主成分分析实验报告
主成分分析报告
主成分分析报告第一点:主成分分析的定义与重要性主成分分析(Principal Component Analysis,PCA)是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组变量称为主成分。
这种方法在多变量数据分析中至关重要,尤其是在数据的降维和可视化方面。
在实际应用中,数据往往包含多个变量,这些变量可能存在一定的相关性。
这样的数据集很难直接进行分析和理解。
主成分分析通过提取数据中的主要特征,将原始的多维数据转化为少数几个互相独立的主成分,使得我们能够更加清晰地看到数据背后的结构和模式。
主成分分析的重要性体现在以下几个方面:1.降维:在数据集中存在大量变量时,通过PCA可以减少数据的维度,简化模型的复杂性,从而降低计算成本,并提高模型的预测速度。
2.去除相关性:PCA能够帮助我们识别和去除变量间的线性相关性,使得我们分析的是更加纯净的独立信息。
3.数据可视化:通过将多维数据映射到二维或三维空间中,PCA使得数据的可视化成为可能,有助于我们直观地理解数据的结构和模式。
4.特征提取:在机器学习中,PCA可以作为一种特征提取工具,提高模型的性能和泛化能力。
第二点:主成分分析的应用案例主成分分析在各个领域都有广泛的应用,下面列举几个典型的案例:1.图像处理:在图像处理领域,PCA被用于图像压缩和特征提取。
通过将图像转换到主成分空间,可以大幅度减少数据的存储空间,同时保留图像的主要信息。
2.金融市场分析:在金融领域,PCA可以用来分析股票或证券的价格动向,通过识别影响市场变化的主要因素,帮助投资者做出更明智的投资决策。
3.基因数据分析:在生物信息学领域,PCA被用于基因表达数据的分析。
通过识别和解释基因间的相关性,PCA有助于揭示生物过程中的关键基因和分子机制。
4.客户细分:在市场营销中,PCA可以用来分析客户的购买行为和偏好,通过识别不同客户群的主要特征,企业可以更有效地制定市场策略和个性化推荐。
主成分分析
主成分分析法实验报告一、实验名称:主成分分析二、实验目的:利用计算机实现主成分分析,完成综合评价。
三、实验原理:四、实验过程:(一)数据录入:将相关指标数据录入如下表(二)数据标准化:为避免不同量纲引起的大数吃小数问题,我们对相关数据进行标准化,结果如下:表1:标准化后的数据录入表表2:描述统计量表表1是标准化后的相关数据,表2给出了标准化过程中涉及到的均值、标准差等数值。
(三)分析表3:公因子方差表表3给出了该次分析从每个原始变量中提取的信息,表格下的表注表明,该次分析使用主成分分析完成的。
可以看出除百元销售收入实现利税信息损失较大外,主成分几乎包含了各个原始变量至少85%的信息。
表4:相关矩阵表4为各指标因素量化后的相关矩阵。
表5:解释的总方差表由输出结果表5可以看出,前两个主成分y1,y2的方差和占全部方差的的比例为84.7%。
我们就选取y1为第一主成分,y2为第二主成分,且这两个主成分的方差和占全部方差的84.7%,即基本上保留了原来的指标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。
表6:因子载荷矩阵因子载荷矩阵(表6)是主成分和变量间的因子负荷量,即相关系数,代表相关度。
并非主成分的系数;所以我们要通过该成分矩阵计算出主成分的系数,计算结果如表7:表7:主成分系数表7中,a1代表第一主成分与各变量间的因子负荷量,a2代表第二主成分与各变量间的因子负荷量;u1代表y1的系数,u2代表y2的相应系数。
由此可得到两个主成分y1、y2的线性组合。
(四)主成分得分及分类表8:主成分得分为了分析各样品在主成分所反映的经济意义方面的情况,还将标准化后的原始数据代入主成分表达式中计算出各样品的主成分得分,如表8,得到28个省的、直辖市、自治区的主成分的分。
将这28个样品在平面直角坐标系上描出来,进而得到样品分类,如下图所示:由上图可以看出,分布在第一象限的是上海、北京、天津、广西四个省区,这四个省区的经济效益在全国来说属于较好的,上海经济效益最好。
《多元统计实验》主成分分析实验报告二
《多元统计实验》主成分分析实验报告三、实验结果分析6.5人均粮食产量x5,经济作物占农作物播种面积x6,耕地占土地面积比x7,果园与林地面积之比x8,灌溉田占1耕地面积比例x9等五个指标有较强的相关性, 人口密度x1,人均耕地面积x2,森林覆盖率x3,农民人均收入x4相关性也很强,再作主成分分析,求样本相关矩阵的特征值和主成分载荷。
λ11/2=2.158962,λ21/2=1.4455076,λ31/2 =1.0212708,λ41/2 =0.71233588,λ51/2 =0.5614001,λ61/2 =0.43887788,λ71/2 =0.33821497,λ81/2 =0.212900230,λ91/2=0.177406876。
确定主成分分析,前两个主成分的累积方差贡献率为75.01%,前三个主成分的累积方差贡献率为86.59%,按照累积方差贡献率大于80%的原则,主成分的个数取为3,前三个主成分分别为:Z*1=0.3432x*1-0.446x*3+0.376x*5+0.379x*6+0.432x*7+0.446x*9Z*2=0.368x*1-0.614x*2-0.61x*4-0.307x*5-0.1224x*6Z*3=-0.122x*6+0.246x*7-0.950x*8第一主成分在x*7,x*9两个指标上取值为正且载荷较大,可视为反映耕地占比和灌溉田占耕地面积比例的主成分,第二主成分在x*2和x*4这两个指标的取值为负,绝对值载荷最大,不能作为人均耕地和人均收入的主成分。
第三主成分,x*8这个指标取值为负且,载荷绝对值最大,不能反映果园与林地面积之比的主成分。
根据该图结果可以认为选取前两个指标作为主成分分析的选择是正确的。
将八个指标按前两个主成分进行分类:由结果可以得出森林覆盖率为一类,人口密度、果园与林地面积之比、耕地占土地面积比、灌溉田占耕地面积比为一类,经济作物占农作物播种面积比例、人均粮食产量、农民人均收入、人均耕地面积为一类。
主成分分析-实验
主成分分析实验1:数据Employee data.sav中为银行在1969-1971年之间雇员情况的数据,共包括474条观测及如下10各变量:本例中需要用到的变量分别为Educ ,Salary,Salbegin,Jobtime,Orevexp。
下面我们用主成分分析法处理该数据,一起用少数变量来描述该地区居民的雇佣情况。
打开数据Employee data.sav,依次选分析——降维——因子分析点击OK即可,输出为:公因子方差给出了该次分析从每个原始变量中提取的信息,可看出除受教育程度90%的信息。
解释的总方差显示了各主成分解释原始变量总方差的情况,默认保留特征根大于1的主成分,本例保留3个主成分,集中了原始5各变量信息的90.66%,可见效果实际上,主成分解释总方差的百分比也可以由公因子方差表计算得出,即(.754+.896+.916+.999+.968)/5=90.66%,成分矩阵给出了标准化原始变量用求得的主成分线性表示的近似表达式,以current Salary一行为例,用prin1,prin2,prin3来表示个各主成分,得到:标准化的Salary~0.940*prin1+0.104*prin2+(2.857E-02)*prin3.在上面的主成分分析中,SPSS默认是从相关矩阵出发求解主成分,且默认保留特征根大于1的主成分,实际上,对主成分的个数,我们可以自己确定,方法为:选择“抽取——因子的固定数量”可以输入别的数值来改变SPSS软件保留特征根的大小。
另外,还可以直接确定主成分个数。
在实际进行注册号那个分分析时可以先按照默认设置做一次主成分分析,然后根据输出结果确定应保留主成分的个数,用该方法进行设定后重新分析。
由成分矩阵中的结果可以得到:22222E++-+-+==第一主成分的方差。
0.9400.917(6.80602)(0.178)0.846 2.477031又有222++-=E0.9400.104(2.85702)0.896这恰好与公因子方差表中三个主成分提取Salary变量的信息相等,重做一遍主成分,此次将5个主成分全部保留,得到22222++-+-+=E0.9400.104(2.85702)(0.234)0.2221还可得到标准化原始变量用各主成分线性表示的精确的表达式:Salary=0.940*prin1+0.104*prin2+(2.857E-02)*prin3-0.234*prin4+0.222*prin5由默认选项输出的结果,我们还不能得到用原始变量表示出主成分的表达式,要得到这个结果及其他一些有用的结果,就需要对模块中的设置作调整。
主成份分析报告(包含sas程序)
主成分分析实验报告实验内容:表1的数据是广东省各地市经济发展的基本数据,其中X1-城镇人口占常住人口比例(%),X2-固定资产投资(亿元),X3-人均可支配收入(元),X4-人均消费支出(元),X5-社会消费品零售总额(亿元),X6-第三产业占GDP百分比(%),X7-出口总额(亿美元),X8-人均地区生产总值(元)。
表1 安徽省各地市经济发展的基本数据城市X1X2X3X4X5X6X7X8广州82.532659.8527609.622820.93615.7760.9374.0588424.71189深圳1001709.1529244.521526.12567.9453.21619.7992022.45885珠海87.16410.5122858.617948.4404.4644.8177.8369652.80797汕头69.58291.913650.911659.5661.9639.540.1620282.83847佛山92.361470.5624577.919295.61408.7835245.7880391.16195韶关47.29356.516288.711467.6278.3645 5.7919490.55365河源40.5198.1512137.998054.92139.534.914.1313729.38507梅州46.2162.9813113.310365.7267.9839.3 6.7112528.23307惠州61.27758.972127817913.9491.137.8171.4935615.98569汕尾57289.4312560.218735.73282.0638.29.4813287.30274东莞86.391094.0833044.624269.9959.0751.2551.6759274.23927中山86.34545.6123088.3917414.7549.7639.4177.3662222.89651江门50.08492.0719003.7614262.87562.0734.279.4931915.39277阳江46.72239.4913075.219164.85305.383612.321999.29294湛江38.99393.2313665.210470.1559.9439.913.6516537.29201茂名37.5180.0113160.649764.1591.0543.1 5.3219853.45836肇庆44.89462.771506311030.3275.7843.720.322169.19445清远34.93841.2414314.799851.89303.5631.914.1522513.00645潮州62.1162.9812398.210758.29207.8937.618.718653.62032揭阳45.36393.513169.2410463.1341.4633.625.2514093.4095云浮50.2240.191321111383.48117.9133.7 6.1614128.88059利用主成分分析综合出适当的主成分及相应的主成分得分;利用上面的主成分得分对样品进行聚类分析,并给出适当的结论。
实验六 主成分分析
实验六 主成分分析一、实验目的通过本次实验,掌握SPSS 及ENVI 的主成分分析方法。
二、有关概念1. 主成分分析的概念主成分分析(又称因子分析),是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法。
代表各类信息的综合指标就称为因子或主成份。
主成分分析的数学模型可写为:m m x a x a x a x a z 131********++++=m m x a x a x a x a z 23232221212++++=m m x a x a x a x a z 33332321313++++=………m nm n n n n x a x a x a x a z ++++= 332211其中,x 1、x 2、 x 3、 x 4 …x m 为原始变量;z 1、 z 2、 z 3、 z 4 …z n 为主成份,且有m≥n 。
写成矩阵形式为:Z=AX 。
Z 为主成份向量,A 为主成份变换矩阵,X 为原始变量向量。
主成份分析的目的是把系数矩阵A 求出,主成份Z1、Z2、Z3…在总方差中所占比重依次递减。
从理论上讲m=n 即有多少原始变量就有多少主成份,但实际上前面几个主成份集中了大部分方差,因此取主成份数目远远小于原始变量的数目,但信息损失很小。
因子分析的一个重要目的还在于对原始变量进行分门别类的综合评价。
如果因子分析结果保证了因子之间的正交性(不相关)但对因子不易命名,还可以通过对因子模型的旋转变换使公因子负荷系数向更大(向1)或更小(向0)方向变化,使得对公因子的命名和解释变得更加容易。
进行正交变换可以保证变换后各因子仍正交,这是比较理想的情况。
如果经过正交变换后对公因子仍然不易解释,也可进行斜交旋转。
2. 因子提取方法SPSS 提供的因子提取方法有:①Principal components 主成份法。
该方法假设变量是因子的纯线性组合。
这是SPSS最通用的因子提取方法,故因子分析有时又称为主成份分析。
主成分分析实验报告
一、实验目的本次实验旨在通过主成分分析(PCA)方法,对给定的数据集进行降维处理,从而简化数据结构,提高数据可解释性,并分析主成分对原始数据的代表性。
二、实验背景在许多实际问题中,数据集往往包含大量的变量,这些变量之间可能存在高度相关性,导致数据分析困难。
主成分分析(PCA)是一种常用的降维技术,通过提取原始数据中的主要特征,将数据投影到低维空间,从而简化数据结构。
三、实验数据本次实验采用的数据集为某电商平台用户购买行为的调查数据,包含用户年龄、性别、收入、职业、购买商品种类、购买次数等10个变量。
四、实验步骤1. 数据预处理首先,对数据进行标准化处理,消除不同变量之间的量纲影响。
然后,进行缺失值处理,删除含有缺失值的样本。
2. 计算协方差矩阵计算标准化后的数据集的协方差矩阵,以了解变量之间的相关性。
3. 计算特征值和特征向量求解协方差矩阵的特征值和特征向量,特征值表示对应特征向量的方差,特征向量表示数据在对应特征方向上的分布。
4. 选择主成分根据特征值的大小,选择前几个特征值对应特征向量作为主成分,通常选择特征值大于1的主成分。
5. 构建主成分空间将选定的主成分进行线性组合,构建主成分空间。
6. 降维与可视化将原始数据投影到主成分空间,得到降维后的数据,并进行可视化分析。
五、实验结果与分析1. 主成分分析结果根据特征值大小,选取前三个主成分,其累计贡献率达到85%,说明这三个主成分能够较好地反映原始数据的信息。
2. 主成分空间可视化将原始数据投影到主成分空间,绘制散点图,可以看出用户在主成分空间中的分布情况。
3. 主成分解释根据主成分的系数,可以解释主成分所代表的原始数据特征。
例如,第一个主成分可能主要反映了用户的购买次数和购买商品种类,第二个主成分可能反映了用户的年龄和性别,第三个主成分可能反映了用户的收入和职业。
六、实验结论通过本次实验,我们成功运用主成分分析(PCA)方法对数据进行了降维处理,提高了数据可解释性,并揭示了数据在主成分空间中的分布规律。
主成分分析、因子分析实验报告--SPSS
主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。
本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。
二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。
这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。
主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。
(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。
公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。
因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。
三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。
数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。
四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。
2、选择“分析”>“降维”>“主成分分析”。
3、将需要分析的变量选入“变量”框。
4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。
5、点击“确定”,运行主成分分析。
(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。
2、选入变量。
3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。
4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。
实验:主成分分析
数理经济学分析方法实验报告2:主成分分析1.采用数据student.txt,对六个变量做协方差矩阵和相关系数矩阵。
我在做主成分分析之前对student.txt进行90%的随机抽样,然后根据抽样后的数据,利用spss计量分析软件对六个变量做协方差矩阵和相关系数矩阵如下。
(1)协方差矩阵(2)相关系数矩阵项间相关性矩阵VAR00001 VAR00002 VAR00003 VAR00004 VAR00005 VAR00006 VAR00001 1.000 .634 .623 -.606 -.491 -.502 VAR00002 .634 1.000 .537 -.432 -.337 -.365 VAR00003 .623 .537 1.000 -.442 -.338 -.366 VAR00004 -.606 -.432 -.442 1.000 .815 .829 VAR00005 -.491 -.337 -.338 .815 1.000 .806 VAR00006 -.502 -.365 -.366 .829 .806 1.0002.采用数据student.txt,先对六个变量做标准化,然后求协方差矩阵和相关系数矩阵。
观察步骤1和步骤2的结果,并做说明。
运用spss计量分析软件对六个变量做标准化后,得出协方差矩阵和相关系数矩阵如下。
(1)标准化后协方差矩阵(2)标准化后相关系数矩阵解释说明:步骤1是原始数据未经过标准化处理得到的协方差矩阵和相关系数矩阵,而步骤2是经过标准化处理后得到的协方差矩阵和相关系数矩阵。
从表格中,我们可以发现,标准化以后的协方差矩阵和相关系数矩阵对应相等,并且与未经标准化处理的相关系数矩阵对应相等,唯独与未经标准化处理的协方差矩阵对应不相等。
这表明在进行主成分分析时,一般采用相关系数矩阵进行分析,因为相关系数就是标准化以后的协方差,它可以消除量纲的影响,从而避免了由于量纲影响而导致的分析误差。
主成分分析实验报告剖析
一、引言主成分分析(PCA)是一种常用的数据降维方法,通过对原始数据进行线性变换,将高维数据投影到低维空间,从而简化数据结构,提高计算效率。
本文通过对主成分分析实验的剖析,详细介绍了PCA的基本原理、实验步骤以及在实际应用中的注意事项。
二、实验背景随着数据量的不断增长,高维数据在各个领域变得越来越普遍。
高维数据不仅增加了计算难度,还可能导致信息过载,影响模型的性能。
因此,数据降维成为数据分析和机器学习中的关键步骤。
PCA作为一种有效的降维方法,在众多领域得到了广泛应用。
三、实验目的1. 理解主成分分析的基本原理;2. 掌握PCA的实验步骤;3. 分析PCA在实际应用中的优缺点;4. 提高数据降维的技能。
四、实验原理主成分分析的基本原理是将原始数据投影到新的坐标系中,该坐标系由主成分构成。
主成分是原始数据中方差最大的方向,可以看作是数据的主要特征。
通过选择合适的主成分,可以将高维数据降维到低维空间,同时保留大部分信息。
五、实验步骤1. 数据准备:选择一个高维数据集,例如鸢尾花数据集。
2. 数据标准化:将数据集中的每个特征缩放到均值为0、标准差为1的范围,以便消除不同特征之间的尺度差异。
3. 计算协方差矩阵:计算标准化数据集的协方差矩阵,以衡量不同特征之间的相关性。
4. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量。
5. 选择主成分:根据特征值的大小选择前k个特征向量,这些向量对应的主成分代表数据的主要特征。
6. 数据投影:将原始数据投影到选择的主成分上,得到降维后的数据。
六、实验结果与分析1. 实验结果:通过实验,我们得到了降维后的数据集,并与原始数据集进行了比较。
结果表明,降维后的数据集保留了大部分原始数据的信息,同时降低了数据的维度。
2. 结果分析:实验结果表明,PCA在数据降维方面具有良好的效果。
然而,PCA也存在一些局限性,例如:(1)PCA假设数据服从正态分布,对于非正态分布的数据,PCA的效果可能不理想;(2)PCA降维后,部分信息可能丢失,尤其是在选择主成分时,需要权衡保留信息量和降低维度之间的关系;(3)PCA降维后的数据可能存在线性关系,导致模型难以捕捉数据中的非线性关系。
主成分分析实验报告
项目名称实验4―主成分分析所属课程名称多元统计分析(英)项目类型综合性实验实验(实训)日期2012年 4 月15 日实验报告4主成分分析(综合性实验)(Principal component analysis)实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。
这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。
利用矩阵代数的知识可求解主成分。
实验题目:下表中给出了不同国家及地区的男子径赛记录:(t8a6)Country 100m(s) 200m(s)400m(s)800m(min)1500m(min)5000m(min)10,000m(min)Marathon(mins)Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N.Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98 Indonesia 10.59 21.49 47.8 1.84 3.92 14.73 30.79 148.83 Ireland 10.61 20.96 46.3 1.79 3.56 13.32 27.81 132.35 Israel 10.71 21 47.8 1.77 3.72 13.66 28.93 137.55Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63 Kenya 10.46 20.66 44.92 1.73 3.55 13.1 27.38 129.75 Korea 10.34 20.89 46.9 1.79 3.77 13.96 29.23 136.25 D.P.R Korea 10.91 21.94 47.3 1.85 3.77 14.13 29.67 130.87 Luxembourg 10.35 20.77 47.4 1.82 3.67 13.64 29.08 141.27 Malaysia 10.4 20.92 46.3 1.82 3.8 14.64 31.01 154.1 Mauritius 11.19 22.45 47.7 1.88 3.83 15.06 31.77 152.23 Mexico 10.42 21.3 46.1 1.8 3.65 13.46 27.95 129.2 Netherlands 10.52 20.95 45.1 1.74 3.62 13.36 27.61 129.02 New Zealand 10.51 20.88 46.1 1.74 3.54 13.21 27.7 128.98 Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48 Papua New Guinea 10.96 21.78 47.9 1.9 4.01 14.72 31.36 148.22 Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27 Poland 10.16 20.24 45.36 1.76 3.6 13.29 27.89 131.58 Portugal 10.53 21.17 46.7 1.79 3.62 13.13 27.38 128.65 Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.5 Singapore 10.38 21.28 47.4 1.88 3.89 15.11 31.32 157.77 Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57 Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63 Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.2 Taipei 10.59 21.29 46.8 1.79 3.77 14.07 30.07 139.27Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.9 Turkey 10.71 21.43 47.6 1.79 3.67 13.56 28.58 131.5 USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 USSR 10.07 20 44.6 1.75 3.59 13.2 27.53 130.55 Western Samoa 10.82 21.86 49 2.02 4.24 16.28 34.71 161.83 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)实验要求:(1)试用Princomp过程求主成分;并对结果进行解释;(2)试用方差累积贡献率和Scree图确定主成分的个数;(3)计算各国第一主成分的得分并排名;(4)试对结果进行解。
第6章主成分分析报告
D(Yk )D(Xi )
k ii
其中的 ei (0, , 0,1, 0, , 0) ' ,而
Cov(TkX, e 'i X) TkΣei ei(ΣTk ) ei(kTk ) keiTk ktki
所以 (Yk , Xi )
k ii
tki
一、主成分的一般性质
(Yk , Xi )
k ii
(Y1,Y2)对每个原始变量的相关系数
i
ρ(Y1,Xi)
ρ(Y2,Xi)
1
0.925
二、主成分的数学推导
由于 Cov(Y2 ,Y1) T2ΣT1 T2T1
如果 Y2 与 Y1 相互独立,即有 T2T1 0 或 T1T2 0 构造求第二主成分的目标函数为:
2 (T2 , , ) T2ΣT2 (T2T2 1) 2 (T1T2 )
对目标函数2 (T2 , , ) 求导数有:
➢ 对X作正交变换,令Y = T′X,其中T为正交阵,要求Y的各分 量是不相关的,并且Y的第一个分量的方差是最大的,第二个 分量的方差次之,……,
➢ 为了保持信息不丢失,Y的各分量方差和与X的各分量方差和 相等
第二节 主成分的几何意义 及数学推导
一 主成分的几何意义
二 主成分的数学推导
一、主成分的几何意义
二、主成分的数学推导
希望这组新的变量Y1, ,Ym( m p )可以充分地反映原变量 X1, , X p 的信息,而且相互独立
注意到,对于 Y1, ,Ym 有 D(Yi ) D(TiX) TiD(X)Ti TiΣTi i 1, 2, , m
Cov(Yi ,Yk ) Cov(TiX,TkX) TiCov(X, X)Tk TiΣTk i,k 1,2, ,m
主成分分析因子分析实验报告
主成分分析因子分析实验报告引言:方法:数据集:本次实验使用的数据集是关于一组学生的各项成绩数据,包括语文、数学、英语等科目的成绩。
数据集共有100个样本,每个样本包含5个特征。
主成分分析(PCA):主成分分析的主要思想是通过线性变换将原始数据映射到一个新的坐标系中,使得数据在新的坐标系下的方差最大化。
这样可以使得数据在新的坐标系下尽可能地被压缩到一维或者二维空间中,从而实现降维的目的。
在本次实验中,我们将对数据集进行主成分分析,寻找数据中的主要结构。
因子分析(Factor Analysis):因子分析的主要思想是假设观测数据是由一组潜在因子和测量误差组成的。
因子分析试图通过最大似然估计的方法找出最可能的潜在因子,并将观测数据映射到潜在因子的空间中。
在本次实验中,我们将使用因子分析探索数据集中的潜在因子结构。
结果:主成分分析(PCA):通过主成分分析,我们发现数据集的前两个主成分可以解释约80%的数据方差。
这表明数据在二维空间下已经能够充分表示原始数据的特征。
同时,我们还可以观察到各个特征在主成分空间中的投影,从而了解不同特征之间的相关性。
因子分析(Factor Analysis):通过因子分析,我们找到了数据集中的两个主要因子,分别是“数理化”因子和“语言能力”因子。
这两个因子可以代表数据中的大部分信息,与原始特征之间存在着较高的相关性。
因子分析帮助我们发现了数据中的潜在结构,并解释了数据之间的关系。
讨论:主成分分析和因子分析是两种常用的数据降维技术,能够通过线性变换和潜在因子的挖掘来发现数据的主要结构和潜在信息。
在本次实验中,我们使用这两种方法对一个学生成绩数据集进行了分析,发现了数据中的主要结构和隐藏因子。
通过主成分分析,我们找到了能够解释数据80%方差的主成分,并可视化了数据在主成分空间中的表现。
通过因子分析,我们发现了数据中的两个主要因子,并解释了数据中的潜在结构。
结论:主成分分析和因子分析是一种强大的数据分析工具,能够帮助我们更好地理解数据并发现数据中的潜在结构。
应用多元统计分析实验报告之主成分分析
应用多元统计分析实验报告一、研究目的下表1是2010年各地区6项重要指标的数据,这6项指标分别是:X1—城市用水普及率(%)X2—城市燃气普及率(%)X3—每万人拥有公共交通车辆(标台)X4—人均城市道路面积(平方米)X5—人均公园绿地面积(平方米)X6—每万人拥有公共厕所(座)表1 各地区城市设施水平指标本次实验的研究目的是根据这些指标用主成分分析法对各地区城市设施水平进行综合评价和排序,得出结论并提出建议。
二、研究过程从标准化数据出发,首先计算这些指标的主成分,然后通过主成分的大小进行排序。
1.利用SPSS进行因子分析表2和表3分别是特征根(方差贡献率)和因子载荷阵的信息。
表3 因子载荷阵2.利用因子分析结果进行主成分分析 ⑴.表4是特征向量的信息表4 特征向量矩阵 z1 z2 z3 z4 z5 z6 x1 0.52 0.35 (0.31) (0.00) 0.08 0.70 x2 0.58 0.09 (0.19) 0.45 (0.37) (0.53) x3 0.17 0.67 0.26 (0.36) 0.41 (0.39) x4 0.43 (0.32) 0.32 (0.66) (0.41) 0.03 x5 0.41 (0.51) 0.25 0.21 0.68 (0.01) x6 (0.01) 0.23 0.79 0.43 (0.24) 0.28⑵.利用主成分得分进行综合评价时,从特征向量可以写出所有6个主成分的具体形式:Y1=0.52X1+0.68X2+0.17X3+0.43X4+0.41X5-0.01X6Y2=0.35X1+0.09X2+0.67X3-0.32X4-0.51X5+0.23X6 Y3=-0.31X1-0.19X2+0.26X3+0.32X4+0.25X5+0.79X6 Y4=0.00X1+0.45X2-0.36X3-0.66X4+0.21X5+0.43X6 Y5=0.08X1-0.37X2+0.41X3-0.41X4+0.68X5-0.24X6 Y6=0.70X1-0.53X2-0.39X3+0.03X4-0.01X5+0.28X6⑶.以特征根为权,对6个主成分进行加权综合,得出各地区的综合得分及排序,具体数据见表5.综合得分的计算公式是6161Y Y Y ii ∑∑+⋯+=λλλλ三、结果说明从表5可以看出,北京、天津。
多元统计分析主成分分析实验报告
主成分分析实验报告一、提取主成分:服务业分类:基础服务(邮政业职工人数、电信和其他信息传输业务职工人数)、生产和市场服务(铁路运输业职工人数、城市公共交通业职工人数,客运量),公共服务,个人消费(接待入境旅游人数、普通高校师生比,星级住宿营业额)Prin1=0.097*铁路运输业职工人数+0.157*城市公共交通业职工人数+0.210*邮政业职工人数+0.213*电信和其他信息传输业务职工人数+0.157*客运量+0.178*接待入境旅游人数+0.018*普通高校师生比+0.193*星级住宿营业额Prin2=0.247*铁路运输业职工人数—0.384*城市公共交通业职工人数+0.107*邮政业职工人数+0.057*电信和其他信息传输业务职工人数+0.344*客运量+0.201*接待入境旅游人数+0.496*普通高校师生比—0.292*星级住宿营业额Prin3=0.706*铁路运输业职工人数+0.135*城市公共交通业职工人数+0.219*邮政业职工人数+0.087*电信和其他信息传输业务职工人数+0.290*客运量+0.286*接待入境旅游人数+0.317*普通高校师生比+0.167*星级住宿营业额由上式可以看出Prin1主要是由邮政业职工人数和电信和其他信息传输业务职工人数确定的,故可认为第一成分是说明基础服务水平,由此类推得到第二成分是反映个人消费水平,第三主成分是反映生产和市场服务的水平。
二、综合评价分析:Z1=0.097*Z铁路运输业职工人数+0.157*Z城市公共交通业职工人数+0.210*Z邮政业职工人数+0.213*Z电信和其他信息传输业务职工人数+0.157*Z客运量+0.178*Z接待入境旅游人数+0.018*Z普通高校师生比+0.193*Z星级住宿营业额Z2=0.247*Z铁路运输业职工人数—0.384*Z城市公共交通业职工人数+0.107*Z邮政业职工人数+0.057*Z电信和其他信息传输业务职工人数+0.344*Z客运量+0.201*Z接待入境旅游人数+0.496*Z普通高校师生比—0.292*Z星级住宿营业额Z3=0.706*Z铁路运输业职工人数+0.135*Z城市公共交通业职工人数+0.219*Z邮政业职工人数+0.087*Z电信和其他信息传输业务职工人数+0.290*Z客运量+0.286*Z接待入境旅游人数+0.317*Z普通高校师生比+0.167*Z星级住宿营业额Z=(0.55816*Z1+0.17530*Z2+0.14430*Z3)/0.87777我国31个省市地区服务业发展水平综合排名三、小组分工:1、小组四名成员对4.5实验练习1先进行了讨论,讨论了每一步的操作步骤。
主成分分析实验报告
主成分分析实验报告主成分分析实验报告引言主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维方法,可以将高维数据转化为低维数据,同时保留原始数据的主要信息。
本实验旨在通过主成分分析方法对一个实际数据集进行分析,探索数据的内在结构和特征。
实验设计我们选择了一个包含多个变量的数据集,该数据集包括了一些关于学生的信息,如年龄、身高、体重、成绩等。
我们的目标是通过主成分分析,找出这些变量之间的相关性,并将其转化为更少的几个主成分。
实验步骤1. 数据收集和预处理我们首先收集了一组学生的相关数据,并进行数据预处理。
对于缺失值,我们选择了删除或填补。
对于离群值,我们考虑了使用替代值或剔除的方法。
2. 数据标准化为了确保各个变量具有相同的尺度,我们对数据进行了标准化处理。
通过减去均值并除以标准差,我们使得每个变量的均值为0,标准差为1。
3. 计算协方差矩阵我们利用标准化后的数据计算协方差矩阵。
协方差矩阵反映了不同变量之间的线性关系。
4. 计算特征值和特征向量通过对协方差矩阵进行特征值分解,我们得到了一组特征值和对应的特征向量。
特征值表示了数据在对应特征向量方向上的方差。
5. 选择主成分我们按照特征值的大小,选择了最大的几个特征值对应的特征向量作为主成分。
这些主成分能够尽可能多地解释原始数据的方差。
6. 数据转化通过将原始数据与所选主成分进行线性组合,我们得到了转化后的数据。
这些转化后的数据具有更低的维度,但仍然保留了原始数据的主要信息。
实验结果通过主成分分析,我们得到了一组主成分,并计算了每个主成分对原始数据的解释方差比例。
我们发现,前几个主成分能够解释原始数据的大部分方差,而后面的主成分对方差的解释能力较弱。
讨论与结论主成分分析帮助我们发现了学生数据集中的一些内在结构和特征。
通过主成分分析,我们可以将原始数据转化为更少的几个主成分,从而降低了数据的维度,方便后续的数据分析和可视化。
实验报告一主成分分析
实验报告一主成分分析一、实验目的二、实验原理主成分分析的基本原理是寻找能够最大化数据方差的主轴方向,并以此来确定各个主成分的权重。
具体步骤如下:1.去除数据的均值,使数据集的中心为原点。
2.计算数据的协方差矩阵。
3.对协方差矩阵进行特征值分解,得到特征值和特征向量。
4.对特征值从大到小进行排序,选择前k个特征值对应的特征向量作为主成分。
5.将原始数据映射至选取的k个主成分构成的新坐标系中。
三、实验步骤2.对数据集进行预处理,包括去除缺失值、标准化处理等。
3.计算协方差矩阵。
4.对协方差矩阵进行特征值分解,并选择主成分。
5.将原始数据集映射至选取的主成分构成的新坐标系中。
6.可视化处理后的数据集,以便观察降维效果。
四、实验结果及分析经过主成分分析处理后,我们得到了降维后的数据集。
通过对比降维前后的数据,可以观察到数据在新坐标系中的分布情况。
如果降维后的数据集能够较好地保留原始数据的特征和结构,即数据点在新坐标系中的分布比较紧密,那么主成分分析的效果就较好。
五、实验结论通过实验,我们对主成分分析的原理和应用有了更深入的了解。
主成分分析可以有效地降低数据的维度,并保留原始数据的重要特征。
在实际应用中,主成分分析常用于多变量数据的预处理、降维和数据可视化等任务中,具有广泛的应用价值。
六、实验总结本次实验我们学习了主成分分析的基本原理和应用,并进行了实际操作。
实验结果表明主成分分析可以有效地降低数据的维度,保留了原始数据的重要特征,并成功地将数据映射到新的坐标系中。
通过本次实验的学习,我进一步掌握了主成分分析的方法和技巧,并了解了其在数据分析中的重要作用。
在实际应用中,我们可以根据需求选择适当的主成分数目,以达到最佳的降维效果和数据解释性。
主成分分析和因子分析实验报告
主成分分析实验报告一、实验数据2013年,在国内外形势错综复杂的情况下,我国经济实现了平稳较快发展。
全年国内生产总值568845亿元,比上年增长7.7%。
其中第三产业增加值262204亿元,增长8.3%,其在国内生产总值中的占比达到了46.1%,首次超过第二产业。
经济的快速发展也带来了就业的持续增加,年末全国就业人员76977万人,其中城镇就业人员38240万人,全年城镇新增就业1310万人。
随着我国城镇化进程的不断加快,加之农业用地量的不断衰减,工业不断的转型升级,使得劳动力就业压力的缓解需要更多的依靠服务业的发展。
(一)指标选择根据指标选择的可行性、针对性、科学性等原则,选择13个指标来衡量服务业的发展水平,指标体系如表1所示:表1 服务业发展水平指标体系(二)指标数据本次实验采用的数据是我国31个省(市、自治区)2012年的数据,原数据均来自《2013中国统计年鉴》以及2013年各省(市、自治区)统计年鉴,不能直接获得的指标数据是通过对相关原始数据的换算求得。
原始数据如表2所示:表2(续)二、实验步骤本次实验是在SPSS中实现主成分分析,具体步骤如下:(一)数据标准化,单击主菜单“Analyze”(分析)展开下拉菜单,在下拉菜单中寻找“Descriptive Statistics”,在小菜单中寻找“Descriptives”(描述),展开Descriptives对话框,将左面的矩形框中的变量X1、X2、 (X13)通过单击向右的箭头按钮,调入到右面的“Variables”(变量)框中。
选中Savestandardized values as variables(对变量进行标准化)复选框,点击OK按(二)单击主菜单“Analyze”(分析)展开下拉菜单,在下拉菜单中寻找“Data Reduction”弹出小菜单,在小菜单中寻找“Factor”(因子),展开“Factor Analysis”(因子分析)主对话框。
主成分分析因子分析实验报告
主成分分析因子分析实验报告实验目的:实验步骤:1.收集数据:我们选择了一个包含10个观测变量的数据集,其中包括身高、体重、年龄、血压等变量。
数据集总共有100个样本。
2.数据预处理:在进行主成分分析和因子分析之前,我们首先进行数据预处理,包括缺失值填充、异常值处理和数据标准化等。
通过这些步骤,我们可以确保数据的准确性和可靠性。
3. 主成分分析(PCA):在进行PCA之前,我们需要确定主成分的数量。
我们使用Kaiser准则和累计方差解释比来确定主成分的个数。
接下来,我们使用PCA方法进行主成分分析,并计算每个主成分的贡献率和累计贡献率。
此外,我们还绘制了特征值图,以便更好地理解主成分的贡献。
4. 因子分析(FA):在进行因子分析之前,我们需要确定因子的数量和旋转方法。
我们使用Bartlett球形检验和Kaiser-Meyer-Olkin (KMO)测度来确定因子的数量。
然后,我们使用最大方差旋转方法进行因子分析,以获得更清晰和可解释的因子结构。
我们计算每个因子的贡献率和累计贡献率,并通过因子载荷矩阵来解释因子和变量之间的关系。
5.结果分析:根据主成分和因子的贡献率和解释性,我们可以确定最重要的主成分和因子。
通过对主成分和因子的解释,我们可以深入了解变量之间的关联性和结构。
此外,我们还可以利用主成分和因子进行变量降维,以便更好地理解和解释数据。
实验结果:在主成分分析中,我们确定了3个主成分,其中第一个主成分的贡献率为35%,第二个主成分的贡献率为22%,第三个主成分的贡献率为16%。
累计贡献率达到73%,说明这3个主成分可以很好地解释观测变量之间的关系。
从特征值图中可以看出,前3个主成分的特征值明显大于其他主成分。
在因子分析中,我们确定了2个因子,并使用最大方差旋转方法进行了因子分析。
第一个因子解释了25%的方差,第二个因子解释了18%的方差。
因子载荷矩阵显示了变量和因子之间的关系,可以用来解释因子的含义。
第7章统计实验(主成分分析)
实验三主成分分析1.实验目的:本实验讨论利用主成分分析从众多具有一定相关性的指标中,综合出少量的、而又能反映大部分信息的、不相关的新指标。
通过该实验,能够起到如下的效果:(1) 理解主成分分析的作用、思想、数学基础、方法和步骤;(2) 熟悉如何利用主成分分析,提出问题、分析问题、解决问题、得出结论;(3)会调用SAS软件实现主成分分析的各个步骤,根据计算的结果进行分析,得出正确的结论,解决实际的问题。
2.知识准备:主成分分析是从众多具有一定相关性的指标中,综合出少量的、而又能反映大部分信息的、不相关的新指标。
其思想是:将指标看成多维空间的坐标轴,每个样品看成该空间中的点,然后选用适当的正交变换将原有的坐标轴进行旋转,使主要信息集中于维数较少的子空间中(使所有样品点到子空间的距离的和最小),该子空间的坐标轴即是我们需要综合的新指标(主成分)。
主成分分析的步骤大体分为:首先正向化、标准化指标;然后计算样本相关阵的特征值、单位特征向量和累计贡献率,根据累计贡率献选取适当数量的主成分;再计算出各个主成分的得分;然后根据与主成分相关性强的指标的实际意义把主成分正向化;最后结合主成分对应的特征值得到综合得分。
3.实验内容:表1的数据是安徽省各地市经济发展的基本数据,其中X1-城镇单位在岗职工平均工资(元),X2-各市固定资产投资(万元),X3-各市进口总额(万美元),X4-社会消费品零售总额(万元),X5-各市工业增加值(亿元),X6-财政收入(亿元),数据来源于安徽统计信息网站2004年各月度数据资料。
表1 安徽省各地市经济发展的基本数据序号城市X1 X2 X3 X4 X5 X61 合肥市16369 3504887 66047 2397739 198.46 10439552 淮北市13379 566257 4744 456100 76.96 2026373 亳州市9707 397183 1303 887034 18.88 1059484 宿州市10572 414932 1753 751984 27.67 1282615 蚌埠市12284 876667 18269 1015669 60.09 3327006 阜阳市9738 604935 5822 1307908 30.54 2227997 淮南市16970 778830 2438 630014 76.64 2722038 滁州市10006 617436 13543 866013 58.59 2227949 六安市10217 636760 9967 996912 34.55 16102510 马鞍山20946 1380781 16406 526527 150.15 42693711 巢湖市11469 720416 7141 853778 43.41 15727412 芜湖市14165 1504005 29413 1025363 149.17 56889913 宣城市12795 966188 11580 723278 45.13 16531914 铜陵市12762 584696 13583 343107 65.31 16645415 池州市12008 501780 4986 278310 15.04 8657516 安庆市11208 981367 13364 1295189 79.8 33794717 黄山市12719 716491 4448 408796 15.68 99949 (1)利用主成分分析综合出适当的主成分及相应的主成分得分;(2)利用上面的主成分得分对样品进行聚类分析,并给出适当的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目名称实验4—主成分分析所属课程名称多元统计分析(英)项目类型综合性实验_____________ 实验(实训)日期2012年4 月15日二、实验(实训)容:【项目容】主成分分析。
【方案设计】题目:由原始数据求主成分。
【实验(实训)过程】(步骤、记录、数据、程序等)附后【结论】(结果、分析)附后三、指导教师评语及成绩:评语:成绩:指导教师签名:批阅日期:实验报告4主成分分析(综合性实验)(Prin cipal comp onent an alysis)实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。
这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。
利用矩阵代数的知识可求解主成分实验题目:下表中给出了不同国家及地区的男子径赛记录:(t8a6)Country 100m 200m 400m 800m 1500m 5000m 10,000m Marathon(s) (s) (s) (min) (min) (min) (min) (mins) Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98 Indonesia 10.59 21.49 47.8 1.84 3.92 14.73 30.79 148.83 Ireland 10.61 20.96 46.3 1.79 3.56 13.32 27.81 132.35 Israel 10.71 21 47.8 1.77 3.72 13.66 28.93 137.55 Italy 10.01 19.72 45.26 1.73 3.6 13.23 27.52 131.08 Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63 Kenya 10.46 20.66 44.92 1.73 3.55 13.1 27.38 129.75 Korea 10.34 20.89 46.9 1.79 3.77 13.96 29.23 136.25 D.P.R Korea 10.91 21.94 47.3 1.85 3.77 14.13 29.67 130.87 Luxembourg 10.35 20.77 47.4 1.82 3.67 13.64 29.08 141.27 Malaysia 10.4 20.92 46.3 1.82 3.8 14.64 31.01 154.1 Mauritius 11.19 22.45 47.7 1.88 3.83 15.06 31.77 152.23 Mexico 10.42 21.3 46.1 1.8 3.65 13.46 27.95 129.2 Netherlands 10.52 20.95 45.1 1.74 3.62 13.36 27.61 129.02 New Zealand 10.51 20.88 46.1 1.74 3.54 13.21 27.7 128.98 Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48 Papua New Guinea 10.96 21.78 47.9 1.9 4.01 14.72 31.36 148.22 Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27 Poland 10.16 20.24 45.36 1.76 3.6 13.29 27.89 131.58 Portugal 10.53 21.17 46.7 1.79 3.62 13.13 27.38 128.65 Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.5 Singapore 10.38 21.28 47.4 1.88 3.89 15.11 31.32 157.77 Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57 Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63 Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.2 Taipei 10.59 21.29 46.8 1.79 3.77 14.07 30.07 139.27Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.9 Turkey 10.71 21.43 47.6 1.79 3.67 13.56 28.58 131.5 USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 USSR10.07 20 44.6 1.75 3.59 13.2 27.53 130.55 Western Samoa10.8221.86492.024.2416.2834.71161.83(数据来源:1984年洛杉机奥运会IAAF/AFT 径赛与田赛统计手册) 实验要求: (1) 试用Princomp 过程求主成分;并对结果进行解释; (2) 试用方差累积贡献率和Scree 图确定主成分的个数; (3) 计算各国第一主成分的得分并排名; (4) 试对结果进行解。
实验题目分析报告:(1)试用Princomp 过程求主成分;并对结果进行解释;(2)试用方差累积贡献率和Scree 图确定主成分的个数;PrinlPrin2Prin3 □rin4^rinS 3rin6 3rin7 Prins0.566873 03^22620.127&2B-5^37^4 0.13^5241 A.1R5542 &.336975 0.461525 0.3605S7 -.259116 -.153357 0.656137 -.112640 -.096054 0.355&45 0.243273 -.SG&467 9.6523^11 -.2LB323 3.LS6625 -.052354 -.0&0127 6.360654 &.SL2+35 -.532432 -.4-7339S 0 . S+3&53 -.014652 -.233015 -.036165 0.572015-.133797-.153443-.4^4510-.4-57715 -.157B43 0. 6100110.135291比加舟跖-.2S39/9-.141299a.54bb9/G.3&6773 -.3&6B63 0.1S1752-.133176 219G17 -.176871 -.796795 G. 3-11926 -.433363 0.263,2990.2395120.437328 0.315285 0.39S822 0.1S8164tigenvectorsS M b亡-e f e-b h如上就是主成分分析截图,利用 sas 处理数据后我们可以知道:有8个主成分Eigenvalues of the Correlation MatrixEigenvalue Differenut Proportion Currulative1 5.744527849.82739.327320.877618290+718297159.10979.937S315932114 e.035271760^8199 e.?574斗 B * 124049390.044169110+01559.972950.079S3027G,01191512 e.eiw9.9S29石0.06796515 6.021545620.0085B. 991470・046419530.023S19430.005S0.997280.0028 1.0^0©12:52 Thursday, April 23, 2&12 2 igen^slue从上面的主成分累计贡献率截图和碎石图我们可以分析:选取两个主成分的贡献率就已经达到0.9375.所以我们选取2个主成分个数。