数列常见题型总结经典(超级经典)

合集下载

数列全部题型归纳(非常全面-经典!)(新)

数列全部题型归纳(非常全面-经典!)(新)

数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a34)1a +求数列a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 1a =(4(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(1(2(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展21(1 (2)23已知{n a 是首项为1的正项数列,并且11n n n n ++,则它的通项公式n 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么7 数列{}n a 满足()11n n p S a -=-,其中p 为正实数,12n S a a =++…()*n a n N +∈(1)证明:{}n a 为等比数列,并求出它的通项;(2)数列{}n b 中,11b =,1n n n b b a +=+,求{}n b 的通项公式数列求最值的方法(一)化为函数方法转化为耐克函数(1)如果数列{}n a 的通项公式是n a =24n n n ++,此数列的哪一项最小?并求其最小值(2)如果数列{}n a 的通项公式是n a =2156nn +,此数列的哪一项最大?并求其最大值转化为分式函数(3(4如果数列(1)判断数列的增减(2)若对于一切大于1的自然数n ,不等式12log (1)123n a a a >++恒成立求a 的取值范围?(三)计算器结合复杂单调性,求最值的方法(1)恒成立,(2)m a ≤恒(3*N ,有n m a a ≤(1) 求n a 的通项公式(2) 求n S 的通项公式(3) 说说n 为何值时,n S 取得最小值?数列的求和(一)倒序相加法:(1(2) S(二) 求和:12(三) 公式求和法(1)数列{}n a 中,148,2a a ==且()*2120n n n a a a n N ++-+=∈,1234n S a a a a =++++…n a +,求n S .(2(3(1(2+++…(3) )(,32114321132112111*N n n ∈+++++++++++++++(4(四). 1. (1)112(2) 1,3+13,32+132,……,3n +13n2.奇偶分组(3)已知()()654n nn nan⎧-⎪=⎨⎪⎩为偶数为奇数求数列{}n a的前n项和.3(4)-4.(5(6数列的极限5个“三”三个定义极限(1)∞→n lim C =C (C 为常数);(2)∞→n lim n 1=0;(3)∞→n lim q n =0(|q |<1)n n n (1n lim →n(2)n(3若31n a →∞++三个待定形1)00型比较 2213lim 12n nn n n→∞++和2213lim 14n n n n n →∞++2)∞∞型 比较223)∞→n limn →∞n →∞S =例1(1)求证数列{}n a 不是等比数列,并求该数列的通项公式;(2)求数列{}n a 的前n 项和n S ;(3)设数列{}n a 的前n 2项和为n S 2,若n n n a S ka 222)1(3•≤-对任意*∈N n 恒成立,求k 的最小值.例2定义1x (1(2(3)设函数x x x f 4)(2+-=,对(1)中的数列}{n a ,是否存在实数λ,使得当λ≤x 时,1)(+≤n a x f n 对任意*N n ∈恒成立?若存在,求出最大的实数λ;若不存在,说明理由.例3设满足条件)(2:*12N n a a a P n n n ∈≥+++的数列组成的集合为A ,而满足条件)(2:*12N n a a a Q n n n ∈<+++的数列组成的集合为B .(1)判断数列n a a n n 21:}{-=和数列n n n b b 21:}{-=是否为集合A 或B 中的元素?(2)已知数列3)(k n a n -=,研究}{n a 是否为集合A 或B 中的元素;若是,求出实数k 的取值范围;若不是,请说明理由.(3)已知*231(1)log (,)i n a n i Z n N =-⋅∈∈,若}{n a 为集合B 中的元素,求满足不等式60|2|<-n a n 的n 的值组成的集合.例类数列{2=n x 时}{n x (1}{n a 是周期为6(2① 若0>n a ,试判断数列}{n a 是否为周期数列,并说明理由;② 若01<+n n a a ,试判断数列}{n a 是否为周期数列,并说明理由;例5已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n N ∈),将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈中的元素从小到大依次排列,构成数列123,,,,,n c c c c 。

数列常见题型总结经典

数列常见题型总结经典

高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。

答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。

4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)

高考数列题型总结(优秀范文五篇)第一篇:高考数列题型总结数列1.2.3.4.5.6.坐标系与参数方程 1.2.34..5.6.(1)(2)第二篇:数列综合题型总结数列求和1.(分组求和)(x-2)+(x2-2)+…+(xn-2)2.(裂相求和)++Λ+1⨯44⨯7(3n-2)(3n+1)3.(错位相减)135+2+3+222+2n-12n1⨯2+2⨯22+3⨯23+Λ+n⨯2n4.(倒写相加)1219984x)+f()+Λ+f()=x 求值设f(x),求f(1999199919994+25.(放缩法)求证:1+数列求通项6.(Sn与an的关系求通项)正数数列{an},2Sn=an+1,求数列{an}的通项公式。

7.(递推公式变形求通项)已知数列{an },满足,a1=1,8.累乘法an+1=5an求{an }的通项公式 5+an11++2232+1<2n2数列{an}中,a1=122,前n项的和Sn=nan,求an+1.2222a=S-S=na-(n-1)a⇒(n-1)a=(n-1)an-1 nnn-1nn-1n解:⇒∴∴an=ann-1=an-1n+1,anan-1a2n-1n-2111⋅Λ⋅a1=⋅Λ⨯=an-1an-2a1n+1n32n(n+1)an+1=1 (n+1)(n+2)9累加法第三篇:数列题型及解题方法归纳总结文德教育知识框架⎧列⎧数列的分类⎪数⎪⎪⎨数列的通项公式←函数⎪的概念角度理解⎪⎪⎩数列的递推关系⎪⎪⎧⎧等差数列的定义an-an-1=d(n≥2)⎪⎪⎪⎪⎪等差数列的通项公式an=a1+(n-1)d⎪⎪⎪等差数列⎪⎨n⎪⎪⎪等差数列的求和公式Sn=2(a1+an)=na1+n(n-1)d⎪⎪⎪⎪⎪2⎪⎩等差数列的性质an+am=ap+aq(m+n=⎪⎪p+q)⎪两个基⎪⎧等比数列的定义an=q(n≥⎪本数列⎨⎪⎪a2)n-1⎪⎪⎪⎪⎪⎪等比数列的通项公式an-1⎪n=a1q数列⎪⎪等比数列⎨⎨⎧a1-anq=aqn1(1-)⎪⎪⎪等比数列的求和公式S(q≠1)n=⎪⎨1-q1-q⎪⎪⎪⎪⎪⎪⎪⎩na1(q=1)⎪⎪⎪⎩等比数列的性质anam=apaq(m+n=p+q)⎪⎩⎪⎧公式法⎪⎪分组求和⎪⎪⎪⎪错位相减求和⎪数列⎪⎪求和⎨裂项求和⎪⎪倒序相加求和⎪⎪⎪⎪累加累积⎪⎪⎩归纳猜想证明⎪⎪⎪数列的应用⎧分期付款⎨⎩⎩其他掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

数列的19种经典题型

数列的19种经典题型

数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

(完整)(经典)高中数学最全数列总结及题型精选,推荐文档

(完整)(经典)高中数学最全数列总结及题型精选,推荐文档


A.120
B.105
(四)、等差数列的性质:
C. 90
D. 75
1 在等差数列an中,从第 2 项起,每一项是它相邻二项的等差中项;
2 在等差数列an中,相隔等距离的项组成的数列是等差数列; 3 在等差数列a中,对任意 m , n N , a a (n m)d ,d an am (m n) ;
点。
(4) 数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系
分:递增数列、递减数列、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列?
(1)1,2,3,4,5,6,…
(2)10, 9, 8, 7, 6, 5, …
(3) 1, 0, 1, 0, 1, 0, …
(4)a, a, a, a, a,…
(5) 数列{ an}的前 n 项和 S 与n 通项 a 的n 关系: a n
SS1 S
(n (n
≥12) )
n
n1
二、等差数列
(一)、等差数列定义:一般地,如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,那么这 个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示。用递推公式表示为 an an1 d (n 2) 或 an1 an d (n 1)
n
n
m
n m
(4) 在等差数列an中,若 m , n , p , q N 且 m n p q ,则 am an ap aq ;
(五)、等差数列的前 n 和的求和公式: S n(a1 an ) na n(n 1) d 1 n 2 (a d )n 。 (
n
2
1

高中数学数列经典题型及解析

高中数学数列经典题型及解析

高中数学数列经典题型及解析1. 求数列的通项公式:题目描述:已知数列的前几项为1,4,9,16,...,求该数列的通项公式。

解析:观察该数列可以发现,每一项都是前一项的平方加1,所以可以得到通项公式为an =n^2 + 1。

2. 求数列的和:题目描述:已知数列的前几项为2,5,8,11,...,求前100项的和。

解析:观察该数列可以发现,每一项都是前一项加3,所以可以得到通项公式为an = 3n - 1。

根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前100项的和为S100 = (100/2)(2 + a100),代入通项公式,得到S100 = (100/2)(2 + (3*100 - 1)) = 10100。

3. 求等差数列的前n项和:题目描述:已知数列的前几项为3,7,11,15,...,求前20项的和。

解析:观察该数列可以发现,每一项都是前一项加4,所以可以得到通项公式为an = 4n - 1。

根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前20项的和为S20 = (20/2)(3 + (4*20 - 1)) = 820。

4. 求数列的极限:题目描述:已知数列的前几项为1,1/2,1/3,1/4,...,求该数列的极限值。

解析:观察该数列可以发现,每一项都是前一项的倒数,即an = 1/n。

当n趋向于无穷大时,an趋向于0,所以该数列的极限值为0。

5. 求数列的递推关系:题目描述:已知数列的前几项为1,2,4,7,11,...,求该数列的递推关系。

解析:观察该数列可以发现,每一项都是前一项加一个递增的数,递增的数可以依次为1,2,3,4,...,所以可以得到递推关系为an = an-1 + (n-1)。

以上是高中数学中数列的经典题型及解析,希望对你有帮助!。

(完整word版)数列常见题型总结经典(超级经典)

(完整word版)数列常见题型总结经典(超级经典)

高中数学《数列》常有、常考题型总结题型一数列通项公式的求法1.前 n 项和法(知 S n 求 a n ) a nS 1(n 1)S n S n 1(n 2)例 1、已知数列 { n } 的前 n 项和 S n 12nn 2 ,求数列{| a n|} 的前 n 项和T na1、若数列 {a n } 的前 n项和 S2n,求该数列的通项公式。

n2、若数列 { a n } 的前 n 项和 S n3 a n 3 ,求该数列的通项公式。

23、设数列 {} 的前,知足 T2Sn 2,a n n 项和为S n ,数列{ S n } 的前n 项和为T nnn求数列 { a n } 的通项公式。

2. 形如 a n 1 a nf (n) 型(累加法)( 1)若 f(n) 为常数 , 即: a n 1 a n d , 此时数列为等差数列,则 a n =a 1(n 1)d .( 2)若 f(n) 为 n 的函数时,用累加法 .例 1. 已知数列{ a n }知足 a 1 1, a n3n 11. 已知数列a n 的首项为 1,且 a n 1a n 2. 已知数列 { a n } 知足 a 1 3 , a na n 13. 形如an 1( )f n 型(累乘法)a na n 1 ( n 2) , 证明 a n 3n122n(n N * ) 写出数列a n 的通项公式 .1 ( n 2) ,求此数列的通项公式 .n(n 1)( 1)当 f(n) 为常数,即:a n 1q (此中 q 是不为 0 的常数),此数列为等比且 a n = a 1 q n 1 .a n( 2)当 f(n) 为 n 的函数时 , 用累乘法 .例 1、在数列 { a n } 中 a 11, a nn a n 1 (n 2) ,求数列的通项公式。

n 1 1、在数列 { a n } 中 a 11, a n n 1a n 1 (n 2) ,求 a n 与 S n 。

高考数列10大题型

高考数列10大题型

高考数列10大题型
1. 等差数列求和问题:已知等差数列的首项和公差,求前n项的和。

2. 等差数列通项问题:已知等差数列的首项和公差,求第n项的值。

3. 等比数列求和问题:已知等比数列的首项和公比,求前n项的和。

4. 等比数列通项问题:已知等比数列的首项和公比,求第n项的值。

5. 递推数列求和问题:已知递推数列的递推关系和初始项,求前n项的和。

6. 递推数列通项问题:已知递推数列的递推关系和初始项,求第n项的值。

7. 斐波那契数列问题:求斐波那契数列中第n项的值。

8. 拆分数列:已知一个数列中的某一项满足特定条件,求拆分数列中满足条件的项数。

9. 数列特性问题:已知一个数列满足特定条件,求满足条件的项数或项的值。

10. 数列推理问题:已知一个数列的部分项或规律,推理出数列的通项式或递推关系。

数列题型总结(全)

数列题型总结(全)
10、已知 则 的坐标是.
11、设平面内的向量 点 是直线 上的一个动点,求当 取最小值时, 的坐标及 的余弦值。
12、设向量 , , , , , 与 的夹角为 , 与 的夹角为 ,且 ,求 的值。
参考答案
二、1、1、 ∥ ,
2、(1) .
= =
∵ ,∴ ,∴ .
∴ max= .
(2)由已知 ,得 .
一:定义法:
例:(1)设 是等差数列,证明:数列 (c>0, 是等比数列。(2)设 是正项等比数列,证明
(c>0, 是等差数列。
变式一:数列 的前n项和记为 ,已知 (n=2,3,4…),证明:数列 是等比数列。
变式二:已知定义在R上的函数f(x)和数列 满足下列条件: , ,其中a为常数,k为非零实数。令 是等比数列。
数列题型归纳(全)
题型一:求等差数列的公差或取值范围
例一:等差数列 的前n项和 ,若 =4, =20,则该数列的公差d等于
变式一:等差数列 中, ,则该数列的 的公差为
变式二:已知等差数列的首项为31,若从第16项开始小于1,则此数列的公差d的取值范围是
题型二:求等比数列的公比
例一:在等比数列 中, ,则公比q的值为
=
= .
3、(1)
由 得 又
(2)由 ,得
又 =
所以, = 。
三、1—6 B D A D A A
7、. 8、 9、只要满足 即可10、(5,2)或(-5,-2)
11、设 点 在直线 上, 与 共线,而
即 有 .
故当且仅当 时, 取得最小值 ,此时
于是
12、
变式一:设数列 , 都是等差数列,若
变式二:在等差数列 中,已知 ,则该数列前11项和等于

数列常见题型及解题技巧

数列常见题型及解题技巧

数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。

2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。

3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。

(完整版)数列全部题型归纳(非常全面,经典)

(完整版)数列全部题型归纳(非常全面,经典)

数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。

数列通项公式的多种妙解方式(十六大经典题型)(解析版)

数列通项公式的多种妙解方式(十六大经典题型)(解析版)

数列通项公式的多种妙解方式经典题型一:观察法经典题型二:叠加法经典题型三:叠乘法经典题型四:待定系数法经典题型五:同除以指数经典题型六:取倒数法经典题型七:取对数法经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题经典题型九:周期数列经典题型十:前n 项积型经典题型十一:“和”型求通项经典题型十二:正负相间讨论、奇偶讨论型经典题型十三:因式分解型求通项经典题型十四:其他几类特殊数列求通项经典题型十五:双数列问题经典题型十六:通过递推关系求通项(2022·全国·高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【解析】(1)∵a 1=1,∴S 1=a 1=1,∴S 1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a n a n -1=n +1n -1,∴a n =a 1×a 2a 1×a 3a 2×⋯×a n -1a n -2×a n a n -1=1×31×42×⋯×n n -2×n +1n -1=n n +1 2,显然对于n =1也成立,∴a n 的通项公式a n =n n +1 2;(2)1a n =2n n +1 =21n -1n +1 , ∴1a 1+1a 2+⋯+1a n=21-12 +12-13 +⋯1n -1n +1 =21-1n+1<2(2022·全国·高考真题(理))记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n-1+n-12=2n-1a n-1+n-1②,①-②得,2S n+n2-2S n-1-n-12=2na n+n-2n-1a n-1-n-1,即2a n+2n-1= 2na n-2n-1a n-1+1,即2n-1a n-2n-1a n-1=2n-1,所以a n-a n-1=1,n≥2且n∈N*,所以a n是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,所以S n=-12n+nn-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时S n min=-78.类型Ⅰ观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.类型Ⅱ公式法:若已知数列的前项和与a n的关系,求数列a n的通项a n可用公式a n=S1,(n=1)S n-S n-1,(n≥2)构造两式作差求解.用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即a1和a n合为一个表达,(要先分n=1和n≥2两种情况分别进行运算,然后验证能否统一).类型Ⅲ累加法:形如a n+1=a n+f(n)型的递推数列(其中f(n)是关于n的函数)可构造:a n-a n-1=f(n-1)a n-1-a n-2=f(n-2)...a2-a1=f(1)将上述m2个式子两边分别相加,可得:a n=f(n-1)+f(n-2)+...f(2)+f(1)+a1,(n≥2)①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的二次函数,累加后可分组求和;④若f(n)是关于n的分式函数,累加后可裂项求和.类型Ⅳ累乘法:形如a n +1=a n ⋅f (n )a n +1a n=f (n )型的递推数列(其中f (n )是关于n 的函数)可构造:a n a n -1=f (n -1)a n -1a n -2=f (n -2)...a 2a 1=f (1)将上述m 2个式子两边分别相乘,可得:a n =f (n -1)⋅f (n -2)⋅...⋅f (2)f (1)a 1,(n ≥2)有时若不能直接用,可变形成这种形式,然后用这种方法求解.类型Ⅴ构造数列法:(一)形如a n +1=pa n +q (其中p ,q 均为常数且p ≠0)型的递推式:(1)若p =1时,数列{a n }为等差数列;(2)若q =0时,数列{a n }为等比数列;(3)若p ≠1且q ≠0时,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种: 法一:设a n +1+λ=p (a n +λ),展开移项整理得a n +1=pa n +(p -1)λ,与题设a n +1=pa n +q 比较系数(待定系数法)得λ=q p -1,(p ≠0)⇒a n +1+q p -1=p a n +q p -1 ⇒a n +q p -1=p a n -1+qp -1 ,即a n +q p -1 构成以a 1+qp -1为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出a n +qp -1 的通项整理可得a n .法二:由a n +1=pa n +q 得a n =pa n -1+q (n ≥2)两式相减并整理得a n +1-a na n -a n -1=p ,即a n +1-a n 构成以a 2-a 1为首项,以p 为公比的等比数列.求出a n +1-a n 的通项再转化为类型Ⅲ(累加法)便可求出a n .(二)形如a n +1=pa n +f (n )(p ≠1)型的递推式:(1)当f (n )为一次函数类型(即等差数列)时:法一:设a n +An +B =p a n -1+A (n -1)+B ,通过待定系数法确定A 、B 的值,转化成以a 1+A +B 为首项,以A m n =n !n -m !为公比的等比数列a n +An +B ,再利用等比数列的通项公式求出a n +An +B 的通项整理可得a n .法二:当f (n )的公差为d 时,由递推式得:a n +1=pa n +f (n ),a n =pa n -1+f (n -1)两式相减得:a n +1-a n =p (a n -a n -1)+d ,令b n =a n +1-a n 得:b n =pb n -1+d 转化为类型Ⅴ㈠求出 b n ,再用类型Ⅲ(累加法)便可求出a n .(2)当f (n )为指数函数类型(即等比数列)时:法一:设a n +λf (n )=p a n -1+λf (n -1) ,通过待定系数法确定λ的值,转化成以a 1+λf (1)为首项,以A m n =n !n -m !为公比的等比数列a n +λf (n ) ,再利用等比数列的通项公式求出a n +λf (n ) 的通项整理可得a n .法二:当f (n )的公比为q 时,由递推式得:a n +1=pa n +f (n )--①,a n =pa n -1+f (n -1),两边同时乘以q 得a n q =pqa n -1+qf (n -1)--②,由①②两式相减得a n +1-a n q =p (a n -qa n -1),即a n +1-qa na n -qa n -1=p ,在转化为类型Ⅴ㈠便可求出a n .法三:递推公式为a n +1=pa n +q n (其中p ,q 均为常数)或a n +1=pa n +rq n (其中p ,q , r 均为常数)时,要先在原递推公式两边同时除以q n +1,得:a n +1q n +1=p q ⋅a n q n +1q ,引入辅助数列b n (其中b n=a n q n),得:b n +1=p q b n +1q 再应用类型Ⅴ㈠的方法解决.(3)当f (n )为任意数列时,可用通法:在a n +1=pa n +f (n )两边同时除以p n +1可得到a n +1p n +1=a n p n +f (n )p n +1,令an p n =b n ,则b n +1=b n +f (n )pn +1,在转化为类型Ⅲ(累加法),求出b n 之后得a n =p n b n .类型Ⅵ对数变换法:形如a n +1=pa q (p >0,a n >0)型的递推式:在原递推式a n +1=pa q 两边取对数得lg a n +1=q lg a n +lg p ,令b n =lg a n 得:b n +1=qb n +lg p ,化归为a n +1=pa n +q 型,求出b n 之后得a n =10b n.(注意:底数不一定要取10,可根据题意选择).类型Ⅶ倒数变换法:形如a n -1-a n =pa n -1a n (p 为常数且p ≠0)的递推式:两边同除于a n -1a n ,转化为1a n =1a n -1+p 形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n ;还有形如a n +1=ma n pa n +q 的递推式,也可采用取倒数方法转化成1a n +1=m q 1a n +mp形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n .类型Ⅷ形如a n +2=pa n +1+qa n 型的递推式:用待定系数法,化为特殊数列{a n -a n -1}的形式求解.方法为:设a n +2-ka n +1=h (a n +1-ka n ),比较系数得h +k =p ,-hk =q ,可解得h 、k ,于是{a n +1-ka n }是公比为h 的等比数列,这样就化归为a n +1=pa n +q 型.总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式a n .(1)若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =S 1,n =1S n -S n -1,n ≥2,n ∈N ∗注意:根据S n 求a n 时,不要忽视对n =1的验证.(2)在数列{a n }中,若a n 最大,则a n ≥a n -1a n ≥a n +1 ,若a n 最小,则a n≤a n -1a n ≤a n +1 .经典题型一:观察法1.(2022·全国·高三专题练习)数列a n 的前4项为:12,15,18,111,则它的一个通项公式是( )A.12n -1B.12n +1C.13n -1D.13n +1【答案】C【解析】将12,15,18,111可以写成13×1-1,13×2-1,13×3-1,13×4-1,所以a n 的通项公式为13n -1;故选:C2.(2022·全国·高三专题练习(文))如图所示是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为( )A.2nB.2n -1C.2n +2D.2n +1【答案】B【解析】依题意,每一行第一个数依次排成一列为:1,3,5,7,9,⋯,它们成等差数列,通项为2n -1,所以第n 行的首尾两个数均为2n -1.故选:B3.(2022·全国·高三专题练习)“一朵雪花”是2022年北京冬奥会开幕式贯穿始终的一个设计理念,每片“雪花”均以中国结为基础造型构造而成,每一朵雪花都闪耀着奥运精神,理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1901年研究的一种分形曲线,如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分划向外作正三角形,再去掉底边,反复进行这一过程.若第一个正三角形(图①)的边长为1,则第5个图形的周长为___________.【答案】25627【解析】由题意知下一个图形的边长是上一个图形边长的13,边数是上一个图形的4倍,则周长之间的关系为b n =13⋅4⋅b n -1=43b n -1,所以{b n }是公比为q =43的等比数列,而首项b 1=3,所以b n =3⋅43n -1,当n =5时,“雪花”状多边形的周长为b 5=25627.故答案为:25627经典题型二:叠加法4.(2022·全国·高三专题练习)在数列{a n }中,已知a 1=1p ,a n +1=a n na n +1,p >0,n ∈N *.若p =1,求数列{a n }的通项公式.【解析】由题意,a n +1=a n na n +1 ,得:1a n +1-1a n=n ,运用累加法:1a 2-1a 1+1a 3-1a 2+⋯+1a n -1a n -1=1+2+⋯+n -1=n n -1 2,n ≥2∴1a n -1a 1=n n -1 2,即1a n =n n -1 2+p ,n ≥2 ,当p =1时,a n =2n 2-n +2,n ≥2 ,当n =1时,a n =1成立,所以a n =2n 2-n +25.(2022·全国·高三专题练习)已知数列a n 满足a n +1n +1-a n n =1n n +1n ∈N *,且a 1=1,求数列a n 的通项公式;【解析】因为a n +1n +1-a n n =1n n +1=1n -1n +1,所以a n n -a n -1n -1=1n -1-1n n ≥2 ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯a 22-a 11=1-12,所以累加可得a n n -a 1=1-1nn ≥2 .又a 1=1,所以a n n =2n -1n,所以a n =2n -1n ≥2 .经检验,a 1=1,也符合上式,所以a n =2n -1.6.(2022·全国·高三专题练习)已知数列a n 中,a 1=1中,a n +1=a n +n (n ∈N *)中,则a 4=________,a n =________.【答案】 7n 2-n +22【解析】依题意,n ∈N *,n ≥2,a n -a n -1=n -1,而a 1=1,则a n =a 1+(a 2-a 1)+(a 3-a 2)+⋯+(a n -a n -1)=1+1+2+⋯+(n -1)=1+1+n -12⋅n -1 =n 2-n +22,而a 1=1满足上式,所以a n =n 2-n +22,a 4=42-4+22=7.故答案为:7;n 2-n +22经典题型三:叠乘法7.(2022·全国·高三专题练习)在数列a n 中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列a n 的通项公式a n =________.【答案】8n n +1【解析】由a n +1=n n +2a n ,得a n +1a n =nn +2,则a 2a 1=13,a 3a 2=24,a 4a 3=35,⋮a n a n -1=n -1n +1n ≥2 ,累乘得a n a 1=13×24×35×⋯×n -3n -1×n -2n ×n -1n +1=2n n +1,所以a n =8n n +1.故答案为:8n n +1 .8.(2022·全国·高三专题练习)设a n 是首项为1的正项数列,且(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),求通项公式a n =___________【答案】2n (n +1)【解析】由(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),得[(n +2)a n +1-na n ](a n +1+a n )=0,∵a n >0,∴a n +1+a n >0,∴(n +2)a n +1-na n =0 ,∴a n +1a n =nn +2,∴a n =a 1⋅a 2a 1⋅a 3a 2⋅a 4a 3⋅⋅⋅⋅⋅a n a n -1=1×13×24×35×⋅⋅⋅×n -2n ×n -1n +1=2n (n +1)(n ≥2),又a 1=1满足上式,∴a n =2n (n +1).故答案为:2n (n +1).9.(2022·全国·高三专题练习)数列a n 满足:a 1=23,2n +2-1 a n +1=2n +1-2 a n n ∈N * ,则a n 的通项公式为_____________.【答案】a n =2n2n -1 2n +1-1【解析】由2n +2-1 a n +1=2n +1-2 a n 得,a n +1a n =2n +1-22n +2-1=2⋅2n -12n +2-1,则a n a n -1⋅a n -1a n -2⋅a n -2a n -3⋅⋅⋅a 2a 1=2⋅2n -1-12n +1-1⋅2⋅2n -2-12n -1⋅2⋅2n -3-12n -1-1⋅⋅⋅2⋅21-123-1=2n -1⋅32n +1-1 2n -1,即a n a 1=3⋅2n -12n -1 2n +1-1 ,又a 1=23,所以a n =2n 2n -1 2n +1-1.故答案为:a n =2n2n -1 2n +1-1.经典题型四:待定系数法10.(多选题)(2022·广东惠州·高三阶段练习)数列a n 的首项为1,且a n +1=2a n +1,S n 是数列a n 的前n 项和,则下列结论正确的是( )A.a 3=7 B.数列a n +1 是等比数列C.a n =2n -1 D.S n =2n +1-n -1【答案】AB【解析】∵a n +1=2a n +1,可得a n +1+1=2a n +1 ,又a 1+1=2∴数列a n +1 是以2为首项,2为公比的等比数列,故B 正确;则a n +1=2n ,∴a n =2n -1,故C 错误;则a 3=7,故A 正确;∴S n =21-2n1-2-n =2n +1-n -2,故D 错误.故选:AB .11.(2022·河南安阳·三模(文))已知数列a n 满足a n +1=2a n +12,且前8项和为506,则a 1=___________.【答案】32【解析】由题意得:∵a n +1=2a n +12∴a n +1+12=2a n +12 ,即a n +1+12a n +12=2∴数列a n +12 是以a 1+12为首项,2为公比的等比数列,记数列a n +12 的前n 项和为T n T 8=a 1+12 (1-28)1-2=a 1+12+a 2+12+a 3+12+⋯+a 8+12=(a 1+a 2+a 3+⋯a 8)+12×8=506+4=510解得:a 1=32故答案为:3212.(2022·河北衡水·高三阶段练习)已知数列a n 的前n 项和为S n ,且满足2S n +n =3a n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =a 2n ,求数列b n 的前10项和T 10.【解析】(1)当n =1时,2S 1+1=3a 1,即2a 1+1=3a 1,解得a 1=1;当n ≥2时,∵2S n +n =3a n ,∴2S n -1+n -1=3a n -1,两式作差得2a n +1=3a n -3a n -1,即a n =3a n -1+1,a n +12=3a n -1+12,∴a n +12a n -1+12=3,又a 1+12=32,∴数列a n +12 是以32为首项,3为公比的等比数列,∴a n +12=32×3n -1=3n 2,a n =3n 2-12=123n -1 .(2)∵b n =a 2n ,则T 10=b 1+b 2+b 3+⋯+b 10=a 2+a 4+⋯+a 20=1232-1 +34-1 +⋯+320-1=1232+34+⋯+320 -10=12321-910 1-9-10 =911-8916.13.(2022·全国·高三专题练习)设数列a n 满足a 1=2,a n -2a n -1=2-n n ∈N * .(1)求证:a n -n 为等比数列,并求a n 的通项公式;(2)若b n =a n -n ⋅n ,求数列b n 的前n 项和T n .【解析】(1)因为a 1=2,a n -2a n -1=2-n n ∈N * ,所以a n =2a n -1+2-n ,即a n -n =2a n -1-n -1又a 1-1=2-1=1,所以a n -n 是以1为首项,2为公比的等比数列,所以a n -n =1×2n -1,所以a n =2n -1+n (2)由(1)可得b n =a n -n ⋅n =n ×2n -1,所以T n =1×20+2×21+3×22+⋯+n ×2n -1①,所以2T n =1×21+2×22+3×23+⋯+n ×2n ②,①-②得-T n =1+1×21+1×22+1×23+⋯+1×2n -1-n ×2n即-T n =1-2n1-2-n ×2n ,所以T n =n -1 ×2n +1;14.(2022·全国·高三专题练习)在数列a n 中,a 1=5,且a n +1=2a n -1n ∈N * .(1)证明:a n -1 为等比数列,并求a n 的通项公式;(2)令b n =(-1)n ⋅a n ,求数列b n 的前n 项和S n .【解析】(1)因为a n +1=2a n -1,所以a n +1-1=2a n -1 ,又a 1-1=4,所以a n +1-1a n -1=2,所以a n -1 是以4为首项,2为公比的等比数列.故a n -1=4×2n -1,即a n =2n +1+1.(2)由(1)得b n =(-1)n⋅2n +1+1 ,则b n =2n +1+1,n =2k ,k ∈N *-2n +1+1 ,n =2k -1,k ∈N* ,①当n =2k ,k ∈N *时,S n =-22-1 +23+1 -24+1 +⋯+-2n -1 +2n +1+1 =-22+23-24+25+⋯-2n +2n +1=22+24+⋯+2n =432n -1 ;②当n =2k -1,k ∈N *时,S n =S n +1-b n +1=432n +1-1 -2n +2+1 =-2n +2+73,综上所述,S n =432n -1 ,n =2k ,k ∈N*-2n +2+73,n =2k -1,k ∈N *经典题型五:同除以指数15.(2022·广东·模拟预测)已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列______的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n 2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n=1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+216.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=2a n +3n ,求数列a n 的通项公式.【解析】由a n +1=2a n +3n 两边同除以3n +1得a n +13n +1=23⋅a n 3n +13,令b n =a n 3n ,则b n +1=23b n +13,设b n +1+λ=23(b n +λ),解得λ=-1,b n +1-1=23(b n -1),而b 1-1=-23,∴数列{b n -1}是以-23为首项,23为公比的等比数列,b n -1=-23 n ,得a n =3n -2n17.(2022·全国·高三专题练习)在数列a n 中,a 1=1,S n +1=4a n +2,则a 2019的值为( )A.757×22020B.757×22019C.757×22018D.无法确定【答案】A【解析】∵a 1=1,S n +1=4a n +2,∴S 2=a 1+a 2=4a 1+2,解得a 2=5.∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减得,a n +2=4a n +1-4a n ,∴a n +2-2a n +1=2a n +1-2a n ,∴a n +1-2a n 是以a 2-2a 1=3为首项,2为公比的等比数列,∴a n +1-2a n =3×2n -1,两边同除以2n +1,则a n +12n +1-a n 2n=34,∴a n 2n 是以34为公差,a 121=12为首项的等差数列,∴a n 2n =12+n -1 ×34=3n -14,∴a n =3n -14×2n =3n -1 ×2n -2,∴a 2019=3×2019-1 ×22017=757×22020.故选:A .经典题型六:取倒数法18.(2022·全国·高三竞赛)数列a n 满足a 1=p ,a n +1=a 2n +2a n .则通项a n =______.【答案】p +1 2n -1-1【解析】∵a n =a 2n -1+2a n -1,∴a n +1=a n -1+1 2=a n -2+1 22=⋯=a 1+1 2n -1=p +1 2n -1.即a n =p +1 2n -1-1.故答案为p +1 2n -1-119.(2022·全国·高三专题练习)已知数列a n 满足a 1=12,且a n +1=a n 3a n +1,则数列a n =__________【答案】13n -1【解析】由a n +1=a n 3a n +1两边取倒数可得1a n +1=1a n +3,即1a n +1-1a n=3所以数列1a n 是等差数列,且首项为2,公差为3,所以1a n=3n -1,所以a n =13n -1;故答案为:13n -120.(2022·全国·高三专题练习)数列a n 满足a n +1=a n 1+2a nn ∈N ∗,a 1=1,则下列结论错误的是( )A.2a 10=1a 3+1a 17B.21an是等比数列C.2n -1 a n =1D.3a 5a 17=a 49【答案】D 【解析】由a n +1=a n 1+2a n ,且a 1=1,则a 2=a 12a 1+1>0,a 3=a 21+2a 2>0,⋯,以此类推可知,对任意的n ∈N ∗,a n >0,所以,1a n +1=1+2a n a n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以,数列1a n 是等差数列,且该数列的首项为1,公差为2,所以,1a n =1+2n -1 =2n -1,则2n -1 a n =1,其中n ∈N ∗,C 对;21a n +121a n=21an +1-1a n=22=4,所以,数列21an是等比数列,B 对;由等差中项的性质可得2a 10=1a 3+1a 17,A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以,3a 5a 17≠a 49,D 错.故选:D .21.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=a n 4a n +1,(n ∈N *),则满足a n >137的n 的最大取值为( )A.7 B.8C.9D.10【答案】C【解析】因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,数列1a n是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大值为9;故选:C 经典题型七:取对数法22.(2022·湖南·长郡中学高三阶段练习)若在数列的每相邻两项之间插入此两项的积,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;依次构造,第n n ∈N * 次得到的数列的所有项的积记为a n ,令b n =log 2a n ,则b 3=___________,b n =___________.【答案】 143n +12【解析】设第n 次构造后得到的数列为1,x 1,x 2,⋯,x k ,2.则a n =2x 1x 2⋯x k ,则第n +1次构造后得到的数列为1,x 1,x 1,x 1x 2,x 2,⋯,x k -1x k ,x k ,2x k ,2.则a n +1=4x 1x 2⋯x k 3=4×a n 2 3=12a 3n ,∴b n +1=log 2a n +1=log 212a 3n=-1+3b n ,∴b n +1-12=3b n -12 ,又∵b 1=log 222=2,∴数列b n -12 是以32为首项,3为公比的等比数列,∴b n -12=32×3n -1=3n 2,b n =3n +12,b 3=14.故答案为:14;3n +1223.(2022·全国·高三专题练习(文))英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列x n 满足x n +1=x n -f x nf x n,则称数列x n 为牛顿数列.如果函数f x =2x 2-8,数列x n 为牛顿数列,设a n =ln x n +2x n -2,且a 1=1,x n >2.数列a n 的前n 项和为S n ,则S n =______.【答案】2n -1【解析】∵f x =2x 2-8,∴f x =4x ,又∵x n +1=x n -f x n f x n=x n -2x n 2-84x n =x n 2+42x n ,∴x n +1+2=x n +2 22x n ,x n +1-2=x n -222x n,∴x n +1-2x n +1-2=x n +2x n -2 2,又x n >2∴ln x n +1+2x n +1-2=ln x n +2x n -2 2=2ln x n +2x n -2 ,又a n =ln x n +2x n -2,且a 1=1,所以a n +1=2a n ,∴数列a n 是首项为1,公比为2的等比数列,∴a n 的前n 项和为S n ,则S n =1×1-2n1-2=2n -1.故答案为:2n -1.经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题24.(2022·江苏南通·高三开学考试)从条件①2S n =n +1 a n ,②a 2n +a n =2S n ,a n >0,③S n +S n -1=a n n ≥2 ,中任选一个,补充到下面问题中,并给出解答.已知数列a n 的前n 项和为S n ,a 1=1,___________.(1)求a n 的通项公式;(2)设b n =a n +1+12n +1,记数列b n 的前n 项和为T n ,是否存在正整数n 使得T n >83.【解析】(1)若选择①,因为2S n =n +1 a n ,n ∈N *,所以2S n -1=na n -1,n ≥2,两式相减得2a n =n +1 a n -na n -1,整理得n -1 a n =na n -1,n ≥2,即a n n =a n -1n -1,n ≥2,所以a n n 为常数列,而a n n =a 11=1,所以a n =n ;若选择②,因为a 2n +a n =2S n n ∈N *,所以a 2n -1+a n -1=2S n -1n ≥2 ,两式相减a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n n ≥2 ,得a n -a n -1 a n +a n -1 =a n +a n -1n ≥2 ,因为a n >0,∴a n +a n -1>0,∴a n -a n -1=1n ≥2 ,所以a n 是等差数列,所以a n =1+n -1 ×1=n ;若选择③,由S n +S n -1=a n n ≥2 变形得,S n +S n -1=S n -S n -1,所以S n +S n -1=S n +S n -1 S n -S n -1 ,由题意知S n >0,所以S n -S n -1=1,所以S n 为等差数列,又S 1=a 1=1,所以S n =n ,S n =n 2,∴a n =S n -S n -1=2n -1n ≥2 ,又n =1时,a 1=1也满足上式,所以a n =2n -1;(2)若选择①或②,b n =n +1+12n +1=n +22n +1,所以T n =3×12 2+4×12 3+5×12 4+⋯+n +2 ×12n +1,所以12T n =3×12 3+4×12 4+5×12 5+⋯+n +2 ×12n +2,两式相减得12T n =3×12 2+12 3+12 4+⋯+12 n +1-n +2 ×12n +2=34+181-12n -1 1-12-n +2 ×12 n +2=1-n +42n +2,则T n =2-n +42n +1,故要使得T n >83,即2-n +42n +1>83,整理得,n +42n +1<-23,当n ∈N *时,n +42n +1>0,所以不存在n ∈N *,使得T n >83.若选择③,依题意,b n =a n +1+12n +1=n +12n,所以T n =2×12+3×12 2+4×12 3+⋯+n +1 ×12n,故12T n =2×12 2+3×12 3+4×12 4+⋯+n +1 ×12 n +1,两式相减得:12T n =1+12 2+12 3+⋯+12 n -n +1 ×12 n +1=1+141-12n -1 1-12-n +1 ×12 n +1=32-n +32n +1,则T n =3-n +32n ,令T n =3-n +32n >83,则n +32n <13,即2n -3n -9>0,令c n =2n -3n -9,则c 1=-10<0,当n ≥2时,c n +1-c n =2n +1-3n +1 -9-2n -3n -9 =2n -3>0,又c 4<0,c 5>0,故c 2<c 3<c 4<0<c 5<c 6⋯,综上,使得T n >83成立的最小正整数n 的值为5.25.(2022·河南省上蔡第一高级中学高三阶段练习(文))记各项均为正数的等比数列a n 的前n 项和是S n ,已S n =a n +43a n +1-4n ∈N * .(1)求a n 的通项公式;(2)求数列na n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q .因为S n =a n +43a n +1-4n ∈N * ,所以当n =1时,a 1=a 1+43a 2-4,解得a 2=3;当n =2时,a 1+a 2=a 2+43a 3-4,则a 1=43a 3-4.因为a n 是等比数列,所以a 1a 3=a 22,即43a 3-4 a 3=9,整理得4a 23-12a 3-27=0,解得a 3=-32(舍去)或a 3=92.所以q =a 3a 2=32,a 1=a 2q=2,所以a n =2×32n -1.(2)由(1)得na n =2n ×32 n -1,所以T n =2×1+2×32+3×32 2+⋯+n -1 × 32 n -2+n ×32 n -1①则32T n =2×1×32+2×32 2+3×32 3+⋯+ n -1 ×32 n -1+n ×32 n ②①-②得-T n 2=2×1+32+32 2+323+⋯+ 32 n -1 -2n ×32 n=2×1-32 n1-32-2n ×32 n =-4+4-2n ×32 n ,所以T n =4n -8 ×32n+8.26.(2022·全国·高三专题练习)设数列{a n }的前n 项和为S n ,a n +1=-S n S n +1n ∈N * ,a 1=1. 求证:数列1S n是等差数列.【解析】∵-S n S n +1=a n +1=S n +1-S n ,S 1=1≠0,则S n ≠0,所以-1=S n +1-S nS n S n +1,有1S n +1-1S n=1,所以数列1S n 是以1为首项,1为公差的等差数列.经典题型九:周期数列27.(2022·上海中学高二期末)数列{x n }满足x n +1=x n -x n -1,n ≥2,n ∈N *,x 1=a ,x 2=b ,则x 2019=_________.【答案】b -a .【解析】由题干中递推公式,可得:x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=b -a -b =-a ,x 5=x 4-x 3=-a -(b -a )=-b ,x 6=x 5-x 4=-b -(-a )=a -b ,x 7=x 6-x 5=a -b -(-b )=a ,x 8=x 7-x 6=a -(a -b )=b ,x 9=x 8-x 7=b -a ,⋯∴数列{x n }是以6为最小正周期的周期数列.∵2019÷6=336⋯3,∴x 2019=x 3=b -a .故答案为b -a .28.(2022·全国·高三专题练习)数列{a n }满足a 1=2,a 2=11-a 1,若对于大于2的正整数n ,a n =11-a n -1,则a 102=__________.【答案】12【解析】由题意知:a 2=11-2=-1,a 3=11--1 =12,a 4=11-12=2,a 5=11-2=-1,故{a n }是周期为3的周期数列,则a 102=a 3×34=a 3=12.故答案为:12.29.(2022·河南·模拟预测(文))设数列a n 满足a n +1=1+a n 1-a n ,且a 1=12,则a 2022=( )A.-2 B.-13C.12D.3【答案】D【解析】由题意可得:a 2=1+a 11-a 1=1+121-12=3,a 3=1+a 21-a 2=1+31-3=-2,a 4=1+a 31-a 3=1+-2 1--2 =-13,a 5=1+a 41-a 4=1-131+13=12=a 1,据此可得数列a n 是周期为4的周期数列,则a 2022=a 505×4+2=a 2=3.故选:D30.(2022·全国·高三专题练习)设数列a n 的通项公式为a n =-1 n 2n -1 ⋅cos n π2+1n ∈N * ,其前n 项和为S n ,则S 120=( )A.-60 B.-120C.180D.240【答案】D【解析】当n =4k -3,k ∈N *时,cos n π2=0,a 4k -3=1;当n =4k -2,k ∈N *时,cosn π2=-1,a 4k -2=2×4k -2 -1 ×-1 +1=-8k +6;当n =4k -1,k ∈N *时,cos n π2=0,a 4k -1=1;当n =4k ,k ∈N *时,cos n π2=1,a 4k =2×4k -1+1=8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =1+-8k +6 +1+8k =8,∴S 120=1204×8=240.故选:D 经典题型十:前n 项积型31.(2022·全国·高三专题练习)设数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * .(1)求证数列1T n 是等差数列;(2)设b n =1-a n 1-a n +1 ,求数列b n 的前n 项和S n .【解析】(1)因为数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * ,∴当n =1时,T 1=a 1=2-2a 1,则a 1=23,1T 1=32.当n ≥2时,T n =2-2T n T n -1⇒1=2T n -2T n -1,∴1T n -1T n -1=12,所以1T n 是以1T 1=32为首项,12为公差的等差数列;(2)由(1)知数列1T n =n +22,则由T n =2-2a n 得a n =n +1n +2,所以b n =1n +2 n +3=1n +2-1n +3,所以S n =13-14 +14-15 +⋯+1n +2-1n +3 =13-1n +3=n 3n +9.32.(2022·全国·高三专题练习)记T n 为数列a n 的前n 项积,已知1T n +3a n=3,则T 10=( )A.163B.154C.133D.114【答案】C 【解析】n =1,T 1=43,T n =a 1a 2a 3⋯a n ,则a n =T n T n -1(n ≥2),代入1T n +3a n =3,化简得:T n -T n -1=13,则T n =n +33,T 10=133.故选:C .33.(2022·全国·高三专题练习)记S n 为数列a n 的前n 项和,b n 为数列S n 的前n 项积,已知2S n +b n =2,则a 9=___________.【答案】1110【解析】因为b n =S 1∙S 2∙⋯S n ,所以b 1=S 1=a 1,b n -1=S 1∙S 2∙⋯S n -1(n ≥2),S n =b nb n -1(n ≥2), 又因为2S n +b n =2,当n =1时,得 a 1=23,所以b 1=S 1=a 1=23, 当n ≥2时, 2×b nb n -1+b n =2,即2b n =2b n -1+1,所以2b n 是等差数列,首项为2b 1=3,公差d =1, 所以2b n=3+(n -1)×1=n +2,所以b n =2n +2,满足 b 1=23,故b n =2n +2,即S 1∙S 2∙⋯S n =2n +2,所以S 1∙S 2∙⋯S n -1=2n +1(n ≥2),两式相除得:S n =n +1n +2,所以S n -1=nn +1(n ≥2),所以a n =S n -S n -1=n +1n +2-n n +1=1(n +1)(n +2),所以a 9=111×10=1110.故答案为:1110.经典题型十一:“和”型求通项34.(2022·山西·太原市外国语学校高三开学考试)在数列a n 中,a 1=1,且n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n .(1)求a n 的通项公式;(2)若b n =1a n a n +1,且数列b n 的前项n 和为S n ,证明:S n <3.【解析】(1)因为n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n ,所以当n ≥3,a 1+12a 2+13a 3+⋯+1n -2a n -2=a n -1,两式相减,得1n -1a n -1=a n -a n -1,即nn -1a n -1=a n ,当n =2时,a 2=a 1=1,所以当n ≥3时,a n a n -1=nn -1,所以当n ≥3时,a n =a n a n -1×a n -1a n -2×⋯×a 3a 2×a 2=n n -1×n -1n -2×⋯×32×1=n2,当n =2时,上式成立;当n =1时,上式不成立,所以a n =1,n =1n2,n ≥2.(2)证明:由(1)知b n =1,n =14n (n +1),n ≥2当n ≥2时,b n =4n (n +1)=41n -1n +1 ,所以当n =1,S 1=1<3;当n ≥2时,S n =1+412-13 +413-14 +⋯+41n -1n +1=1+412-13+13-14+⋯+1n -1n +1 =1+412-1n +1 =3-4n +1<3.综上,S n <3.35.(2022·全国·高三专题练习)数列a n 满足a 1∈Z ,a n +1+a n =2n +3,且其前n 项和为S n .若S 13=a m ,则正整数m =( )A.99 B.103C.107D.198【答案】B【解析】由a n +1+a n =2n +3得a n +1-(n +1)-1=-a n -n -1 ,∴a n-n-1为等比数列,∴a n-n-1=(-1)n-1a1-2,∴a n=(-1)n-1a1-2+n+1,a m=(-1)m-1a1-2+m+1,∴S13=a1+a2+a3+⋯+a12+a13=a1+2×(2+4+⋯+12)+3×6=a1+102,①m为奇数时,a1-2+m+1=a1+102,m=103;②m为偶数时,-a1-2+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解,综上所述,m=103.故选:B.36.(2022·黑龙江·哈师大附中高三阶段练习(理))已知数列a n的前n项和为S n,若S n+1+S n=2n2n∈N*,且a1≠0,a10=28,则a1的值为A.-8B.6C.-5D.4【答案】C【解析】对于S n+1+S n=2n2,当n=1时有S2+S1=2,即a2-2=-2a1∵S n+1+S n=2n2,∴S n+S n-1=2(n-1)2,(n≥2)两式相减得:a n+1+a n=4n-2a n+1-2n=-a n-2(n-1),(n≥2)由a1≠0可得a2-2=-2a1≠0,∴a n+1-2na n-2(n-1)=-1(n≥2)即a n-2(n-1)从第二项起是等比数列,所以a n-2(n-1)=a2-2(-1)n-2,即a n=a2-2(-1)n-2+2(n-1),则a10=a2-2+18=28,故a2=12,由a2-2=-2a1可得a1=-5,故选C.经典题型十二:正负相间讨论、奇偶讨论型37.(2022·河南·高二阶段练习(文))数列a n满足a1=1,a n+a n+1=3n n∈N*,则a2018=__________ _.【答案】3026【解析】∵a n+a n+1=3n,∴a n+1+a n+2=3n+1,得a n+2-a n=3,∵a1=1,a n+a n+1=3n n∈N*,∴a1+ a2=3⇒a2=2,所以a n的偶数项构成等差数列,首项为2,公差为3,∴a2018=a2+1008×3=2+3024= 3026.故答案为:302638.(2022·全国·高三专题练习)已知数列a n中,a1=1,a2=2,a n+2=-1n+1a n+2,则a18a19=( )A.3B.113C.213D.219【答案】D【解析】当n为奇数时,a n+2-a n=2,即数列a n中的奇数项依次构成首项为1,公差为2的等差数列,所以,a19=1+10-1×2=19,当n为偶数时,a n+2+a n=2,则a n+4+a n+2=2,两式相减得a n+4-a n=0,所以,a18=a4×4+2=a2=2,故a18a19=219,故选:D.39.(2022·广东·高三开学考试)已知数列a n满足a1=3,a2=2,a n+2=a n-1,n=2k-1 3a n,n=2k .(1)求数列a n的通项公式;(2)求数列a n的前2n项的和S2n.【解析】(1)当n为奇数时,a n+2-a n=-1,所以所有奇数项构成以a1=3为首项,公差为-1的等差数列,所以a n=3+(n-1)⋅-12=7-n2,当n为偶数时,a n+2=3a n,所以所有偶数项构成以a2=2为首项,公比为3的等比数列,所以a n=2×(3)n-2=2×3n-22,所以a n=7-n2,n=2k-1 2×3n-22,n=2k ;(2)S2n=a1+a2+⋯+a2n=a1+a3+a5+⋯+a2n-1+a2+a4+⋯+a2n=3n+(-1)⋅n(n-1)2+21-3n1-3=(7-n)n2+3n-1=-12n2+72n+3n-1.40.数列{a n}满足a n+2+(-1)n+1a n=3n-1,前16项和为540,则a2= .【解析】解:因为数列{a n}满足a n+2+(-1)n+1a n=3n-1,当n为奇数时,a n+2+a n=3n-1,所以a3+a1=2,a7+a5=14,a11+a9=26,a15+a13=38,则a1+a3+a5+a7+a9+a11+a13+a15=80,当n为偶数时,a n+2-a n=3n-1,所以a4-a2=5,a6-a4=11,a8-a6=17,a10-a8=23,a12-a10=29,a14-a12=35,a16-a14=41,故a4=5+a2,a6=16+a2,a8=33+a2,a10=56+a2,a12=85+a2,a14=120+a2,a16=161+a2,因为前16项和为540,所以a2+a4+a6+a8+a10+a12+a14+a16=540-80=460,所以8a2+476=460,解得a2=-2.故答案为:-2.41.(2022•夏津县校级开学)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为508,则a1= .【解析】解:由a n+2+(-1)n a n=3n-1,当n为奇数时,有a n+2-a n=3n-1,可得a n-a n-2=3(n-2)-1,⋯a3-a1=3⋅1-1,累加可得a n-a1=3[1+3+⋯+(n-2)]-n-12=(n-1)(3n-5)4;当n为偶数时,a n+2+a n=3n-1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+⋯+a16=92.∴a 1+a 3+⋯+a 15=416.∴8a 1+14(0+8+40+96+176+280+408+560)=416,∴8a 1=24,即a 1=3.故答案为:3.经典题型十三:因式分解型求通项42.(2022秋•安徽月考)已知正项数列{a n }满足:a 1=a ,a 2n +1-4a 2n +a n +1-2a n =0,n ∈N *.(Ⅰ)判断数列{a n }是否是等比数列,并说明理由;(Ⅱ)若a =2,设a n =b n -n .n ∈N *,求数列{b n }的前n 项和S n .【解析】解:(Ⅰ)∵a 2n +1-4a 2n +a n +1-2a n =0,∴(a n +1-2a n )(a n +1+2a n +1)=0,又∵数列{a n }为正项数列,∴a n +1=2a n ,∴①当a =0时,数列{a n }不是等比数列;②当a ≠0时,an +1a n=2,此时数列{a n }是首项为a ,公比为2的等比数列.(Ⅱ)由(Ⅰ)可知:a n =2n ,∴b n =2n +n ,∴S n =(21+22+⋯+2n)+(1+2+⋯+n )=2(1-2n )1-2+n (1+n )2=2n +1-2+n (n +1)2.43.(2022•怀化模拟)已知正项数列{a n }满足a 1=1,2a 2n -a n -1a n -6a 2n -1=0(n ≥2,n ∈N *)设b n =log 2a n .(1)求b 1,b 2b 3;(2)判断数列{b n }是否为等差数列,并说明理由;(3){b n }的通项公式,并求其前n 项和为S n .【解析】解:(1)a 1=1,2a 2n -a n -1a n -6a 2n -1=0,a n >0,可得(2a n +3a n -1)(a n -2a n -1)=0,则a n =2a n -1,数列{a n }为首项为1,公比为2的等比数列,可得a n =2n -1;b n =log 2a n =n -1,b 1=0,b 2b 3=1×2=2;(2)数列{b n }为等差数列,理由:b n +1-b n =n -(n -1)=1,则数列{b n }为首项为0,公差为1的等差数列;(3)b n =log 2a n =log 22n -1=n -1,前n 项和为S n =12n (0+n -1)=n 2-n2.44.(2022秋•仓山区校级月考)已知正项数列{a n }满足a 1=2且(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *)(Ⅰ)证明数列{a n }为等差数列;(Ⅱ)若记b n =4a n a n +1,求数列{b n }的前n 项和S n .【解析】(I )证明:由(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *),变形得:(a n +a n +1)[(n +1)a n -na n +1]=0,由于{a n }为正项数列,∴a n +1a n =n +1n,利用累乘法得:a n =2n (n ∈N *)从而得知:数列{a n }是以2为首项,以2为公差的等差数列.(Ⅱ)解:由(Ⅰ)知:b n=42n∙2(n+1)=1n(n+1)=1n-1n+1,从而S n=b1+b2+⋯+b n=1-1 2+12-13+13-15+⋯+1n-1-1n+1=1-1n+1=n n+1.经典题型十四:其他几类特殊数列求通项45.(2022·全国·高三专题练习)在数列{a n}中,已知各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0.(1)证明数列{a n+a n+1}为等比数列;(2)若a1=15,a2=125,求{a n}的通项公式.【解析】(1)各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0,得a n+1+a n+2=15(a n+1+a n),即a n+1+a n+2 a n+a n+1=15所以数列{a n+a n+1}是公比为15的等比数列;(2)因为a1=15,a2=125,所以a1+a2=625,由(1)知数列{a n+a n+1}是首项为625,公比为15的等比数列,所以a n+a n+1=625×15n-1,于是a n+1-15n+1=-an-15 n=(-1)n a1-15,又因为a1-15=0,所以a n-15 n=0,即a n=15 n.46.(2022·湖北·天门市教育科学研究院模拟预测)已知数列a n满足a1=1,a2=6,且a n+1=4a n-4a n-1, n≥2,n∈N*.(1)证明数列a n+1-2a n是等比数列,并求数列a n的通项公式;(2)求数列a n的前n项和S n.【解析】(1)因为a n+1=4a n-4a n-1,n≥2,n∈N*所以a n+1-2a n=2a n-4a n-1=2(a n-2a n-1)又因为a2-2a1=4所以a n+1-2a n是以4为首项,2为公比的等比数列.所以a n+1-2a n=4×2n-1=2n+1变形得a n+12n+1-a n2n=1所以a n2n是以a12=12为首项,1为公差的等差数列所以a n2n=12+n-1=n-12,所以a n=(2n-1)2n-1(2)因为T n=1×20+3×21+5×22+⋅⋅⋅+(2n-1)2n-1⋯①所以2T n=1×21+3×22+5×23+⋅⋅⋅+(2n-1)2n⋯②①-②得:-T n=1+22+23+⋅⋅⋅+2n-1-(2n-1)2n=1+22(1-2n-1)1-2-(2n-1)2n所以T n=(2n-1)2n-2n+1+3=(2n-3)2n+347.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))设数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,则下列说法正确的是( )A.a2021⋅a2022<1B.a2021⋅a2022>1C.a2022<-22022D.a2022>22022【答案】A【解析】因为数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,。

数列全部题型归纳(非常全面,经典!)

数列全部题型归纳(非常全面,经典!)

数列 【1 】百通通项公式求法(一)转化为等差与等比1.已知数列{}n a 知足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4.已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;{}n a 中,13a =,1222n n a a n +=-+,假如2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理办法1)知数列{a n }的前n 项和S n 知足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 知足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 知足,111,0,4n n n n a S S a a -=-≠=则,数列n a4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a(三) 累加与累乘(1)假如数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 知足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3)12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 知足,211,2n n S n a a ==则,数列n a(四)一次函数的递推情势1. 若数列{}n a 知足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 知足1111,22n n n a a a -==+(2)n ≥,数列n a(五)分类评论辩论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3n n a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41n n na a a a ++==-,求数列2004a(2)假如已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }知足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }知足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 分解实例剖析1已知数列{a n }的前n 项和为n S ,且对随意率性天然数n,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)假如数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值规模2已知整数列{a n }知足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5.数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式.6设无限数列{}n a 的前n 项和为n S ,已知12a =,且当n N ∈时,总有1312n n S S +=+,求n a 及n S .7 数列{}n a 知足()11n n p S a -=-,个中p 为正实数,12n S a a =++…()*n a n N +∈(1)证实:{}n a 为等比数列,并求出它的通项;(2)数列{}n b 中,11b =,1n n n b b a +=+,求{}n b 的通项公式数列求最值的办法(一)化为函数办法转化为耐克函数 (1)假如数列{}n a 的通项公式是n a =24n n n++,此数列的哪一项最小?并求其最小值(2)假如数列{}n a 的通项公式是n a =2156n n +,此数列的哪一项最大?并求其最大值转化为分式函数(3)假如数列{}n a 的通项公式是n a ,此数列的哪一项最大?并求其最大值转化为二次函数(4)假如数列{}n a 的通项公式是n a =22n kn ++是单调递增数列,求k 的取值规模. 假如该数列在第四项最小,求k 的取值规模(二)数列的简略单调性求最值的办法: 假如数列{}n a 的通项公式是n a =*111.....()12n N n n n n++∈+++, (1)断定数列的增减(2)若对于一切大于1的天然数n,不等式12log (1)123n a a a >++恒成立求a 的取值规模?(三)盘算器联合庞杂单调性,求最值的办法(1)数列{}n a 的通项公式是n a =*1,n n N +∈,是否消失天然数m,使对随意率性的序号*n N ∈,有n m a a ≥恒成立,若消失,求出m,假如不消失,请解释来由(2)假如数列{}n a 的通项公式是n a =*9(),10n n N ∈,是否消失天然数m,使对随意率性的序号*n N ∈,有n m a a ≤恒成立,若消失,求出m,假如不消失,请解释来由(3)假如数列{}n a 的通项公式是n a =*9(1)(),10n n n N +∈,是否消失天然数m,使对随意率性的序号*n N ∈,有n m a a ≤恒成立,若消失,求出m,假如不消失,请解释来由(四)数列单调性求“和”的最值的办法已知数列前n 项和为n S ,且585,()n n S n a n N =--∈(1) 求n a 的通项公式(2) 求n S 的通项公式(3) 说说n 为何值时,n S 取得最小值?数列的乞降(一)倒序相加法:(1)设()f x =应用教材中推导等差数列前n 项和公式的办法,求: ()()87f f -+-+…()0f ++…()()89f f ++的值(2) 01231234....(1)n n n n n n n n n S C C C C nC n C -=++++++(二) 错位相减法乞降:135724816++++ (212)n n -+(三) 公式乞降法(1)数列{}n a 中,148,2a a ==且()*2120n n n a a a n N ++-+=∈, 1234n S a a a a =++++…n a +,求n S .(2))(*122221N n b ab b a b a b a a S n n n n n n n ∈++++++=----(3)乞降22221234++++ (2)n +(三)裂项乞降法(1)111,,,153759⋅⋅⋅…(2+++…(3) )(,32114321132112111*N n n∈+++++++++++++++(4)求数列!n a n n =⋅的前n 项和(四). 分组乞降法(1)111 1,2,3, 248…(2) 1,3+13,32+132,……,3n+13n(3)已知()()654n nn nan⎧-⎪=⎨⎪⎩为偶数为奇数求数列{}n a的前n项和.3平均分组(4)1,3,5,7--…(5)求数列:1111111111,,,,,,,,,,223334444…的前100项和;(6)求数列:1,23,456,78910,++++++…的前n 项和.数列的极限5个“三”三个界说极限(1)∞→n lim C =C (C 为常数); (2)∞→n lim n1=0; (3)∞→n lim q n =0(|q |<1) 三个不消失的极限lim n n →∞lim(1)n n →∞- lim 2n n →∞三个推导极限(1)多项式1*1101110,;...(,,0,0)...0,.lim k k k k k l l l n l l a l k a n a n a n a k l N a b b b n b n b n b l k ---→∞-⎧=++++⎪=∈≠≠⎨++++⎪>⎩ 3543lim 2-=+++∞→n bn an n ,则.________________,==b a(2)单指数1(1)(1)(1)lim n n n r q q q +→∞+++(3)多指数若()131lim331n n n n a +→∞=++,求a 的取值规模三个待定形1)00型 比较 2213lim 12n nn n n→∞++和2213lim 14n n n n n →∞++2)∞∞型 比较2232lim 21n n n →∞++和2252lim 21n n n →∞++3)0+0+0+0+0+0+0+0……型∞→n lim .___________)12131211(2222=++⋅⋅⋅++++++n n n n n三个主要前提0(11)lim n n q q →∞=-<<lim n n q→∞极限消失(11)q -<<1lim 1n n a S S q→∞==-(0||1)q <<设数列}{n a 是公比0>q 的等比数列,n S 是它的前n 项和,若∞→n lim 7=n S ,那么1a 的的取值规模是_________例1已知数列{}n a 中,)(2,111*+∈==N n a a a n n n(1)求证数列{}n a 不是等比数列,并求该数列的通项公式;(2)求数列{}n a 的前n 项和n S ;(3)设数列{}n a 的前n 2项和为n S 2,若n n n a S ka 222)1(3•≤-对随意率性*∈N n 恒成立,求k 的最小值.例2界说1x ,2x ,…,n x 的“倒平均数”为nx x x n +++ 21(*N n ∈). (1)若数列}{n a 前n 项的“倒平均数”为421+n ,求}{n a 的通项公式; (2)设数列}{n b 知足:当n 为奇数时,1=n b ,当n 为偶数时,2=n b .若n T 为}{n b 前n 项的倒平均数,求n n T ∞→lim ; (3)设函数x x x f 4)(2+-=,对(1)中的数列}{n a ,是否消失实数λ,使得当λ≤x 时,1)(+≤n a x f n 对随意率性*N n ∈恒成立?若消失,求出最大的实数λ;若不消失,解释来由.例3设知足前提)(2:*12N n a a a P n n n ∈≥+++的数列构成的聚集为A ,而知足前提)(2:*12N n a a a Q n n n ∈<+++的数列构成的聚集为B .(1)断定数列n a a n n 21:}{-=和数列n n n b b 21:}{-=是否为聚集A 或B 中的元素?(2)已知数列3)(k n a n -=,研讨}{n a 是否为聚集A 或B 中的元素;若是,求出实数k 的取值规模;若不是,请解释来由.(3)已知*231(1)log (,)i n a n i Z n N =-⋅∈∈,若}{n a 为聚集B 中的元素,求知足不等式60|2|<-n a n 的n 的值构成的聚集.例4对于数列}{n x ,假如消失一个正整数m ,使得对随意率性的n (*∈N n )都有n m n x x =+成立,那么就把如许一类数列}{n x 称作周期为m 的周期数列,m 的最小值称作数列}{n x 的最小正周期,以下简称周期.例如当2=n x 时}{n x 是周期为1的周期数列,当sin()2n y n π=时}{n y 是周期为4的周期数列.(1)设数列}{n a 知足n n n a a a -=++12(*∈N n ),b a a a ==21,(,a b 不合时为0),求证:数列}{n a 是周期为6的周期数列,并求数列}{n a 的前2012项的和2012S ;(2)设数列}{n a 的前n 项和为n S ,且2)1(4+=n n a S .①若0>n a ,试断定数列}{n a 是否为周期数列,并解释来由; ②若01<+n n a a ,试断定数列}{n a 是否为周期数列,并解释来由;例5已知数列{}n a 和{}n b 的通项公式分离为36n a n =+,27n b n =+(*n N ∈),将聚集**{|,}{|,}n n x x a n N x x b n N =∈=∈中的元素从小到大依次分列,构成数列123,,,,,n c c c c .(1)求1234,,,c c c c ;(2)求证:在数列{}n c 中.但不在数列{}n b 中的项恰为242,,,,n a a a ;(3)求数列{}n c 的通项公式.例6假如有穷数列123m a a a a ,,,,(m 为正整数)知足前提m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m =,,,),我们称其为“对称数列”.例如,数列12521,,,,与数列842248,,,,,都是“对称数列”.(1)设{}n b 是7项的“对称数列”,个中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项; (2)设{}n c 是49项的“对称数列”,个中252649c c c ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ; (3)设{}n d 是100项的“对称数列”,个中5152100d d d ,,,是首项为2,公役为3的等差数列.求{}n d 前n 项的和n S (12100)n =,,,.挑衅一已知数列{}n a 是首项1a a =,公役为2的等差数列;数列{}n b 知足n n a n b )1(2+=. (1)若1a .3a .4a 成等比数列,求数列{}n a 的通项公式;(2)若对随意率性n N *∈都有5n b b ≥成立,求实数a 的取值规模;(3)数列{}n c 知足1213()(3)2n n n c c n N n -*--=⋅-∈≥且,个中11c =,232c =-;n n c b n f -=)(,当1614a -≤≤-时,求)(n f 的最小值(n N *∈)挑衅二我们划定:对于随意率性实数A ,若消失数列{}n a 和实数(0)x x ≠,使得21123.....n n A a a x a x a x -=++++,则称数A 可以暗示成x 进制情势,简记为:1231~()()().....()()-=n n A x a a a a a .如:2~(1)(3)(2)(1)=--A ,则暗示A 是一个2进制情势的数,且23132(2)212=-+⨯+-⨯+⨯A =5.(1)已知2(12)(13)=-+m x x (个中0)x ≠,试将m 暗示成x 进制的简记情势. (2)若数列{}n a 知足12a =,*11,1k ka k N a +=∈-, 123323132~()()().....()()()--=n n n n b a a a a a a *()n N ∈,是否消失实常数p 和q,对于随意率性的*n N ∈,n n b p 8q =+总成立?若消失,求出p 和q;若不消失,解释来由.(3) 若常数t 知足0t ≠且1t >-,1231~()()().....()()-=n nn n n n n n d t C C C C C ,求1limnn n d d →∞+.挑衅三已知数列{}.,满足)(22111*+∈+==N n a a a a n n n n (1){}n n a a 并求出数列的通项公式;(2)求等差数列{}11231201)(++*=++++∈n nn n n n nn a C b C b C b C b N n b ,使对*∈N n 都成立; M a c a c a c a c M N n nb c nn n n <++++∈=* 332211)(,使,是否存在正常数令*∈N n 对恒成立,并证实你的结论.挑衅四已知等差数列{}n a 中,公役0d >,其前n 项和为n S ,且知足2345a a ⋅=,1414a a +=.(1)求数列{}n a 的通项公式; (2)设由n n S b n c =+(0c ≠)构成的新数列为{}n b ,求证:当且仅当21-=c 时,数列{}n b 是等差数列; (3)对于(2)中的等差数列{}n b ,设8(7)n n nc a b =+⋅(*n ∈N ),数列{}n c 的前n 项和为n T ,现稀有列{}()f n ,8()30.9n n n n f n T a b ⎛⎫=⋅+-⋅ ⎪⎝⎭(*n ∈N ), 是否消失整数M ,使()M n f <对一切*n ∈N 都成立?若消失,求出M 的最小 值,若不消失,请解释来由.挑衅五已知,数列{}n a 有p a a a ==21,(常数0>p ),对随意率性的正整数n n a a a S n +++= 21,,并有n S 知足2)(1a a n S n n -=. (1)求a 的值;(2)试肯定命列{}n a 是不是等差数列,若是,求出其通项公式.若不是,解释来由;(3)对于数列{}n b ,假如消失一个常数b 使得对随意率性的正整数n 都有b b n <且b b n n =∞→lim ,则称b 为数列{}nb 的“上渐进值”,令2112+++++=n n n n nS S S S p,求数列{}n p p p n 221-+++ 的“上渐进值”.挑衅六已知数列{}n a 中,10a =,112n na a +=-,*N n ∈. (1)求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;(2)假设对于随意率性的正整数m .n ,都有||n m b b ω-<,则称该数列为“ω域收敛数列”. 试断定: 数列45nn n b a ⎛⎫=⋅- ⎪⎝⎭,*N n ∈是否为一个“23域收敛数列”,请解释你的来由.211123(18)(),(0),()0.(1){},()4,{};(2){}124......2......{},{};(3)(){}23,1,{n n n n n n n n n n n f x x ax a a x R x f x a S f n a a b b n T c c c n c c -+=-+≠∈≤=-+=+=、本大题分已知二次函数有且仅有唯一的实数值满足在数列中满足求的通项在数列中依次取出第项、第项、第项第项组成新数列求新数列的前项和理科设数列满足数列1},(1).(3)(),{}.n n n n n n n n n H H S nc c a a +=的前项和记作试比较与题中的大小文科设求数列的最大和最小值挑衅八已知函数()311223log ,(,),(,)1x f x M x y N x y x =-是()x f 图像上的两点,横坐标为21的点P 知足2OP OM ON =+(O 为坐标原点).(1)求证:12y y +为定值;(2)若121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭*(2)n n ∈≥N ,, 求1149lim 49n n n n S S S S n ++→∞-+的值; (3)在(2)的前提下,若()()111612411n n n n a n S S +⎧=⎪⎪=⎨⎪≥++⎪⎩,,,,*()n ∈N ,n T 为数列{}n a 的前n 项和,若()11n n T m S +<+对一切*n ∈N 都成立,试求实数m 的取值规模.挑衅九本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.把公役为2的等差数列}{n a 的各项依次拔出等比数列}{n b 中,将}{nb 按原次序分成1项.2项.4项.…….12-n 项的各组,得到数列}{nc :3765423211,,,,,,,,,a b b b b a b b a b ,……,记数}{c n 项和为n S .若11=c ,22=c ,=3S 413. (1)求数列}{n a .}{n b 的通项公式; (2)求数列}{n c 的前100项和100S ;(3)设n n n a b T +⋅=2009,浏览框图写出输出项,解释来由.挑衅十已知数列{a n }和{b n }知足:a 1=λ,a n+1=24,(1)(321),3n n n n a n b a n +-=--+个中λ为 实数,n 为正整数.(1)对随意率性实数λ,证实:数列{a n }不是等比数列;(2)证实:当18{}n b λ≠-时,数列是等比数列;(3)设0<a <b (a,b 为实常数),S n 为数列{b n λ,使得对随意率性正整数n,都有a <S n <b?若消失,求λ的取值规模;若不消失,解释来由.挑衅十一将数列{an} 中的所有项按第一排三项,以下每一行比上一行多一项的规矩排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:①在数列{bn} 中,b1=1,对于任何n∈N*,都有(n+1)bn+1﹣nbn=0;②表中每一行的数按从左到右的次序均构成公比为q(q>0)的等比数列;③.请解答以下问题:(1)求数列{bn} 的通项公式;(2)求上表中第k(k∈N*)行所有项的和S(k);(3)若关于x的不等式在上有解,求正整数k的取值规模。

高中数学:数列经典题目集锦及答案经典及题型精选

高中数学:数列经典题目集锦及答案经典及题型精选

数列经典题目集锦一一、构造法证明等差、等比 类型一:按已有目标构造1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N *.(1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列,求证:数列{a n }从第二项起为等差数列;(3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论.类型二: 整体构造2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N *都成立.(1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列.二、两次作差法证明等差数列3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a ,且*1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数).(1)求A 与B 的值;(2)求数列{}n a 为通项公式;三、数列的单调性4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,()11131n n n n n na S S a a λ+++=+⋅+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式;(2)若112n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围.5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++13246n n +=⋅--,且集合*|,nn b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,求λ的取值范围.四、隔项(分段)数列问题6. 已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n (n 为奇数),a n -3n (n 为偶数).(1) 是否存在实数λ,使数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由;(2) 若S n 是数列{a n }的前n 项的和,求满足S n >0的所有正整数n .7.若{}n b 满足:对于N n *∈,都有2n n b b d +-=(d 为常数),则称数列{}n b 是公差为d 的“隔项等差”数列. (Ⅰ)若17,321==c c ,{}n c 是公差为8的“隔项等差”数列,求{}n c 的前15项之和; (Ⅱ)设数列{}n a 满足:1a a =,对于N n *∈,都有12n n a a n ++=. ①求证:数列{}n a 为“隔项等差”数列,并求其通项公式;②设数列{}n a 的前n 项和为n S ,试研究:是否存在实数a ,使得22122++k k k S S S 、、成等比数列(*N k ∈)?若存在,请求出a 的值;若不存在,请说明理由.五、数阵问题8.已知等差数列{a n }、等比数列{b n }满足a 1+a 2=a 3,b 1b 2=b 3,且a 3,a 2+b 1,a 1+b 2成等差数列,a 1,a 2,b 2成等比数列.(1) 求数列{a n }和数列{b n }的通项公式;(2) 按如下方法从数列{a n }和数列{b n }中取项: 第1次从数列{a n }中取a 1, 第2次从数列{b n }中取b 1,b 2, 第3次从数列{a n }中取a 2,a 3,a 4, 第4次从数列{b n }中取b 3,b 4,b 5,b 6, ……第2n -1次从数列{a n }中继续依次取2n -1个项, 第2n 次从数列{b n }中继续依次取2n 个项, ……由此构造数列{c n }:a 1,b 1,b 2,a 2,a 3,a 4,b 3,b 4,b 5,b 6,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10, b 11,b 12,…,记数列{c n }的前n 项和为S n .求满足S n <22 014的最大正整数n .数列经典题目集锦答案1.证明:(1) 设数列{a n }的公差为d ,∵ b n =a n -2a n +1,∴ b n +1-b n =(a n +1-2a n +2)-(a n -2a n +1)=(a n +1-a n )-2(a n +2-a n +1)=d -2d =-d , ∴ 数列{b n }是公差为-d 的等差数列. (4分) (2) 当n ≥2时,c n -1=a n +2a n +1-2,∵ b n =a n -2a n +1,∴ a n =b n +c n -12+1,∴ a n +1=b n +1+c n2+1,∴ a n +1-a n =b n +1+c n 2-b n +c n -12=b n +1-b n 2+c n -c n -12.∵ 数列{b n },{c n }都是等差数列,∴b n +1-b n 2+c n -c n -12为常数, ∴ 数列{a n }从第二项起为等差数列. (10分)(3) 结论:数列{a n }成等差数列.证明如下: (证法1)设数列{b n }的公差为d ′, ∵ b n =a n -2a n +1,∴ 2n b n =2n a n -2n +1a n +1,∴ 2n -1b n -1=2n -1a n -1-2n a n ,…,2b 1=2a 1-22a 2,∴ 2n b n +2n -1b n -1+…+2b 1=2a 1-2n +1a n +1,设T n =2b 1+22b 2+…+2n -1b n -1+2n b n ,∴ 2T n =22b 1+…+2n b n -1+2n +1b n ,两式相减得:-T n =2b 1+(22+…+2n -1+2n )d ′-2n +1b n ,即T n =-2b 1-4(2n -1-1)d ′+2n +1b n , ∴ -2b 1-4(2n -1-1)d ′+2n +1b n =2a 1-2n +1a n +1,∴ 2n +1a n +1=2a 1+2b 1+4(2n -1-1)d ′-2n +1b n =2a 1+2b 1-4d ′-2n +1(b n -d ′), ∴ a n +1=2a 1+2b 1-4d′2n +1-(b n -d ′). (12分) 令n =2,得a 3=2a 1+2b 1-4d′23-(b 2-d ′)=2a 1+2b 1-4d′23-b 1, ∵ b 1+a 3=0,∴2a 1+2b 1-4d′23=b 1+a 3=0,∴ 2a 1+2b 1-4d ′=0,∴ a n +1=-(b n -d ′),∴ a n +2-a n +1=-(b n +1-d ′)+(b n -d ′)=-d ′,∴ 数列{a n }(n ≥2)是公差为-d ′的等差数列. (14分) ∵ b n =a n -2a n +1,令n =1,a 1-2a 2=-a 3,即a 1-2a 2+a 3=0,∴ 数列{a n }是公差为-d ′的等差数列. (16分)(证法2)∵ b n =a n -2a n +1,b 1+a 3=0,令n =1,a 1-2a 2=-a 3,即a 1-2a 2+a 3=0,(12分) ∴ b n +1=a n +1-2a n +2,b n +2=a n +2-2a n +3,∴ 2b n +1-b n -b n +2=(2a n +1-a n -a n +2)-2(2a n +2-a n +1-a n +3). ∵ 数列{b n }是等差数列,∴ 2b n +1-b n -b n +2=0, ∴ 2a n +1-a n -a n +2=2(2a n +2-a n +1-a n +3).(14分) ∵ a 1-2a 2+a 3=0,∴ 2a n +1-a n -a n +2=0, ∴ 数列{a n }是等差数列.(16分)2.解析:(1) 若λ=1,则(S n +1+1)a n =(S n +1)a n +1,a 1=S 1=1.∵ a n >0,S n >0,∴ S n +1+1S n +1=a n +1a n ,(2分) ∴S 2+1S 1+1·S 3+1S 2+1·…·S n +1+1S n +1=a 2a 1·a 3a 2·…·a n +1a n ,化简,得S n +1+1=2a n +1. ①(4分) ∴ 当n ≥2时,S n +1=2a n . ② ①-②,得a n +1=2a n ,∴a n +1a n=2(n ≥2).(6分) ∵ 当n =1时,a 2=2,∴ n =1时上式也成立,∴ 数列{a n }是首项为1,公比为2的等比数列,a n =2n -1(n ∈N *).(8分) (2) 令n =1,得a 2=λ+1.令n =2,得a 3=(λ+1)2.(10分) 要使数列{a n }是等差数列,必须有2a 2=a 1+a 3,解得λ=0.(11分) 当λ=0时,S n +1a n =(S n +1)a n +1,且a 2=a 1=1. 当n ≥2时,S n +1(S n -S n -1)=(S n +1)(S n +1-S n ),整理,得S 2n +S n =S n +1S n -1+S n +1,S n +1S n -1+1=S n +1S n ,(13分) 从而S 2+1S 1+1·S 3+1S 2+1·…·S n +1S n -1+1=S 3S 2·S 4S 3·…·S n +1S n ,化简,得S n +1=S n +1,∴ a n +1=1.(15分) 综上所述,a n =1(n ∈N *),∴ λ=0时,数列{a n }是等差数列.(16分)3.解析:(1)由11,6,1321===a a a ,得18,7,1321===S S S .把2,1=n 分别代入*1,)25()85(N n B An S n S n n n ∈+=+--+,得⎩⎨⎧-=+-=+48228B A B A , 解得,8,20-=-=B A .(2)由(1)知,82028)(511--=---++n S S S S n n n n n ,即82028511--=--++n S S na n n n ,① 又8)1(2028)1(5122-+-=--++++n S S a n n n n . ②②-①得,20285)1(51212-=---+++++n n n n a a na a n ,即20)25()35(12-=+--++n n a n a n . ③ 又20)75()25(23-=+-+++n n a n a n .④④-③得,0)2)(25(123=+-++++n n n a a a n ,520n +≠,∴02123=+-+++n n n a a a ,又32215a a a a -=-=,所以32120a a a -+=, 因此,数列{}n a 是首项为1,公差为5的等差数列. 故45)1(51-=-+=n n a n .4.解析:(1) 0λ=时,111n n n n naS S a a +++=+∴1n n n na S S a +=∵0n a >,∴0n S > ∴ 1n n a a +=,∵11a =,∴1n a =(2) ∵()11131n n n n n n a S S a a λ+++=+⋅+ 0n a > ,∴1131nn n n nS S a a λ++-=⋅+ 则212131S S a a λ-=⋅+,2323231S S a a λ-=⋅+, ,11131n n n n n S S a a λ----=⋅+()2n ≥ 相加,得()2113331n nnS n a λ--=+++-则()3322n n n S n a n λ⎛⎫-=+⋅≥ ⎪⎝⎭,该式对1n =也成立, ∴()*332n n n S n a n N λ⎛⎫-=+⋅≥ ⎪⎝⎭. ③ ∴()1*13312n n n S n a n N λ++⎛⎫-=++⋅≥ ⎪⎝⎭. ④ ④-③,得1113333122n n n n n a n a n a λλ+++⎛⎫⎛⎫--=++⋅-+⋅ ⎪ ⎪⎝⎭⎝⎭ 即11333322n n n n n a n a λλ++⎛⎫⎛⎫--+⋅=+⋅ ⎪ ⎪⎝⎭⎝⎭∵0λ≥,∴133330,022n n n n λλ+--+>+> . ∵112n n a a +<对一切*n ∈N 恒成立, ∴332nn λ-+1133()22n n λ+-<+对一切*n ∈N 恒成立. 即233nnλ>+对一切*n ∈N 恒成立. 记233n n nb =+,则()()()111423622233333333n n n n n n n n n n b b +++-⋅-+-=-=++++ 当1n =时,10n n b b +-=; 当2n ≥时,10n n b b +->∴ 1213b b ==是{}n b 中的最大项.综上所述,λ的取值范围是13λ>. 5. 解析:(1)数列{}n a 是各项均为正数的等比数列,∴215364a a a ==,38a ∴=,又5348S S -=,2458848a a q q ∴+=+=,2q ∴=,3822n n n a -∴=⋅=; ……4分(2)(ⅰ)必要性:设5,,k m l a a a 这三项经适当排序后能构成等差数列,①若25k m l a a a ⋅=+,则10222k m l ⋅=+,1022m k l k --∴=+,11522m k l k ----∴=+,1121,24m k l k ----⎧=⎪∴⎨=⎪⎩ 13m k l k =+⎧∴⎨=+⎩. ………… 6分②若25m k l a a a =+,则22522m k l ⋅=⋅+,1225m k l k +--∴-=,左边为偶数,等式不成立, ③若25l k m a a a =+,同理也不成立,综合①②③,得1,3m k l k =+=+,所以必要性成立. …………8分 (ⅱ)充分性:设1m k =+,3l k =+,则5,,k m l a a a 这三项为135,,k k k a a a ++,即5,2,8k k k a a a ,调整顺序后易知2,5,8k k k a a a 成等差数列,所以充分性也成立. 综合(ⅰ)(ⅱ),原命题成立. …………10分(3)因为11213213246n n n n n a b a b a b a b n +--++++=⋅--, 即123112122223246n n n n n b b b b n +--++++=⋅--,(*)∴当2n ≥时,1231123122223242n n n n n b b b b n ----++++=⋅--,(**)则(**)式两边同乘以2,得2341123122223284n n n n n b b b b n +---++++=⋅--,(***)∴(*)-(***),得242n b n =-,即21(2)n b n n =-≥,又当1n =时,21232102b =⋅-=,即11b =,适合21(2)n b n n =-≥,21n b n ∴=-.………14分 212n n n b n a -∴=,111212352222n n n n nn n b b n n n a a ------∴-=-=, 2n ∴=时,110n n n n b b a a --->,即2121b b a a >;3n ∴≥时,110n n n n b b a a ---<,此时n n b a ⎧⎫⎨⎬⎩⎭单调递减, 又1112b a =,2234b a =,3358b a =,44716b a =, 71162λ∴<≤. ……………16分 6. 解析:(1) 设b n =a 2n -λ,因为b n +1b n =a 2n +2-λa 2n -λ=13a 2n +1+(2n +1)-λa 2n -λ=13(a 2n -6n )+(2n +1)-λa 2n -λ=13a 2n +1-λa 2n -λ.(2分)若数列{a 2n -λ}是等比数列,则必须有13a 2n+1-λa 2n -λ=q (常数),即⎝⎛⎭⎫13-q a 2n +(q -1)λ+1=0,即⎩⎪⎨⎪⎧13-q =0(q -1)λ+1=0⎩⎨⎧q =13,λ=32,(5分) 此时b 1=a 2-32=13a 1+1-32=-16≠0,所以存在实数λ=32,使数列{a 2n -λ}是等比数列.(6分)(注:利用前几项,求出λ的值,并证明不扣分) (2) 由(1)得{b n }是以-16为首项,13为公比的等比数列,故b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32.(8分)由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,(10分)所以a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2[13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n ]-6(1+2+…+n )+9n=-2·13[1-⎝⎛⎭⎫13n ]1-13-6·n (n +1)2+9n =⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n-3(n -1)2+2,(12分)显然当n ∈N *时,{S 2n }单调递减.又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n , 同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 7.解析:(Ⅰ)易得数列⎩⎨⎧+-=.9414为偶数时,当为奇数时;,当n n n n c n前15项之和53527)6517(28)593(=⨯++⨯+=……………………………4分 (Ⅱ)①n a a n n 21=++ (*∈N n )(1) , )1(221+=+++n a a n n (2)(1)-(2)得22=-+n n a a (*∈N n ).所以,{}n a 为公差为2的“隔项等差”数列. ……………………………6分当n 为偶数时,a n n a a n -=⨯⎪⎭⎫⎝⎛-+-=2122, 当n 为奇数时,()[]11)1(2)1(21-+=----=--=-a n a n n a n a n n ; …8分②当n 为偶数时,()2212212222221222n n n n a n n n a S n =⨯⎪⎭⎫ ⎝⎛-+⋅-+⨯⎪⎭⎫ ⎝⎛-+⋅=;当n 为奇数时,()2212121212221212121⨯⎪⎭⎫⎝⎛---+-⋅-+⨯⎪⎭⎫ ⎝⎛-++++⋅=n n n a n n n a S n 21212-+=a n . ……………………………12分 故当k n 2=时,222k S k =,a k k S k ++=+22212,222)1(2+=+k S k ,由()222212++⋅=k k k S S S ,则2222)1(22)22(+⋅=++k k a k k ,解得0=a .所以存在实数0a =,使得22122++k k k S S S 、、成等比数列(*N k ∈)……………………………16分8. 解析:(1) 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意,得⎩⎪⎨⎪⎧a 1+(a 1+d )=a 1+2d ,b 1(b 1q )=b 1q 2,(a 1+2d )+(a 1+b 1q )=2[(a 1+d )+b 1],(a 1+d )2=a 1(b 1q ),解得a 1=d =1,b 1=q =2.故a n =n ,b n =2n .(6分)(2) 将a 1,b 1,b 2记为第1组,a 2,a 3,a 4,b 3,b 4,b 5,b 6记为第2组,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10,b 11,b 12记为第3组,……以此类推,则第n 组中,有2n -1项选取于数列{a n },有2n 项选取于数列{b n },前n 组共有n 2项选取于数列{a n },有n 2+n 项选取于数列{b n },记它们的总和为P n ,并且有()22211222nn n n n P +++=+-.(11分)P 45-22 014=452(452+1)2+22 071-22 014-2>0,P 44-22 014=442(442+1)2-21 981(233-1)-2<0.当S n =452(452+1)2+(2+22+…+22 012)时,S n -22 014=-22 013-2+452(452+1)2<0.(13分)当S n =452(452+1)2+(2+22+…+22 013)时,S n -22 014=-2+452(452+1)2>0.可得到符合S n <22 014的最大的n =452+2 012=4 037.(16分)。

(完整版)数列题型全归纳(附知识点)

(完整版)数列题型全归纳(附知识点)

数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

数列常见题型总结计划经典超级经典

数列常见题型总结计划经典超级经典

一、数列的定义与性质1.数列的定义:数列是由一系列按照一定顺序排列的数构成的序列。

2.数列的性质:(1)有限数列:数列中的项数是有限的。

(2)无限数列:数列中的项数是无限的。

(3)严格递增数列:数列中的每一项都小于它后面的项。

(4)严格递减数列:数列中的每一项都大于它后面的项。

(5)等差数列:数列中相邻两项的差是常数。

(6)等比数列:数列中相邻两项的比是常数。

二、数列的通项公式与求和公式1.数列的通项公式:数列的第n项与序号n之间的关系式。

2.数列的求和公式:数列前n项的和与序号n之间的关系式。

(1)等差数列的求和公式:$S_n=\frac{n}{2}[2a+(n-1)d]$ (2)等比数列的求和公式:$S_n=\frac{a_1(1q^n)}{1q}$三、数列的常见题型及解题方法1.求数列的通项公式(1)等差数列:已知前几项或公差,求通项公式。

(2)等比数列:已知前几项或公比,求通项公式。

(3)其他数列:根据题意,找出数列的规律,求通项公式。

2.求数列的前n项和(1)等差数列:利用求和公式求解。

(2)等比数列:利用求和公式求解。

(3)其他数列:根据题意,找出数列的规律,求和。

3.数列的单调性(1)判断数列的单调递增或单调递减。

(2)证明数列的单调性。

4.数列的周期性(1)判断数列的周期性。

(2)求数列的周期。

5.数列的极限(1)求数列的极限。

(2)判断数列的收敛性。

6.数列的错位相减法(1)应用错位相减法求数列的和。

(2)证明错位相减法的正确性。

四、经典题目解析1.题目:已知数列$\{a_n\}$是等差数列,且$a_1=2,a_6=10$,求数列的通项公式。

解析:根据等差数列的性质,可知$a_6=a_1+5d$,代入已知条件,解得$d=2$,进而求得通项公式$a_n=2n$。

2.题目:已知数列$\{b_n\}$是等比数列,且$b_1=2,b_3=8$,求数列的通项公式。

解析:根据等比数列的性质,可知$b_3=b_1\cdotq^2$,代入已知条件,解得$q=2$,进而求得通项公式$b_n=2^n$。

数列全部题型归纳(非常全面,经典)(20201128150721)

数列全部题型归纳(非常全面,经典)(20201128150721)

数列百通通项公式求法(一)转化为等差与等比a n什么1、已知数列{a n}满足a i 1 , a n ... a n 1 1 ( n N , 2< n <8),则它的通项公式2•已知{a n}是首项为2的数列,并且a n i a n 2a n a n i,则它的通项公式a n是什么3•首项为2的数列,并且a n 3a n,则它的通项公式a n是什么4、已知数列a n中,a1 0, a n 11,n 2 a n5.已知数列 a n 中,a i 3, a n 1 2a . 2n 2,如果b a . 2n ,求数列a .的通项公式(二)含有S n 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n+1,求数列{a n }的通项公式求证: a n 1是等差数列;并求数列a n 的通项公式;244) a 1 2a 2 3a 3 ...na n n(n 1)(n 2) 求数列a n(三) 累加与累乘(1)如果数列 a n 中a i1,a n a n 1 2n(n 2)求数列a n2.)若数列a n 的前n 项和S n 满足,S n(2 a n)则,数列3)若数列a n 的前n 项和S n 满足,a nS n S ni ,a n 0禺-则,数列 a .4⑶a i 1a 2,a n+2=3a ni 2a.,求此数列的通项公式21(4)若数列a n的前n项和S n满足,& n2a n,a l贝打数列a n2(四)一次函数的递推形式1.若数列a n满足a i 1,a n ;am 1(n 2),数列a n2 .若数列a n满足a i 1,a n(2)已知数列{a n}满足a1 3 , a n a n 1n(n 1)(n2),求此数列的通项公式261尹1 2 (n 2),数列a n(五)分类讨论(1) a n 3 a n 2(n 3),印 1耳 7,求数列 a .a (2) J 2,( n3)a 1 1® 3,求数列 a .a n 2(六) 求周期 16 (1) a n 1, a 2 4,求数列 a 20041 a n(2)如果已知数列a n 1a n a n 1, a12,a26,求a2010拓展1:有关等和与等积(1)数列{a n}满足a i0, a n 1 a n 2,求数列{a n}的通项公式(2)数列{a n}满足a i0 , a n 1 a n 2n,求数列{a n}的通项公式(3).已知数列{a n}满足a13,a n a n 1(!)n, (n N*),求此数列{a n}的通项公式2拓展2综合实例分析1已知数列{a n}的前n项和为S n,且对任意自然数n,总有S n p a n 1 , p 0, p 1(1)求此数列{a n}的通项公式⑵如果数列b n中,b n 2n q© ga? b?,求实数p的取值范围2 已知整数列{a n}满足qa2a2a3a3a4...a n 1a n3已知{a n}是首项为1的正项数列,2 2并且(n 1)a n 1 na n a. Qn0(n 1,2,3丄),则它的通项公式a n是什么4已知{a n}是首项为1的数列,并且a n 1a n3a n 4则它的通项公式a n是什么求所有可能的5、数列a n和b n中,a n,b n,a n 1成等差数列,• b n , B n 1 , S 1成等比数列,且玄勺1 , 2,设C n ,b n求数列C n的通项公式。

数列的19种经典题型及答案

数列的19种经典题型及答案

数列的19种经典题型及答案
1.求n项和:Sn=n*(a1+an)/2
2.求公差为d的等差数列前n项和:Sn=n*(2a1+(n-1)*d)/2
3.求公比为q的等比数列的前n项和:Sn=a1*(1-q^n)/(1-q)
4.求公比为q的等比数列的通项公式:an=a1*q^(n-1)
5.求等比数列前n项和与n项均值的关系:Sn=n*a1*q^(n-1)/(1-q).(当q>1时Sn>n*a1/2,当q<1时Sn<n*a1/2)
6.求等差数列前n项和与n项均值的关系:Sn=n*(a1+an)/2(Sn>n*a1/2)
7.求等差数列的通项公式:an=a1+(n-1)*d
8.求等比数列的前n项积:Pn=a1*q^(1+2+...+(n-1))=a1*q^(n(n-1)/2)
9.求等差数列的前n项积:Pn=(a1a2)*[(an-d)-(a1-d)]/d^2
10.求公差为d的等差数列的通项公式:an=a1+(n-1)*d
11.求等差数列的第n项:an=a1+(n-1)*d
12.求n项均值:a1+an/2
13.求前n项均值:3a1+3an/4
14.求连续项和:Sn=n/2*(2a1+(n-1)*d)
15.求联立等比数列之积:Pn=a1*q^n
16.求互差等比数列之积:Pn=a1a2...an=a1q^(2+4+...+(2n-2))
17.求满足条件的等差数列最小项:a1=a+l*d
18.求满足条件的等比数列最小项:a1=a*q^k
19.求满足条件的等比数列最大项:an=a*q^(n-1-k)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一数列通项公式的求法
1.前n 项和法(知n S 求n a )⎩⎨⎧-=-1
1n n n S S S a )
2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T
若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。

若数列}{n a 的前n 项和32
3-=
n n a S ,求该数列的通项公式。

1、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。

2.形如)(1n f a a n n =-+型(累加法)
(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.
(2)若f(n)为n 的函数时,用累加法.
例1.已知数列{a n }满足)2(3
,1111≥+==--n a a a n n n ,证明2
13-=n n a
已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.
已知数列}{n a 满足31=a ,)2()
1(11≥-+
=-n n n a a n n ,求此数列的通项公式.
3.形如)(1n f a a n
n =+型(累乘法)
(1)当f(n)为常数,即:q a n
n =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+=
=n n a n n a a )2(≥n ,求数列的通项公式。

在数列}{n a 中1111,1-+-=
=n n a n n a a )2(≥n ,求n n S a 与。

2、求数列)2(1
232,111≥+-==-n a n n a a
n n 的通项公式。

4.形如s
ra pa a n n n +=
--11型(取倒数法) 例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a
练习:1、若数列}{n a 中,11=a ,1
31+=+n n n a a a ,求通项公式n a .
若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .
5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)
(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;
(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.
方法如下:设)(1A a c A a n n +=++,利用待定系数法求出A
已知数列}{n a 中,,2121,211+=
=+n n a a a 求通项n a .
练习:1、若数列}{n a 中,21=a ,121-=+n n a a ,求通项公式n a 。

若数列}{n a 中,11=a ,13
1+=
+n n a a ,求通项公式n a 。

6.形如)(1n f pa a n n +=+型(构造新的等比数列)
(1)若b kn n f +=)(一次函数(k,b 是常数,且0≠k ),则后面待定系数法也用一次函数。

例题.在数列{}n a 中,2
31=a ,3621-+=-n a a n n ,求通项n a .
练习:1、已知数列{}n a 中,31=a ,2431-+=+n a a n n ,求通项公式n a
(2)若n q n f =)((其中q 是常数,且n ≠0,1)
①若p=1时,即:n n n q a a +=+1,累加即可
②若1≠p 时,即:n n n q a p a +⋅=+1,后面的待定系数法也用指数形式。

两边同除以1+n q .即:q q
a q p q a n n n n 111+⋅=
++, 令n n n q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,
在数列{}n a 中,521-
=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a
已知数列{}n a 中,211=
a ,n n n a a )2
1(21+=-,求通项公式n a 。

已知数列{}n a 中,11=a ,n n n a a 2331⋅+=+,求通项公式n a 。

题型二根据数列的性质求解(整体思想)
已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;
设n S 、n T 分别是等差数列{}n a 、{}n b 的前n 项和,
327++=n n T S n n ,则=55b a . 设n S 是等差数列{}n a 的前n 项和,若==5
935,95S S a a 则() 5、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

6、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3.
在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为()
在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a +=.
题型三:证明数列是等差或等比数列
A)证明数列等差
例1、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=
21.求证:{n S 1}是等差数列;
B )证明数列等比
例1、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈
⑴证明:数列{}1n n a a +-是等比数列;⑵求数列{}n a 的通项公式;
题型四:求数列的前n 项和
基本方法:A )公式法,
B )分组求和法
1、求数列n
{223}n +-的前n 项和n S .
C )裂项相消法,数列的常见拆项有:()()n n k k n n k =-++;n n n n -+=++11
; 例1、求和:S =1+
n ++++++++++ 32113211211 求和:
n
n +++++++++11341231121 .
D )倒序相加法, 例、设22
1)(x
x x f +=,求:).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++
E )错位相减法,
1、若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S .
21123(0)n n S x x nx x -=++++≠(将分为1=x 和1≠x 两种情况考虑)
不开口,没有人知道你想要什么;不去做,任何想法都只在脑海里游泳;不迈出脚步,永远找不到你前进的方向。

其实你很强,只是懒惰帮了你倒忙。

相关文档
最新文档