电磁场与电磁波(第4版)第3章部分习题参考解答
电磁场与电磁波(第四版)习题解答
电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。
解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
电磁场与电磁波(第四版)习题解答
(3)
V/m (4)平均坡印廷矢量
rad/m Hz
第6章习题
习题6.2
解: (1)电场的复数形式 由
A/m
(也可用式求解磁场,结果一样)
将其写成瞬时值表达式 A/m
(2)入射到理想导体会产生全反射,反射波的电场为 与其相伴的反射波磁场为 总的电场 总磁场 (3)理想导体上的电流密度为
处的
和
; (2)求在直角坐标中点
处
与矢量
构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, 则 (2)其夹角为
习题1.17在由
、
和
围成的圆柱形区域,对矢量
验证散度定理。 证: 在圆柱坐标系中 所以, 又 则
习题1.21求矢量
沿
平面上的一个边长为
的正方形回路的线积分,此正方形的两边分别与
A/m
习题6.4
解:
反射系数为 透射系数为 故反射波的电场振幅为 透射波的电场振幅为
V/m V/m
习题6.7
解:区域,本征阻抗
透射系数为 相位常数 则 电场: V/m 磁场: A/m
习题6.13
解:电场振幅最大值相距1.0m,则,得 因电场振幅第一最大值距离介质表面0.5m,即处,故反射系数。 由 又 可得到
,可见,矢量是磁场矢量。其源分布 (4)在球坐标系中
,可见,矢量是磁场矢量。其源分布
习题2.26
解: (1)由,得 故 (2)由,得 故 (3) 故 (4)
习题2.30
解: (1)在界面上法线方向的分量为 (2) (3)利用磁场边界条件,得 (4)利用磁场边界条件,得
习题3.3
解: (1) 由可得到
《电磁场与电磁波》(第四版)课后习题解答(全)
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第四版课后答案
答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
电磁场与电磁波(第四版)课后答案__谢处方
电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波第四版第三章部分答案
电磁场与电磁波第三章3.7无限大导体平板分别置于板间充满电荷,其体电荷密度为,极板间的电位分别为0和,如图所示,求两级板之间的电位和电场强度。
解:由泊松定理得解得在故3.8证明:同轴线单位长度的静电储能。
式中为单位长度上的电荷量,C为单位长度上的电容。
解:由高斯定理可知:故内外导体间的电压为则电容为3.9有一半径为a,带电量q的导体球,其球心位于介电常数分别为的两种介质的分界面上,该分界面为无限大平面。
试求:(1)导体球的电容;(2)总的静电常量。
解:根据边界条件则,故有,由于,所以即导体球的电位为电容为(2)总的静能量为3.13在一块厚度为d的导电板上,由两个半径分别为的圆弧和夹角为的两半径割出的一块扇形体,如图所示。
试求:(1)沿厚度方向的电阻;(2)两圆弧面之间的电阻;(3)沿方向的两电极间的电阻。
设导电板的电导率为解:(1)设沿厚度方向的两电极的电压为则故得到沿厚度方向的电阻为(2)设内外两圆弧面电极之间的电流为故两圆弧面之间的电阻为(3)设沿由于沿3.15无限长直线电流垂直于磁导率分别为的两种磁介质的分界面,如图所示,试求:(1)两种磁介质中的磁感应强度磁化电流分布。
解:(1)由安培环路定理可知则(2)磁介质的磁化强度=0以z轴为中心,为半径做一个圆形回路C,由安培环路定理得在磁介质表面,磁化电流面密度为3.19同轴线的内导体是半径为a的圆柱,外导体是半径为b的薄圆柱面,其厚度可忽略不计。
内外导体间填充有磁导率为两种不同的磁介质,如题所示,设同轴线中通过的电流为I,试求:(1)同轴线中单位长度所存储的磁场能量;(2)单位长度的自感。
解:由边界条件可知,两种磁介质中的磁感应强度.(1)利用安培环路定理,当当同轴线中单位长度储存的磁场能量为(2)由3.21一个点电荷q与无限大导体平面的距离为d,如果把它移到无穷远处,需要做多少功?解:利用镜像法求解。
当点电荷q移到到距离导体平面为x的点p(x,0,0)时,其像电荷场为将点电荷q移到无穷远处时,电场所做的功为外力所做的功为3.24一个半径为R的导体球带有的电荷量为Q,在球体外距离球心D 处有一个点电荷q。
电磁场与电磁波(第四版)课后答案电科习题
1.1 给定三个矢量 A,B和 C如下:
A ex ey 2 ez3 B ey 4 ez C ex5 ez 2
求:(1)aA; (2)AB; (3)AB;
(4)AB; (5)A在B上的分量;
(6)AC;(7)A BC 和AB C; (8)ABC和ABC。
1.2 证明:如果
A B A C 和 A B A C , B C 。
1.3如果给定一未知矢量与一已知矢量的标量积和
矢量积,那么便可以确定该未知矢量。设 矢量,pA X 而 P A X ,p和 P 已知,试求
ቤተ መጻሕፍቲ ባይዱ
验
A
证散度定理
1.21 求矢量 A e x x e y x 2 e zy 2 z沿xy平面上的一个边长为2的正 形回路的线积分,此正方形的两个边分别与x轴和y轴相重合 再求 A 对此回路所包围的表面积分,验证斯托克斯定理
1.25给定矢量函数 Exˆyyˆx 试求从点P1(2,1,-1)
求(2,3,1)点的方向导数值。
1.6方程
u
x2 a2
y2 b2
cz22给出一椭球族。求椭球表面上
任
意点的单位法向矢量。
1度体.1;的8 ((积1分2));求求(矢3量)A A 求 对x ˆ 中x 2 对心 y 此ˆ 在x 2 立y 原2 方 点z ˆ 体2 的4 的x 一2 y 表个2 z 面3 单积位分的立,散方
到点P2(8,2,-1)的线积分 E dl (1)沿抛物线
x 2 y 2 ;(2)沿连接两点的直线。此矢量场是否为保守 场。
1.27三个矢量A,B,C
1)Aersincoseθcoscosesin 2)Bez2sin+e z2cos+ez2zsin
《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答
三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++⎰22121)0.293()aqaq q r a ==-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答
三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e223222320()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题 3.3图()b 所示。
《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社
1 1 ( ) 2 d y dz ( ) 2 d y dz 2 2 1 2 1 2 1 2 1 2
1 1 2 x 2 ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2 1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
1 r 42 32 5 、 tan (4 3) 53.1 、 2 3 120 故该点的球坐标为 (5,53.1 ,120 ) 1.9 用球坐标表示的场 E e 25 , r r2 (1)求在直角坐标中点 (3, 4, 5) 处的 E 和 E x ;
(2) 在球坐标系中
故 PP 为一直角三角形。 1 2P 3
1 1 1 R1 2 R 2 3 R 1 2 R 2 3 1 7 6 9 17.13 2 2 2 1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。 解 rP ex 3 e y ez 4 , rP ex 2 e y 2 ez 3 ,
(2)三角形的面积
S
则
RPP rP rP ex 5 e y 3 ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) cos 1 ( ) 32.31 RPP 35 e R 3 y cos 1 ( y P P ) cos 1 ( ) 120.47 RPP 35 e R 1 z cos 1 ( z PP ) cos 1 ( ) 99.73 RPP 35 给定两矢量 A ex 2 e y 3 ez 4 和 B ex 4 e y 5 ez 6 ,求它们之间的夹角和
电磁场与电磁波第四版课后思考题标准答案
2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
2.4简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无布的电场强度。
2.6简述 和 所表征的静电场特性。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即2.8简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系?单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 2.11 简述磁场与磁介质相互作用的物理现象?在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质ερ/=•∇E 0=⨯∇Eερ/=•∇E 0=⨯∇E VS0 0=⋅∇BJ Bμ=⨯∇0=⋅∇BJ Bμ=⨯∇0μCP•∇=-p ρnsp e •=P ρE P EDεε=+=0中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度:磁化电流面密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
电磁场与电磁波第四版课后答案
3
答案: A = ax Ax + ay Ay + az Az
其中, Ax = (
2x2 + x3z + xy2 z + xz3 ) x2 + y2
(x2 + y2 + z2)2 ;
Ay = (
2xy + x2 yz + y3z + yz3) x2 + y2
(x2 + y2 + z2)2 ;
⎤ ⎥ ⎥
=
⎡ sin θ ⎢⎢cosθ
cosϕ cosϕ
⎢⎣ Aiϕ ⎥⎦ ⎢⎣ − sin ϕ
sinθ sinϕ cosθ sinϕ
cosϕ
cosθ ⎤ ⎡ Aix ⎤
−
sin
θ
⎥ ⎥
⎢ ⎢
Aiy
⎥ ⎥
,
0 ⎥⎦ ⎢⎣ Aiz ⎥⎦
而 Aix = Ri sinθi cosϕi , Aiy = Ri sinθi sin ϕi , Aiz = Ri cosϕi 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
为 ε = 2.56ε0 ,μ = μ0 , σ = 3.5 ×10−5 S/m,两极板间施加直流电压U0 = 50 V 。求
《电磁场与电磁波》第4版(谢处方编)课后习题答案高等教育出版社三章习题解答
三章习题解答3.1真空中半径为“的一个球而,球的两极点处分别设置点电荷G 和-0,试计算球赤道平 而上电通密度的通量0(如题3.1图所示人解 由点电荷。
和-Q 共同产生的电通密度为Z) = JL I 4-41 =4/r RI R 5q W + e :(z_a) _ e∕ + e( + d)4Λ, [r 2 +(z-a)2f f2 [r +(Z +Λ)2]V 2则球赤道平面上电通密度的通量Φ = ∫P ∙dS=∫D ∙ e.∣.=I)ClS =4,,(,+/)3/2(厂2+/)3/2 Md 心(咅一 l)g = -0.293q3.2 1911年卢瑟福在实验中使用的是半径为G 的球体原子模型.英球体内均匀分布有总电 荷量为-Ze 的电子云,在球心有一正电荷ZW (Z 是原子序数,e 是质子电荷量),通过实验得 到球体内的电通量密度表达式为n 0=e r - 4-4,试证明之。
4兀I 广乙丿Q 4∕ZT *∙ .,'3 Ze r 电子云在原子内产生的电通量密度则为73.3电荷均匀分布于两圆柱面间的区域中,体密度为POW 两圆柱而半径分别为"和b ∙轴线相距为C(C<b-u),如题3.3图(Q)所示。
求空 间各部分的电场。
解由于两圆柱而间的电荷不是轴对称分布,不能直接用髙斯立律求解。
但可把半径为α的 小圆柱而内看作同时具有体密度分别为±P()的两种电荷分布,这样在半径为。
的整个圆柱体内具 有体密度为PO 的均匀电荷分布,而在半径为"的整个圆柱体内则具有体密度为-几的均匀电荷 分布,如题3.3图(b)所示。
空间任一点的电场是这两种电荷所产生的电场的叠加。
在r>b 区域中,由髙斯泄律f β∙d5=-,可求得大.小圆柱中的正、负电荷在点P 产生(-d) 解 位于球心的正电荷ZW 球体内产生的电通量密度为Ze4zrr 2原子内电子云的电荷体密度为D = D i +D 1D ∖=S3Ze_4甥题3.3图故原子内总的电通量密度为/ 2 2 f点P 处总的电场为 E = d + E ; = £(二一豊) 2匂广 r 「在r<b 且F 〉a 区域中,同理可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为TtFP Pr f 一兀&PPCrr Δ9 =e r ------ = --- E I =e r ------------ = ------- 72πε^r 2ε0 " 2πε0r f 2^0√-2 f点P 处总的电场为 E=Er+E2単(Γ-令・2q r ・在r<a 的空腔区域中,大、小圆柱中的正.负电荷在点P 产生的电场分别为E =e 乞込=竺 尽=”.一WQJ=—空§ r 2πεky r 2ε0 ' ,2πε0r , 2ε0点P 处总的电场为半径为"的球中充满密度Q(C 的体电荷,已知电位移分布为故在 r< a 区域 p(r)=勺)-K-[r 2(r' + Ar)] = ^0(5r 2 +4 Ar)r dr在尸>"区域 p(r) =[r 2 !≤t±L2∣ = O厂dr厂3.5 —个半径为"薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为O 为的体 电荷,球壳上又另充有电荷量0。
电磁场与电磁波(第4版)第3章部分习题参考解答
(2) 根据对称性,可得两个对称线电荷元 ρ l 0 dz ′ 在点 P 的电场为 G G ρl 0dz ' ρ l 0 ρ dz ' G G dE = eρ dEρ = eρ cos θ = eρ 2πε 0 ( ρ 2 + z '2 )3/ 2 2πε 0 ρ 2 + z '2 故长为 L 的线电荷在点 P 的电场为
3 ∞ ρ R0 ρ R02 ρ R02 2ε r + 1 ρ 2 ρr dr + ∫ dr = + = ( ) R0 R R 0 0 3ε ε 6ε rε 0 3ε 0 2ε r 3ε 0 3ε 0 r 2 r 0 3.6 电场中有一半径为 a 、介电常数为 ε 的介质球,已知球内、外的电位函数分
3.1 长度为 L 的线电荷,电荷密度为常数 ρl 0 。(1) 计算线电荷平分面上的电位函 G G 数 ϕ ;(2) 利用直接积分法计算平分面上的 E ,并用 E = −∇ϕ 由(1)验证(2)所得结 果。
图题 3.1 解:(1) 建立如图题 3.1 所示坐标系。根据电位的积分表达式,线电荷平分面上 任意点 P 的电位为
在 x = 0 处, ϕ = 0 ,故 B = 0 在 x = d 处, ϕ = U 0 ,故 U 0 = − 所以 ϕ = −
ρ0 d 3 U ρd + Ad ,得 A = 0 + 0 d 6ε 0 6ε 0 d
ρ0 x3 6ε 0 d
⎛U ρ d⎞ +⎜ 0 + 0 ⎟x ⎝ d 6ε 0 ⎠
G G ∂ϕ G ⎡ ρ 0 x 2 ⎛ U 0 ρ 0 d ⎞ ⎤ E = −∇ϕ = −ex = ex ⎢ −⎜ + ⎟⎥ ∂x ⎣ 2ε 0 d ⎝ d 6ε 0 ⎠ ⎦
电磁场与电磁波(第四版)课后答案_电科习题
3)
v C
evx
3y2 - 2x
+ evy x2 + evz 2z
问:1.哪些矢量可以由一个标量函数的梯度表示?哪些
矢量可以由一个矢量函数的旋度表示?
2.求出这些矢量的源分布。
1.28利用直角坐标,证明
v fA
vv f A Af
1.29: 矢量
在Av由 evρ=52, evzz验2=z0证和散z=度4围定成理的。圆柱形区域,
分量,根据边界条件可知,两种介质的
2
磁感应强度
uv B1
rr
uv B2
r B
er B
但磁场
强度 H1 H2
3.23一电荷量为 q 质量为 m 的小带电体,放置在无限长导体
平面下方,与平面距离h 。求 q 的值以使带电体上受到的
静电力恰好与重力相平衡(设 m 2103 kg, h 0.02m)。
对
第二章
2.1已知半径为a的导体球面上分布着电荷密度为 s s0 cos 的电荷,式中的 s0
为常数。试计算球面上的总电荷量。
2.6 一个平行板真空二极管内的电荷 体位密于度x=为0,阳 极94 板0U0位(d 于43 )xx23=,d,式极中间阴电极压板 为U0。如果U0 =40V,d=lcm,横截 面积s =10cm2。 求:
验
A
证散度定理
1.21 求矢量
v A
erx
x
ery
x2
erz
y
2
z
沿xy平面上的一个边长为2的正
形再回求路 的Av线对积此分回,路此所正包方围形的的表两面个积边分分,别验与证x斯轴托和克y轴斯相定重理合
电磁场与电磁波第四版课后答案
电磁场与电磁波第四版课后答案第一章:电磁场与电磁波简介1.电场与磁场是电磁场的两个基本概念。
电磁场是由电荷和电流产生的。
第二章:静电场2.静电场是指电荷分布不随时间变化的电场。
3.庞加莱定理:在任意封闭曲面内,电场的通量等于该曲面内的电荷代数和除以介电常数。
第三章:电磁场的数学描述4.麦克斯韦方程组是描述电磁场的基本方程组。
5.麦克斯韦方程组包括4个方程,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
第四章:静磁场6.静磁场是指磁场随时间不变的情况。
7.安培环路定律描述了静磁场中的磁场强度与电流的关系。
第五章:电磁波的产生与传播8.电磁波是由振荡的电场和磁场组成的波动现象。
9.麦克斯韦方程组的解可以得到电磁波的传播方程,即波动方程。
第六章:电磁波谱10.电磁波谱是按照电磁波的频率或波长划分的。
第七章:矢量分析与场11.矢量分析是用来描述场的数学工具。
12.二、三维坐标系下的矢量分析公式包括梯度、散度、旋度等概念。
第八章:电磁波在介质中的传播13.介质中的电磁波传播速度小于真空中的光速。
14.介质中的电磁波受到折射和反射的影响。
第九章:光的偏振与吸收15.光的偏振是指电磁波在传播方向上的振动方向。
16.介质对电磁波的吸收会产生能量损耗。
总结本文简要介绍了《电磁场与电磁波第四版》课后习题答案。
通过对电磁场与电磁波的基本概念、静电场、电磁场的数学描述、静磁场、电磁波的产生与传播、电磁波谱、矢量分析与场、电磁波在介质中的传播以及光的偏振与吸收等内容的讨论,我们对电磁场与电磁波的相关知识有了更深入的了解。
理解这些知识对于学习和应用电磁场与电磁波有着重要的意义。
希望本文的内容能够帮助读者更好地掌握《电磁场与电磁波第四版》的相关知识。
电磁场与电磁波_第四版_第三章
能量。
静电场能量来源于建立电荷系统的过程中外源提供的能量 任何形式的带电系统,都要经过从没有电荷分布到某个最终 电荷分布的建立(或充电)过程。在此过程中,外加电源必须克服
电荷之间的相互作用力而作功。
如果充电过程进行得足够缓慢,就不会有能量辐射,充电过 程中外加电源所作的总功将全部转换成电场能量,或者说电场能
Da
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
16
例3.3 同轴线内导体半径为a,外导体半径为为b,内外导体间
填充的介电常数为 的均匀介质,求同轴线单位长度的电容。 解 设同轴线的内、外导体单位长度带电量分别为 l 和 l , 应用高斯定理可得到内外导体间任一点的电场强度为
l E ( ) e 2
1 0 q d 2 q 根据能量守恒定律,此功也就是电量为 q 的带电体具有的电
1
场能量We ,即
1 We q 2 对于电荷体密度ρ为的体分布电荷,体积元dV中的电荷ρdV具 1 dWe dV 2
有的电场能量为
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
19
1 We dV 2 V 对于面分布电荷,电场能量为 W 1 dS e S S 2 对于多导体组成的带电系统,则有
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
3
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件
3.1.2 电位函数
3.1.3 3.1.4 导体系统的电容 静电场的能量
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
4
3.1.1 静电场的基本方程和边界条件 1. 基本方程
D dS q D S 微分形式: 积分形式: E dl 0 E 0 C 本构关系: D E D1n D2 n S 2. 边界条件 en ( D1 D2 ) S 或 E1t E2t 0 e ( E E ) 0 1 2 n
电磁场与电磁波(第四版)课后答案_第三章习题
习题三答案及解析
B选项
$( - frac{1}{2} + frac{3}{2}i)( frac{1}{2} + frac{3}{2}i)$ 可以
化简为 $-i$。
C选项
$( - frac{1}{2} - frac{3}{2}i)( frac{1}{2} + frac{3}{2}i)$ 可以
化简为 $-i$。
D选项
$frac{-2i}{-2i + 1}$ 可以 化简为 $-i$。
习题三答案及解析
答案
A. $-frac{1}{4}$
习题三答案及解析
B. $-i$
1
C. $-i$
2
D. $-i$
3
习题三答案及解析
01
解析
02
此题考查复数的乘法运算,根据复数乘法的定义和性质,可以得出答案。
03
A选项:$( - frac{1}{2} + frac{3}{2}i)( - frac{1}{2} - frac{3}{2}i)$ 可以化简为 $-frac{1}{4}$。
• 下一章将介绍电磁场与电磁波的基本原理和概念,包括电场、 磁场、电磁感应等。同时,还将介绍电磁波的传播方式和在不 同介质中的传播特性,以及电磁波的应用和影响。
THANKS
感谢观看
D选项
$100e^{- frac{pi i}{2}}$ 可以化简 为 $100(cosfrac{3pi}{2} + isinfrac{3pi}{2})$,与题目中的形 式一致。
习题二答案及解析
答案
A. $-frac{1}{2}$
习题二答案及解析
B. $-i$ C. $-i$ D. $-i$
电磁场与电磁波第四版课后答案
电磁场与电磁波第四版课后答案本文为电磁场与电磁波第四版的课后答案,包括章节练习和习题的详细解答。
第一章矢量分析章节练习1.什么是矢量?答:矢量是具有大小和方向的物理量。
矢量用箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
2.矢量的叉乘运算有什么特点?答:矢量的叉乘运算满足右手定则:将右手的食指指向第一个矢量的方向,中指指向第二个矢量的方向,那么拇指的方向就是叉乘结果的方向。
3.请推导出矢量叉乘的定义式。
答:矢量叉乘的定义式为:$\\mathbf{A} \\times \\mathbf{B} = |\\mathbf{A}| |\\mathbf{B}| \\sin \\theta \\mathbf{n}$,其中$\\mathbf{A}$ 和 $\\mathbf{B}$ 是两个矢量,$\\theta$ 是两个矢量之间的夹角,$\\mathbf{n}$ 是垂直于平面的单位矢量。
习题1.已知两个矢量 $\\mathbf{A} = 2\\mathbf{i} +3\\mathbf{j} - 4\\mathbf{k}$ 和 $\\mathbf{B} = -\\mathbf{i} + 2\\mathbf{j} + 5\\mathbf{k}$,求两个矢量的点积和叉积。
答:首先计算点积:$\\mathbf{A} \\cdot \\mathbf{B} = (2)(-1) + (3)(2) + (-4)(5) = -2 + 6 - 20 = -16$。
然后计算叉积:$\\mathbf{A} \\times \\mathbf{B} =(3)(5)\\mathbf{i} + (-4)(-1)\\mathbf{j} +(2)(2)\\mathbf{k} = 15\\mathbf{i} - 4\\mathbf{j} +4\\mathbf{k}$。
2.已知一个矢量 $\\mathbf{A} = 3\\mathbf{i} -2\\mathbf{j} + \\mathbf{k}$,求该矢量的模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 ∞ ρ R0 ρ R02 ρ R02 2ε r + 1 ρ 2 ρr dr + ∫ dr = + = ( ) R0 R R 0 0 3ε ε 6ε rε 0 3ε 0 2ε r 3ε 0 3ε 0 r 2 r 0 3.6 电场中有一半径为 a 、介电常数为 ε 的介质球,已知球内、外的电位函数分
ρ ≥ a 时, E = −∇ϕ = −eρ
G
G ∂ ∂ρ
3.4 已知 y > 0 的空间中没有电荷,试判断下列函数中哪些是可能的电位解? (1) e− y cosh x ;(2) e− y cos x ;(3) e− 2 sin x cos x ;(4) sin x sin y sin z 。 解:在电荷体密度 ρ = 0 的空间,电位函数应满足拉普拉斯方程 ∇ 2ϕ = 0 。
(2) 根据对称性,可得两个对称线电荷元 ρ l 0 dz ′ 在点 P 的电场为 G G ρl 0dz ' ρ l 0 ρ dz ' G G dE = eρ dEρ = eρ cos θ = eρ 2πε 0 ( ρ 2 + z '2 )3/ 2 2πε 0 ρ 2 + z '2 故长为 L 的线电荷在点 P 的电场为
G ρ = −eρ l 0 2πε 0 G = eρ
ρl 0 4πε 0 ρ
⎧ ρ 1⎫ ⎪ ⎪ − ⎬ ⎨ 2 2 2 2 ρ⎪ ⎪[ L / 2 + ρ + ( L / 2) ] ρ + ( L / 2) ⎩ ⎭ z'
ρ 2 + ( L / 2) 2
3.2 点电荷 q1 = q 位于 P 1 ( − a, 0, 0) ,另一点电荷 q2 = −2q 位于 P 2 ( a, 0, 0) ,求空间的 零电位面。 解:两个点电荷 + q 和 −2q 在空间产生的电位 ⎤ q 1 ⎡ 2q ϕ ( x, y , z ) = − ⎢ ⎥ 2 2 2 2 2 2 4 πε 0 ⎢ ( ) ( ) ⎥ x a y z x a y z + + + − + + ⎣ ⎦ 1 2 − =0 令 ϕ ( x, y, z ) = 0 ,则有 2 2 2 2 ( x + a) + y + z ( x − a) + y 2 + z 2
2
E=
q
1 q2 q a ϕ = ( ) (2) 总的静电能量为 2 4π(ε1 + ε 2 )a 3.10 两平行的金属板,板间距离为 d ,竖直地插入介电常数为 ε 的液态介质中, 两板间加电压 U 0 ,试证明液面升高 We = ⎛U ⎞ h= (ε − ε 0 ) ⎜ 0 ⎟ 2ρ g ⎝ d ⎠ 式中的 ρ 为液体的质量密度, g 为重力加速度。 1
∂2 − y ∂2 − y ∂2 − y (e cosh x) + 2 (e cosh x) + 2 (e cosh x) = 2e− y cosh x ≠ 0 (1) ∂x 2 ∂y ∂z −y 所以函数 e cosh x 不是 y > 0 空间中的电位解; ∂2 − y ∂2 − y ∂2 − y (e cos x) + 2 (e cos x) + 2 (e cos x) = −e− y cos x + e− y cos x = 0 (2) ∂x 2 ∂y ∂z −y 所以函数 e cos x 是 y > 0 空间中可能的电位解; ∂ − 2 ∂ ∂ (e sin x cos x) + 2 (e− 2 sin x cos x) + 2 (e − 2 sin x cos x) (3) 2 ∂x ∂y ∂z
ϕ ( ρ , 0, 0) = ∫
=
L/2
ρl 0dz '
4πε 0
−L/ 2
ρ = l 0 ln( z '+ ρ 2 + z '2 ) 2 2 ρ + z ' 4πε 0 −L/2
L/2
ρ 2 + ( L / 2) 2 + L / 2 ρl 0 ρ 2 + ( L / 2) 2 + L / 2 ρl 0 = ln ln ρ 4πε 0 ρ 2 + ( L / 2) 2 − L / 2 2πε 0
即
⎡ ⎤ G ∂ ⎡ ⎤ a2 a2 − − − A ( ρ ) cos φ e A ( ρ ) cos φ ⎥ φ ⎢ ⎥ ⎢ ρ ρ∂φ ⎣ ρ ⎣ ⎦ ⎦ 2 2 G ⎛ a ⎞ G ⎛ a ⎞ = −eρ A ⎜1 + 2 ⎟ cos φ + eφ A ⎜1 − 2 ⎟ sin φ ⎝ ρ ⎠ ⎝ ρ ⎠ (2) 该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面 G G G G 密度为 ρ S = en ⋅ D ρ = a = ε 0 eρ ⋅ E ρ = a = −2ε 0 A cos φ
2 2 1 1 b ⎛ ql ⎞ 1 ql ⎛ b ⎞ 1 ql 2 ln ⎜ ⎟ = We = ∫ ε E dV = ∫ ε ⎜ ⎟ 2πρ dρ = 2 V 2 a ⎝ 2περ ⎠ 2 2πε ⎝ a ⎠ 2 C 3.9 有一半径为 a 、带电量 q 的导体球,其球心位于介电常数分别为 ε1 和 ε 2 的两 2
3.8 试证明:同轴线单位长度的静电储能 We =
ql2 。式中 ql 为单位长度上的电荷 2C
量, C 为单位长度上的电容。 证:由高斯定理可求得同轴线内、外导体间的电场强度为 q E(ρ ) = l 2περ 内外导体间的电压为 b b ql q ⎛b⎞ dρ = l ln ⎜ ⎟ U = ∫ Edρ = ∫ a a 2 περ 2πε ⎝ a ⎠ ql 2 πε 则同轴线单位长度的电容为 C = = U ln(b / a) 同轴线单位长度的静电储能为
4[( x + a)2 + y 2 + z 2 ] = ( x − a)2 + y 2 + z 2 5 4 ( x + a) 2 + y 2 + z 2 = ( a) 2 故得 3 3 5 4 由此可见,零电位面是一个以点 (− a,0, 0) 为球心、 a 为半径的球面。 3 3 a 3.3 电场中有一半径为 的圆柱体,已知圆柱体内、外的电位函数分别为 ρ≤a ⎧ϕ1 = 0, ⎪ ⎛ a2 ⎞ ⎨ ϕ = A ρ − ⎜ ⎟ cos φ , ρ ≥ a ⎪ 2 ρ⎠ ⎝ ⎩ (1) 求圆柱内、外的电场强度;(2) 这个圆柱是什么材料制成的?其表面上有电 荷分布吗?试求之。 G 解:(1) 由 E = −∇ϕ ,可得 G ρ ≤ a 时, E = −∇ϕ = 0
(4)
r < R0 时, 4πr 2 D1 = 4πr ρ ,即 D1 =
3
3
3
ρr
3
, E1 =
ε rε 0
D1
=
ρr 3ε rε 0
r > R0 时, 4πr 2 D2 = 4πR0 ρ ,即 D2 =
3
故介质球中心点的电位为
R0
3 ρ R0
3rHale Waihona Puke 2, E2 =ε0
D1
=
3 ρ R0 3ε 0 r 2
3.1 长度为 L 的线电荷,电荷密度为常数 ρl 0 。(1) 计算线电荷平分面上的电位函 G G 数 ϕ ;(2) 利用直接积分法计算平分面上的 E ,并用 E = −∇ϕ 由(1)验证(2)所得结 果。
图题 3.1 解:(1) 建立如图题 3.1 所示坐标系。根据电位的积分表达式,线电荷平分面上 任意点 P 的电位为
G G G L/2 E = ∫ dE = eρ ∫
0
ρl 0 ρ dz ' z' G ρl 0 ⎛ e = ⎜ ρ 2 2 3/ 2 2 2 2πε 0 ( ρ + z ' ) 2πε 0 ρ ⎜ ⎝ ρ + z'
z'
2
⎞ ⎟ ⎟ ⎠0
L/2
G = eρ
ρl 0 4πε 0 ρ
ρ + ( L / 2) 2
种介质分界面上,设该分界面为无限大平面。试求:(1)导体球的电容;(2) 总的 静电能量。
ε1
ε2
a
q
o
图题 3.9 解:(1) 由于电场沿径向分布,根据边界条件,在两种介质的分界面上 E1t = E2t , 故有 E1 = E2 = E 。由于 D1 = ε1E1 、 D2 = ε 2 E2 ,所以 D1 ≠ D2 。由高斯定理,得
在 x = 0 处, ϕ = 0 ,故 B = 0 在 x = d 处, ϕ = U 0 ,故 U 0 = − 所以 ϕ = −
ρ0 d 3 U ρd + Ad ,得 A = 0 + 0 d 6ε 0 6ε 0 d
ρ0 x3 6ε 0 d
⎛U ρ d⎞ +⎜ 0 + 0 ⎟x ⎝ d 6ε 0 ⎠
G G ∂ϕ G ⎡ ρ 0 x 2 ⎛ U 0 ρ 0 d ⎞ ⎤ E = −∇ϕ = −ex = ex ⎢ −⎜ + ⎟⎥ ∂x ⎣ 2ε 0 d ⎝ d 6ε 0 ⎠ ⎦
= −4e− 2 sin x cos x + 2e − 2 sin x cos x ≠ 0 所以函数 e− 2 sin x cos x 不是 y > 0 空间中的电位解;
∂2 ∂2 ∂2 (sin x sin y sin z ) + (sin x sin y sin z ) + (sin x sin y sin z ) ∂x 2 ∂y 2 ∂z 2 = −3sin x sin y sin z ≠ 0 所以函数 sin x sin y sin z 不是 y > 0 空间中的电位解。 3.5 一半径为 R0 的介质球, 介电常数为 ε = ε rε 0 , 其内均匀地分布着体密度为 ρ 的 2ε r + 1 ρ 2 R0 。 自由电荷,试证明该介质球中心点的电位为 2ε r 3ε 0 G D ⋅ d S = q ,得 解:由高斯定理 v ∫S