高中数学必修3海伦公式的证明方法
海伦公式的证明过程
![海伦公式的证明过程](https://img.taocdn.com/s3/m/be844967abea998fcc22bcd126fff705cc175ccc.png)
海伦公式的证明过程海伦公式,也称为海伦-柯利公式,是用于计算三角形面积的一种公式,它由古希腊数学家海伦提出,在西元一世纪的《几何原本》中首次被描述。
假设有一个三角形,它的三边长度分别为a、b、c,那么根据海伦公式,它的面积S可以表示为:S=√[s(s-a)(s-b)(s-c)]其中s是半周长,可以计算为三边长度之和的一半,即:s=(a+b+c)/2现在我们来证明一下海伦公式。
假设有一个三角形ABC,我们可以假设它的顶点A位于坐标原点,B 位于x轴上,C位于x轴上的正半轴上方。
首先,我们可以计算出各个顶点的坐标分别为A(0,0),B(b,0),C(c*cosθ,c*sinθ),其中θ是角C的大小。
接下来,我们可以计算出边AB和AC的长度,分别为:AB=√[(b-0)^2+(0-0)^2]=bAC = √[(c*cosθ-0)^2 + (c*sinθ-0)^2] = c接着,我们可以计算出角ABC的大小,可以利用余弦定理来计算:cos(ABC) = [(b-0)^2 + (0-0)^2 + c^2 - (c*cosθ-0)^2 -(c*sinθ-0)^2]/(2*b*c) = (b^2 + c^2 - 2bc*cosθ)/(2*b*c)进一步简化后可以得到:cos(ABC) = (b^2 + c^2 - 2bc*cosθ)/(2*b*c)然后,我们可以应用正弦定理来计算角ABC的正弦值:sin(ABC) = √[1 - cos^2(ABC)]再进一步简化后可以得到:sin(ABC) = √[1 - (b^2 + c^2 - 2bc*cosθ)^2/(4*b^2*c^2)]接下来,我们可以计算三角形的面积,利用面积公式S =(1/2)*AB*AC*sin(ABC):S = (1/2)*b*c*sin(ABC) = (1/2)*b*c*√[1 - (b^2 + c^2 -2bc*cosθ)^2/(4*b^2*c^2)]然后,我们将sin(ABC)的表达式进行进一步简化:sin(ABC) = √[1 - (b^2 + c^2 - 2bc*cosθ)^2/(4*b^2*c^2)]= √[(4*b^2*c^2 - (b^2 + c^2 - 2bc*cosθ)^2)/(4*b^2*c^2)] = √[(4*b^2*c^2 - (b^4 + c^4 + (2bc*cosθ)^2 - 2*b^2*c^2 + 2bc*cosθ*(b^2 + c^2))/(4*b^2*c^2)]= √[(4*b^2*c^2 - b^4 - c^4 - (2bc*cosθ)^2 + 2*b^2*c^2 - 2bc*b^2 - 2bc*c^2 + 2(b^3*c*cosθ + bc^3*cosθ))/(4*b^2*c^2)] = √[(2b^2*c^2 + 2*c^2*b^2 - b^4 - c^4 - (2bc*cosθ)^2 +2bc*(b^3*cosθ + bc^2*cosθ))/(4*b^2*c^2)]= √[(4*b^4*c^2 + 4*b^2*c^4 - 2b^6 - 2*c^6 -4b^2*c^2*(cosθ)^2 + 2bc*(b^3*cosθ + bc^2*cosθ))/(4*b^2*c^2)] = √[(4b^4*c^2 + 4*b^2*c^4 - 2b^6 - 2c^6 -4b^2*c^2*(cosθ)^2 + 2b^4*c*cosθ + 2bc^3*cosθ)/(4*b^2*c^2)] = √[2b^2*c^2 + 2bcosθ*(b^4 + c^4 - 2b^2*c^2 + bc^2)]/(2bc)最后,我们可以将sin(ABC)的表达式代入到三角形面积公式中,得到:S = (1/2)*b*c*sin(ABC) = (1/2)*b*c*√[2b^2*c^2 +2bcosθ*(b^4 + c^4 - 2b^2*c^2 + bc^2)]/(2bc)= √[b^2*c^2 - (b^4 + c^4 - 2b^2*c^2 + bc^2)cosθ]/2= √[(b^2*c^2 + b^4 + c^4 - 2b^2*c^2 + bc^2)cosθ]/2= √[(b^4 + c^4 - 2b^2*c^2)cosθ + b^2*c^2]/2最后,我们可以用半周长s来替代上式中的cosθ,因为根据三角恒等式有cosθ = (b^2 + c^2 - a^2)/(2bc),其中a是边BC的长度,即:b^2 + c^2 - a^2 = 2bc*cosθ带入后可得:S = √[(b^4 + c^4 - 2b^2*c^2)cosθ + b^2*c^2]/2= √[(b^4 + c^4 - 2b^2*c^2)*(b^2 + c^2 - a^2)/(2bc) +b^2*c^2]/2=√[(b^2+c^2+a^2)(-b^2+c^2+a^2)(b^2-c^2+a^2)(a^2+b^2+c^2)]/4b*c所以,我们成功地证明了海伦公式。
海伦公式证明过程
![海伦公式证明过程](https://img.taocdn.com/s3/m/bf8b210166ec102de2bd960590c69ec3d4bbdb5a.png)
海伦公式证明过程海伦公式是三角形中的唯一能精确计算面积的方法,它表明了三角形的面积与三条边长之积的关系:面积S = √[s(s-a)(s-b)(s-c)],其中s=(a+b+c)/2。
要证明海伦公式,首先需要证明三角形的底面积与三角形的边长之积的关系:1. 使用勾股定理,假设三角形有三条边a、b、c,则a2+b2=c2。
2. 以三角形的底面积T为中心,在三角形中画出三个半圆,每个半圆的半径分别为a、b、c,这样可以得到三个圆,每个圆的面积分别为Πa2,Πb2,Πc2。
3. 将三个圆的面积相加,即得到了三角形的底面积T:T=Πa2+Πb2+Πc2。
4. 由于三角形的底面积T=Πa2+Πb2+Πc2,则可以把T表示为三角形的边长之积的形式:T=(a*b*c)/π。
5. 现在,已经证明了三角形的底面积T与三角形的边长之积的关系。
6. 按照正确的构造法,绘制出围绕三角形的极角形(三角形的内心角被划分成三等份),其面积为三角形的面积(S)。
7. 关于极角形面积的几何公式为:S=ρ2(α+β+γ-π)/2,其中ρ为外接圆的半径,α+β+γ是三角形三个内角的和。
8. 把ρ表示为半周长s的1/2,即ρ=s/2,则极角形面积可表示为:S= (s/2)2(α+β+γ-π)/2。
9. 将极角形面积S=(s/2)2(α+β+γ-π)/2式子代入开始定义的三角形底面积T=(a*b*c)/π,可以得到:S= (s/2)2(α+β+γ-π)/2=(a*b*c)/π10. 将上面的式子扩充:S= (s/2)2(α+β+γ-π)/2=(a*b*c)/π=((a+b+c)/2)2(α+β+γ-π)/211. 化简得:S=√[s(s-a)(s-b)(s-c)],即得到海伦公式。
由以上的证明过程可以看出,海伦公式是三角形中面积与三角形的边长之积的关系的准确表达。
海伦公式的几种证明
![海伦公式的几种证明](https://img.taocdn.com/s3/m/4d4413044028915f814dc240.png)
海伦公式的几种另证及其推广 关于三角形的面积计算公式在解题中主要应用的有:设△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,h a 为a 边上的高,R 、r 分别为△ABC 外接圆、内切圆的半径,p =21(a+b+c),则 S △ABC =21ah a =21ab×sinC = r p= 2R 2sinAsinBsinC =R abc 4 =))()((c p b p a p p ---其中,S △ABC =))()((c p b p a p p ---就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。
海伦公式在解题中有十分重要的应用。
一、 海伦公式的变形S=))()((c p b p a p p ---=))()()((41a cb bc a c b a c b a -+-+-+++ ① =])(][)[(412222b a c c b a ---+ ② =)]2()[2(41222222ab c b a ab c b a --+-+-+ ③ =222222)(441c b a b a -+- ④ =44422222222241c b a c b c a b a ---++ ⑤二、 海伦公式的证明证一 勾股定理分析:先从三角形最基本的计算公式S △ABC =21ah a 入手,运用勾股定理推导出海伦公式。
证明:如图h a ⊥BC ,根据勾股定理,得:⎪⎩⎪⎨⎧-=-=-=222222x c h y b h y a x a a x =a b c a 2222-+ y =a b c a 2222+- h a =22y b -=2222224)(a b c a b +--=a b c a b a 2)(4222222+-- ∴ S △ABC =21ah a =21a×ab c a b a 2)(4222222+--=222222)(441c b a b a -+- 此时S △ABC 为变形④,故得证。
海伦公式的证明过程
![海伦公式的证明过程](https://img.taocdn.com/s3/m/0cc65bfec0c708a1284ac850ad02de80d4d80698.png)
海伦公式的证明过程海伦公式是一个有关三角形面积的公式,它的表达式为:S = √p(p - a)(p - b)(p - c)其中,S是三角形的面积,a、b、c是三角形的三条边,p是三角形的半周长,即p = (a + b + c) / 2。
证明过程如下:1.将三角形的三条边分别记作a、b、c,并设三角形的面积为S。
2.将三角形的一条边作为底,另一条边作为高,求出三角形的面积S1。
3.使用勾股定理求出三角形的斜边c的长度,即c = √(a^2 + b^2)。
4.将三角形的斜边c作为底,高设为h,求出三角形的面积S2。
5.将S1和S2相加,得到S = S1 + S2。
6.将S1和S2的表达式带入得到的S = S1 + S2,得到S = (1/2)ab + (1/2)ch。
7.根据勾股定理,h = √(c^2 - a^2),将h的表达式带入S = (1/2)ab + (1/2)ch,得到S =(1/2)ab + (1/2)c√(c^2 - a^2)。
8.将c^2 - a^2的表达式展开,得到S = (1/2)ab + (1/2)c√(c + a)(c - a)。
9.将(c + a)和(c - a)合并得到2c,将2c带入S = (1/2)ab + (1/2)c√(c + a)(c - a),得到S= (1/2)ab + (1/2)c√(2c)(c - a)10.设p = (a + b + c) / 2,将p带入S = (1/2)ab + (1/2)c√(2c)(c - a),得到S = (1/2)ab +(1/2)c√(2p - a)(p - a)。
11.将(2p - a)和(p - a)合并得到p,将p带入S = (1/2)ab + (1/2)c√(2p - a)(p - a),得到S= (1/2)ab + (1/2)cp。
12.将S = (1/2)ab + (1/2)cp和S = (1/2)ac + (1/2)bp相加,得到S = (1/2)(ab + ac + bc)。
三角形海伦面积公式证明
![三角形海伦面积公式证明](https://img.taocdn.com/s3/m/8f616f59fe00bed5b9f3f90f76c66137ee064fac.png)
三角形海伦面积公式证明
海伦公式是用来计算三角形面积的公式,其表达式为:
S = √[s(s-a)(s-b)(s-c)]
其中,a、b、c分别为三角形的边长,s为三角形的半周长,表达式为:
s = (a + b + c)/2
要证明海伦公式,可以利用向量法、三角函数法或者海伦公式自身等多种方法进行证明。
一种常用的证明方法是使用三角函数法。
首先根据三角形的顶点坐标,可以利用向量表示三角形的各个边,然后利用向量的叉乘运算得到三角形的面积表达式。
接着利用三角函数的相关公式,将面积表达式转化为海伦公式的形式,最终得到S = √[s(s-a)(s-b)(s-c)]的形式。
海伦公式的证明过程比较复杂,需要较强的数学推导能力和几何
直观性。
如果对数学知识掌握不够深入,可以选择其他方法进行证明,或者直接应用海伦公式进行计算。
海伦公式几种证明方法
![海伦公式几种证明方法](https://img.taocdn.com/s3/m/c7fc7c68cec789eb172ded630b1c59eef9c79a6e.png)
海伦公式几种证明方法海伦公式是用于计算三角形面积的一种公式,公式为:面积S=√(s(s-a)(s-b)(s-c))其中,a、b、c是三角形的三边长度,s是半周长,即s=(a+b+c)/2以下是几种证明海伦公式的方法。
1.利用矢量运算法证明海伦公式:首先,将三角形的三个顶点用向量表示,分别为A、B、C。
然后,利用向量的性质计算向量AB、BC和CA的模长,即三边的长度。
接下来,计算向量AB和BC的叉乘,得到一个新的向量P。
最后,利用向量的模长和叉乘的结果,计算三角形的面积S,即S=1/2*,P。
2.利用三角形的高进行证明:设h_a、h_b和h_c分别为三角形的三条高,分别与边a、b和c对应。
根据三角形的面积公式S=1/2*a*h_a,我们可以得到以下三个等式:S=1/2*a*h_aS=1/2*b*h_bS=1/2*c*h_c将这三个等式相加,可以得到S=1/2*(a*h_a+b*h_b+c*h_c)。
而另一方面,根据海伦公式的定义,s=(a+b+c)/2、将之前得到的三个等式代入,可以得到S=√(s(s-a)(s-b)(s-c))。
3.利用三角形内切圆进行证明:内切圆是与三角形的三条边都相切的圆。
设内切圆的半径为r。
根据圆的性质,可以得到以下三个等式:S=1/2*a*rS=1/2*b*rS=1/2*c*r将这三个等式相加,可以得到S=1/2*(a*r+b*r+c*r)。
而另一方面,根据海伦公式的定义,s=(a+b+c)/2、将之前得到的三个等式代入,可以得到S=√(s(s-a)(s-b)(s-c))。
以上是三种常见的证明海伦公式的方法。
这些证明方法均可以通过基本的几何性质和定理进行推导,从而得到海伦公式。
证明海伦公式(二)
![证明海伦公式(二)](https://img.taocdn.com/s3/m/26871452a88271fe910ef12d2af90242a895ab99.png)
证明海伦公式(二)证明海伦公式什么是海伦公式?海伦公式是用来计算三角形面积的公式,其公式表达式为:面积 = sqrt(s * (s - a) * (s - b) * (s - c))其中,s 为半周长,a、b、c为三角形的三边。
列举相关公式在证明海伦公式的过程中,需要用到以下几个相关公式:1. 正弦定理正弦定理是描述三角形内角和三条边之间关系的公式,其公式表达式为:a / sin(A) =b / sin(B) =c / sin(C)其中,a、b、c为三角形的三边,A、B、C为对应的内角。
2. 周长公式周长公式是计算三角形周长的公式,其公式表达式为:周长 = a + b + c其中,a、b、c为三角形的三边。
3. 半周长公式半周长公式是计算三角形半周长的公式,其公式表达式为:s = (a + b + c) / 2其中,a、b、c为三角形的三边,s为半周长。
证明海伦公式海伦公式的证明可以分为以下几个步骤:1.根据正弦定理,将海伦公式中的三边 a、b、c 表达为半周长 s 和正弦函数的比值形式。
2.将 a、b、c 代入海伦公式,并进行展开和化简。
3.利用三角恒等式,将海伦公式中的正弦函数的比值形式展开,然后进行化简。
4.化简后得到的表达式将包含 (s - a)、(s - b)、(s- c) 的乘积。
5.利用周长公式将 s - a、s - b、s - c 替换为 b +c - a、c + a - b、a + b - c。
6.继续展开和化简,最终得到海伦公式的表达式。
举例解释说明假设有一个三角形,其中三边分别为 a = 3,b = 4,c = 5。
1.计算半周长:s = (3 + 4 + 5) / 2 = 62.利用海伦公式计算面积:面积 = sqrt(6 * (6 - 3) * (6 - 4) * (6 -5)) = sqrt(6 * 3 * 2 * 1) = sqrt(36) = 6因此,该三角形的面积为 6。
海伦公式的证明方法
![海伦公式的证明方法](https://img.taocdn.com/s3/m/61ba430e0a4c2e3f5727a5e9856a561252d3218f.png)
海伦公式的证明方法海伦公式的证明介绍海伦公式是解决三角形面积的一个重要公式,可以通过三个边长来计算三角形的面积。
本文将详细介绍海伦公式的证明过程,并列举各种证明方法。
方法一:利用三角形的高度1.假设三角形的边长分别为a,b,c。
2.设三角形的高分别为h1,h2,h3,分别由边a,b,c所对应的高。
3.利用三角形的高度关系,我们可以得到公式h1 = 2 * S / a,h2= 2 * S / b,h3 = 2 * S / c,其中S为三角形的面积。
4.将上述公式带入等式,得到 h1 + h2 + h3 = 2 * S / a + 2 *S / b + 2 * S / c = 2S(a + b + c) / abc 由此可得 S =(abc) / (2(a + b + c)),即为海伦公式。
方法二:利用三角形的面积公式1.根据三角形的面积公式S = sqrt(s(s-a)(s-b)*(s-c)),其中s为三角形的半周长,即s = (a + b + c)/2。
2.可以将该面积公式带入等式,并进行简化运算,推导得到海伦公式。
方法三:利用余弦定理1.根据余弦定理 c^2 = a^2 + b^2 - 2ab*cos(C),其中C为三角形的夹角。
2.将cos(C)用海伦公式中的三个边长带入,得到 cos(C) = (a^2 +b^2 - c^2) / 2ab。
3.将cos(C)带入三角形的面积公式 S = 1/2 * a * b * sin(C),并利用sin^2(C) = 1 - cos^2(C)进行变形,可得 S =sqrt(s(s-a)(s-b)*(s-c)),即为海伦公式。
方法四:利用向量法1.假设三角形的顶点分别为A,B,C。
2.对边向量AB和AC作向量叉乘得到一个面积向量,其模长即为三角形的面积的2倍。
3.根据向量叉乘的性质,可以得到该面积向量的模长为|AB ×AC| = * |AB| * |AC| * sin(∠BAC)。
海伦公式及其证明方法
![海伦公式及其证明方法](https://img.taocdn.com/s3/m/d4b9fc6a580102020740be1e650e52ea5518ce92.png)
海伦公式及其证明方法海伦公式是一个三角形的面积与边长之间的关系公式,它由古希腊数学家海伦提出,广泛应用于各种几何问题的求解中。
本文将介绍海伦公式及其证明方法。
首先,我们来看一下海伦公式的表达式:假设有一个三角形,其三边长度分别为a、b、c,海伦公式可以表示为:s=(a+b+c)/2其中s为半周长,即三边长度之和除以2三角形的面积可以用海伦公式表示为:面积=√(s*(s-a)*(s-b)*(s-c))接下来,我们将通过一个简单的证明来验证海伦公式。
证明:假设有一个三角形ABC,边长分别为a、b、c,半周长为s,高为h。
我们知道,三角形的面积可以通过底边和高的乘积的一半来计算,即:面积=1/2*b*h三角形的高可以由海伦公式推导出来,可以用边长表示如下:h=2*(面积/b)将面积代入上式,我们可以得到:h=2*(1/2*b*h/b)=h这是一个平凡的等式,表明三角形的高与边长之间是相等的。
现在我们将这个等式代入到另一个三角形ABC的面积计算公式中:面积=1/2*a*h将h代入,我们得到:面积=1/2*a*(2*(1/2*a*h/a))=a*(1/2*h)同样的,我们可以用边长b代入面积公式:面积=b*(1/2*h)将两个表达式相加面积=a*(1/2*h)+b*(1/2*h)=(1/2*h)*(a+b)=1/2*(a+b+c)*(1/2*h)这里我们可以将a+b+c除以2进行化简,得到:面积=(a+b+c)/2*1/2*h=s*1/2*h=s*r其中r为三角形的内切圆半径。
综上所述,我们可以得出海伦公式:面积=√(s*(s-a)*(s-b)*(s-c))海伦公式的证明就完成了。
它提供了一种方便快捷的方法,通过已知三边长,我们可以计算出任意三角形的面积。
除了上述的几何证明方法外,还有数学分析的证明方法来验证海伦公式,但这种方法相对较为复杂。
这里我们不做详细展开,以保持文章的简洁性。
总结:海伦公式是一个用于计算三角形面积的公式,它通过三角形的边长来计算。
高中数学必修3海伦公式的证明方法
![高中数学必修3海伦公式的证明方法](https://img.taocdn.com/s3/m/df5a0a9485868762caaedd3383c4bb4cf7ecb711.png)
高中数学必修3海伦公式的证明方法数学是高中必修的一个课程,必修3中关于海伦公式的证明方法具体有哪些呢?下面是店铺给大家带来的高中数学必修3海伦公式的证明方法,希望对你有帮助。
海伦公式的证明⑴与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 [1]cosC = (a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]海伦公式的证明⑵中国宋代的数学家秦九韶也提出了“三斜求积术”。
它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。
所以他们想到了三角形的三条边。
如果这样做求三角形的面积也就方便多了。
但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。
用两种方法证明海伦公式
![用两种方法证明海伦公式](https://img.taocdn.com/s3/m/a5114ff2ad51f01dc281f1a6.png)
求三角形面积的海伦公式
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。
它是利用三角形的三条边的边长直接求三角形面积的公式。
表达式为:,它的特点是形式漂亮,便于记忆。
相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。
中国秦九韶也得出了类似的公式,称三斜求积术。
若 ABC ∆ 的三边长分别为 a ,b ,c ,则
ABC S ∆==
其中 p 是 ABC ∆ 的半周长,即 ()2p a b c =++。
(证明一)设边 c 上的高为 h 。
由于 AD DB c +=,而在 ADC ∆ 和 DBC ∆ 中,根据勾股定理有
222
222AD AC CD AD DB CB CD DB ⎧=-⇒=⎪⎨=-⇒
=⎪⎩
A
B C
a
b
c
h
D
于是有
,c =
即
c =
两边平方,化简得
222.2b c a +=-
两边平方,化简得
h =
1122ABC
h S c ∆== 仔细化简一下,得
ABC S ∆=
===
(证明二)
11
sin 22ABC S ab C ∆=
= (1)
在 ABC ∆ 中,由余弦定理得
222cos .2a b c C ab
+-=
代入 (1) 式,化简得
111sin 222ABC
S ab C ∆====
=
化简得
ABC S ∆=。
海伦公式的证明及两个推论
![海伦公式的证明及两个推论](https://img.taocdn.com/s3/m/be675f1fb90d6c85ec3ac6a1.png)
海伦公式的证明及两个推论作者:张浩来源:《数学教学通讯·高中版》2017年第09期[摘要] 高中数学教师在教学中容易轻视教材,把资料书作为教学的核心素材,这种做法明显欠妥. 笔者运用教材中“海伦和秦九昭”的阅读内容,激发学生的探知欲望,提高学生数学抽象、逻辑推理以及数学运算能力.[关键词] 海伦公式;秦九昭公式;三角形面积笔者所在地区使用的高中数学教材为人教A版,在必修五教材的第一章内容中有关于“海伦和秦九昭”的阅读与思考内容. 既然是阅读与思考,往往未受到教师和学生的重视. 但是,此部分内容对于学生了解数学史、提高数学素养都是极好的材料,甚至也可以丰富学生解题思路和技巧.海伦—秦九昭公式在解三角形的问题中,一个比较困难的问题是如何由三角形的三边a,b,c直接求出三角形的面积. 据说这个问题最早是由古希腊数学家阿基米德解决的,他得到公式S= ,其中p= (a+b+c). 但是现在人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式. 其实,我国南宋时期的数学泰斗秦九韶编撰的《数书九章》一书的卷五中曾记载过“三斜求积术”,秦九韶的算法相当于:S= ,其中a≥b≥c. 它虽然与海伦公式形式上不一样,但两者是完全等价的,实质是一样的. 故海伦公式也称之为“海伦—秦九韶公式”.海伦公式的证明笔者以思考题的形式要求学生阅读此部分内容,并用自己的方法证明海伦公式. 学生的证明方法主要有以下两种.方法1:△ABC的三边长分别为a,b,c,则有三角形的面积公式可得S= absinC= ab ,再由余弦定理可得S= ab化简得S= ,令p= (a+b+c),于是有S= ,海伦公式得证.方法2:如图1,△ABC的三边长分别为a,b,c,AD为边BC的高. 又因为BD=ccosB= ,所以,AD2=AB2-BD2=c2- .由于S= ·BC·AD= a· = ,可由平方差公式化简可得S= ·,令p= (a+b+c),于是有S= ,海伦公式得证.点评:学生以上的两种种证明方法思路简单,利用所学求三角形面积的基本知识,以及余弦定理,将角度转化为边长,这样可以使得最后推证的公式中无角度,只存在边长,化简过程较复杂,需要学生细致、耐心的计算,有助于培养学生的转化思想、计算能力和逻辑推理能力.第二种证明方法需要说明:图1中的高AD在三角形的内部,根据三角形知识可知,若是过钝角三角形中的锐角顶点作对边的高,则此时高AD则会在三角形的外部(如图2),那么此时BD=ccos(π-B)= ,也可推证出海伦公式. 也可理解为:即使△ABC为非锐角三角形,过最大内角作对边的高,那么此时高一定在三角形内部,按照此种证明方法海伦公式也可得证.海伦公式的两个推论推论1:已知三角形的三边长为a,b,c,设p= (a+b+c),可得三角形的内切圆半径r= .证明:如图3,圆O为△ABC的内切圆,内切圆半径为r,则有S△ABC=S△AOB+S△BOC+S△AOC= cr+ ar+ br.由海伦公式可得S△ABC= = (a+b+c)r=pr,证得r= .推论2:设边AB,BC,CA上的高分别记为hc,ha,hb,可得ha= ,hb= ·,hc= .证明:因为S△ABC= ah = ,可证得ha= ,同理可证推论2成立.。
高一必修数学知识:海伦公式的证明方法
![高一必修数学知识:海伦公式的证明方法](https://img.taocdn.com/s3/m/c527a8f9fad6195f302ba6b2.png)
S=1/2*ab*sinC
=1/2*ab*(1-cos^2 C)
=1/2*ab*[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
宋以后,毂下所设小学馆和武学堂中的西席称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科西席仍沿用“教习”一称。本来“教谕”在明清时还有学官一意,即主管县一级的教诲生员。而相应府和州掌管束育生员者则谓“老师”和“学正”。“老师”“学正”和“教谕”的帮手一律称“训导”。于民间,特殊是汉代以后,敷衍在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称西席为“院长、西席、讲席”等。=[p(p-a)(p-b)(p-c)]
=1/4*[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
高一必修数学知识:海伦公式的证明方法
在高中温习阶段,大众一定要多练习题,掌握考题的纪律,掌握常考的知识,这样有助于进步大众的分数。编辑老师为大众整理了2019高一必修数学知识,供大众参考。
海伦公式的证明(完整版)
![海伦公式的证明(完整版)](https://img.taocdn.com/s3/m/23154a71e518964bce847c36.png)
海伦公式的证明海伦公式的证明第一篇:海伦公式的证明与海伦在他的著作 metria ^2-b ^2]tana2tanb2tan2=ptana2tanb2tan2=r∴p^2r^2tana2tanb2tan2=pr^3∴s^2=p^2r^2=∴s=√p第四篇:求三角形面积——海伦公式证明:海伦公式:若δab的三边长为a、b、,则sδab=√((a+b+)×(-a+b+)×(a-b+)×(a+b -))42啊,多此一举!)证明:设边上的高为 h,则有√+√=√=-√两边平方,化简得:2√=b^2+^2-a^2两边平方,化简得:h=√^2)sδab=h2=√^2)2仔细化简一下,得:sδab=√((a+b+)×(-a+b+)×(a-b+)×(a+b -))4用三角函数证明!证明:sδab=absin2=ab√^2)2————(1)∵os=∴代入(1)式,(仔细)化简得:sδab=√((a+b+)×(-a+b+)×(a-b+)×(a+b -))4第五篇:公式及证明初中数学几何定理1。
同角(或等角)的余角相等。
2。
对顶角相等。
3。
三角形的一个外角等于和它不相邻的两个内角之和。
4。
在同一平面内垂直于同一条直线的两条直线是平行线。
5。
同位角相等,两直线平行。
6。
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。
7。
直角三角形中,斜边上的中线等于斜边的一半。
8。
在角平分线上的点到这个角的两边距离相等。
及其逆定理。
9。
夹在两条平行线间的平行线段相等。
夹在两条平行线间的垂线段相等。
10。
一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
11。
有三个角是直角的四边形、对角线相等的平行四边形是矩形。
12。
菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。
13。
正方形的四个角都是直角,四条边相等。
2021高一必修数学知识:海伦公式的证明方法
![2021高一必修数学知识:海伦公式的证明方法](https://img.taocdn.com/s3/m/10aedac2647d27284a735115.png)
2021高一必修数学知识:海伦公式的证
明方法
在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提高大家的分数。
编辑老师为大家整理了2021高一必修数学知识,供大家参考。
证明⑴
与海伦在他的著作Metrica(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为[1]
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*radic;(1-cos^2 C)
=1/2*ab*radic;[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*radic;[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*radic;[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*radic;[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*radic;[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=radic;[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=radic;[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=radic;[p(p-a)(p-b)(p-c)]
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了2021高一必修数学知识,希望大家喜欢。
更多相关信息请继续关注高一数学知识点栏目!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修3海伦公式的证明方法
海伦公式的证明⑴
与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。
设三角形的三边a、b、c 的对角分别为A、B、C,则余弦定理为[1]
cosC=(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-
c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
海伦公式的证明⑵
中国宋代的数学家秦九韶也提出了“三斜求积术”。
它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角
形,要找出它来并非易事。
所以他们想到了三角形的三条边。
如果
这样做求三角形的面积也就方便多了。
但是怎样根据三边的长度来
求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜
求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,
送到上面得到的那个。
相减后余数被4除,所得的数作为“实”,
作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px2=q,p为“隅”,q为“实”。
以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2}
当P=1时,△2=q,
△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2}
因式分解得
△^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2]
=1/4[(c+a)^2-b^2][b^2-(c-a)^2]
=1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)
=1/4[2p(2p-2a)(2p-2b)(2p-2c)]
=p(p-a)(p-b)(p-c)
由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2}.其中c>b>a.
根据海伦公式,我们可以将其继续推广至四边形的面积运算。
如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形=根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√3
海伦公式的证明⑶
在△ABC中∠A、∠B、∠C对应边a、b、c
O为其内切圆圆心,r为其内切圆半径,p为其半周长
有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1
r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r
∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2
∴r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)
=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2
=ptanA/2tanB/2tanC/2
=r
∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)
=p(p-a)(p-b)(p-c)
∴S=√p(p-a)(p-b)(p-c)
海伦公式的证明⑷
通过使用正弦定理和余弦定理的结合证明(具体可以参考证明方法1)。