而导致的。
2.2 干涉仪组成与工作原理白光干涉仪主要由一个分束器、两个反射镜和一个待测物体构成。
简单来说,分束器将入射的白光分成两束相干的准平行光,然后通过调整反射镜使得两束平行光以不同的角度照射待测物体。
反射镜将经过物体后返回的反射光重新汇聚,再次经过分束器。
接下来,利用一台增加了直流延迟信号电压的扫描仪对返回的平行光进行扫描,并用一个探测器记录振动条纹信号。
2.3 测量显示高度的原理白光干涉仪可以利用其原理和构造通过显示出截面图或者等高线来测试并观察表面高度的变化情况。
物理实验中微小位移量的几种光学测量方法
物理实验中微小位移量的几种光学测量方法在物理实验中,微小位移量的测量是一个重要的环节。
纳米级的位移量可以帮助我们研究非常微小的事物。
而光学测量方法是一种高精度、非接触式的测量方法,被广泛应用于微小位移量的测量中。
本文将介绍几种常用的光学测量方法。
一、白光干涉法白光干涉法是一种常用的测量光程差的方法。
在实验中,利用Michelson干涉仪产生干涉条纹,通过计算干涉条纹的移动距离,可以得到微小位移量的数值。
在白光干涉法中,由于光波长的分散性质,光源的发光波长不同,因而干涉条纹的颜色也随着移动位置的改变而改变。
通过光谱技术,可以将光源发的不同波长的光分离开来,进一步减小误差。
白光干涉法的优点是光源便宜易得,采样快速;缺点是对光源的光谱性质要求较高,需要对光源进行调整。
二、激光干涉法与白光干涉法相比,激光干涉法具有光源单色性好、光强稳定等优点。
激光干涉法也是一种非常重要的光学测量方法。
激光干涉法的原理与白光干涉法相同,所不同的是,激光干涉法使用的是激光的单色性,因此绝大部分的激光干涉仪是由He-Ne激光器作为光源。
激光干涉法的优点是可使干涉条纹清晰明显,易于处理数据;缺点是激光器使用成本较高。
三、莫尔条纹法莫尔条纹法是利用干涉现象测量表面形状和表面变形的方法。
在莫尔条纹法中,将一系列的‘条纹’透射到平整或有形状的表面上,通过观察条纹的特殊布局和消失位置等,可以得到表面的变化信息。
莫尔条纹法的主要优点是测量精度高、分辨能力强,其测量原理基于光学干涉,不易受到外界干扰,具有快速、高效等特点。
四、激光视轮法激光视轮法是一种利用激光束对物体进行带有方向的扫描,然后依据扫描的结果来测量物体表面形状和位移量等的方法。
在实验中,将激发的光束反射到物体表面,同时维持一定角度的斜向照射,通过扫描预先设定区域,生成一个三维物体的表面形状的图像。
激光视轮法的优点是测量精度高、成像速度快、测量能力强等,目前已被广泛应用于工程领域、生物医学领域等多个领域。
优可测白光干涉仪操作手册
优可测白光干涉仪操作手册
(最新版)
目录
1.优可测白光干涉仪简介
2.白光干涉仪的扫描原理和扫描范围
3.被测物的反射率和显示分辨率
4.白光干涉仪的优点
5.操作手册的概述
正文
一、优可测白光干涉仪简介
优可测白光干涉仪是一种高精度的测量仪器,具有强大的测量功能。
其产品型号为 NA500,像素高达 500 万,能够准确地测量出被测物的各项数据。
二、白光干涉仪的扫描原理和扫描范围
白光干涉仪的扫描原理是利用白光进行干涉测量,其扫描范围可达100um。
这种测量原理具有干涉长度短、干涉条纹可见度大、容易辨别 o 度条纹等优点。
三、被测物的反射率和显示分辨率
优可测白光干涉仪可测量的被测物反射率范围为 0.02%~100%,显示分辨率高达 0.001nm。
这些数据参数保证了测量结果的准确性和可靠性。
四、白光干涉仪的优点
白光干涉仪具有许多优点,如干涉长度短、干涉条纹可见度大、容易辨别 o 度条纹等,这些优点使得它在测量领域具有广泛的应用。
五、操作手册的概述
优可测白光干涉仪的操作手册提供了详细的操作步骤和方法,包括仪器的安装、调试、测量、维护等方面的内容。
通过阅读操作手册,用户可以更好地了解仪器的性能和使用方法,从而提高测量效率和精度。
总之,优可测白光干涉仪是一款高精度、高效率的测量仪器,广泛应用于各种测量领域。
白光干涉仪(原理)
141nm
Glass
Character on the Glass
Flexible FPD Pattern(Gel Type)
碳纳米管
LGP Pattern
OLED 有机物蒸镀
PKG Substrate Inspection
Roughness, Diameter, Height, Width, Space (user defined base plane), etc
Max 270um(PZT扫描)
Max:7.2um/sec(1X-3X倍率可选)
Max:12um/sec(1X-5X倍率可选)
±3°(样品台倾斜) 0.2%@1σ
头部倾斜±6°(手动模式)头部倾斜±6°(自动模式)头部倾斜±9°(自动模式) WSI:0.5nm/PSI:0.1nm
0.2-4um(取决于物镜/视场放大镜倍率) 0.1%@1σ(标准样品8um)
三维测量技术比较
COMPARE
三维图像的比较
垂直分辨率
Optical
1mm
Triangulation
OPT: 光学三角测量
CSM: 共焦扫面显微镜
1um
CSM
PSI : 移向干涉测量法
WSI
1nm
PSI
AFM
WSI : 白光干涉法 AFM : 原子力显微镜
1nm
1um
1mm
垂直测量范围
根据测量技术特征
FPD Inspection
Build-up PCB Inspection
Post Spacer
RGB
Charater
Back Panel
Spray PR
Roughness Via Hole
白光干涉垂直扫描测量计算全息件表面形貌的方法
白光干涉垂直扫描测量计算全息件表面形貌的方法白光干涉垂直扫描测量计算全息件表面形貌的方法全息技术是一种将三维物体的信息记录在二维介质上的技术,它具有非接触、不损伤被测物体、高精度以及高效的特点。
在全息术中,全息件的表面形貌测量是关键,而现在常用的方法之一是白光干涉垂直扫描测量计算方法。
白光干涉垂直扫描测量计算全息件表面形貌的方法需要准备以下设备和材料:一台相机、一台投影仪、一台悬臂式激光扫描仪、一个三角架以及一块光学玻璃。
实验前需要进行设备校准。
首先,需要将三角架放置平稳,将相机放置在三角架上,然后将悬臂式激光扫描仪进入样品并移动到一个中心位置,这时可以开启扫描仪后进行校正。
在校正时,需要先将光线指向一个平坦的参考物体并切换到白光模式,调整相机和激光扫描仪的焦距和俯仰角,使扫描仪成像清晰稳定。
然后需要通过激光扫描仪扫描一些参考物的等高线并记录下其坐标和高度,最后对所记录的坐标和高度进行校正,消除垂距误差。
当校准完成后,即可进行全息件表面形貌测量。
在实验前,首先需要将物体上涂上一层薄膜,例如聚四氟乙烯,以增加表面反光度。
然后在投影器中设置一个圆形或方形图案,将其投射在物体上方,使其照射到物体表面。
此时,相机通过捕捉物体表面反射的图案来进行干涉照片的记录。
接下来,需要使用悬臂式激光扫描仪来进行垂直扫描。
在扫描前,需要将扫描仪校准到与相机相同的坐标位置,并记录其初始位置。
然后将扫描仪与物体表面平行移动,在移动的过程中记录下扫描仪的高度和位置信息。
当扫描完成后,即可通过扫描仪的数据生成一张高度图,其中包含了物体表面每个点的高度数据。
最后,通过将干涉照片与高度图进行计算,即可获得全息件表面的形貌。
这一步通常是利用计算机进行的,通过对干涉照片进行数字化处理并与高度图进行配合,可以得到全息件表面每个点的高度和深度,从而描绘出物体的三维形貌。
总之,白光干涉垂直扫描测量计算全息件表面形貌的方法是一种非常有效的全息技术表面形貌测量方法,其优点在于实验简单,精度高,测量速度快,已广泛应用于全息技术领域。
一种基于白光扫描干涉法表面形貌测量仪的研究
,
e rt aydsus eme o r be igte e t o it e n . ay tema c r w c f e c e mpa cl i s s t df s vn s se f e r g u , i f t s h hil n e i l c et h h oo r h b ti n r i 血 f h na o i n u h t
() 2 干涉 条 纹 对 比度 的好 坏 是测 量 的 关键 所在 ,
由于该 测 量原 理 是基 于 对 干涉 条 纹对 比度 的判别 来
l计数与 1 I / A转换与 D
确 定零 光 程 差位 置 的 ,所 以必 须设 计 比较 理 想 的光 源 及 光 学 系 统 来 保证 具 有 良好 对 比度 的干 涉 条 纹 ,
2测量原理
_ a 一
喇
莫尔条纹干涉仪为基础 的相移干涉轮廓仪 , 其垂直分
辨率为 1 五,水 平分 辨 率 为 O g . m,属 国际领 先 水 平 。 4
本 文提 出的测 量仪 系统 以 白光 干涉 的特性 为基 础 ,
测 量 系统 利 用 Mi u相 移 干 涉 ,相 移 干涉 是 指在 r a 参 考 或测 量 光 中引入 已知 相移 量 ,改变 两 相干 光 束 的 相对 相 位 ,可 从 干 涉场 中任 意点 在 不 同相 移量 下 的光 强值 求 解 该 点相 位 。 总体 包 括 光学 相 移 干涉 部 分 、C CD 摄 像 部 分 、图像 卡 、计算 机 和 控 制单 元 、z 向精 密 工 作 台 、压 电 陶瓷 和步 进 电机驱 动 电路 及衍 射光 栅 干 涉 信 号 处 理 电路 7部 分 。其 原 理 如 图 1 所示 。 光 束经 显 微 物镜 后 通过 参 考镜 ,再 由分 光镜 的半
利用白光扫描干涉测量表面微观形貌
21 0 1年 1月
光 电工 程
Op o Elc r n cEn i e rn t — e to i g n e i g
、 l 8 No 1 ,- . 0 3
J n 0l a .2 1
文章编 号 :10 — 0 X(0 0 — 0 1 0 0 3 5 1 2 1)1 0 7 — 5 1
关键 词 : 白光 干 涉 ;微 观 形 貌 ;测 量 中 图 分类 号 :0 3 49 文献标志码 :A d i 1 . 6/i n10 —0 X. 1 .1 1 o : 03 9 .s. 35 1 2 1 . 4 9 js 0 0 00
M e s e e to ur a eTo g a y b i a ur m n fS f c po r ph y Usng W hie lg a i n e f r m e r t —i htSc nn ng I t r e o ty
利 用 白光扫 描 干 涉 测 量 表面 微 观 形 貌
刘 晨 ,陈 磊 2 ,王 军 2 ,韩 志刚 2 ,师丽丽 2
( .合 肥 工业 大 学 仪 器 科 学 与光 电工 程 学 院 ,合 肥 2 0 0 ; 1 3 09 2 京 理 工 大 学 电子 工 程 与 光 电技 术 学 院 ,南 京 2 0 9 .南 104)
mi r s o e t s n e h oo y i p e e t d h a u i g i sr m e tb s d o h i i h n e f r n e t e r s c o c p e t g t c n l g s r s n e .T e me s rn n t i u n a e n t e wh t l t it re e c h o y i e g
天津大学精密测试理论实验——白光干涉测量实验
天津大学本科生实验报告
课程名称:精密测试基础 姓名: 学号: 同组人: 实验日期: 成绩:
长度极限偏差 (lo 标准量块的修正量)= (1.3 0.08) m 4) 确定平面的平行性偏差 l max 1.75 m 。 5) 有上述参数对照相应表,发现量块无等无级。
天津大学本科生实验报告
课程名称:精密测试基础 姓名: 学号: 同组人: 实验日期: 成绩: 实验一 白光干涉测量实验
一、 实验目的 纹的总长度等于标尺的你 n 个刻度间隔。 7) 将滤波片取下,获得白光光源,此时视场中的条纹在白光下的彩色条纹。 8) 借助工作台的微调旋钮和标尺微调螺钉, 调 整仪器的;零位(视场中的黑色干涉条纹对 准标尺的零位) 。轻轻数次抬起侧头,观察 读数变化应在 0.02 m 以内。 4. 检测被测量快。将标准块移开,一如被测量块。 依次将测量头接触被测量快上的 o 、 a 、 b 、 c 、 d 各点,测得各点相对于标 准量块中心点的长度偏差值 lo 、 la 、 lb 、 lc 、 ld ,然后再按 d 、 c 、 b 、 a 、 o 顺序测量一次,测得 lo 、la 、lb 、lc 、ld (前后两次读数的变化应在 0.02 m 内,否则应重新进行测量) 。 5. 处理测量结果,测量结果如下表(单位 0.1 m )
lo
14
lo
la
21
la
lb
23
lb
lc
28
lc
ld
30
ld
13
22
22.5
28.5
30.5
1) 求出各测量点的平均值:
lo 1.3 m , la 2.2 m , lb 2.25 m , lc 2.85 m , ld 3.05 m ;
基于扫描白光干涉法的接触式轮廓综合测量仪
轴承内外圈滚道及滚动体形状误差及表面质 量是影响轴承寿命和振动值 的重要参数。为满足 滚动轴 承 曲 面 形 状 误 差 、 纹 度 、 面 粗 糙 度 测 波 表 量, 开发研制大量程高精度 的轮廓综 合测量仪 是 非常必 要 的 。本 文 利 用 常 用 的 6A 干 涉显 微 镜 , J
LihtI e f r m e r e ho g nt re o t y M t d
ZHANG n Li g—l i ng,XI Ti E e—b ng a
( eat n o s u e t c ol f caia Sine& E ier g H ahn nvrt f i c n ehooy D pr met f nt m n,Sho o hncl cec I r Me g n ne n , uzo U ie i o e eadT cnl , i g sy S n c g
Wu a 30 4 C ia h 407 , h ) n n
Ab t a t A kn f uf c r f o trb s d o i t g t ne e sr c : i d o r e p o lmee a e nwh e l h tf mme r sr c mme d ,whc su e K u ̄ s a i i i t i e o y ne d ih i sd t me 6 l o rl n e tn c w y a d r l n lme t h e r t a e ou in i p t e od ro a o tr h eme u a l ol b a g r e a o l g ee n .T e t o ei lrs l t su t r e fn n mee .T a r b e i g i a n i h c o oh s rl f e t a d h rz n 8 e5 s  ̄e o r c l v i a o o r mm d 5 mm.rs e t e y h e s u t r d me s r r cp e o e s se a e n i n a 0 e p ci l .T t cu e a a u i p n il ft y tm r v r n g n i h
基于白光倾斜扫描干涉术的微结构测量方法
电子 激光第22卷第1期 2011年1月 Journal of Optoelectronics Laser V ol.22N o.1 Jan.2011基于白光倾斜扫描干涉术的微结构测量方法马 龙,郭 彤*,赵 健,陈津平,傅 星,胡小唐(天津大学精密测试技术及仪器国家重点实验室,天津300072)摘要:针对白光垂直扫描干涉技术由于测试系统中物镜视场和移相器的行程限制,使其不能进行较大横向范围的测试。
本文使用白光倾斜扫描干涉术代替垂直扫描,以扩展其横向测量范围,提高测试效率。
基于纳米测量机(NMM)搭建了测试系统,由NMM代替传统的压电陶瓷(PZT)带动被测物体进行倾斜扫描。
分析了倾斜扫描的测量原理,针对本系统提出了倾斜扫描的实现方法,通过对MEMS器件上台阶结构的测试说明本方法的有效性。
关键词:微结构;白光干涉技术;倾斜扫描;大范围;纳米测量机(NMM)中图分类号:TN247 文献标识码:A 文章编号:1005 0086(2011)01 0091 04Micro structure m easur eme nt by white light tilt scanning inte rfe rome tryMA Long,GUO Tong*,ZH AO Jian,CH EN Jin ping,FU Xing,HU Xiao tang(State Key Laboratory of Precision Measuring Technology and Instruments,T ianjin U niversity,T ianjin300072,China)Ab st ract:White light vert ical scanning interferometry has grown to be a st andard measurement me thodfor the M EM S industry.However,due to the limits of the objective s field of view and the phase shiftingrange in the t est system,it can not perform large scope t ransverse testing.In this paper,a white light tiltsc anning interfe rome t ry was presented to expand the lateral measuring range and improve the testing effic iency.The experimental syst e m was set up based on nano measuring machine(NMM).During the tiltsc anning,the objec t was drived by the nano measuring mac hine inst e ad of the traditional piezoelectric ceramics.T he measuring principle of white light tilt sc anning interfe rometry was given,followed by the realization of the method on the proposed system.T he effec tiveness of the method was also illustrated bymeasuring the step alike struc ture on the MEM S device.Ke y wor ds:mic ro struc t ure;white light interferometry;tilt sc anning;large scale;nano measuring machine(NMM)1 引 言白光垂直扫描干涉技术以快速、精确和无损等优势,目前其成为MEMS产业中的一种标准测试手段[1]。
白光干涉测距原理
白光干涉测距原理一、引言干涉测量是一种基于光的干涉现象的精密测量技术,具有高精度、高分辨率的特点。
白光干涉测距作为其中的一种,利用白光干涉原理来测量距离。
相比于其他测距技术,白光干涉测距具有更高的精度和稳定性,因此在许多领域都有广泛的应用。
本文将详细介绍白光干涉测距的原理、系统构成、优点、应用领域和结论。
二、白光干涉测距原理白光干涉测距的基本原理是利用白光干涉现象来测量距离。
当两束或多束相干光波在空间某一点叠加时,如果它们的相位差是2π的整数倍,则会出现干涉加强,形成明亮的干涉条纹;如果相位差不是2π的整数倍,则会出现干涉相消,形成暗的干涉条纹。
通过测量干涉条纹的位移量,可以计算出两束光波之间的相位差,进而求得目标物体的距离。
在白光干涉测距中,光源通常采用白光,因为白光包含了可见光谱中的多种波长。
通过干涉仪的分束器将一束白光分成两束或多束相干光波,分别经过不同的路径反射回来后再次在分束器上叠加。
由于不同波长的光波在相同反射条件下具有不同的相位变化,因此会形成不同波长的干涉条纹。
通过分析这些干涉条纹,可以获得不同波长下的光程差信息,进一步求得目标物体的距离。
三、系统构成白光干涉测距系统主要由光源、分束器、干涉仪、探测器、信号处理和控制系统等组成。
1.光源:采用稳定的白光光源,保证输出的光信号具有稳定的波长和功率。
常用的白光光源有发光二极管、激光器等。
2.分束器:用于将一束白光分成两束或多束相干光波。
常用的分束器有棱镜、光栅等。
3.干涉仪:用于产生和检测干涉现象。
根据不同的测量需求,可以采用不同的干涉仪结构,如Michelson干涉仪、Mach-Zehnder干涉仪等。
4.探测器:用于接收和检测干涉条纹的光信号。
常用的探测器有光电倍增管、光电二极管等。
5.信号处理和控制系统:用于对探测器接收到的信号进行处理和分析,控制整个系统的运行。
常用的信号处理和控制系统包括数据采集卡、微处理器等。
四、优点白光干涉测距具有以下优点:1.高精度:由于干涉现象对光波的相位变化非常敏感,因此可以获得高精度的测量结果。
白光干涉仪测量原理
白光干涉仪测量原理
白光干涉仪是一种测量光波相位差的仪器,其原理基于干涉现象。
干涉现象是指两束或多束光波相遇时相互产生干涉的现象。
白光干涉仪利用这一现象来测量光的相位差。
白光干涉仪的基本构造包括一个分束器、两个光路、一个反射镜和一个合并器。
分束器能将入射的白光分成两束光,经过光路到达反射镜后,再经光路返回到分束器处。
分束器将两束光再次合并,形成一个干涉图样。
当两束光波相位差为全波长的整数倍时(即相干),它们相互叠加时会形成明亮的干涉条纹。
而当相位差为半波长的奇数倍时,会形成暗亮相间的干涉条纹。
通过观察干涉条纹的变化,可以推算出两束光波的相位差。
白光干涉仪的测量原理是在两个光路中引入一个可调节的物体,如空气膜或玻璃片。
通过调节这个物体的位置,可以改变两束光波的光程差,从而改变干涉条纹的位置和形状。
通过观察干涉条纹的变化,可以计算出物体的高度或者折射率等物理量。
总之,白光干涉仪利用干涉现象来测量光波的相位差,通过观察干涉条纹的变化,可以得到想要测量的物理量。
白光干涉仪测金属膜厚的方法
白光干涉仪测金属膜厚的方法以白光干涉仪测金属膜厚的方法为标题,我们将介绍使用白光干涉仪测量金属膜厚的原理和步骤。
一、原理介绍白光干涉仪是一种利用光的干涉现象来测量物体薄膜厚度的仪器。
在白光照射下,光波在薄膜上发生反射和透射,形成多次反射和透射的光束,这些光束之间会发生干涉现象。
通过测量干涉条纹的间距,可以计算出薄膜的厚度。
二、测量步骤1. 准备工作:首先,需要准备一台白光干涉仪和待测金属膜样品。
确保白光干涉仪处于正常工作状态。
2. 样品安装:将待测金属膜样品安装在白光干涉仪的样品台上。
要确保样品表面平整,无明显的污渍或划痕。
将样品固定好,使其保持稳定。
3. 调整干涉仪:打开白光干涉仪的电源,调整仪器使其正常工作。
根据仪器的使用说明进行调整,包括调整光源亮度、调整干涉仪的光路等。
4. 获取干涉图像:通过调整干涉仪的参数,如倾斜角度、补偿镜的位置等,使干涉图像清晰可见。
干涉图像是一系列亮暗相间的条纹。
5. 测量薄膜厚度:通过测量干涉条纹的间距来计算金属膜的厚度。
可以使用标尺或显微镜等工具来测量相邻两条干涉条纹的间距。
然后,根据干涉仪的参数和光的波长等信息,使用相应的计算公式来计算薄膜的厚度。
6. 记录和分析结果:将测量到的干涉条纹间距和薄膜厚度记录下来,并进行分析。
可以比较不同位置或不同样品的测量结果,评估测量的准确性和重复性。
三、注意事项1. 在进行测量之前,要确保白光干涉仪和样品台等设备干净,并避免污染样品表面。
2. 在测量过程中,要注意光线的安全,避免直接观察强光源,以免对眼睛造成伤害。
3. 在进行测量之前,要对白光干涉仪进行校准,以确保测量结果的准确性。
4. 在测量过程中,要保持样品和仪器的稳定,避免因为移动或振动等因素导致测量结果的误差。
通过以上步骤,我们可以使用白光干涉仪来测量金属膜的厚度。
白光干涉仪具有测量精度高、非接触式测量等优点,被广泛应用于材料科学、光学等领域。
对于金属膜厚度的测量,白光干涉仪是一种简便、快速且准确的方法。
白光扫描干涉测量算法
白光扫描干涉测量算法
李其德;卢荣胜
【期刊名称】《中国仪器仪表》
【年(卷),期】2008(000)004
【摘要】白光扫描干涉测量是光学测量中一种非常重要的方法.在干涉仪的结构中,光源的光谱宽度及扫描步长一定时,选择合适的算法对干涉信号进行处理能够达到更高的测量精度.对重心法、移相法、包络曲线拟合法、空间频域算法分别加以介绍和比较,为白光干涉信号的算法提供详尽的参考.
【总页数】4页(P78-81)
【作者】李其德;卢荣胜
【作者单位】合肥工业大学仪器科学与光电工程学院,合肥,230009;合肥工业大学仪器科学与光电工程学院,合肥,230009
【正文语种】中文
【中图分类】TH74
【相关文献】
1.垂直扫描白光干涉测量数据处理算法分析 [J], 张倩;崔长彩;周晓林;范伟;傅师伟
2.利用白光扫描干涉测量表面微观形貌 [J], 刘晨;陈磊;王军;韩志刚;师丽丽
3.垂直扫描白光干涉测量数据的各种处理算法及其分析 [J], 张倩;崔长彩;周晓林
4.白光干涉垂直扫描测量算法综述 [J], 汝洪武;张文喜;吴玲玲
5.一种新型垂直扫描白光显微干涉测量仪 [J], 王生怀;陈育荣;谢铁邦
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂直扫描白光干涉法测量技术
垂直扫描白光干涉法是干涉法的基础上发展起来的一种光学非接触测量方法。
结合了白光干涉显微技术和相移干涉技术,也被称为白光干涉条纹扫描法、相干检测法等。
光的干涉是光在传播过程中呈波动性的重要现象之一,1801年,杨氏双缝实验历史长第一次用实验显示了光的干涉现象,其设计构思的精巧之处在于从同一波阵面上取得了两个波源。
随后,相继出现了很多类似原理的实验装置。
目前,相干光的应用已经遍及各个领域,如光相干探测、相干光通信以及在遥感领域和军事领域的应用等。
光的干涉现象时光的波动性的表现。
光的干涉产生干涉条纹,表现为光在遇到障碍物时候出现光的强度或明暗,在空间稳定分布的现象。
两束光在相遇的区域内形成稳定的明暗交替或彩色条纹的现象成为光的干涉现象。
例如:双缝干涉中将S光源发出的一束光通过S1、S2的双狭缝,分离出两个很小的部分作为相干光源,这两束光为同一光源发出,所以频率,相位都相等。
由于两束光源到屏幕上的任意点的距离不等,所以当两束光在屏幕相遇时,相位相等的点就呈现出叠加加强的现象,显示为亮点,而相位相反的点则相互抵消,就显示为暗点。
这样在双缝后面的幕上就呈现了明暗相间的条纹——干涉图样,如图1。
对干涉现象的产生完全可按照矢量波的合成来分析。
显然,不满足相干条件的几列波虽能叠加,但不能干涉。
图1
白光光源包含了整个可见光谱区域的光谱成分,自红光至紫光,波长为4000~7000Å,光谱宽度很大,相干长度很长,大约几个微米。
只有光程差很小时,两束光才能发生干涉,白光中不同波长的光将产生各自的一组干涉条纹。
因
为干涉条纹的间距与光的波长有关,当光程差为零时,白光光谱内各个谱线双光束干涉的零级条纹完全重合,各种波长的光重叠形成白光干涉对比度最大的白色零级条纹,此处可以认为是最佳干涉位置。
随着光程差的不断增加,不同波长的干涉条纹光强的极小值相继出现,此是条纹宽度相差较小,重叠后的干涉条纹颜色为黑色。
继续增大光程差,不同波长的干涉条纹光强的极大值不断出现,呈现出彩色条纹。
由于各波长干涉条纹的错开会使条纹对比度逐步下降,到一定程度时干涉条纹将消失,如图2所示。
白光干涉条纹的影响因素较多,光源的特性和两束相干光的强弱影响干涉条纹的对比度,干涉光路的设计决定了干涉条纹的宽度和颜色分布。
图2
干涉显微镜是干涉仪和显微镜的组合,利用干涉条纹的弯曲量来测量表面的微观不平度。
与其他光学技术相比,干涉显微镜具有较高的放大倍数和分辨率,而且表面信息直观,测量精度很高。
图3为Mirau型干涉显微镜。
图3
相移干涉显微技术是干涉显微镜与相移技术的结合,在干涉显微镜中增加相移器以改变干涉光路中测量光与参考光之间的相位差,由与相位差对应变化的干涉光强值计算得到被测表面上的相位值。
相位干涉法的光源为单色光,由于激光的相干性比较好,常在相移干涉法中作为光源。
在相移干涉显微镜中,主要是加入单色滤波片,将白光光源发出的光变为带宽很窄的单色光。
相移干涉法的测量精度很高,能实现自动测量,已经得到广泛的应用。
垂直扫描白光干涉技术是白光干涉技术、相移干涉显微技术的结合,用白光作为光源,利用白光干涉条纹的特性来进行表面微观形貌的测量。
由白光光源产生的光束相干光波间允许的光程差极小,基本上要在等光程位置附近才能观察到干涉条纹,而且条纹也只有为数不多的几条。
依据该特征,如果是干涉条纹移动,对于被测表面上的任意一个采样点,其光强的变化曲线如图4所示,即在光程差接近相等时,条纹对比度变化剧烈且呈现非周期性,这样零级条纹很容易与其他级条纹相区别。
该特征非常明显,可以利用它来定位零光程差位置、用CCD检测到干涉条纹信号如图4所示,在光程差为零的位置,检测的输出光强有一个最大值,这个光强最大值位置也就对应与物镜的聚焦平面,包含表面的高度信息。
图4
用CCD记录下每次垂直移动时干涉条纹的图像并将这些图像叠加,叠加图像中像素点的白光干涉光强的垂直分布如图5所示,光强的最大值对应光程差为零的位置。
垂直扫描白光干涉法测量表面的三维形貌就是通过垂直扫描得到每个被测点在垂直方向光强分布的离散数据,通过定位光强分布的最大值计算得到被
测表面的高度信息值。
具体测量过程如下:测量时通过计算机控制工作台或参考竟在垂直光轴方向的位移,使被侧工件表面的不同高度的点与参考镜的光程差相继为零,产生干涉。
如果在充足的扫描范围内垂直移动,被测工件表面的整个高度范围都可以通过最佳干涉位置。
图5
由CCD采集到随垂直方向位移而变化的干涉条纹图像,视频信号通过图像采集卡转换成数字信号并存储于计算机中。
利用被侧面对应的各像素点相关的干涉数据,基于白光干涉的典型特征,通过采用某种最佳干涉位置识别算法对干涉图样数据进行数据分析处理,提取出特征点位置(最佳干涉位置),从而就很容
易得到各像素点的相对高度,这样便实现了对三维表面形貌的测量。
图6为Mirau干涉显微镜的垂直扫描白光干涉显微测量仪的基本结构。
由光源、聚光镜、分光镜、纤维物镜、分光板、压电驱动器、CCD相机、计算机等部分组成。
图6
Mirau垂直扫描白光干涉仪属于分光路结构,使用时,首先由光源发出的光束由聚光镜聚焦成为平行光,再有显微物镜将光线再次聚焦,光线经分光板分成两束,分别照射在参考反射镜和被测表面上,反射光沿原路返回,在分光镜处交汇后产生干涉。
光线原路返回经过显微物镜后,由分光镜反射到CCD相机,由CCD相机记录干涉图像并输入计算机中,通过计算机控制压电驱动器驱动被测表面在垂直方向移动,获得一组连续的干涉图像。
再通过某种算法计算就可以获得被测表面的围观表面轮廓。
这种基于白光干涉的测量方法是通过连续改变光程差,干涉条纹扫描过整个被测表面,根据干涉条纹的最大光强值对应着表面的最佳聚焦位置的原理,完成整个表面的测量,因此被称为垂直扫描白光干涉法。
垂直扫描白光干涉法适合测量垂直梯度较大的不连续表面,测量精度可以达到纳米级,测量范围分布在0.05um~0.6mm。