高中数学竞赛辅导讲义第十四章 极限与导数
高中数学中的极限与函数的导数的关系

高中数学中的极限与函数的导数的关系在高中数学中,极限和函数的导数是两个非常重要且关联紧密的概念。
本文将探讨极限和函数的导数之间的关系,帮助读者更好地理解和应用这两个概念。
一、极限的定义及基本性质极限是数学中描述函数逐渐趋近于某一值的概念。
具体而言,设函数f(x)在x=a的某个去心邻域内有定义。
如果存在常数L,对于任意给定的正数ε,都存在对应的正数δ,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立,则称函数f(x)在x=a处的极限为L。
我们用lim┬(x→a)〖f(x)=L〗或f(x)→L(x→a)来表示极限的存在。
极限具有一些基本的性质,包括唯一性、局部性、有界性等。
其中,唯一性表示函数在某一点的极限是唯一确定的;局部性表示函数在某一点的极限存在,则函数在该点的某个邻域内也存在;有界性表示如果函数在某一点存在极限,则函数在该点附近是有界的。
二、导数的定义及基本性质函数的导数描述了函数在某一点附近的变化率,是微积分中的重要概念之一。
设函数f(x)在x=a的某个去心邻域内有定义。
若极限lim┬{h→0}〖(f(a+h)-f(a))/h=A 〗存在,其中A为常数,则称函数f(x)在x=a处可导,并将此极限值A称为函数f(x)在x=a处的导数。
我们用f'(a)或 df(x)/dx|_(x=a)来表示函数f(x)在x=a处的导数。
导数具有一些基本的性质,包括可导的函数必定连续、导函数具有局部性、可加性和乘法常数性等。
这些性质使得导数成为了研究函数变化的有力工具。
三、极限与导数的关系极限和导数之间存在着紧密的联系,在某些情况下两者可以互相推导。
1. 极限与函数连续性的关系根据导数的定义,可知如果函数在某一点可导,则在该点必然连续。
而连续函数的定义也可以用极限来表达。
因此,对于某个区间上的函数,如果它的导数在该区间上存在,则该函数在该区间上一定连续。
2. 导数与函数的极值点的关系函数在某一点处的导数为零,被称为该点的导数为零点。
极限、导数与定积分

( f [ϕ ( x)])′ =
f ′[ϕ ( x)]ϕ ′( x) .
3. 导数的应用 (1)利用导数研究函数的单调性 ①在区间 (a, b) 内,若 f ′( x) > 0 ,则函数 y = f ( x) 在这个区间内单调递增.
②在区间 (a, b) 内,若 f ′( x) < 0 ,则函数 y = f ( x) 在这个区间内单调递减. (2)利用导数求函数的极值 ①极值的必要条件:若函数 f ( x) 在 x0 处可导,且在 x0 处取得极值,则
2
数学竞赛与自主招生专题讲义
第 讲 极限、导数与定积分
整理、编写:孟伟业
反思 感悟 拓展 提升:
(3)复合函数的导数 设函数 y = f (u ) , u = ϕ ( x) ,已知 ϕ ( x) 在 x 处可导, f (u ) 对应的点 u ( u = ϕ ( x) ) 处 可 导 , 则 复 合 函 数 y = f [ϕ ( x)] 在 点 x 处 可 导 , 且
第 讲 极限、导数与定积分
a
整理、编写:孟伟业
反思 感悟 拓展 提升:
①若 f ( x) 是 [−a, a ] 上的奇函数(如下图左) ,则 ∫ f ( x)dx = 0 ;
x0 x y0 y − 2 =1; a2 b
④设 P( x0 , y0 ) 是抛物线 y 2 = 2 px 上一点,则过 P( x0 , y0 ) 的抛物线切线方
程为 y0 y = p ( x + x0 ) .
2. 导数的运算 (1)常见函数的导数公式
① ( kx + b )′ = k ② C′ = 0 ③ ( xα )′ = α xα −1 ④ ( a x )′ = a x ln a ⑤ (log a x)′ = ( k , b 为常数) ( C 为常数) ( α 为常数) ⑥ ( e x )′ = e x
高中数学-极限与导数

1、数列的极限:设有数列12,,,,n x x x ⋅⋅⋅⋅⋅⋅与常数a ,如果n 无限增大时,n x 无限接近于a ,则称常数a 是数列的{}n x 的极限,记作lim n n x a →∞=或 ()n x a n →→∞.例如:1n a n=,则lim 0n n a →∞=;90.99n n a =⋅⋅⋅个,则lim 1n n a →∞=.2、数列的收敛与发散:若一个数列有极限,则称该数列是收敛的;否则称该数列是发散的. 定理:单调有界的数列必有极限. 例如:1n a n =收敛;()11n n a n=-⋅收敛;()1nn a =-发散;n a n =发散.3、函数的极限:设有函数()f x 和常数0,x A ,如果当x 无限接近于0x 时,()f x 无限接近于A ,则称常数A 是函数()f x 当0x x →时的极限,记作()0lim x x f x A →=或()()0f x A x x →→. 注:(1)可以用+∞或-∞代替0x ,表示x 无限增大或无限减小时()f x 的极限, (2)函数的极限不一定都存在,例如()11x Qf x x Q ∈⎧=⎨-∉⎩.4、极限的运算:若()()00lim ,lim xx x x f x A g x B →→==,则 (1)()()()0lim xx f x g x A B →±=±; (2)()()0lim x x f x g x A B →⋅=⋅; (3)()()()0lim 0x xf x AB g x B→=≠. 推论:①()0lim x x cf x cA →=; ②()()0lim nn x xf x A →=.5、夹逼定理(1)数列中的夹逼定理:设*,n n n a b c n N ≤≤∈,且lim lim n n n n a c a →∞→∞==,那么lim n n b a →∞=. (2)函数中的夹逼定理:设函数,f g 与h 在点0x 的近旁(不包含0x )满足不等式()()()f x h x g x ≤≤如果()()00lim lim x x x x f x g x A →→==,则()0lim x x h x A →=.6、两个重要极限 (1)0sin lim1x xx→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭.【例1】(1)证明:数列{}n x :22221111123n x n =+++⋅⋅⋅+是收敛的. (2)证明:数列{}n x :1111123n x n=+++⋅⋅⋅+是发散的.(1)22022lim 232n n n n n →++++;(2)2222lim 232n n n n n →∞++++;(3)n ;(4)lim n →∞⎛⎫++⋅⋅⋅;(5)()()1321lim 242n n n →∞⋅⋅⋅⋅-⋅⋅⋅⋅.(1)3031lim 11x x x →⎛⎫- ⎪--⎝⎭;(2)322lim 2121x x x x x →+∞⎛⎫- ⎪-+⎝⎭;(3)3131lim 11x x x →⎛⎫- ⎪--⎝⎭;(4)1lim 12xx x →∞⎛⎫+ ⎪⎝⎭.一.定义1.函数的平均变化率:一般地,已知函数()y f x =,01,x x 是其定义域内不同的两点,记()()101000,x x x y y y f x x f x =-=-=+-,则当0x ≠时,商()()00f x x f x yxx+-=称作函数()y f x =在区间[]00,x x x +或[]00,x x x +的平均变化率.2.设函数()y f x =在0x 及其附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变()()00y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率()()00f x x f x yx x+∆-∆=∆∆趋近于一个常数l ,那么常数l 称为函数()f x 在点0x 的瞬时变化率. 记作()()000lim x f x x f x l x ∆→+∆-=∆或当0x ∆→时,()()00f x x f x l x+∆-→∆.3.函数()y f x =在点0x 的瞬时变化率,通常称为()f x 在点0x 处的导数,并记作()0f x '.这时又称()f x 在点0x 处是可导的.于是上述变化过程,可以记作()()()0000limx f x x f x f x x∆→+∆-'=∆.4.如果()f x 在开区间(),a b 内每一点x 都是可导的,则称()f x 在区间(),a b 可导.这样,对开区间(),a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(),a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数. 注:①x 可正可负.②不是所有函数在每一点都有导数,例如:()f x x =,()11x Qf x x Q∈⎧=⎨-∉⎩.【例4】用定义求下列函数的导函数:(1)()f x c =(c 为常数);(2)()f x kx b =+(,k b 为常数);(3)()sin f x x =;(4)()cos f x x =;(5)()ln f x x =.【例5】若函数()f x 在R 上可导,且()'21f =,则()()222lim2h f h f h h→+--=__________.【例6】己知()f x 在0x 处可导,则()()220003limh f x h f x h h→+--=____________.二.导数的运算法则1.()'''f g f g +=+.例如:()2sin '2cos x x x x +=+.2.()'''f g f g fg ⋅=+.例如:()()()22222'''213x x x x x x x x x x ⋅=⋅+⋅=⋅+⋅=.3.2'''f f g fg g g ⎛⎫-= ⎪⎝⎭.例如:2sin cos sin 'x x x x x x -⎛⎫= ⎪⎝⎭.【例7】求下列函数的导函数:(1)cos ln y x x =+;(2)sin y x x =;(3)1y x x=+;(4)tan y x =;(5)21xy x =+;(6)sin ln y x x x =⋅⋅.4.若函数()u g x =与函数()y f u =均可导,则复合函数()()y f g x =可导,且xu x y y u '''=⋅,或记成dy dy dudx du dx=⋅.【例8】求下列函数的导函数:(1)()()221f x x =+;(2)()2sin f x x =;(3)()()2ln 23f x x x =++;(4)()()sin f x a bx c =+;(5)()()22cos 253f x x x =++;(6)()()2sin sin f x x =.【例9】已知函数()()()()12100f x x x x =--⋅⋅⋅-,则()'1f =__________.【例10】证明:若f 是一个恒取正值的可导函数,则()()()()'ln 'f x f x f x =.【例11】求下列函数的导函数:(1)()af x x =,()0x >;(2)()()0,1xf x a a a =>≠;(3)()()g x y f x =,()f x 在它的定义域上恒有()0f x >;(4)()()cos sin xf x x =,0,2x π⎛⎫∈ ⎪⎝⎭;(5)()xx f x x =,()0x >5.设()y f x =在包含0x 的区间I 上连续且严格单调,如果它在0x 处可导,且()0'0f x ≠,那么它的反函数()1x f y -=在()00y f x =处可导,且()()()11''fy f x -=.【例12】求下列函数的导函数:(1)()af x x =;(2)()()0,1xf x a a a =>≠;(3)()arcsin f x x =;(4)()arctan f x x =;6.高阶导数设函数f 在区间I 上可导,那么()()'f x x I ∈在I 上定义了一个函数'f ,称之为f 的导函数.如果'f 在区间I 上可导,那么'f 的导函数()''f ,记为''f 称为f 的二阶导函数.一般的,对任何正整数n N +∈,可以定义f 的导函数()n f .(Leibniz )设函数f 与g 在区间I 上都有n 阶导数,那么乘积fg 在区间I 上也有n 阶导数,并且()()()()0nn n k kk n k fg C f g -==∑,这里()()00,f f g g ==.【例13】求下列函数的n 阶导函数:(1)()xf x e λ=;(2)()2cos f x x x =(3)()n xf x x e =;【习题1】求下列函数的极限 (1)22251lim 1n n n n →∞+++;(2)220251lim 1n n n n →+++;(3)1123lim 23n n n nn ++→∞++;(4)211lim 31x x x x→---+;(5)201cos lim x xx →-.【习题2】求下列函数的导数(1)5432()5432f x x x x x x =++++;(2)31()f x x =;(3)()ln f x x x =;(4)()3()2f x x =+;(5)1()f x x=;(6)()3()sin 2f x x =+;(7)()ax bf x cx d+=+;(8)()tan ln x f x a bx c dx =+;(9)sin ()xx xf x e =;(10)()f x【习题3】 求()()cos n x e x 和()()sin n x e x .【习题4】若()f x 是定义在R 上的偶函数,且()'0f 存在,则()'0f =___________.【习题5】设()02f x '=,则()()000limh f x h f x h h→+--=( )A .2-B .2C .4-D .4【习题6】设函数()12sin sin2sin n f x a x a x a nx =++⋅⋅⋅+,其中12,,,,n a a a R n N +⋅⋅⋅∈∈. 已知对一切x R ∈,有()sin f x x ≤,证明:1221n a a na ++⋅⋅⋅+≤.。
高中数学第十四章知识点总结(精华版) 导 数

高中数学第十四章知识点总结(精华版) 导数高中数学第十四章知识点总结(精华版) 导数高中数学第十四章导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.14.导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导数的运算法则函数的单调性函数的极值函数的最值导数导数的运算导数的应用 1.导数(导函数的简称)的定义:设x0是函数yf(x)定义域的一点,如果自变量x 在x0处有增量x,则函数值y也引起相应的增量yf(x0x)f(x0);比值yf(x0x)f(x0)称为函数yf(x)在点x0到x0x之间的平均变化率;如果极限xxf(x0x)f(x0)y存在,则称函数yf(x)在点x0处可导,并把这个极限叫做limx0xx0xlimyf(x)在x0处的导数,记作f”(x0)或y”|xx0,即f”(x0)=limf(x0x)f(x0)y.limx0xx0x 注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数yf(x)定义域为A,yf”(x)的定义域为B,则A与B关系为AB.2.函数yf(x)在点x0处连续与点x0处可导的关系:⑴函数yf(x)在点x0处连续是yf(x)在点x0处可导的必要不充分条件.可以证明,如果yf(x)在点x0处可导,那么yf(x)点x0处连续.事实上,令xx0x,则xx0相当于x0.于是limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]xx0x0x0f(x0x)f(x0)f(x0x)f(x0)xf(x0)]limlimlimf(x0)f”(x0)0f(x0)f(x0). x0x0x0x0xx⑵如果yf(x)点x0处连续,那么yf(x)在点x0处可导,是不成立的.lim[例:f(x)|x|在点x00处连续,但在点x00处不可导,因为yyy不存在.1;当x<0时,1,故limx0xxxy|x|,当x>0时,xx注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线yf(x)在点P(x0,f(x))处的切线的斜率是f”(x0),切线方程为yy0f”(x)(xx0).4.求导数的四则运算法则:(uv)”u”v”yf1(x)f2(x)...fn(x)y”f1”(x)f2”(x)...fn”(x)(uv)”vu”v”u(cv)”c”vcv”cv”(c为常数)vu”v”uu(v0)v2v”注:①u,v必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.22例如:设f(x)2sinx,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和xxf(x)g(x)sinxcosx在x0处均可导.5.复合函数的求导法则:fx”((x))f”(u)”(x)或y”xy”uu”x复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:⑴函数单调性的判定方法:设函数yf(x)在某个区间内可导,如果f”(x)>0,则yf(x)为增函数;如果f”(x)<0,则yf(x)为减函数.⑵常数的判定方法;如果函数yf(x)在区间I内恒有f”(x)=0,则yf(x)为常数.注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)=0,同样f(x)0是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在x0附近所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的极大值,极小值同理)当函数f(x)在点x0处连续时,①如果在x0附近的左侧f”(x)>0,右侧f”(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f”(x)<0,右侧f”(x)>0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是x0点两侧导数异号,而不是f”(x)=0.此外,函数不①可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).②注①:若点x0是可导函数f(x)的极值点,则f”(x)=0.但反过来不一定成立.对于可导函数,其一点x0是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数yf(x)x3,x0使f”(x)=0,但x0不是极值点.②例如:函数yf(x)|x|,在点x0处不可导,但点x0是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:“I.C”0(C为常数)(sinx)cosx(arcsinx)”11x2(xn)”nxn1(nR)(cosx)”sinx(arccosx)”11x21”11”(arctanx)II.(lnx)(logax)logaexxx21”(ex)”ex(ax)”axlna(arccotx)”III.求导的常见方法:①常用结论:(ln|x|)”1.x1x②形如y(xa1)(xa2)...(xan)或y求代数和形式.(xa1)(xa2)...(xan)两边同取自然对数,可转化(xb1)(xb2)...(xbn)③无理函数或形如yxx这类函数,如yxx取自然对数之后可变形为lnyxlnx,对两边y”1求导可得lnxxy”ylnxyy”xxlnxxx.yx高中数学知识点总结精华版吃得苦中苦方为人上人!高中数学第一章-集合榆林本文库考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:榆林本文库(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果AB,同时BA,那么A=B.如果AB,BC,那么AC.[注]:①Z={整数}(√)Z={全体整数}()②已知集合S中A的补集是一个有限集,则集合A也是有限集.()(例:S=N;A=N,则CsA={0})③空集的补集是全集.第1页共75页吃得苦中苦方为人上人!④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.[注]:①对方程组解的集合应是点集.例:xy3解的集合{(2,1)}.2x3y1②点集与数集的交集是.(例:A={(x,y)|y=x+1}B={y|y=x2+1}则A∩B=)4.①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.5.①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若ab5,则a2或b3应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②x1且y2,xy3.解:逆否:x+y=3x1且y2x=1或y=2.xy3,故xy3是x1且y2的既不是充分,又不是必要条件.小范围推出大范围;大范围推不出小范围.3.例:若x5,x5或x2.4.集合运算:交、并、补.交:AB{x|xA,且xB}并:AB{x|xA或xB}补:CUA{xU,且xA}5.主要性质和运算律(1)包含关系:AA,A,AU,CUAU,AB,BCAC;ABA,ABB;ABA,ABB.(2)等价关系:ABABAABBCUABU (3)集合的运算律:交换律:ABBA;ABBA.结合律:(AB)CA(BC);(AB)CA(BC)分配律:.A(BC)(AB)(AC);A(BC)(AB)(AC)0-1律:A,AA,UAA,UAU第2页共75页吃得苦中苦方为人上人!等幂律:AAA,AAA.求补律:A∩CUA=φA∪CUA=UCUU=φCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式:(1)card(AB)card(A)card(B)card(AB)(2)card(ABC)card(A)card(B)card(C) card(AB)card(BC)card(CA)card(ABC)(3)card(UA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)(x-xm)>0(0”,则找“线”在x轴上方的区间;若不等式是“b解的讨论;2②一元二次不等式ax+box>0(a>0)解的讨论.00二次函数0yax2bxc(a0)的图象一元二次方程有两相异实根有两相等实根无实根ax2bxc0a0的根x1,x2(x1x2)bx1x22a第3页共75页吃得苦中苦方为人上人!ax2bxc0(a0)的解集ax2bxc0(a0)的解集xxx或xx12bxx2aRxx1xx22.分式不等式的解法(1)标准化:移项通分化为f(x)f(x)f(x)f(x)>0(或吃得苦中苦方为人上人!5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)①、原命题为真,它的逆命题不一定为真。
极限和导数拓展讲义

极限和导数本讲义编写的目的是对于高中物理中常用的微积分知识做一个相对体系的介绍,并指导同学在实际的物理情景中应用。
讲义在内容上注重讲清数学知识的概念与思维方式,相对于野蛮的“摔公式”教学方法,同学们能一定程度上领略微积分的奇妙与美感。
本节知识提纲1数列极限:数列极限的定义,数列极限的计算 2函数极限:函数极限的定义,物理中极限的使用3导数:导数扩展了物理量的定义。
掌握导数的几何意义,基本求导公式,求导运算法则最后我们一贯的反对学习数学只关心数学公式怎么使用的态度,这种情况在喜欢物理的同学中非常普遍,这种心态的学习在物理上一定也是走不远的。
本讲义实际讲解的是很不严密的,代替不了真正的数学课,建议有兴趣的同学课后阅读提升对于数学的理解。
第一部分 数列极限知识点睛先思考这个问题0.9999K 和1哪个大?纯洁而朴素的想法如下:0.91<,0.991<,0.9991<,所以无限循环小数0.9999K 小于1。
然而事实并非如此。
令0.9999x =K ,则有:109.9999x =K 0.9999x =K相减得到: 99x = 所以10.9999x ==K为了解释这样的事情,我们做如下分析,构造数列n a :{0.99...9n na =显然数列里面的每一项都是小于1的。
但是0.9999K 并不在这个数列中。
因为数列里面每一项都是有限小数,0.9999K 是无限小数。
当项数n 不断增大的时候n a 不断靠近0.9999K ,却一直不等于0.9999K 。
我们这样定义数列的极限:如果存在一个实数p 使得:对于任意的实数0ε>,都存在一个整数n ,使得对于任意m n >,||m a p ε-<,那么就叫p 是数列n a 的极限,记作lim n n p a →∞=。
否则叫数列n a 没有极限。
可以这样形象地理解这个定义:当n 很大的时候,n a 与p 要多靠近就有多靠近;n 越知识模块本讲提示大,n a 与p 就越靠近。
高中数学的解析函数中的极限与导数

高中数学的解析函数中的极限与导数解析函数是指能够用解析式表示的函数,也就是用符号表达出来的函数。
在高中数学中,解析函数的极限与导数是重要的概念和技巧,对于理解函数的性质和计算函数值具有重要意义。
一、解析函数的极限解析函数的极限描述了函数在某个点附近的表现。
具体而言,对于函数f(x),当自变量x无限接近于某一定值a时,如果函数值f(x)也无限接近于一个常数L,则称函数f(x)在x=a处的极限为L,记作lim(x→a)f(x)=L。
解析函数的极限可以通过代入法、夹逼法、拉'Hospital法则等多种方法来求解。
代入法是最基本的方法,通过将x的值无限接近于a,计算对应的函数值来确定极限。
夹逼法则是通过构造两个函数,一个上界函数和一个下界函数,利用这两个函数的极限值相等来求解原函数的极限。
拉'Hospital法则则是通过利用导函数的极限求解原函数的极限,它适用于某些特殊形式的不定型。
二、解析函数的导数解析函数的导数描述了函数在任意一点的变化率。
对于函数f(x),它的导数f'(x)表示了函数在点x处的瞬时变化率。
导数的定义是lim(h→0)(f(x+h)-f(x))/h,也可以记作f'(x)=lim(h→0)(Δf/Δx),其中Δf和Δx分别表示函数值和自变量的变化量。
解析函数的导数可以通过求导法则来求解。
常见的求导法则包括函数的四则运算法则、链式法则、乘积法则、商法则等。
通过这些法则,可以将复杂函数的导数计算转化为基础函数的导数计算,从而简化求解的过程。
三、解析函数的极限与导数的关系在解析函数中,极限与导数之间存在着重要的关系。
具体而言,如果函数f(x)在某个点x=a的极限存在,并且该点的导数也存在,则两者是相互关联的。
极限存在的充分必要条件是导数存在,并且它们的值相等。
这个关系可以通过解析函数的定义和导数的定义来理解。
当自变量的变化量趋近于0时,函数值的变化量与自变量的变化量之比等于导数,并且这个比值与自变量的变化量的极限值相等。
高中数学学习中的极限与导数概念解析

高中数学学习中的极限与导数概念解析在高中数学中,极限和导数都是重要的概念,它们是微积分的基础,也是后续学习数学的关键。
本文将分别对极限和导数进行解析,帮助同学们更好地理解和掌握这两个概念。
首先,我们来探讨一下极限的概念。
极限是一种数学概念,用来描述一个函数或数列在某一点附近的变化情况。
具体来说,当自变量逐渐靠近某个确定的数值时,函数值或数列的值也趋近于某个确定的数。
在数学符号中,我们用lim来表示极限。
例如,lim (n→∞) (1/n) = 0,表示当n无限趋近于正无穷时,1/n的极限是0。
极限在高中数学中的应用非常广泛。
它被用来证明和推导各种数学定理,例如求导和积分等。
同时,在几何学中,极限也被用来描述函数的图像在某一点的切线斜率。
因此,理解和掌握极限的概念对进一步学习数学非常重要。
接下来,我们来讨论导数的概念。
在数学中,导数被定义为函数在某一点的变化速率。
它描述了函数在某一点的附近的变化趋势。
导数常用f'(x)或df(x)/dx来表示,表示函数f(x)对自变量x的变化率。
导数可以帮助我们找出函数的极值点、确定切线斜率以及解决最优化问题等。
导数的计算通常使用导数公式和导数法则。
常见的函数求导公式包括常数函数求导公式、幂函数求导公式、指数函数求导公式、对数函数求导公式和三角函数求导公式等。
通过运用这些公式和法则,我们可以求得各种复杂函数的导数。
了解导数的概念对于数学的深入学习和应用具有重要意义。
在物理学中,导数被广泛应用于描述速度、加速度等物理量的变化。
在经济学和金融学领域,导数被用来描述成本、收益、市场需求曲线等的变化关系。
在生物学和医学领域,导数被应用于描述生长速率、变化趋势和药物浓度的变化等。
在学习极限和导数的过程中,我们还需要注意一些重要的性质和定理。
例如,极限有唯一性和保序性的性质,导数具有线性性、乘积法则、链式法则等等。
了解这些性质和定理可以帮助我们更好地理解和运用极限与导数。
高中数学备课教案函数的极限与导数

高中数学备课教案函数的极限与导数高中数学备课教案:函数的极限与导数一、引言函数的极限与导数是高中数学中重要的概念和工具之一。
正确理解和掌握这些内容,对于学生的数学学习和未来的应用都有着重要的影响。
本教案旨在通过适当的教学方法和案例分析,帮助学生深入了解函数的极限与导数的概念、性质和应用。
二、函数的极限1. 极限的概念函数的极限是指当自变量趋近于某个特定值时,函数的取值趋近于一个确定的值。
引入极限的概念可以更准确地描述函数的性质和行为。
2. 极限的计算通过借助极限的定义和相关性质,可以计算各种类型函数的极限,包括多项式函数、分式函数、指数函数和三角函数等。
在计算极限时,可以运用基本的极限性质和极限运算法则,灵活使用代换法、夹逼准则等方法。
3. 极限存在与不存在有些函数在某些自变量取值下可能存在极限,而在其他自变量取值下则不存在极限。
教师应通过案例引导学生思考极限存在与不存在的条件,并帮助学生理解这一概念的实际意义。
三、导数的概念与性质1. 导数的定义导数是函数在某一点处的变化率,用来衡量函数在该点的瞬时变化程度。
导数的定义基于极限的思想,通过极限的计算可以得到函数的导数。
2. 导数的几何意义导数可以理解为函数图像上某点处的切线斜率,其正负表示函数在该点的增减性。
教师可以通过几何图像和实际问题建立导数与函数变化的直观联系。
3. 导数的性质和运算法则导数具有一系列的性质和运算法则,包括常数导数、幂函数导数、和差法则、乘积法则和商法则等。
了解这些性质和法则有助于简化导数的计算过程。
四、函数的极限与导数的应用1. 极值与最值问题通过极值定理和导数的概念,可以分析函数的极值点和临界点,并通过判定导数的正负来确定函数的极大值和极小值。
2. 函数的单调性通过导数的正负可以判断函数在某一区间上的单调性,例如递增和递减区间。
这对于函数图像的绘制和函数性质的分析都具有重要意义。
3. 函数的凸凹性与拐点利用导数的二阶导数可以判断函数在某一区间上的凹凸性,并确定函数的拐点。
高中数学知识点第十四章 导 数

高中数学第十四章导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导数知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.。
2021年高中数学第十四章知识点总结(精华版)导数

高中数学第十四章知识点总结(精华版) 导数高中数学第十四章导数考试内容导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.1导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导数的运算法则函数的单调性函数的极值函数的最值导数导数的运算导数的应用导数(导函数的简称)的定义设x0是函数yf(x)定义域的一点,如果自变量x在x0处有增量x,则函数值y也引起相应的增量yf(x0x)f(x0);比值yf(x0x)f(x0)称为函数yf(x)在点x0到x0x之间的平均变化率;如果极限xxf(x0x)f(x0)y存在,则称函数yf(x)在点x0处可导,并把这个极限叫做limx0xx0xlimyf(x)在x0处的导数,记作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x注①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数yf(x)定义域为A,yf"(x)的定义域为B,则A与B关系为AB.函数yf(x)在点x0处连续与点x0处可导的关系⑴函数yf(x)在点x0处连续是yf(x)在点x0处可导的必要不充分条件.可以证明,如果yf(x)在点x0处可导,那么yf(x)点x0处连续.事实上,令xx0x,则xx0相当于x0.于是limf(x)limf(x0x)lim[f(xx0)f(x0)f(x0)]xx0x0x0f(x0x)f(x0)f(x0x)f(x0)xf(x0)]limlimlimf(x0)f"(x0)0f(x0)f(x0).x0x0x0x0xx⑵如果yf(x)点x0处连续,那么yf(x)在点x0处可导,是不成立的.lim[例f(x)|x|在点x00处连续,但在点x00处不可导,因为yyy不存在.1;当x<0时,1,故limx0xxxy|x|,当x>0时,xx注①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.导数的几何意义函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线yf(x)在点P(x0,f(x))处的切线的斜率是f"(x0),切线方程为yy0f"(x)(xx0).求导数的四则运算法则(uv)"u"v"yf1(x)f2(x)...fn(x)y"f1"(x)f2"(x)...fn"(x)(uv)"vu"v"u(cv)"c"vcv"cv"(c为常数)vu"v"uu(v0)v2v"注①u,v必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.22例如设f(x)2sinx,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和xxf(x)g(x)sinxcosx在x0处均可导.复合函数的求导法则fx"((x))f"(u)"(x)或y"xy"uu"x复合函数的求导法则可推广到多个中间变量的情形.函数单调性⑴函数单调性的判定方法设函数yf(x)在某个区间内可导,如果f"(x)>0,则yf(x)为增函数;如果f"(x)<0,则yf(x)为减函数.⑵常数的判定方法;如果函数yf(x)在区间I内恒有f"(x)=0,则yf(x)为常数.注①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)=0,同样f(x)0是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.极值的判别方法(极值是在x0附近所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的极大值,极小值同理)当函数f(x)在点x0处连续时,①如果在x0附近的左侧f"(x)>0,右侧f"(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f"(x)<0,右侧f"(x)>0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是x0点两侧导数异号,而不是f"(x)=0.此外,函数不①可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).②注①若点x0是可导函数f(x)的极值点,则f"(x)=0.但反过来不一定成立.对于可导函数,其一点x0是极值点的必要条件是若函数在该点可导,则导数值为零.例如函数yf(x)x3,x0使f"(x)=0,但x0不是极值点.②例如函数yf(x)|x|,在点x0处不可导,但点x0是函数的极小值点.极值与最值的区别极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注函数的极值点一定有意义.几种常见的函数导数"I.C"0(C为常数)(sinx)cosx(arcsinx)"11x2(xn)"nxn1(nR)(cosx)"sinx(arccosx)"11x21"11"(arctanx)II.(lnx)(logax)logaexxx21"(ex)"ex(ax)"axlna(arccotx)"III.求导的常见方法①常用结论(ln|x|)"x1x②形如y(xa1)(xa2)...(xan)或y求代数和形式.(xa1)(xa2)...(xan)两边同取自然对数,可转化(xb1)(xb2)...(xbn)③无理函数或形如yxx这类函数,如yxx取自然对数之后可变形为lnyxlnx,对两边y"1求导可得lnxxy"ylnxyy"xxlnxxx.yx扩展阅读高中数学知识点总结精华版吃得苦中苦方为人上人!高中数学第一章-集合榆林教学资源网考试内容集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求榆林教学资源网(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.0集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分二、知识回顾(一)集合基本概念集合、元素;有限集、无限集;空集、全集;符号的使用.集合的表示法列举法、描述法、图形表示法.集合元素的特征确定性、互异性、无序性.集合的性质①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果AB,同时BA,那么A=B.如果AB,BC,那么AC.[注]①Z={整数}(√)Z={全体整数}()②已知集合S中A的补集是一个有限集,则集合A也是有限集.()(例S=N;A=N,则CsA={0})③空集的补集是全集.第1页共75页吃得苦中苦方为人上人!④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注CAB=).①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.[注]①对方程组解的集合应是点集.例xy3解的集合{(2,1)}.2x3y1②点集与数集的交集是.(例A={(x,y)|y=x+1}B={y|y=x2+1}则A∩B=)①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例①若ab5,则a2或b3应是真命题.解逆否a=2且b=3,则a+b=5,成立,所以此命题为真.②x1且y2,xy解逆否x+y=3x1且y2x=1或y=xy3,故xy3是x1且y2的既不是充分,又不是必要条件.小范围推出大范围;大范围推不出小范围.例若x5,x5或x集合运算交、并、补.交AB{x|xA,且xB}并AB{x|xA或xB}补CUA{xU,且xA}主要性质和运算律(1)包含关系AA,A,AU,CUAU,AB,BCAC;ABA,ABB;ABA,ABB.(2)等价关系ABABAABBCUABU(3)集合的运算律交换律ABBA;ABBA.结合律:(AB)CA(BC);(AB)CA(BC)分配律:.A(BC)(AB)(AC);A(BC)(AB)(AC)0-1律A,AA,UAA,UAU第2页共75页吃得苦中苦方为人上人!等幂律AAA,AAA.求补律A∩CUA=φA∪CUA=UCUU=φCUφ=U反演律CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)有限集的元素个数定义有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式(1)card(AB)card(A)card(B)card(AB)(2)card(ABC)card(A)card(B)card(C)card(AB)card(BC)card(CA)card(ABC)(3)card(UA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)(x-xm)>0(0”,则找“线”在x轴上方的区间;若不等式是“b解的讨论;2②一元二次不等式ax+box>0(a>0)解的讨论.00二次函数0yax2bxc(a0)的图象一元二次方程有两相异实根有两相等实根无实根ax2bxc0a0的根x1,x2(x1x2)bx1x22a第3页共75页吃得苦中苦方为人上人!ax2bxc0(a0)的解集ax2bxc0(a0)的解集xxx或xx12bxx2aRxx1xx2分式不等式的解法(1)标准化移项通分化为f(x)f(x)f(x)f(x)>0(或吃得苦中苦方为人上人!5、四种命题之间的相互关系一个命题的真假与其他三个命题的真假有如下三条关系(原命题逆否命题)①、原命题为真,它的逆命题不一定为真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 极限与导数一、 基础知识1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(limx f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。
类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。
2.极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b ,那么0lim x x →[f(x)±g(x)]=a ±b, 0lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy,即00)()(lim)('0x x x f x f x f x x --=→。
由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。
若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。
导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。
6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3);cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1=;(8).1)'(ln xx = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ⋅=(c为常数);(4))()(']')(1[2x u x u x u -=;(5))()()(')(')(]')()([2x u x v x u x v x u x u x u -=。
8.复合函数求导法:设函数y=f(u),u=ϕ(x),已知ϕ(x)在x 处可导,f(u)在对应的点u(u=ϕ(x))处可导,则复合函数y=f[ϕ(x)]在点x 处可导,且(f[ϕ(x)])'=)(')](['x x f ϕϕ.9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('<x f ,则f(x)在(a,b)单调递减。
10.极值的必要条件:若函数f(x)在x 0处可导,且在x 0处取得极值,则.0)('0=x f11.极值的第一充分条件:设f(x)在x0处连续,在x 0邻域(x 0-δ,x 0+δ)内可导,(1)若当x ∈(x-δ,x 0)时0)('≤x f ,当x ∈(x 0,x 0+δ)时0)('≥x f ,则f(x)在x 0处取得极小值;(2)若当x ∈(x 0-δ,x 0)时0)('≥x f ,当x ∈(x 0,x 0+δ)时0)('≤x f ,则f(x)在x 0处取得极大值。
12.极值的第二充分条件:设f(x)在x 0的某领域(x 0-δ,x 0+δ)内一阶可导,在x=x 0处二阶可导,且0)('',0)('00≠=x f x f 。
(1)若0)(''0>x f ,则f(x)在x 0处取得极小值;(2)若0)(''0<x f ,则f(x)在x 0处取得极大值。
13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使.0)('=ξf[证明] 若当x ∈(a,b),f(x)≡f(a),则对任意x ∈(a,b),0)('=x f .若当x ∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),不妨设最大值m>f(a)且f(c)=m ,则c ∈(a,b),且f(c)为最大值,故0)('=c f ,综上得证。
14.Lagrange 中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使.)()()('ab a f b f f --=ξ[证明] 令F(x)=f(x)-)()()(a x ab a f b f ---,则F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b),所以由13知存在ξ∈(a,b)使)('ξF =0,即.)()()('ab a f b f f --=ξ15.曲线凸性的充分条件:设函数f(x)在开区间I 内具有二阶导数,(1)如果对任意x ∈I,0)(''>x f ,则曲线y=f(x)在I 内是下凸的;(2)如果对任意x ∈I,0)(''<x f ,则y=f(x)在I 内是上凸的。
通常称上凸函数为凸函数,下凸函数为凹函数。
16.琴生不等式:设α1,α2,…,αn ∈R +,α1+α2+…+αn =1。
(1)若f(x)是[a,b]上的凸函数,则x 1,x 2,…,x n ∈[a,b]有f(a 1x 1+a 2x 2+…+a n x n )≢a 1f(x 1)+a 2f(x 2)+…+a n f(x n ).二、方法与例题 1.极限的求法。
例1 求下列极限:(1)⎪⎭⎫ ⎝⎛+++∞→22221lim n n n n n ;(2))0(1lim >+∞→a a a n n n ;(3)⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 22212111lim ;(4)).1(lim n n n n -+∞→ [解](1)⎪⎭⎫⎝⎛+++∞→22221lim n n n n n ==+∞→22)1(lim n n n n 212221lim =⎪⎭⎫ ⎝⎛+∞→n n ; (2)当a>1时,.111lim 1111lim 1lim =+⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛=+∞→∞→∞→n n n n n n n a a a a 当0<a<1时, .0010lim 1lim 1lim=+=+=+∞→∞→∞→n n nn n nn aa a a 当a=1时,.21111lim 1lim=+=+∞→∞→n n n n a a (3)因为.11211122222+<++++++<+n n nn n n nn n而,1111lim11lim,1111limlim222=+=+=+=+∞→∞→∞→∞→n n nnn n n n n n所以.112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n (4).211111lim1lim)1(lim =++=++=-+∞→∞→∞→nnn n n n n n n n 例2 求下列极限:(1)∞→n lim (1+x)(1+x 2)(1+22x )…(1+nx 2)(|x|<1); (2)⎪⎭⎫ ⎝⎛---→x x x 1113lim 31;(3)x x x x +---→131lim 21。
[解] (1)∞→n lim (1+x)(1+x 2)(1+22x )…(1+nx 2)=.1111lim 1)1()1)(1)(1(lim 1222xx x x x x x x n n n n -=--=-+++-+∞→∞→ (2)⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛---→→→32132131111lim 113lim 1113lim x x x x x x x x x x x =.112lim 1)2)(1(lim 2131=+++=⎪⎭⎫⎝⎛-+-→→x x xx x x x x (3))13)(13()13)(1(lim131lim2121x x x x x x x xx x x x ++-+--++--=+---→→=2)13)(1(lim)1(2)13)(1)(1(lim11x x x x x x x x x x ++-+-=-++-+-→→ .22-=2.连续性的讨论。
例3 设f(x)在(-∞,+∞)内有定义,且恒满足f(x+1)=2f(x),又当x ∈[0,1)时,f(x)=x(1-x)2,试讨论f(x)在x=2处的连续性。
[解] 当x ∈[0,1)时,有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t ,则x=t-1,当x ∈[1,2)时,利用f(x+1)=2f(x)有f(t)=2f(t-1),因为t-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,从而t ∈[1,2)时,有f(t)=2(t-1)•(2-t)2;同理,当x ∈[1,2)时,令x+1=t ,则当t ∈[2,3)时,有f(t)=2f(t-1)=4(t-2)(3-t)2.从而f(x)=[)[)⎪⎩⎪⎨⎧∈--∈--.3,2,)3)(2(4;2,1,)2)(1(222x x x x x x 所以 0)3)(2(4lim )(lim ,0)2)(1(2lim )(lim 222222=--==--=+→+→-→-→x x x f x x x f x x x x ,所以-→2l i m x f(x)=+→2lim x f(x)=f(2)=0,所以f(x)在x=2处连续。