新人教版七年级上图形初步认识单元检测及答案

合集下载

人教版七年级上册数学《几何图形初步》单元综合检测卷附答案

人教版七年级上册数学《几何图形初步》单元综合检测卷附答案
19.如图所示,已知点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.
(1)若AB=12 cm,则MN的长度是______cm;
(2)若AC=3 cm,CP=1 cm,求线段PN的长度.
20.下图是从正面看和从上面看一个几何体得到的平面图形,求该几何体的体积.(π取3.14,长度单位:cm)
B、射线AB和射线BA是同一条射线,错误,符合题意;
C、线段AB和射线AB都是直线AB的一部分,正确,不合题意;
D、∠ABC和∠CBA是同一个角,正确,不合题意;
故选B.
考点:直线、射线、线段;角的概念.
3.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()
A.45°B.55°C.135°D.145°
∴∠1=90°﹣30°=60°,
∴OB的方向角是北偏西60°.
故选B.
【点睛】此题主要考查了方向角,正确利用互余的性质得出∠1度数是解题关键.
10.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为 BC的点N,则该数轴的原点为()
三、解答题(本大题共6小题,共52分)
17.如图所示,直线l是一条平直 公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.
18.计算:已知∠A=8.6°,∠B=5°24′.
(1)∠A与∠B的和等于多少分?
(2)∠A与∠B的差等于多少度?
又∵∠DAB=90°,
∴∠3+∠4= ×90°=45°.
∴二者的做法都对.

数学七年级上册《几何图形初步》单元测试题(含答案)

数学七年级上册《几何图形初步》单元测试题(含答案)
A. B. C. D.
11.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEB′=50°,∠DAB′的度数是( )
A.40°B.60°C.75°D.80°
12.如图是一个长方体之和表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为( )
A.6B.8C.10D.15
二.填空题(每小题3分,共24分)
4.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )
A. 两点确定一条直线B. 垂线段最短
C. 两点之间,线段最短D. 两点之间,直线最短
【答案】C
【解析】
分析:由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.
6.已知∠A=55°,则它的余角是( )
A.25°B.35°C.45°D.55°
【答案】B
【解析】
【分析】根据余角的定义进行解答即可得.
【详解】∵∠A=55°,
∴它 余角是90°﹣∠A=90°﹣55°=35°,
故选B.
【点睛】本题考查了余角与补角,熟知互余两角的和为90度是解本题的关键.
7.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为( )
2.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这样做蕴含的数学原理是( )
A.过一点有无数条直线Bቤተ መጻሕፍቲ ባይዱ两点确定一条直线
C.两点之间线段最短D.线段是直线的一部分
【答案】B
【解析】
【分析】
由直线公理可直接得出答案.
【详解】建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。

数学七年级上册《几何图形初步》单元综合检测题(含答案)

数学七年级上册《几何图形初步》单元综合检测题(含答案)
注意:只需添加一个符合要求的正方形,并用阴影表示.
24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)
(1)若以点C为原点,则点A对应的数是;点B对应的数是.
(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.
(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.
20.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,请求x﹣2y﹣3z的值.
21.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.
故选B.
【点睛】本题考查了余角和补角,正确表示出这个角的补角与余角是解题的关键.
3.在平面内,有两个角∠AOB=60°,∠AOC=30°,OA为两角的公共边,则∠BOC为( )
A.30°B.90°C.30°或90°D.无法确定
【答案】C
【解析】
【分析】
本题是角的计算的多解问题,求解时要注意分情况讨论.
A. 30°B. 90°C. 30°或90°D.无法确定
4.货轮A在航行的过程中发现:客轮B在它的南偏东80°的方向上,同时,在它的北偏东20°的方向上又发现了客轮C,则∠BAC的度数是( )
A.60°B.120°C.100°D.80°
5.如图,是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条”捷径”,”捷径”的数学道理是( )
故选C.
【点睛】本题考查了直线、射线、线段的相关知识,熟练掌握各相关概念是解题的关键.

第4章 几何图形初步 人教版数学七年级上册单元测试及答案(3份)

第4章 几何图形初步 人教版数学七年级上册单元测试及答案(3份)

七年级上册第4章单元同步检测(一)一.选择题1.下列各图中,不是正方体的平面展开图的是()A.B.C.D.2.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.3.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′4.如图,OA是表示北偏东55°方向的一条射线,则OA的反向延长线OB表示的是()A.北偏西55°方向上的一条射线B.北偏西35°方向上的一条射线C.南偏西35°方向上的一条射线D.南偏西55°方向上的一条射线5.如图,点O在直线AB上,若∠BOC=89°50’,则∠AOC的大小是()A.90°50’B.90°10'C.90°D.89°10’6.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.17.下列说法中,正确的个数是()①同一个柱体的两个底面一定一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤三棱柱有三条棱.A.1 个B.2 个C.3 个D.4 个8.如图,某同学家在A处,现在该同学要去位于D处的同学家,请帮助他选择一条最近的路线是()A.A→B→M→D B.A→B→F→D C.A→B→E→F→D D.A→B→C→D 9.下列说法中,不正确的有()(1)正方体有8个顶点和6个面(2)两个锐角的和一定大于90°(3)若∠AOB=2∠BOC,则OC是∠AOB的平分线(4)两点之间,线段最短(5)钝角的补角一定大于这个角的本身(6)射线OA也可以表示为射线AOA.2个B.3个C.4个D.5个10.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长二.填空题11.一个长方体的长是5dm,宽是4dm,高是2dm,它的棱长之和是dm.12.若一个角的补角加上10°后等于这个角的4倍,则这个角的度数为.13.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.14.时钟的时间是3点30分,时钟面上的时针与分针的夹角是.15.如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”.已知点D是折线A﹣C﹣B的“折中点”,点E为线段AC的中点,CD=3,CE=5,则线段BC的长为.三.解答题16.如图,将一副三角尺的直角顶点重合在一起.(1)若OB是∠DOC的角平分线,求∠AOD的补角的度数.(2)若∠COB与∠DOA的比是2:7,求∠BOC的度数.17.如图,已知点A为线段CB上的一点.(1)根据要求画出图形(不要求写法):延长AB至点D,使BD=AB;反向延长CA 至点E,使CE=CA;(2)如果ED=18,BD=6,求CA的长18.如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)①延长线段AB到C,使BC=a;②反向延长线段AB到D,使AD=b.(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.19.计算:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7)(2)(﹣2)2÷4+(﹣3)(3)(4)22°53′×3+107°45′÷520.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE°.(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,则∠COD=°.(3)如图③,将直角三角板DOE绕点O顺时针方向转动到某个位置,0°<∠AOD<180°,如果∠COD=∠AOE,求∠COD的度数.参考答案一.选择题1.解:根据正方体展开图中的“田凹应弃之”得,D不符合题意,故选:D.2.解:A、不能折叠成正方体,故选项错误;B、不能折成圆锥,故选项错误;C、能折成圆柱,故选项正确;D、不能折成三棱柱,故选项错误.故选:C.3.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.4.解:OA的反向延长线OB表示的是:南偏西55°方向上的一条射线.故选:D.5.解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=89°50′,∴∠AOC=180°﹣89°50′=90°10′,故选:B.6.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.7.解:根据柱体的特征、圆锥、圆柱、棱柱的特征可得,同一个柱体的两个底面一定一样大,因此①正确;圆柱、圆锥的底面都是圆形的,因此②正确;棱柱的底面可能是三角形的、四边形的、五边形的,因此③不正确;长方体是四棱柱,因此④正确;⑤三棱柱有九条棱,因此⑤不正确.正确的结论有:①②④,故选:C.8.解:根据两点之间的线段最短,可得D、B两点之间的最短距离是线段DB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→B→F→D.故选:B.9.解:(1)正方体有8个顶点和6个面,正确;(2)30°+20°=50°,所以两个锐角的和不一定大于90°,不正确;(3)OC在∠AOB的外部时,OC不平分∠AOB,所以若∠AOB=2∠BOC,则OC是∠AOB的平分线,不正确;(4)两点之间,线段最短,正确;(5)如果一个钝角是120°,则它的补角为60°,所以钝角的补角不一定大于这个角的本身,不正确;(6)射线OA不能表示为射线AO,不正确;不正确的有:(2),(3),(5),(6),故选:C.10.解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.二.填空题11.解:(5+4+2)×4=44(dm),故答案为:44.12.解:设这个角的度数为x°,根据题意得:180﹣x+10=4x,解得:x=38.故答案为:38°.13.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.14.解:根据钟面上的圆心角的度数规律得,每个大格,即两个相邻数字与圆心所成的圆心角为30°,每个小格所对应的圆心角为6°3点30分时,分针指向6的位置,时针指向3与4中间的位置,因此夹角为2.5个大格所对应的度数,因此2.5×30°=75°,故答案为75°.15.解:①如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴AD=DC+CB∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC﹣DC=7∴DC+CB=7∴BC=4;②如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴BD=DC+BD∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC+DC=13∴BD=13∴BC=BD+DC=16.综上所述,BC的长为4或16.故答案为4或16.三.解答题16.(1)解:∵O是三角板的直角顶点,∴∠DOC=90°,∠AOB=90°,∵OB是∠DOC的角平分线,∴∠BOC=45°,∵∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°,∴∠AOD=∠DOC+∠AOC=90°+45°=135°,∠AOD的补角为:180°﹣135°=45°;(2)∠COB与∠DOA的比是2:7,设每一份为x度,则∠COB=2x度,∠DOA=7x 度,∠AOC=∠BOD=(90﹣2x)度,根据题意,有2(90﹣2x)+2x=7x,解得x=20,∴∠BOC=70°.17.解:(1)画出的图形如图所示:(2)∵BD=AB,BD=6,∴AB=6,∵ED=18,∴AE=ED﹣AB﹣BD=18﹣6﹣6=6,∵CE=CA∴AC=AE=×6=3.18.解:(1)①如图所示,线段BC即为所求,②如图所示,线段AD即为所求;(2)∵AB=8cm,a=6m,b=10cm,∴CD=8+6+10=24cm,∵点E为CD的中点,∴DE=DC=12cm,∴AE=DE﹣AD=12﹣10=2cm.19.解:(1)原式=﹣10+3﹣5+7=3+7﹣10﹣5=﹣5;(2)原式=4÷4﹣3=1﹣3=﹣2;(3)原式=﹣8×﹣2=﹣1﹣2=﹣3;(4)原式=68°39′+21°33′=90°12′.20.解:(1)∠COE=∠DOE﹣∠AOC=90°﹣65°=25°,故答案为:=25.(2)∵OC恰好平分∠AOE,∴∠COE=∠AOC=65°,∴∠COD=∠DOE﹣∠COE=90°﹣65°=25°,故答案为:25.(3)设∠COD=x,由如图③﹣1所示,由题意得:∠COD=∠AOE,即:x=(65°﹣x+90°)解得:x=31°,即:∠COD=31°.由如图③﹣2所示,由题意得:∠COD=∠AOE,即:x=(360﹣65°﹣x﹣90°)解得:x=41°,即:∠COD=41°.答:∠COD的度数为31°或41°.第4章【几何图形初步】能力提升训练一.选择题1.圣诞帽类似于几何体()A.圆锥B.圆柱C.球D.棱柱2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.如果一个正方体棱长扩大到原来的2倍,则表面积扩大到原来的()A.2倍B.4倍C.8倍D.16倍4.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.5.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°6.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线7.在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 8.已知矩形两边长为2cm与3cm,绕长边旋转一周所得几何体的体积为()A.3πcm3B.4πcm3C.12πcm3D.18πcm39.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=∠AOBA.1个B.2个C.3个D.4个10.如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线OA,交BC于点E,若CE=6,BE=10.则AB的长为()A.11B.12C.18D.20二.填空题11.若∠A=25°,则它的补角是°.12.张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C地,则∠ABC=度.13.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是立方厘米.(结果保留π)14.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.15.已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交直线AB于点D,连接CD.若∠ABC=40°,∠ACD=30°,则∠BAC的度数为.三.解答题16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC 的长.18.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD 和∠AOC互余,并求∠COD的度数.19.如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.在一个圆柱形水桶里,垂直放入一段半径是3cm的圆柱形钢材.如果把钢材全部侵入水中,桶里的水面上升10cm;如果再把钢材垂直露出水面6cm,桶里的水面下降4cm.(π取3.14)(1)整段钢材的体积是多少?(2)若把整段钢材全部用来锻造底面直径为2cm,高为3cm的圆锥形零件,一共可以锻造多少个这样的圆锥形零件?(假定锻造过程中无任何损耗)参考答案一.选择题1.解:圣诞帽的形状上面尖尖的,下面是圆形的,类似于圆锥体,故选:A.2.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.解:设原来的正方体的棱长为a,则变化后的正方体的棱长为2a,原来的表面积:a×a×6=6a2,变化后的表面积:2a×2a×6=24a2,而24a2÷6a2=4,故选:B.4.解:“面A“的字母与上面的“横线”方向不对,因此选项A不符合题意;有三个“空白”的面,其中的两个“空白”的面是对面,因此选项D不符合题意,由“面A”的对面和邻面是标有“横线”的面,因此选项C不符合题意;故选:B.5.解:射线OA表示的方向是南偏东65°,6.解:A、用两根钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;B、植树时,只要选出两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;C、把弯曲的公路改直,就能缩短路程,可用“两点之间线段最短”来解释,符合题意;D、砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线,利用的是两点确定一条直线,故此选项不合题意;故选:C.7.解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:A.8.解:将长方形纸片绕长边所在直线旋转一周,得到的几何体是底面半径为2cm,高为3cm 的圆柱体,所以:体积为:π×22×3=12π(cm3),9.解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.解:过点E作DE⊥AB于点D,由作图知AO平分∠BAC,∵∠C=∠ADE=90°,∴CE=DE=6,∵BE=10,∴BD=8,∵AD=AC,CE=DE,∴Rt△ACE≌Rt△ADE(HL),设AC=AD=x,由AC2+BC2=AB2得x2+162=(x+8)2,解得:x=12,即AC=12,∴AB=20,故选:D.二.填空题11.解:∵∠A=25°,∴∠A的补角是180°﹣∠A=180°﹣25°=155°.故答案为:155.12.解:如图所示,∵AD∥BE,∠1=60°,∴∠ABE=∠DAB=60°,又∵∠CBE=35°,∴∠ABC=60°﹣35°=25°.故答案为:25.13.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:π×32×4=12π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:π×42×3=16π,故答案为:12π或16π.14.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.15.解:由题意得,直线MN是线段BC的垂直平分线,∴BD=CD,∴∠BCD=∠B=40°,∵∠ACD=30°,如图1,∴∠ACB=40°+30°=70°,∴∠BAC=180°﹣70°﹣40°=70°;如图2,∴∠ACB=40°﹣30°=10°,∴∠BAC=180°﹣10°﹣40°=130°,综上所述,∠BAC的度数为70°或130°,故答案为:70°或130°.三.解答题16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.18.解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.19.解:如图,∠ADE即为所求.20.解:(1)整段钢材的高为:10×(6÷4)=15(cm),整段钢材的体积为:3.14×32×15=423.9(cm3),答:整段钢材的体积是423.9立方厘米;(2)每个圆锥形零件的体积为,锻造锥形零件的个数为:423.9÷3.14=135(个).答:一共可以锻造135个这样的圆锥形零件.七年级上册第4章同步练测卷一.选择题1.11点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°2.用一个平面去截一个几何体,截面是圆,则原几何体可能是()A.正方体B.圆柱C.棱台D.五棱柱3.下列图形能折叠成正方体的是()A.B.C.D.4.一个正方体体积为125立方厘米,则这个正方体的表面积为()平方厘米.A.45B.125C.150D.175 5.如图所示,下列说法错误的是()A.嘉琪家在图书馆南偏西60°方向上B.学校在图书馆南偏东30°方向上C.学校在嘉琪家南偏东60°方向上D.图书馆到学校的距离为5km6.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)7.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.18.如图,∠BOD=118°,∠COD是直角,OC平分∠AOB,则∠AOB的度数是()A.48°B.56°C.60°D.32°9.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C 10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AB=AD B.BH⊥ADC.S=BC•AH D.AC平分∠BAD△ABC二.填空题11.如果一个大正方体的体积是小正方体体积的27倍,那么这个大正方体的表面积是小正方体表面积的倍.12.已知∠AOB=80°,在∠AOB内部作射线OC,若射线OM平分∠AOC,射线ON平分∠BOC,则∠MON的度数为.13.已知两个角分别为35°和145°,且这两个有一条公共边,则这两个角的平分线所成的角为.14.已知线段AB,BC在同一条直线上,AB=6,BC=4,点M,N分别是AB,BC的中点,则线段MN的长是.15.亲爱的同学,现在是北京时间下午2:47,按正常做题速度,你应该做到此题了,此时钟表上的时针和分针的夹角度数是.三.解答题16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.如图所示,已知BC是从直线AB上出发的一条射线,BE平分∠ABC,∠EBF=90°.求证:BF平分∠CBD.18.已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.19.如图,OA的方向是北偏东15°,OB的方向是西偏北50°,若∠AOC=∠AOB,求OC的方向.20.如图,在△ABC中,尺规作图:作△ABC的角平分线AE.(不写作法,保留作图痕迹)参考答案一.选择题1.解:11点40分时针与分针相距3+=(份),30°×=110°,故选:D.2.解:∵用一个平面去截一个几何体,截面形状有圆,∴这个几何体可能是圆柱.故选:B.3.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.4.解:设正方体的棱长是xcm,则x3=125,即x=5,正方体的表面积是6×52=150(cm2).故选:C.5.解:A、嘉琪家在图书馆南偏西60°方向上,说法正确;B、学校在图书馆南偏东30°方向上,说法正确;C、学校在嘉琪家南偏东60°方向上,说法正确;D、图书馆到学校的距离为:=3(km),说法错误.故选:D.6.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.7.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.8.解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.故选:B.9.解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.10.解:由作图可知,直线BC垂直平分线段AD,故BH⊥AD,故选:B.二.填空题11.解:设小正方体的棱长为a,∵大正方体的体积是小正方体体积的27倍,∴大正方体的棱长是小正方体棱长的3倍,为3a,∴小正方体的表面积是6a2,大正方体的表面积是(3a)2×6=54a2,∵54a2÷6a2=9然后进行比较即可.∴这个大正方体的表面积是小正方体表面积的9倍,故答案为:9.12.解:如图,∵射线OM平分∠AOC,射线ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC+∠BOC=∠AOB=80°,∴∠MOC+∠NOC=(∠AOC+∠BOC)=∠AOB=40°,∵∠MON=∠MOC+∠NOC,∴∠MON=40°.故答案为40°.13.解:因为35°+145°=180°,且这两个有一条公共边,所以互补的两个角有一条公共边,当两个角有一个公共边,另一边在“公共边”的两侧时,则这两个角的平分线所成的角为=90°;当两个角有一个公共边,另一边在“公共边”的同侧时,则这两个角的平分线所成的角为=55°.故答案为:90°或55°.14.解:由AB=6,BC=4,M、N分别为AB、BC中点,得MB=AB=3,NB=BC=2.①C在线段AB的延长线上,MN=MB+NB=3+2=5;②C在线段AB上,MN=MB﹣NB=3﹣2=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长5或1.故答案为5或1.15.解:下午2:47钟表上的时针和分针的夹角度数是360°﹣[47×6°﹣(60°+47×0.5°)]=161.5°,故答案为161.5°.三.解答题16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.证明:∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠EBF=90°,∴∠CBF=90°﹣∠CBE,∴∠DBF=180°﹣90°﹣∠ABE=90°∠CBE=∠CBF.即BF平分∠CBD.18.解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.19.解:∵OA的方向是北偏东15°,OB的方向是西偏北50°,∴∠AOB=90°﹣50°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,15°+55°=70°,∴OC的方向是北偏东70°.20.解:如图,AE为所作.。

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

第四章《图形认识初步》综合测试题(满分120分时间 90分钟)一、选择题(每题3分,共30分)1. ①平角是一条直线;②射线是直线的一半;③射线AB 与射线BA 表示同一条射线;④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍;⑤两点之间,线段最短;⑥120.5°= 120°50׳.以上说法正确的有( )A .0个 B.1个 C.2个 D.3个2.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )3.下列叙述正确的是( )A .180°是补角B 120°和60°互为补角C 120°和60°是补角D 60°是30°的补角4. 如图1表示一个用于防震的L 形的包装用泡沫塑料,当从上面看这一物体时看到的图形形状是( )5.下列图形中,哪一个是正方体的展开图( )6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ( )A .北偏东75°B .南偏东75°C .北偏东25°D .北偏西25°7.若∠A 的余角是70°,则∠A 的补角是( )A .70°B .110°C .20°D .160°8.如图,AOC ∠和BOD ∠都是直角,如果 ︒=∠150AOB ,那么=∠COD ( ) A 、︒30 B 、︒40 C 、︒50 D 、︒609.经过任意三点中的两点共可画出( )A .1条直线B .2条直线C .1条或3条直线D .3条直线AC B O DA .B .C .D .(图1)10.如图所示,从O 点出发的五条射线,可以组成角的个数是( ).A .10个B .9个C .8个D .4个二、填空题(每题3分,共30分)11.橙子类似______体,菠萝类似_______体,角柜类似_______体,金字塔类似_______体,粉笔盒类似_______体。

人教版七年级上学期数学《几何图形初步》单元测试附答案

人教版七年级上学期数学《几何图形初步》单元测试附答案
25.如图,先找到长方形纸 宽D C的中点E,将∠C过E点折起任意一个角,折痕是EF,再将∠D过E点折起,使D′E和C′E重合,折痕是GE,请探索下列问题:
(1)∠FEC′和∠GED′互为余角吗?为什么?
(2)∠GEF 直角吗?为什么?
(3)在上述折纸图形中,还有哪些互为余角?哪些互为补角?(各写出两对即可)
C.线段A B和线段B A是两条线段D.直线A B和直线B A是两条直线
[答案]B
[解析]
[分析]
根据直线、线段以及射线的概念来解答即可.
[详解]直线A可以表示任意一条直线,故A选项错误,
射线A B和射线B A的端点不同,是两条射线,故B选项正确,
线段A B和线段B A是一条线段,故C选项错误,
直线A B和直线B A是一条直线,故D选项错误,
13.已知线段A B=16Cm,直线A B上有一点C,且B C=10Cm,M是线段A C 中点,则AM的长为________Cm.
14.如图,O 直线A B上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.
(1)OD与OE的位置关系是______;(2)∠EOC的余角是_______.
故选B.
6.已知线段MN=10Cm,现有一点P满足PM+PN=20Cm.有下列说法:①点P必在线段MN上;②点P必在直线MN外;③点P必在直线MN上;④点P可能在直线MN上;⑤点P可能在直线MN外.其中正确的说法是( )
A.①②B.②③C.④⑤D.①③④
[答案]C
[解析]
[分析]
根据线段的MN长度,及PM+PN的长度即可判断出P的位置.
三、解答题(共66分)
19.计算:(1)23°45′+24°20′;(2)34°5′-10°25′;(3)22°33′44″×6.

人教版数学七年级上册《几何图形初步》单元检测题(带答案)

人教版数学七年级上册《几何图形初步》单元检测题(带答案)

人教版数学七年级上学期第四章单元测试(考试时间:90分钟试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个几何体中,是三棱柱的为A.B.C.D.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是A.B.C.D.3.如图,将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是A.B.C.D.4.下列说法正确的是A.延长直线AB B.延长射线ABC.反向延长射线AB D.延长线段AB到点C,使AC=BC5.“汽车上雨刷器的运动过程”能说明的数学知识是A.点动成线B.线动成面C.面动成体D.面与面交于线6.已知∠α=75°,则∠α的余角等于A.15°B.25°C.75°D.105°7.如图,将一块三角形木板截去一部分后,发现剩余木板的周长要比原三角形木板的周长大,能正确解释这一现象的数学知识是A.两直线相交只有一个交点B.两点之间,线段最短C.经过一点有无数条直线D.两点确定一条直线8.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有A.EF=2GH B.EF>GHC.EF>2GH D.EF=GH9.∠COD=36°19′,下列正确的是A.∠COD=36.19°B.∠COD的补角为144°41′C.∠COD的余角为53°41′D.∠COD的余角为53°19′10.如图,OC平分∠AOB,下列结论错误的是A.∠AOB=2∠AOC B.∠AOC=∠BOCC.∠AOC=12∠AOB D.∠BOC=∠AOB第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.24°18′=__________°.12.如图,用圆规比较两条线段A'B'和AB的长短,则AB__________A'B'.(填“>”“=”或“<”)13.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是__________.①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.14.如图,∠BAD和∠CAE都是直角,若∠BAE=135°17′,则∠CAD=__________.15.如图,能用字母表示的以点C为端点的线段的条数为m,能用字母表示的以点C为端点的射线的条数为n,则m–n的值为__________.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是__________.17.如图,点C、D、E是线段AB上的三个点,下面关于线段CE的表示,其中正确的有__________.①CE=CD+DE;②CE=CB–EB;③CE=CB–DB;④CE=AD+DE–AC.18.一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为__________cm3.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,写出图中的所有角,并比较它们的大小,通过测量指出哪些角是直角,哪些角是锐角,哪些角是钝角.20.(本小题满分6分)如图是由小正方形组成的图,请你用三种方法分别在下图中添画两个小正方形,使它能成为正方体的表面展开图.21.(本小题满分8分)已知∠A=24.1°+6°,∠B=56°–26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.22.(本小题满分8分)如图,∠2是∠1的4倍,∠2的补角比∠1的余角大45°.(1)求∠1、∠2的度数;(2)若∠AOD=90°,试问OC平分∠AOB吗?为什么?23.(本小题满分6分)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x–2,C=1,D=x–1,E=2x–1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.24.(本小题满分10分)如图,已知A、O、B三点共线,OC、OE分别平分∠AOD、∠DOB.(1)试探究∠COD和∠DOE的关系;(2)若∠DOE:∠COD=2:3,求∠COB的度数.25.(本小题满分10分)已知直角三角板的直角顶点C放在直尺的一边MN上,(1)若点A和点B在直线MN的上方(如图1),求此时∠ACM与∠BCN的数量关系;(2)若把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图2),求∠ACM与∠BCN的数量关系;(3)若把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图3),求∠ACM 与∠BCN的数量关系.26.(本小题满分12分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?参考答案11.24.3 12.< 13.①④14.44°43′15.2 16.顺17.①②④18.9619.【解析】由图可知,图中的角为:∠DOC、∠COB、∠BOA、∠DOB、∠COA、∠DOA;大小关系为:∠DOC=∠BOA<∠COB<DOB=∠COA<∠DOA;(3分)直角是:∠DOB、∠COA;锐角是:∠DOC、∠COB、∠BOA;钝角是:∠DOA.(6分)20.【解析】如图所示:(6分)21.【解析】因为∠A=24.1°+6°=30.1°=30°6′,∠B=56°–26°30′=29°30′,(4分)∠C=18°12′+11.8°=18°12′+11°48′=29°60′=30°,(6分)所以∠A>∠C>∠B.(8分)22.【解析】(1)因为∠2是∠1的4倍,所以∠2=4∠1,∠1的余角=90°–∠1,∠2的补角=180°–∠2=180°–4∠1,由题意得,(180°–4∠1)–(90°–∠1)=45°,解得∠1=15°,所以,∠2=4×15°=60°;(4分)(2)OC平分∠AOB.理由如下:因为∠AOD=90°,∠2=60°,所以∠AOB=90°–60°=30°,因为∠1=15°,所以∠BOC=30°–15°=15°,所以∠AOC=∠BOC,所以OC平分∠AOB.(8分)23.【解析】(1)因为正方体的左面D与右面B所标注的代数式的值相等,所以x–1=3x–2,解得x=12;(3分)(2)因为正面字母A代表的代数式与对面F代表的代数式的值相等,所以kx+1=x,所以(k–1)x=–1,因为x为整数,所以x,k–1为–1的因数,所以k–1=±1,所以k=0或k=2,综上所述,整数k的值为0或2.(6分)24.【解析】(1)因为OC、OE分别平分∠AOD、∠DOB,所以∠COD=12∠AOD,∠DOE=12∠DOB,所以∠COD+∠DOE=12(∠AOD+∠DOB)=90°;(4分)(2)设∠DOE=2x,∠COD=3x,由(1)可知:∠DOE+∠COD=90°,(6分)所以2x+3x=90°,所以x=18°,所以∠DOE=36°,∠COD=54°,所以∠COB=∠COD+2∠DOE=54°+72°=126°.(10分)25.【解析】(1)当点A和点B在直线MN的上方时,因为∠ACB=90°,所以∠ACM+∠BCN=180°–∠ACB=180°–90°=90°;(3分)(2)当点A在直线MN的下方,点B仍然在直线MN的上方时,因为∠BCN=180°–∠BCM,∠ACM=90°–∠BCM,所以∠BCN–∠ACM=(180°–∠BCM)–(90°–∠BCM)=90°;(6分)(3)当点A和点B都在直线MN的下方时,因为∠BCN=180°–∠BCM,∠ACM=90°+∠BCM,所以∠ACM+∠BCN=(180°–∠BCM)+(90°+∠BCM)=270°.(10分)26.【解析】(1)因为线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,所以CM=12AC=5厘米,CN=12BC=3厘米,所以MN=CM+CN=8厘米;(4分)(2)因为点M,N分别是AC,BC的中点,所以CM=12AC,CN=12BC,所以MN=CM+CN=12AC+12BC=12a;(8分)(3)①当0<t≤5时,C是线段PQ的中点,得10–2t=6–t,解得t=4;②当5<t≤163时,P为线段CQ的中点,2t–10=16–3t,解得t=265;③当163<t≤6时,Q为线段PC的中点,6–t=3t–16,解得t=112;④当6<t≤8时,C为线段PQ的中点,2t–10=t–6,解得t=4(舍),综上所述:t=4或265或112.(12分)。

人教版七年级上册数学《几何图形初步》单元测试题含答案

人教版七年级上册数学《几何图形初步》单元测试题含答案

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题(每小题3分,共30分)1. 下列各图中,∠1与∠2互为余角的是()A. AB. BC. CD. D2. 如图所示的四种物体中,哪种物体最接近于圆柱()A. AB. BC. CD. D3. 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A. 的B. 中C. 国D. 梦4. 如图,在一次定向越野活动中,“超越”小组准备从目前所在的A处前往相距2 km的B处,则相对于A处来说,B处的位置是()A. 南偏西50°,2 kmB. 南偏东50°,2 kmC. 北偏西40°,2 kmD. 北偏东40°,2 km5. 埃及的古金字塔以其悠久的历史、宏伟的建筑享誉世界,它是一多面的几何体.组成它的面的个数是()A. 4B. 5C. 6D. 76. 如图所示,把一根绳子折成3折,用剪刀从中剪断,得到绳子的条数为()A. 3B. 4C. 5D. 67. 如图,∠MON为锐角.下列说法:①∠MOP=∠MON;②∠MOP=∠NOP=∠MON;③∠MOP=∠NOP;④∠MON=∠MOP+∠NOP.其中,能说明射线OP一定为∠MON的平分线的有()A. 1个B. 2个C. 3个D. 4个8. 如图所示的几何体从前面看到的图形是()A. B. C. D.9. 一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是()学%科%网...A. 棱柱B. 圆柱C. 圆锥D. 球10. 如图,C是线段AB的中点,D在线段CB上,DA=12,CD=2,则DB=()A. 20B. 12C. 10D. 8二、填空题(每小题4分,共24分)11. 木工师傅用刨子可将木板刨平,如图,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其依据为:___________.12. 笔尖在纸上写字说明____________;车轮旋转时看起来像个圆面,这说明_________;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明___________.13. 如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10',则∠AOB的度数为___________.14. 如图所示,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B1,C1在同一条直线上,则∠AEF=_________________.15. 已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,点M是线段AB的中点,点N是线段BC的中点,则MN=____________ cm.16. 如图,已知某长方体的表面展开图的面积为310 cm2,则图中x的值是_________.三、解答题(共66分)17. 有一个正方体,在它的各个面上分别标上数字1,2,3,4,5,6.小明,小刚,小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?18. 计算:(1)179°-72°18'54″;(2)360°÷7(精确到秒).19. 阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O点作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°-∠BOC=180°-30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.20. 点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.图1 图2(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数.21. 用小正方体搭一个几何体,使从前面、上面看到的图形如图所示,这样的几何体需要小正方体最多几块?最少几块?22. 如图,已知BC平分∠DBE,BA分∠DBE成3∶4两部分,若∠ABC=8°,求∠DBE的度数.23. 如图所示的一张硬纸片,能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.24. 如图,C为线段AD上一点,点B为CD的中点,且AD=8 cm,BD=2 cm.(1)图中共有多少条线段?(2)求AC的长.(3)若点E在直线AD上,且EA=3 cm,求BE的长.参考答案一、选择题(每小题3分,共30分)1. 下列各图中,∠1与∠2互为余角的是()A. AB. BC. CD. D【答案】B【解析】根据互余角的定义:两角相加之和等于90°,把这两个角称为互为余角,因为在直角三角形中,两锐角互余,故选B.2. 如图所示的四种物体中,哪种物体最接近于圆柱()A. AB. BC. CD. D【答案】A【解析】根据圆柱的定义:是由两个相等的圆和一个圆形直曲面组成,来进行判断,故选A.3. 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选D.考点:正方体相对两个面上的文字.4. 如图,在一次定向越野活动中,“超越”小组准备从目前所在的A处前往相距2 km的B处,则相对于A处来说,B处的位置是()A. 南偏西50°,2 kmB. 南偏东50°,2 kmC. 北偏西40°,2 kmD. 北偏东40°,2 km【答案】A【解析】直接利用方位角的定义得出相对于A处来说,B处位置是:南偏西50°,2km,故选A.5. 埃及的古金字塔以其悠久的历史、宏伟的建筑享誉世界,它是一多面的几何体.组成它的面的个数是()A. 4B. 5C. 6D. 7【答案】B【解析】金字塔是一个四棱锥,由四个侧面和一个底面构成,所以共有5个面,故选B.6. 如图所示,把一根绳子折成3折,用剪刀从中剪断,得到绳子的条数为()A. 3B. 4C. 5D. 6【答案】B【解析】把一条绳子从中间剪断,得到两条绳子,折一次,从中间剪断,得到三条绳子,以此类推,折两次,从中间剪断得到四条绳子,故选B.7. 如图,∠MON为锐角.下列说法:①∠MOP=∠MON;②∠MOP=∠NOP=∠MON;③∠MOP=∠NOP;④∠MON=∠MOP+∠NOP.其中,能说明射线OP一定为∠MON的平分线的有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】从一个角的顶点引出的把这个角分成两个相等的角的射线,叫做这个角的角平分线,当OP在∠MON外部时不成立,故①错误,∠MOP=∠NOP=∠MON,则OP在∠MON内部,且平分角,故②正确,当∠MOP,∠NOP为钝角(OP是角平分线的反向延长线)时不成立,故③错误,OP可以是∠MON内的任意射线,无法证明∠MOP=∠NOP,故④错误,综上,只有②正确,故选A.8. 如图所示的几何体从前面看到的图形是()A. B. C. D.【答案】B【解析】根据三视图的定义,从前面看是由上下有个长和宽相等的长方形组成的图形,故选B.9. 一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球【答案】B【解析】从上面看俯视图是个圆可以看出,几何体上面是个圆面,而由前面和左面看到的是相同的正方形可以推测出几何体是圆柱,故选B.点睛:本题主要考查圆柱体的概念,解决本题的关键是熟练掌握圆柱体的概念.10. 如图,C是线段AB的中点,D在线段CB上,DA=12,CD=2,则DB=()A. 20B. 12C. 10D. 8【答案】D【解析】因为DA=12,CD=2,所以AC=DA-CD=12-2=10,又因为C点是线段AB的中点,所以AC=BC=10,所以DB=BC-CD=10-2=8,故选D.二、填空题(每小题4分,共24分)11. 木工师傅用刨子可将木板刨平,如图,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其依据为:___________.【答案】两点确定一条直线【解析】经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的根据是两点确定一条直线,故答案为:两点确定一条直线.12. 笔尖在纸上写字说明____________;车轮旋转时看起来像个圆面,这说明_________;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明___________.【答案】(1). 点动成线(2). 线动成面(3). 面动成体【解析】试题分析:根据点动成线,线动成面,面动成体填空即可.解:笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.考点:点、线、面、体.13. 如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10',则∠AOB的度数为___________.【答案】100°40´【解析】因为OD是∠AOC的平分线,且∠COD=25°10′,所以∠AOC=2×25°10′=50°20′,因为OC是∠AOB的平分线,所以∠AOB=2×50°20′=100°40′,故答案为: 100°40′.14. 如图所示,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B1,C1在同一条直线上,则∠AEF=_________________.【答案】90°【解析】根据翻折的性质可得, ∠AEB=∠AEB1=∠BOB1, ∠CEF=∠FEB1=∠CEB1,又因为∠BOB1+∠CEB1=180°,所以∠AEF=∠AEB1+∠FEB1=∠BOB1+∠CEB1=,故答案为:.15. 已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,点M是线段AB的中点,点N是线段BC的中点,则MN=____________ cm.【答案】7或13解:依题意可知,C点存在两种情况,一种在线段AB上,一种在线段AB外.①C点在线段AB上,如图1:∵点M是线段AB的中点,点N是线段BC的中点,∴AM==10cm,BN==3cm,MN=AB﹣AM﹣BN=20﹣10﹣3=7cm.②C点在线段AB外,如图2:∵点M是线段AB的中点,点N是线段BC的中点,∴AM==10cm,BN==3cm,MN=AB﹣AM+BN=20﹣10+3=13cm.综上得MN得长为7cm或者13cm.故答案为:7或13.考点:两点间的距离.16. 如图,已知某长方体的表面展开图的面积为310 cm2,则图中x的值是_________.【答案】7【解析】根据题意,该长方体的表面展开图面积为:,去括号得:,合并同类项得:30x=210,系数化为1得:x=7,故答案为:7.点睛:本题考查长方体平面展开图特点,解决本题的关键能够利用长方体平面展开图求出长方体的长,宽,高,能够根据长方体表面积公式列出方程.三、解答题(共66分)17. 有一个正方体,在它的各个面上分别标上数字1,2,3,4,5,6.小明,小刚,小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?【答案】数字1对5,数字3对6,2对4.【解析】试题分析:由图一可以看出1的相对面不是4,6,由图二可看出1的相对面不是2,3,所以1的相对面是5,由图二可看出3的相对面不是1,2,由图三可看出3的相对面不是4,5,所以3的相对面是6,从而得出2的相对面是4.试题解析:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1对面是数字5,同理,数字3对6,2对4.点睛:本题考查了正方体相对两个面上的数字,找出一个面的四个相邻面是判断其对面的关键.18. 计算:(1)179°-72°18'54″;(2)360°÷7(精确到秒).【答案】(1)106°41'6″;(2)51°25'43″.【解析】试题分析:(1)先根据度,分,秒之间的进率是60进行变形,然后再相减即可,学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...试题解析:(1)179°-72°18'54″,=178°59'60″-72°18'54″,=106°41'6″,(2)360°÷7=51°+180'÷7=51°25'+300″÷7≈51°25'43″.19. 阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O点作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°-∠BOC=180°-30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.【答案】(1)120°,180°-n°;(2)2x°-y°.【解析】试题分析:(1)根据角的和差关系进行计算可求得:如果∠BOC=60°时,∠AOD=∠COD+∠AOC=∠COD+(90°-∠COB)= 90°+(90°-60°)= 90°+30°=120°,如果∠BOC=n°时,∠AOD=∠COD+∠AOC=∠COD+(90°-∠COB)= 90°+(90°-n°)= 180°-n°,(2)根据角的和差关系进行计算可得:∠BOC=∠AOD-∠DOB-∠AOC =∠AOD-(∠DOC-∠COB)-(∠AOB-∠COB),所以∠BOC=∠AOD-∠DOC+∠COB-∠AOB+∠COB,所以∠BOC=∠DOC+∠AOB-∠AOD,如果∠AOB=∠DOC=x°,∠AOD=y°,所以∠BOC= 2x°-y°.试题解析:(1)如果∠BOC=60°,那么∠AOD=180°-60°=120°,如果∠BOC=n°,那么∠AOD=180°-n°,(2)因为∠AOB=∠DOC=x°,∠AOD=y°,且∠AOD=∠AOB+∠DOC-∠BOC,所以∠BOC=∠AOB+∠DOC-∠AOD=2x°-y°.20. 点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.图1 图2(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数.【答案】(1)25°.(2)25°.【解析】试题分析:(1)根据∠MON和∠BOC的度数可以算出∠MOC的度数,(2)根据OC是∠MOB的平分线,可求出∠MOC=65°, ∠BOC=65°,因为∠MON=90°,利用角的和差关系可求出: ∠CON=∠MON-∠MOC=90°-65°=25°, ∠BON=∠BOC-∠CON,即∠BON=65°-25°=40°.试题解析:(1)因为∠MON=90°,∠BOC=65°,所以∠MOC=∠MON-∠BOC=90°-65°=25°.故答案为25°.(2)因为∠BOC=65°,OC是∠MOB的平分线,所以∠MOB=2∠BOC=130°,所以∠BON=∠MOB-∠MON=130°-90°=40°,所以∠CON=∠COB-∠BON=65°-40°=25°.点睛:本题主要考查角的和差关系以及角平分线的定义进行角度的计算,解决本题的关键要学会分析简单的几何图形,弄清角与角之间的和差关系.21. 用小正方体搭一个几何体,使从前面、上面看到的图形如图所示,这样的几何体需要小正方体最多几块?最少几块?【答案】最多9块;最少7块.【解析】试题分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.试题解析:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列最多有4个小正方体,那么最多需要9个小正方体, 由俯视图可得最底层有5个小正方体, 由主视图可得第一列和第三列最少有2个小正方体, 那么最少需要7个小正方体,故答案为:最多9个和最少7个.点睛:本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解决本题关键要掌握口诀:”俯视图打基础,正视图疯狂盖,左视图拆违章”就容易得到答案.22. 如图,已知BC平分∠DBE,BA分∠DBE成3∶4两部分,若∠ABC=8°,求∠DBE的度数.【答案】112°【解析】试题分析:根据BA分∠DBE成3:4两部分,可设∠DBA=3x°, 则∠ABE=4x°根据角的倍分关系以及和差关系列出方程进行求解即可.试题解析:设∠DBA=3x°,则∠ABE=4x°,∠DBE=7x°,∵BC平分∠DBE,∴∠DBC=∠DBE=x,∴∠ABC=∠DBC-∠DBA=x-3x=x,∵∠ABC=8°,∴x=8,解得x=16,∴∠DBE=7x=7×16°=112°,∴∠DNE的度数是112°.点睛:本题主要考查了角的计算,解决本题的关键要正确设出∠DBA=3x°,根据BA分∠DBE成3:4两部分,列出方程.23. 如图所示的一张硬纸片,能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.【答案】30m3【解析】根据长方体的平面展开图的特点,观察所给图形满足长方体的平面展开图的特点,将展开图折叠,即可得到一个长方体,进而利用长方体的体积公式进行计算即可.试题解析:解能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5 m,宽为3 m,高为2 m,所以它的体积为5×2×3=30 m3.点睛:本题主要考查长方体体平面展开图特点,解决本题的关键是要熟练掌握长方体平面展开图的特点,根据长方体平面展开图形特点进行判定.24. 如图,C为线段AD上一点,点B为CD的中点,且AD=8 cm,BD=2 cm.(1)图中共有多少条线段?(2)求AC的长.(3)若点E在直线AD上,且EA=3 cm,求BE的长.【答案】(1)6;(2)4cm;(3)9cm或3cm.【解析】试题分析:(1)根据线段的定义找出图中所有线段,图中线段有:AC,AB,AD,CB,CD,BD共6条,(2)根据线段的和差关系和线段中点性质进行计算可得: AC= AD-CD= AD-2BD=8-4=4,(3)因为点E在直线AD上,且EA=3cm,题目中没有明确点E 的具体位置,所以要分两种情况讨论, ①点E在A 点的左侧时, ②点E在A点的右侧时,利用线段和差关系分别进行计算.试题解析:(1)图中共有6条线段,(2)∵点B为CD的中点,∴CD=2BD,∵BD=2 cm,∴CD=4 cm,∵AC=AD-CD且AD=8 cm,CD=4 cm,∴AC=4 cm,(3)当E在点A的左边时,则BE=BA+EA且BA=6 cm,EA=3 cm, ∴BE=9 cm.当E在点A的右边时,则BE=AB-EA且AB=6 cm,EA=3 cm,∴BE=3 cm.∴BE=9 cm或BE=3 cm.。

人教版七年级上册图形认识初步单元试题含答案解析

人教版七年级上册图形认识初步单元试题含答案解析

《图形认识初步》一、选择题(每小题3分,共30分)1.下列空间图形中是圆柱的为()2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()A.①②③④ B.①③②④ C.②④①③ D.④③①②3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()5.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美 B.丽 C.云 D.南BAC D第2题图A. B. C. D.BAC图2A B C D图 3第5题图7.如图所示的立体图形从上面看到的图形是()8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( )A.∠1B.∠2C.(∠1-∠2)D.(∠1+∠2)二、填空题(每小题2分,共20分)1.长方体由个面,条棱,个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.(2012•山东菏泽中考)已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=_______cm.4.(1)度分秒。

(2)= 度。

5.如图甲,用一块边长为10 cm的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.2121212148.32///0422372第7题图第5题图8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有个.三、解答题 1.计算:(1)22°18′×5;(2)90°-57°23′27″.2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-∠β的值3. 一个角的补角加上后等于这个角的余角的3倍,求这个角.4.⑴已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,求MN 的长度。

数学七年级上册《几何图形初步》单元综合检测卷(含答案)

数学七年级上册《几何图形初步》单元综合检测卷(含答案)
解答:解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选C.
点评:此题为数学知识的应用,考查知识点两点之间线段最短.
2.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )
A.3cmB.4cmC.5cmD.6cm
【答案】C
【解析】
∵AB=12cm,AC=2cm,
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1.把弯曲的河道改直,能够缩短航程,这样做的道理是()
A.两点之间,射线最短B.两点确定一条直线
C.两点之间,线段最短D.两点之间,直线最短
【答案】C
【解析】
分析:此题为数学知识的应用,由题意弯曲的河道改直,肯定为了尽量缩短两地之间的里程,就用到两点间线段最短定理.
故选B.
考点:几何体的展开图.
4.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为 的平分线,BN为 的平分线,则 的度数是
A. B. C. D.
【答案】B
【解析】
【分析】
根据角平分线的定义可知 , ,在根据角的和差计算即可求出答案.
【详解】 为 的角平分线

分两种情况:
①如图所示,
∵木条AB=20cm,CD=24cm,
E、F分别是AB、BD的中点,
∴BE= AB= ×20=10cm,CF= CD= ×24=12cm,
∴EF=EB+CF=10+12=22cm.
故两根木条中点间距离是22cm.
②如图所示,
∵木条AB=20cm,CD=24cm,
E、F分别是AB、BD的中点,
∴BC=AB−AC=12−2=10cm.

人教版数学七年级上学期《几何图形初步》单元检测附答案

人教版数学七年级上学期《几何图形初步》单元检测附答案
A.50°B.50°或120°C.50°或130°D.130°
[答案]C
[解析]
本题分两种情况讨论:
(1)当OC在∠AOB内部时,
∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,
∴∠AOD=∠DOB=12∠AOB=12×90°=45°
∠BOE=∠EOC=12∠BOC=12×40°=20°,
人教版七年级上册第四章单元测试卷
满分:100分 时间:90分钟
一、单选题(共10题;共30分)
1.如图,图中的长方形共有( )个.
A.9B.8C.5D.4
2.如图所示几何图形中,是棱柱的是()
A. B. C. D.
3.如图,是一个几何体的表面展开图,则该几何体是
A.正方体B.长方体C.三棱柱D.四棱锥
(1)如果A B=20Cm,AM=6Cm,求NC的长;
(2)如果MN=6Cm,求A B的长.
26.(1)如图①,∠AOB=60°,OD平分∠BOC,OE平分∠AOC,则∠EOD=_________度;
(2)若∠AOB=90°,其它条件不变,则∠EOD=__________;
(3)若∠AOB=α,其它条件不变,则∠EOD=_________________.
当A B=9时,3A B+C D=3×9+2=29,
当A B=10时,3A B+C D=3×10+2=32.
故选A.
[点睛]本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.
7.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是()度.
A45B.60C.90D.120
[答案]C
[答案]C
[解析]

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

第四章《图形认识初步》 综合测试题(满分120 分时间90 分钟)一、选择题(每题 3 分,共 30 分)1. ①平角是一条直线;②射线是直线的一半;③射线一个扩大 2 倍的放大镜去看一个角, 这个角会扩大= 120 °50. ?AB 与射线 BA 表示同一条射线;④用2 倍;⑤两点之间,线段最短; ⑥ 120.5 °以上说法正确的有 (A.0 个B.12.以下四个图中,能用∠)个 C.2 个 D.3 个1、∠ AOB 、∠ O 三种方法表示同一个角的是()3.以下表达正确的选项是() A . 180°是补角B 120°和 60°互为补角 C 120 °和 60°是补角 D 60°是 30°的补角4. 如图 1 表示一个用于防震的 L 形的包装用泡沫塑料,当从上边看这一物体时看到的图形形状是()A .B .C .D .(图 1)5.以下图形中,哪一个是正方体的睁开图()6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ()A .北偏东 75° B.南偏东 75° C.北偏东 25° D .北偏西 25°7.若∠ A 的余角是 70°,则∠ A 的补角是()A . 70°B .110°C . 20°D . 160°8.如图,AOC和BOD都是直角,假如D CAOB150 ,那么 COD()AA 、30B 、40C 、50D 、60BO9.经过随意三点中的两点共可画出()A .1 条直线B . 2 条直线C .1 条或 3 条直线D . 3 条直线10. 如下图,从O点出发的五条射线,能够构成角的个数是().A.10个B.9个C.8个D.4个二、填空题(每题 3 分,共 30 分)11.橙子近似 ______ 体,菠萝近似 _______ 体,角柜近似 _______ 体,金字塔近似 _______体,粉笔盒近似 _______体。

人教版七年级上学期数学《几何图形初步》单元测试题(带答案)

人教版七年级上学期数学《几何图形初步》单元测试题(带答案)

人教版七年级上册第四章单元测试卷满分:100分时间:90分钟一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是( )学#科#网...学#科#网...A . AB . BC . CD . D2.下列语句错误的是( )A . 延长线段A BB . 延长射线A BC . 直线m和直线n相交于点PD . 在射线A B 上截取线段A C ,使A C =3 C m3.下列立体图形中,都是柱体的为( )A . AB . BC . CD . D4.如图,表示∠1的其他方法中,不正确的是( )A . ∠A CB B . ∠C C . ∠B C AD . ∠A C D5.如图所示的表面展开图所对应的几何体是( )A . 长方体B . 球C . 圆柱D . 圆锥6.如图所示的物体从上面看到的形状是( )A . AB . BC . CD . D7.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .8.在直线上顺次取A ,B ,C 三点,使得A B =5 C m,B C =3 C m,如果O是线段B C 的中点,那么线段A O的长度是( )A . 8 C mB . 7.5C m C . 6.5 C mD . 2.5 C m9.如图,∠A OC =∠D OE=90°,如果∠A OE=65°,那么∠C OD 的度数是( )A . 90°B . 115°C . 120°D . 135°10.用折纸的方法,可以直接剪出一个正五边形(如图).方法是:拿一张长方形纸对折,折痕为A B ,以A B 的中点O为顶点将平角五等分,并沿五等分的线折叠,再沿C D 剪开,使展开后的图形为正五边形,则∠O C D 等于( )A . 108°B . 90°C . 72°D . 60°二、填空题(每题3分,共24分)11.如图,射线OA 表示____________方向,射线OB 表示____________方向.12.已知线段A B =8 C m,在直线A B 上画线段B C ,使它等于3 C m,则线段A C =__________.13.如图,图中线段有________条,射线有________条.14.计算:(1)90.5°-25°45′=__________;(2)5°17′23″×6=__________.15.如图,已知∠B OC =2∠A OB ,OD 平分∠A OC ,∠B OD =14°,则∠A OC 的度数是________.16.将线段A B 延长至点C ,使B C =A B ,延长B C 至点D ,使C D =B C ,延长C D 至点E,使D E=CD ,若C E=8 C m,则A B =________ C m.17.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠A OC +∠D OB =________.18.如图是由一些小立方块所搭立体图形分别从正面、左面、上面看到的图形,若在所搭立体图形的基础上(不改变原立体图形中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(19,21题每题6分,20,22,24题每题10分,其余每题12分,共66分)19.如图,A ,B 两个村庄在河m的两侧,连接A B ,与m交于点C ,点D 在m上,连接A D ,B D ,且A D =B D .若要在河上建一座桥,使A ,B 两村来往最便捷,则应该把桥建在点C 还是点D ?请说明理由.20.如图,已知线段A ,B ,画一条线段,使它等于3A -B (不要求写画法).21.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.22.如图,点C 是A B 的中点,D ,E分别是线段A C ,C B 上的点,且A D =A C ,D E=A B ,若A B =24C m,求线段C E的长.23.如图,OD 平分∠B OC ,OE平分∠A OC ,∠B OC =60°,∠A OC =58°.(1)求出∠A OB 及其补角的度数;(2)①请求出∠D OC 和∠A OE的度数;②判断∠D OE与∠A OB 是否互补,并说明理由.24.如图,把一根绳子对折成线段A B ,从点P处把绳子剪断,已知A P:B P=2:3,若剪断后的各段绳子中最长的一段为60 C m,求绳子的原长.25.已知O为直线A B 上一点,∠C OE是直角,OF平分∠A OE.(1)如图①,若∠C OF=34°,则∠B OE=________;若∠C OF=n°,则∠B OE=________;∠B OE与∠C OF的数量关系为________________.(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠B OE与∠C OF的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠C OF=65°,在∠B OE的内部是否存在一条射线OD ,使得2∠B OD 与∠A OF的和等于∠B OE与∠B OD 的差的一半?若存在,请求出∠B OD 的度数;若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是( )学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...A . AB . BC . CD . D[答案]D[解析][分析]根据互为补角的两个角的和等于180°对各选项分析判断即可得解.[详解]A 、∠1+∠2不一定等于180°,故不一定是互为补角关系,故本选项错误;B 、∠1+∠2=90°,是互为余角关系,故本选项错误;C 、∠1与∠2是对顶角,不一定互补,故本选项错误;D 、∠1与∠2互为补角关系,故本选项正确,故选D .[点睛]本题考查了余角和补角,熟练掌握补角的概念是解题的关键.2.下列语句错误的是( )A . 延长线段A BB . 延长射线A BC . 直线m和直线n相交于点PD . 在射线A B 上截取线段A C ,使A C =3 C m[答案]B[解析][分析]利用有关直线、射线、线段的知识逐项判定即可.[详解]A 、延长线段A B ,说法正确,故A 选项不符合题意;B 、射线只能反向延长,所以延长射线A B 说法错误,故B 选项符合题意;C . 直线m和直线n相交于点P,说法正确,故C 选项不符合题意;D 、在射线A B 上截取线段A C ,使A C =3 C m,说法正确,故D 选项不符合题意,故选B .[点睛]本题主要考查了直线、射线、线段,解题的关键是熟记有关直线、射线、线段的知识.3.下列立体图形中,都是柱体的为( )A . AB . BC . CD . D[答案]C[解析][分析]根据柱体是上下一样粗的几何体逐项进行分析可得答案.[详解]A 选项中有锥体,故A 选项不符合题意;B 选项中有锥体,故B 选项不符合题意;C 选项中全是柱体,故C 选项符合题意;D 选项中有台体,故D 选项不符合题意,故选C .[点睛]此题主要考查了认识立体图形,关键是掌握各种图形的特点.4.如图,表示∠1的其他方法中,不正确的是( )A . ∠A CB B . ∠C C . ∠B C AD . ∠A C D[答案]B[解析][分析]根据角的表示方法,一个顶点有多个角时,不能用单个大写字母表示,由此进行判断即可. [详解]A 选项符合角的表示方法,不符合题意;B 选项以C 点为顶点的角有多个,故∠C 不能表示∠1,符合题意;C 选项符合角的表示方法,不符合题意;D 选项符合角的表示方法,不符合题意;故选B .[点睛]此题主要考查角的表示方法,熟练掌握是解题关键.5.如图所示的表面展开图所对应的几何体是( )A . 长方体B . 球C . 圆柱D . 圆锥[答案]D[解析][分析]观察表面展开图有圆和扇形,由此即可确定.[详解]A 选项展开图中没有圆,不符合题意;B 选项展开图不是平面,不符合题意;C 选项展开图中没有扇形,不符合题意;D 选项展开图中有圆和扇形,符合题意,故选D .[点睛]此题主要考查立体图形的展开图,熟知常见几何体表面展开图是解题关键.6.如图所示的物体从上面看到的形状是( )A . AB . BC . CD . D[答案]D[解析][分析]从上面观察所给几何体,结合选项即可得出答案.[详解]从上面观察所给几何体可以看到是一个有直径的圆环,如图所示:故选D .[点睛]此题主要考查三视图的知识,熟练掌握是解题关键.7.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .[答案]A[解析]由平面图形的折叠及正方体的展开图解题,注意只要有”田”、”凹”字格的展开图都不是正方体的表面展开图。

人教版七年级上册数学《几何图形初步》单元综合测试卷(带答案)

人教版七年级上册数学《几何图形初步》单元综合测试卷(带答案)
【答案】A
【解析】
【分析】
根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.
【详解】A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;
B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;
A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S3
9.下列七个图形中是正方体的平面展开图的有( )
A.1个B.2个C.3个D.4个
10.如图是一个棱长为1 正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是( )
A.60°B.50°C.45°D.30°
【答案】2或8
【解析】
【分析】
由于线段BC与线段AB的位置关系不能确定,故应分C在线段AB内和AB外两种情况进行解答.
【详解】解:①如图1所示,
∵AB=10,BC=6,
∴AC=AB-BC=10-6=4,
∵D是线段AC的中点,
∴AD= AC= ×4=2;
②如图2所示,
∵AB=10,BC=6,
4.如图,图中共有线段( )
A. 7条B. 8条C. 9条D. 10条
【答案】B
【解析】
【分析】
根据线段的定义找出所有的线段即可解答.
【详解】由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.
【点睛】明白线段 定义是解题的关键.
5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为( )

人教版数学七年级上册《几何图形初步》单元检测卷附答案

人教版数学七年级上册《几何图形初步》单元检测卷附答案
【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在此正方体上与“动”字相对的面上的汉字是“乐”.
故选D.
【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4.与红砖、足球类似的图形是( )
A.长方形、圆B.长方体、圆
C.长方体、球D.长方形、球
16.天上一颗颗闪烁的星星给我们以“_____”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“_____”的形象;宾馆里旋转的大门给我们以“_____”的形象.
17.定义:两个直角三角形,若一个三角形的两条直角边分别与另一个三角形的两条直角边相等,我们就说这两个直角三角形是“同胞直角三角形”.如图,在边长为10的正方形中有两个直角三角形,当直角三角形①和直角三角形②是同胞直角三角形时,a的值是_____.
9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A.1cmB.9cmC.1cm或9cmD. 以上答案都不对
二、填空题
10.如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么∠2=_____________°.
11.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=_____.
(1)数一下每一个多面体具有的顶点数 、棱数 和面数 .并且把结果记入表中.
多面体
顶点数
面数
棱数
正四面体
4
4
6
正方体
正八面体
正十二面体
正ห้องสมุดไป่ตู้十面体
12
20
30
(2)观察表中数据,猜想多面体的顶点数 、棱数 和面数 之间的关系.

人教版七年级上第四章《几何图形初步》单元测试(含答案解析)

人教版七年级上第四章《几何图形初步》单元测试(含答案解析)

人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。

人教版七年级数学上册第四章图形认识初步单元测试题

人教版七年级数学上册第四章图形认识初步单元测试题

第四单元 《图形认识初步》 单元测试班级 姓名 号数一、填空题 (每题3分,共30分)1、 三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、 42.79= 度 分 秒;4、 如果∠α=29°35′,那么∠α的余角的度数为 ;5、 如图2,从家A 上学时要走近路到学校B ,最近的路线为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;C BADE F(1)(2)(3)图2图3图5图47.如图4,把书的一角斜折过去,使点A落在E点处,BC为折痕,BD是∠EBM的平分线,则∠CBD=8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ;9.2:35时钟面上时针与分针的夹角为;10.经过平面内四点中的任意两点画直线,总共可以画条直线;二选择题(每题3分,共24分)7、角三角形绕它的直一周得到的几何体是12、如果与互补,与互余,则与的关系是()A.=B.C.D.以上都不对13、对于直线,线段,射线,在下列各图中能相交的是()14、下面图形经折叠后可以围成一个棱柱的有()A. 1个B. 2个C. 3个D. 4个AB;③AM=BM;④AM+BM=AB。

上面四个式子中,正15、已知M是线段AB的中点,那么,①AB=2AM;②BM=12确的有()A.1个 B.2个 C.3个 D.4个16、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、如右图,AB、CD交于点O,∠AOE=90°,若∠AOC:∠COE=5:4,则∠AOD等于()A.120° B.130° C.140° D.150°18、图中(1)-(4)各图都是正方体的表面展开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保留作图痕迹)ab20、按照要求,在图中画出表示下列方向的射线:(1)南偏东300 (2)北偏西600 (3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。

人教版数学七年级上册《几何图形初步》单元综合检测含答案

人教版数学七年级上册《几何图形初步》单元综合检测含答案

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、基础题1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有()A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()、4、将如图所示的正方体沿某些棱展开后,能得到的图形是()5、经过任意三点中的两点共可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线6、下列叙述正确的是()A.180°的角是补角 B.110°和90°的角互为补角C.10°、20°、60°的角互为补角 D.120°和60°的角互为补角7、下列说法正确的是()(A)射线OA与OB是同一条射线;(B)射线OB与AB是同一条射线(C)射线OA与AO是同一条射线;(D)射线AO与BA是同一条射线8、甲看乙的方向为北偏东30°,那么乙看甲的方向是()A.南偏东60° B.南偏西60° C.南偏东30° D.南偏西30°9、下列说法错误的是()(A)点P为直线AB外一点(B)直线AB不经过点P(C )直线AB 与直线BA 是同一条直线 (D )点P 在直线AB 上。

10、一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为( ) A 、51 B 、52 C 、57 D 、5811、经过一点可以画 条直线,经过两点可以画 条直线, 经过三点可以画 条直线。

12、要在墙上钉一根木条,至少要 个钉子,理由是 13、如图,从学校A 到书店B 最近的路线是(1)号路线,其道理用几何知识解释应是_______ 14、如图,若CB 等于4cm,DB 等于7cm,且D 是AC 的中点,则AC=_________15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1
第四章 图形认识初步
(满分:100分 考试时间:100分钟)
班级: 座号: 姓名:____________
一、耐心填一填,一锤定音!(每小题3分,共30分) 1.22.5=________度________分;1224'=________. 2.如图1,OA 的方向是北偏东15,OB 的方向是北偏西40. (1)若AOC AOB =∠∠,则OC 的方向是________; (2)OD 是OB 的反向延长线,OD 的方向是________. 3.图2是三个几何体的展开图,请写出这三个几何体的名称.
4.用恰当的几何语言描述图形,如图3(1)可描述为:__________________如图3(2)可描述为________________________________________________。

5.如果一个角的补角是150,那么这个角的余角是________.
题号

(1-10)

(11-16)

总分
17 18 19 20 21 22 23 得分
图2
图3
(2)
b
a
O
(1)
l A
6.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A B
,两站之间最多共有________种不同的票价.
7.一次测验从开始到结束,手表的时针转了50的角,这次测验的时间是________.8.在直线l上取A, B, C三点,使得4cm
AB=,3cm
BC=,如
果点O是线段AC的中点,则线段OB的长度为________.
9.90°-23°39′=_______ 176°52′÷3=_______
10.如图4,5个边长为1的立方体摆在桌子上,则露在表面部分的
面积为
二、精心选一选,慧眼识金!(每小题3分,共18分)
11.下列说法不正确的是()
A.若点C在线段BA的延长线上,则BA AC BC
=-
B.若点C在线段AB上,则AB AC BC
=+
C.若AC BC AB
+>,则点C一定在线段AB外
D.若A B C
,,三点不在一直线上,则AB AC BC
<+
12.某同学把图5所示的几何体从不同方向看得到的平面图形画出如图6所示(不考虑尺寸),
其中正确的是()
A.①②B.①③C.②③D.②
13.下列判断正确的是()
A.平角是一条直线B.凡是直角都相等
C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关
14.点M O N
,,顺次在同一直线上,射线OC OD
,在直线MN同侧,且64
MOC=
∠,46
DON=
∠,则MOC
∠的平分线与DON
∠的平分线夹角的度数是()A.85B.105C.125D.145
图6
图5
图4
15.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数和互余两角的对数分别为()
A.3;3 B.4;4 C.5;4 D.7;5
16.将如图7所示的正方体沿某些棱展开后,能得到的图形是()

★★

A.B.C.D.
第15题图
三、用心做一做,马到成功!(本大题共52分)
17.(6分).如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?
18.(6分)读题、画图、计算并作答:
画线段AB = 3cm,在线段AB上取一点K,使AK = BK,在线段AB的延长线上取一点C,
使AC = 3BC,在线段BA的延长线上取一点D,使AD =
2
1
AB。

(1)求线段BC、DC的长;(2)点K是哪些线段的中点?
图7
19. (7分)一货轮从A 港出发,先沿北偏东75°的方向航行40海里到达B 港,再沿南偏东15°方向航行30海里到达C 港,请用适当的比例尺画出图形并测量估算出A 港到C 港间的距离。

20. (6分)知识是用来为人类服务的,我们应该把它们用于有意义的方.下面就两个情景请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题。

情景二:A 、B 是河流l 两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由:
草 坪
图 书 馆
教 学 楼
l
A
B
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
21.(6分)把一副三角尺的直角顶点O 重叠在一起.
(1)如图10-1,当OB 平分COD ∠时,则AOD ∠和BOC ∠的和是多少度? (2)如图10-2,当OB 不平分COD ∠时,则AOD ∠和BOC ∠的和是多少度?
22.(9分)如图,BO 、CO 分别平分∠ABC 和∠ACB , (1)若∠A = 60°,求∠BOC ;
(2)若∠A =100°、120°,∠BOC 又是多少?
(3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?
(提示:三角形的内角和等于180°)
23.(12分)(1)如下图,已知点C 在线段AB 上,且6cm AC =,4cm BC =,点M N ,分别是AC ,BC 的中点,求线段MN 的的长度.
(2)在(1)中,如果cm AC a =,cm BC b =,其它条件不变,你能猜出MN 的长度吗?请你用一句简洁的话表述你发现的规律.
(3)对于(1)题,如果我们这样叙述它:“已知线段6cm AC =,4cm BC =,点C 在直线AB 上,点M N ,分别是AC BC ,的中点,求MN 的长度.”结果会有变化吗?如果有,求出结果.
参考答案
一、填空题:
1.22,30;12.4 2.(1)北偏东70;(2)南偏东40 3.五棱柱,圆柱,圆锥
4.点A 在直线l 上或直线l 经过点A ;直线a 、b 相交于点O 5.60 6.10 7.100分钟 8.0.5cm 或3.5cm 9.66°21′ 58°57′20″ 10.16 二、选择题:
11.A 12.B 13.B 14.C 15.C 16.C 三、解答题:
17.∠BOF=56°,∠EOF=90° 18.(1)图略 BC =1.5cm, DC =6cm 。

(2)K 是AB 和DC 的中点。

22.∠O =90°+1/2∠A . 19.略
20.解:情景一:两点之间的所有连线中,线段最短;
情景二:(需画出图形,并标明P 点位置) 理由:两点之间的所有连线中,线段最短. 赞同情景二中运用知识的做法。

21.(1
)180;(2)180
22.(1)120°(2)140°,150° (3)∠BOC =90°+1
2
A ⨯∠. 23.(1)5cm ;
(2)
2
a b
+,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变化,当点C 在线段AB 上时,5cm MN =;当点C 在AB 或BA
的延长线上时,1cm MN =.
l
A
B
P。

相关文档
最新文档