一元一次不等式综合讲义

合集下载

(完整)一元一次不等式总复习讲义

(完整)一元一次不等式总复习讲义

一元一次不等式知识要点不等式用符号≤≥≠“<”(“”)“>”(“”)“”连接而成的式子,叫 比较等式与不等式的基本性质。

1、若kb ka -<-,则 b a > ( )2、若b a >,则 2323b a-<-( )3、若,,d c b a =<,则 bd ac < ( )4、若0<<b a ,则 b a > ( )5、对于实数若a ,总有 a a 23-> ( )6、若b a >,则22b a > ( )7、若b a >,0≠ab ,则ba 11< ( ) 8、若,1a a <则10<<a ( )一元一次不等式(组)解法解一元一次不等式的一般步骤: (1) 去分母(根据不等式的基本性质3) (2) 去括号(根据单项式乘以多项式法则) (3) 移项(根据不等式的基本性质2) (4) 合并同类项,得ax>b ,或ax 〈b (a≠0)(根据合并同类项法则) (5) 两边同除以a (或乘1/a )(根据不等式基本性质3)(注:若a<0,不等号反向) (6) 不等式的解在数轴上的表示 一、选择题1、 如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B ) c -a >c -b ; (C ) ac >bc ; (D ) a bc c> . 2、如果,2323,11--=++=+x x x x 那么x 的取值范围是( )A 、321-≤≤-xB 、1-≥xC 、32-≤xD 、132-≤≤-x3、已知a 、b 、c 为有理数,且a>b>c ,那么下列不等式中正确的是( )A 。

a+b 〈b+cB 。

a-b 〉b-c C.ab>bc D 。

a bc c>4、如果m<n 〈0那么下列结论中错误的是( )A 。

m —9〈n-9 B.-m 〉—n C 。

第6讲 一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲  一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲一元一次不等式的应用目标导航2.能够利用观察一次函数图象直接求出不等式的解.3.有关一元一次不等式与一次函数的实际应用方案问题,必须熟练掌握.知识精讲知识点01 由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【知识拓展1】(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<80【即学即练1】(2021春•高新区期末)一次环保知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为()A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣x≥88D.5x﹣(20﹣x)≥88【即学即练2】(2021春•宜州区期末)在“建党百年”知识抢答赛中,共有20道题,对于每一题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于95分?设答对x题,则可列不等式为()A.10x﹣5(20﹣x)≥95B.10x+5(20﹣x)≥95C.10x﹣5(20﹣x)>95D.10x+5(20﹣x)>95【即学即练3】(2021•桂林模拟)某次数学竞赛共有16道题,评分办法是:每答对一道题得6分,每答错一道题扣2分,不答的题不扣分也不得分.已知某同学参加了这次竞赛,成绩超过了60分,且只有一道题未作答.设该同学答对了x道题,根据题意,下面列出的不等式正确的是()A.6x﹣2(16﹣1﹣x)≥60B.6x﹣2(16﹣1﹣x)>60C.6x﹣2(16﹣x)≥60D.6x﹣2(16﹣x)>60知识点02 一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【知识拓展1】(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户【即学即练1】(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有()A.6种B.7种C.8种D.9种【即学即练2】(2021秋•虎林市期末)某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A.12B.13C.14D.15【即学即练3】(2021秋•永定区期末)某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【知识拓展2】(2021秋•盐田区校级期末)超市要到厂家采购甲、乙两种工艺品共100个,付款总额不超(1)最多可采购甲种工艺品多少个?(2)若把100个工艺品全部以零售价售出,为使利润不低于2580元,则最少采购甲种工艺品多少个?【即学即练1】(2021秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?【即学即练2】(2021秋•澧县期末)2021年冬季即将来临,德强学校准备组织七年级学生参观冰雪大世界.参观门票学生票价为160元,冰雪大世界经营方为学校推出两种优惠方案,方案一:“所有学生门票一律九折”;方案二:“如果学生人数超过100人,则超出的部分打八折”.(1)求参观学生为多少人时,两种方案费用一样.(2)学校准备租车送学生去冰雪大世界,如果单独租用45座的客车若干辆,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,求我校七年级共有多少学生参观冰雪大世界?(司机不占用客车座位数)(3)在(2)的条件下,学校采用哪种优惠方案购买门票更省钱?【知识拓展3】(2021秋•上城区校级期中)我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题,抢答规定,抢答对1题得3分,抢答错1题扣1分,不抢答得0分,小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,那么小军至少要答对()道题?A.17B.18C.19D.20【即学即练1】(2021秋•滨江区校级期中)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9B.8C.7D.6【即学即练2】(2021•嵊州市模拟)随看科技的进步,我们可以通过手机APP实时查看公交车到站情况.小明想乘公交车,可又不想静静地等在A站.他从A站往B站走了一段路,拿出手机查看了公交车到站情况,发现他与公交车的距离为720m(如图),此时有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设小明的速度是公交车速度的,若要保证小明不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.300m C.320m D.360m知识点03 一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.【知识拓展1】(2021秋•瑶海区期末)如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【即学即练1】(2021秋•蜀山区期末)一次函数y=kx+b(k,b为常数且k≠0)的图象如图所示,且经过点(﹣2,0),则关于x的不等式kx+b>0的解集为.【即学即练2】(2021秋•槐荫区期末)如图,一次函数y=2x+8的图象经过点A(﹣2,4),则不等式2x+8>4的解集是()A.x<﹣2B.x>﹣2C.x<0D.x>0【即学即练3】(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx ﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【即学即练4】直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则关于x的不等式kx+b<0的解集是.【知识拓展2】(2021•滨江区校级三模)一次函数y1=ax﹣a+1(a为常数,且a≠0).(1)若点(﹣1,3)在一次函数y1=ax﹣a+1的图象上,求a的值;(2)若a>0,当﹣1≤x≤2时,函数有最大值5,求出此时一次函数y1的表达式;(3)对于一次函数y2=kx+2k﹣4(k≠0),若对任意实数x,y1>y2都成立,求k的取值范围.【即学即练1】(2021•龙岩模拟)对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,4),B(4,1),C(2,4),求解下列问题:(1)在P1(2,4),P2(4,4),P3(5,5)中,是△ABC的覆盖特征点的有P2,P3;(2)若在一次函数y=mx+6(m≠0)的图象上存在△ABC的覆盖的特征点,求m的取值范围.【即学即练2】(2020秋•丰都县期末)问题:探究函数y=|x+1|﹣2的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y与x的几组对应值,请将表格补充完整:x…﹣5﹣4﹣3﹣2﹣10123…y…21m n﹣2﹣1012…表格中m的值为,n的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量时,函数y随x的增大而增大;②当自变量x的值为时,y=3;③解不等式|x+1|﹣2<0的结果为.能力拓展例1.(2020·黑龙江哈尔滨市·九年级一模)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?例2.(2020·黑龙江哈尔滨市·九年级三模)某加工厂甲、乙二人制造同一种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙作60个所用的时间相等.(1)求甲、乙每小时各做多少个机械零件.(2)该加工厂急需甲、乙二人制造该种机械零件228个,由于乙另有其它任务,所以先由甲工作若干小时后再由甲、乙共同完成剩余的任务,工厂要求必须不超过10小时完成任务,请你求出乙至少工作多少小时?【变式1】(2020·长沙市雅礼实验中学八年级月考)“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读.已知购进《孟子》和《论语》,已知一本《孟子》的进价与一本《论语》的进价的和为40元,用90元购进《孟子》的本数与用150元购进《论语》的本数相同.(1)求每本《孟子》、每本《论语》的进价分别是多少元?(2)今年《孟子》和《论语》的单价和去年相比保持不变,该学校计划购进《孟子》和《论语》共100本,但花费总额不超过1800元,求最少购进《孟子》多少本?【变式2】(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.【变式3】(2020·和平县实验初级中学七年级月考)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?【变式4】(2020·浙江省杭州市萧山区高桥初级中学八年级期中)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?【变式5】(2020·舟山市第一初级中学八年级期中)在抗击新冠肺炎疫情期间,我校购买酒精和消毒液两种消毒物资,供师生使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于恰逢商城打折,酒精和消毒液每瓶价格分别打7折和8折,此次只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【变式6】(2019·山西八年级期末)山西民间的雕刻艺术源远流长,主要以古代传统吉祥纹样为素材,以石雕、木雕砖雕等形式,来体现主人的高尚情操和文化修养以及人们的美好愿望.某木雕经销商购进“木象”和“木马”两种雕刻艺术品,购“木象”艺术品共用了2000元,“木马”艺术品共用了2400元已知“木马”每件的进价比“木象”每件的进价贵8元,且购进“木象”“木马”的数量相同.()1求每件“木象”、“木马”艺术品的进价;()2该经销商将购进的两种艺术品进行销售,“木象”的销售单价为60元,“木马”的销售单价为88元,销售过程中发现“木象”的销量不好,经销商决定:“木象”销售一定数量后,将剩余的“木象”按原销售单价的七折销售;“木马”的销售单价保持不变要使两种艺术品全部售完后共获利不少于2460元,问“木象”按原销售单价应至少销售多少件?题组A 基础过关练1.如图,一次函数y =kx+b (k ,b 为常数,且k ≠0)的图象过点A (0,﹣1),B (1,1),则不等式kx+b >1的解集为( )A .x >0B .x <0C .x >1D .x <12.如图,直线y =kx+b 与直线y =3x ﹣2相交于点(12,﹣12),则不等式3x ﹣2<kx+b 的解为( )A .x >12B .x <12C .x >﹣12D .x <﹣123.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <分层提分4.如图,射线1l反映了某棉业有限公司的加工销售收入与销售量的之间的函数关系,射线2l反映了该公司的加工成本与销售量之间的关系,当该公司盈利时,销售量应为()A.大于3t B.等于4t C.小于6t D.大于6t5.(2021秋•澧县期末)目前新冠变异毒株“奥密克戎”肆虐全球,疫情防控形势严峻.体温T超过37.3℃的必须如实报告,并主动到发热门诊就诊.体温“超过37.3℃”用不等式表示为()A.T>37.3℃B.T<37.3℃C.T≤37.3℃D.T≤﹣37.3℃6.(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<807.(2021春•龙华区期末)某校拟用不超过2600元的资金在新华书店购买党史和改革开放史书籍共40套来供学生借阅,其中党史每套72元,改革开放史每套60元,那么学校最多可以购买党史书籍多少套?设学校可以购买党史书籍x套,根据题意得()A.72x+60(40﹣x)≤2600B.72x+60(40﹣x)<2600C.72x+60(40﹣x)≥2600D.72x+60(40﹣x)=26008.(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户9.(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有( )A .6种B .7种C .8种D .9种.10.(2021•集美区模拟)小军到水果店买水果,他身上带的钱恰好可以购买15个苹果或21个橙子,若小军先买了9个苹果,则他身上剩下的钱最多可买橙子( )A .7个B .8个C .9个D .10个11.(2021春•无棣县期末)某种商品的进价为40元,出售时标价为60元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )折.A .7B .6C .8D .512.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.13.(2021秋•温州期中)全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 道题.14.(2021春•老河口市期末)某种商品的进价为1000元,出售时标价为1500元,由于该商品积压,商店决定打折出售,但要保证利润率不低于20%,则至多可打 折.15.(2021春•平罗县期末)在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场扣1分,某队预计在2019﹣2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛,则这个队至少胜 场才有希望进入季后赛.16.(2021春•榆阳区期末)为加快“智慧校园”建设,某市准备为试点学校采购A 、B 两种型号的一体机共1100套,已知去年每套A 型一体机1.2万元每套、B 型一体机1.8万元,经过调查发现,今年每套A 型一体机的价格比去年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,则该市最多可以购买 套A 型一体机.17.某工厂计划生产A,B两种产品共10件,其生产成本和利润如表.(1)若工厂计划获利14万元,则A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且生产A产品x件,请列出不等式.18.(2021•福建模拟)疫情期间为了满足测温的需求,某学校决定购进一批额温枪.经了解市场,购买A 种品牌的额温枪每支300元,B种品牌的额温枪每支350元.经与商家协商,A种品牌的额温枪降价15%,B种品牌的额温枪打八折销售.若购买两种品牌的额温枪共50支且总费用不超过13000元,则至少要购买A种品牌的额温枪多少支?19.(2021春•淮阳区校级期末)某市要创建“全国文明城市”.其小区为了响应号召,计划购进A,B两种树苗共23棵.已知A种树苗每棵100元,B种树苗每棵80元.(1)若购进A,B两种树苗共花费了2100元,问购进A,B两种树苗各多少棵?(2)若购进A种树苗的数量不少于B种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.题组B 能力提升练1.如图,一次函数y =kx +b(k ≠0)的图象经过点A(-2,4),则不等式kx +b >4的解集是( )A .x <-2B .x >-2C .x <0D .x >02.如图,若一次函数y =-2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式-2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.若一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象经过点A(0,-1),B(1,1),则不等式kx +b >1的解集为( )A .x <0B .x >0C .x <1D .x >14.如图,直线y =kx +b(k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为( )A .x >-1B .x <-1C .x ≥3D .x ≥-15.如图,直线y=kx-b与横轴、纵轴的交点分别是(m,0),(0,n),则关于x的不等式kx-b≥0的解集为( )A.x≥m B.x≤mC.x≥n D.x≤n6.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为___.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为____.8.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax +b≥kx的解集为___.9.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b<0;④关于x的方程kx+b=x+a的解为x=3;⑤x>3时,y1<y2.其中正确的结论是____.(只填序号)10.在坐标系中作出函数y =2x +6的图象,利用图象解答下列问题:(1)求方程2x +6=0的解;(2)求不等式2x +6>-2的解集;(3)若2≤y ≤6,求x 的取值范围.11.如图,一次函数1: 22l y x =-的图像与x 轴交于点D ;一次函数2: l y kx b =+的图像与x 轴交于点A ,且经过点()3,1B ,两函数图像交于点(),2C m .(1)求m ,k ,b 的值;(2)根据图象,直接写出122kx b x <+<-的解集.12.某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2 000的设计费;乙公司提出:每份材料收费35,不收设计费.(1)请用含x 代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.13.为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A ,B 两种树苗刚好用去1 220元,问购进A ,B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.14.如图,一次函数y kx b =+的图象经过点()1,5A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1(1)求AB 的函数表达式;(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标; (3)若3kx b x +<,请直接写出x 的取值范围.题组C 培优拔尖练一.填空题(共6小题)1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x 应满足的不等式为 . 2.(2021秋•江北区校级期中)据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为 元.3.(2021春•许昌期末)为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少 个窗口.4.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.5.(2019•沙坪坝区校级二模)临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货袋数不低于总进货袋数的,则豆沙粽最多购进袋.6.(2020秋•东阳市期末)已知直线y=x+2与函数y=图象交于A,B两点(点A在点B 的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.二.解答题(共7小题)7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.8.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.。

八年级一元一次不等式(教师讲义带答案).

八年级一元一次不等式(教师讲义带答案).

第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

一元一次不等式综合讲义

一元一次不等式综合讲义

一元一次不等式综合讲义地区:江苏教材版本:苏教版学生学习情况:一元一次不等式本节课的主要内容1.不等式的认识与不等式的解以及解集2.不等式的基本性质3.一元一次不等式以及一元一次不等式的解4.一元一次不等式组和解集以及不等式组的运用5.知识回顾6.本次作业【知识梳理1】不等式的认识与不等式的解以及解集1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式14<-x 的解集是5<x . 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

一元一次不等式及其应用讲义

一元一次不等式及其应用讲义

一元一次不等式及其应用【知识讲解】1、一元一次不等式的概念类似于一元一次方程,含有一个未知数,未知数的次数为1的不等式叫做一元一次不等式。

2、不等式的解集满足不等式的所有解的集合叫做不等式的解集,通常用数轴表示出来。

3、不等式的性质①若b a >,则c b c a ±>±;②若0,>>c b a ,则bc ac > 或cb c a >;③若,0,<>c b a 则bc ac <或cb ca <。

④若b a >,则a b <。

⑤若c b b a >>,,则c a >;⑥若a b b a ≥≥,,则b a =;⑦若02≤a ,则0=a 。

4、一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,但要特别注意不等式性质③,不等号要变号。

5、一元一次不等式的应用列一元一次不等式解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式解应用题,寻求的是不等式关系,做题时特变注意题中关于不等的关系词。

【例题讲解】例1、解不等式215323x x +≤+-,并把它的解集在数轴上表示出来。

例2、若实数1>a ,则实数312,32,+=+==a P a N a M ,的大小关系为( )。

A 、M N P >>B 、P N M >>C 、M P N >>D 、N P M >>例3、已知关于x 的方程16325+-=-m x m x 的解满足23≤<-x ,求m 的整数值。

例4、已知x x x 34)32(2)1(5+++>+,化简|21||12|x x +--。

例5、某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能超过34万元。

初中数学讲义--第15讲 不等式组

初中数学讲义--第15讲 不等式组

全方位教学辅导教案1、一元一次不等式组把只含有一个相同未知数的几个一次不等式组成的不等式组,叫做一元一次不等组.2、一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.注意:如何利用数轴确定不等式组的解集呢?由两个一元一次不等式组成的不等式组其解集有四种情况. 如下表所示3、现实生活中,许多问题变化多端,仅利用方程的思想去解决现实生活中许多问题是远远不够的,往往经常需要考虑问题中的不等关系,运用不等式的思想来分析解决问题。

如经济建设中最佳决策,生产方案的设计、营销决策以及比赛结果的分析等等这些无不与不等式有着密切的关系.解决这类应用题有的需要列不等式或不等式组解决,有的则是列方程和列不等式的混合组解决。

经常使用逐一尝试的方法,去假存真,筛选需要的结果. 二、重难点知识概述不等式组的解法及实际应用问题 三、典型例题剖析例题1.(福州)不等式组12x x ≥-⎧⎨<⎩解集在数轴上表示正确的是( )A .B .C .D .变式练习.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+>-+x t x x x 235352恰有5个整数解,则t 的取值范围是( )A . ﹣6<t <211-B ﹣6≤t <211-C . ﹣6<t ≤211-D . ﹣6≤t ≤211-例题2.不等式组⎩⎨⎧->>-42301x x x 的非负整数解是 .变式练习.若关于x 的不等式组⎩⎨⎧>-≤-052a x x 无解,则a 的取值范围是 .例题3.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.变式练习:某商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台? .例题4.已知,关于x,y的方程组的解满足.(1)求a的取值范围;(2)化简.变式练习.已知方程组,当m为何值时,x>y.例题5:市为了更好地治理南湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A,B 两种型号的设备,其中每台的价格,同处理污水量如下表:A型B型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元.(1)求a ,b的值.(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理南湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.变式练习.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x个,则当两种方案费用一样时,4x=2.4x+16 000,解得x=10 000;当方案一费用低时,4x<2.4x+16 000,解得x<10 000;当方案二费用低时,4x>2.4x+16 000,解得x>10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.课堂检测1.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是()A.11 B.8 C.7 D.52.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块3.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=b C.a<b D.与a、b大小无关4.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元5.(2014·威海)已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( )6.如果不等式组()2131,x xx m->-<⎧⎨⎩的解集是x<2,那么m的取值范围是( )A.m=2B.m>2C.m<2D.m≥27.不等式组324313x xxx<++-≤-⎧⎪⎨⎪⎩的解集在数轴上表示为( )8.(2014·株洲)一元一次不等式组21050xx+>-≤⎧⎨⎩的解集中,整数解的个数是( )A.4B.5C.6D.79.若不等式组210210x ax a+->--<⎧⎨⎩的解集为0<x<1,则a的值为( )A.1B.2C.3D.410.(2013·荆门)若关于x的一元一次不等式组20,2x mx m-<+>⎧⎨⎩有解,则m的取值范围为( )A.m>-23B.m≤23C.m>23D.m≤-2311.(2013·烟台)不等式组10,420xx-≥-<⎧⎨⎩的最小整数解是__________.12.(菏泽)若不等式组3xx m>>⎧⎨⎩,的解集是x>3,则m的取值范围是__________.13.(2013·曲靖)同时满足不等式123x+>x-1与x+3(x-1)<1的x的取值范围是__________.14.(2013·鄂州)若不等式组20,x bx a-≥+≤⎧⎨⎩的解集为3≤x≤4,则不等式ax+b<0的解集为__________.15.(2013·遂宁)解下列不等式组,并把它的解集在数轴上表示出来.(1)()328,143x x x x +>+-≥⎧⎪⎨⎪⎩①;② (2)233,311.362x x x x ++--⎪⎪⎩≥⎧⎨>①②16.若不等式组1,21x m x m <+>-⎧⎨⎩无解,求m 的取值范围.17(毕节)解不等式组()2532,1321,2x x xx +≤+⎧⎩+-⎪<⎪⎨①②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.挑战自我18.(南通)若关于x 的不等式组()10,23354413x x x a x a ++>++⎧>+⎪⎩+⎪⎨①②恰有三个整数解,求实数a 的取值范围.(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.20.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?21.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?课后作业1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69.在平面直角坐标系内,点P(x-2,x+1)在第二象限,则x的取值范围是__________10.解不等式组2≤3x﹣4<8的解集为.11.已知x>﹣4,则x可取的负整数的和是.12.的整数解为13.如果关于x的不等式组无解,则a的取值范围是__________14.若不等式组的解集为-1<x<1,那么(a-3)(b+3)的值等于.三解答题:15.解不等式或不等式组:(1)(2)16、若不等式组的解集为,求的值.17、当实数为何取范围值时?不等式组恰有两个整数解。

七年级数学下册 9.3 一元一次不等式组讲义 (新版)新人教版

七年级数学下册 9.3 一元一次不等式组讲义 (新版)新人教版
实战演练 (2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平 板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习
知识梳理
机多600元,购买2台平板电脑和3台学习机共需8400元. (1)求购买1台平板电脑和1台学习机各需多少元? (2)学校根据实际情况,决定购买平板电脑和学习机共100台, 要求购买的总费用不超过168000元,且购买学习机的台数不超 过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方 案最省钱?
知识梳理
知识梳理
38台,学习机62台,费用为114000+49600=163600(元);方案2:购买平 板电脑39台,学习机61台,费用为117000+48800=165800(元);方案3: 购买平板电脑40台,学习机60台,费用为120000+48000=168000(元), 则方案1最省钱.
知识要点
1.理解一元一次不等式组、一元一次不等式组的解集等概念。 2.会解一元一次不等式组,并会用数轴确定解集。 3.会按照要求求一元一次不等式组的特殊解。
知识梳理
知识点1:一元一次不等式组的概念. 类似于方程组,把几个具有相同未知数的一元一次不等式合起来, 就组成了一元一次不等式组.
B
知识梳理
课堂练习
请结合题意填空,完成本题的解答. (Ⅰ)不等式①,得__________;(Ⅱ)不等式②,得______; (Ⅲ)把不等式①和②的解集在数轴上(图9-3-16)表示出来; (Ⅳ)原不等式组的解集为_________.
答案:(Ⅰ)x≥3;(Ⅱ)x≤5;(Ⅲ)如图9-3-17所示;(Ⅳ) 3≤x≤5.
答案:-2<x<3.
知识梳理
图9-3-9
图9-3-10

一元一次不等式与不等式组经典讲义

一元一次不等式与不等式组经典讲义

一元一次不等式与不等式组经典讲义一、知识总结(一)不等式及其性质1、不等式:(1)定义用“<”( 或“≤”) ,“>”(或“≥”) 等不等号表示大小关系的式子,叫做不等式. 用“≠”表示不等关系的式子也是不等式.(2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

(3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围, 是所有解的集合, 而不等式的解是使不等式成立的未知数的值。

二者的关系是:解集包括解, 所有的解组成了解集。

(4)解不等式:求不等式解的过程叫做解不等式。

2、不等式的基本性质性质1:不等式的两边都加上( 或减去) 同一个整式,不等号的方向不变。

即:如果 a b,那么a c b c .性质2:不等式的两边都乘上( 或除以) 同一个正数,不等号的方向不变。

即:如果 a b,并且c 0,那么ac bc;acbc.性质3:不等式的两边都乘上( 或除以) 同一个负数,不等号的方向改变。

即:如果 a b,并且c 0 ,那么ac bc;acbc.性质4:如果a b,那么b a. (对称性)性质5:如果a b, b c, 那么a c . (传递性)(二)一元一次不等式1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式,叫做一元一次不等式。

2. 一元一次不等式的解法:根据是不等式的基本性质;一般步骤为:(1) 去分母;(2) 去括号;(3) 移项;(4) 合并同类项;(5) 系数化为1.解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘( 或除以) 同一个负数时,不等号的方向要改变。

3. 不等式的解集在数轴上表示:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左(三)一元一次不等式组1 、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组2 、(一元一次)不等式组的解集:这几个不等式解集的公共部分,叫做这个(一元一次)不等式组的解集。

(完整版)一元一次不等式复习讲义

(完整版)一元一次不等式复习讲义

一元一次不等式与一元一次不等式组一。

知识梳理1.知识结构图(二)。

知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “〉” 、 “<” 、 “≥”、 “≤". 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c)①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a—b 〉O ⇔a>b ;②a—b=O ⇔a=b ;③a —b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式:解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘)去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1.常见题型分类(加粗体例题需要作答) 定义类1。

一元一次不等式组讲义全

一元一次不等式组讲义全

学科教师辅导讲义年级:预初学员:可荟辅导科目:数学学科教师:何琼授课容一元一次不等式组及其解法授课日期及时段2018.4.教学容【教学目标】知识与技能:1.了解一元一次不等式组及起相关概念.2.会解简单的一元一次不等式组并会用数轴确定解集.过程与方法:1.通过类比二元一次方程组的解法,探索一元一次不等式组的解法,再次体验类比的思想方法.2.经历利用数轴确定解集的过程,体会数形结合的研究方法.情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识与探究精神.【教学重点】不等式组的解法.【教学难点】含参不等式组的.【知识】理解并掌握根本一元一次不等式组的解法.一、一元一次不等式组及其解集1.一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组,叫一元一次不等式组.不等式组中所有不等式的解集的公共局部叫这个不等式组的解集.求不等式组的解集的过程叫做这个不等式组的解集.2.解不等式组:求不等式组的解集的过程.二、解一元一次不等式组的一般步骤:1.求出不等式组中各个不等式的解集.2.在数轴上表示各个不等式的解集.3.确定各个不等式解集的公共局部,就得到这个不等式组的解集.例1以下各式中是一元一次不等式组的是〔〕A.⎪⎩⎪⎨⎧≤+>+52123xxB.⎩⎨⎧<->+64yxyxC.⎩⎨⎧<-≥+12634xD.⎩⎨⎧<+->-8126xx例2解以下不等式组并在数轴上表示解集.〔1〕⎩⎨⎧->-<5138275xxxx〔2〕⎪⎪⎩⎪⎪⎨⎧-≤--<-xxxx23312152155例3不等式组⎪⎩⎪⎨⎧>->1513xmx的解集是2>x,求m的取值围.1.下不等式组中,解集是23x<<的不等式组是〔〕A.⎩⎨⎧>>23xxB.⎩⎨⎧<>23xxC.⎩⎨⎧><23xxD.⎩⎨⎧<<23xx2.在数轴上从左至右的三个数为1a a+、、a-,那么a的取值围是〔〕A.12a< B.0a< C.0a> D.12a<-3.不等式组10235xx+≤⎧⎨+<⎩,的解集在数轴上表示为〔〕4.不等式组31025xx+>⎧⎨<⎩的整数解的个数是〔〕A. 1个B. 2个C. 3个D. 4个5.在平面直角坐标系,P()265x x--,在第四象限,那么x的取值围为〔〕A.35x<< B.35x-<< C.53x-<< D.53x-<<-6.不等式:①1x>,②4x>,③2x<,④21x->-,从这四个不等式中取两个,构成正整数解是2的不等式组是〔〕A. ①与②B. ②与③C. ③与④D. ①与④7.方程组43283x mx y m+=⎧⎨-=⎩的解x y、满足x y>,那么m的取值围是〔〕A.910m> B.109m> C.1910m> D.1019m>8.假设y同时满足10y+>与20y-<,那么y的取值围是______________.。

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。

初中数学《一元一次不等式》讲义

初中数学《一元一次不等式》讲义

三、全等三角形的判定
例5.如图,在ΔABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘 米,则点D到直线AB的距离是_______厘米。
三、全等三角形的判定
例6.如图,AB=AC,AD=AE,CD、BE相交于点O。求证:OA平分∠DAE。
三、全等三角形的判定
二、全等三角形的性质
例5.如图,△ABD≌△EBD,△DBE≌△DCE,B,E,C在一条直线上. (1)BD是∠ABE的平分线吗?理由; (2)DE⊥BC,BE=EC吗?理由。
二、全等三角形的性质
变式练习
1.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC, 则∠C= _________ 度.
二、全等三角形的性质
变式练习
2.如图所示,△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,图中(包括实线、 虚线在内)共有全等三角形 _________ 对.
三、全等三角形的判定
例题
例1.如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD, 则图中全等三角形有( ) A.4对 B.6对 C.8对 D.10对
一元一次不等式 及
二元一次不等式
本节重点
一、全等三角形的定义 二、全等三角形的性质 三、全等三角形的判定
中考考情分析
考察分值:(10分)
考察题型:(近三年,该知识点主要分布在解答题)
考察方式:(该知识的考察难度中等,通常和角平分线、等腰三角形、直角三角形、 垂直平分线、中位线、平行四边形等知识点在一起考察,主要出现在第22题)
例7.如图所示,P为∠AOB的平分线上一点,PC⊥OA于C, ∠OAP+∠OBP=180°, 若OC=4cm,求AO+BO的值.

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。

若a>b ,则a+c>b+c (a-c>b-c )。

性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。

若a>b 且c>0,则ac>bc 。

性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。

若a>b 且c<0,则ac<bc 。

2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。

知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。

2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。

3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:, 。

要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

2015-1-7一元一次不等式(组)基础讲义含答案

2015-1-7一元一次不等式(组)基础讲义含答案

一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。

一元一次不等式讲义

一元一次不等式讲义

一元一次不等式讲义【精讲】一、知识点回顾一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。

注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。

⑵常用的不等号有:<、≤、>、≥、≠。

例:判断下列哪些式子是不等式,哪些不是不等式。

①32>-;②21x ≤;③21x -;④s vt =;⑤283m x <-;⑥124x x->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。

⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

例:规定一种新的运算:1a b a b a b Θ=⨯--+,比如:2323231Θ=⨯--+,请你比较:34Θ 43Θ,()34-Θ ()43Θ-。

(填不等号) 练习:1、用不等式表示:⑴a 是正数: ;⑵x 的平方是非负数: ;⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。

2、试判断237a a -+与32a -+的大小。

3、如果0a b +<,0b >,则, , , a b a b --的从打到小的排序是: 。

一元一次不等式讲义(一)

一元一次不等式讲义(一)

一元一次不等式单元讲义(一)[知识点梳理]:一.不等式中的关键词与不等号要明确“大于”、“小于"、“不大于”、“不小于”、“不超过"、“至多”、“至少"、“非负数”、“正数"、“负数”、“负整数”……这些描述不等关系的语言所对应的不等号各是什么。

大于——不大于、小于等于、至多、不超过()> ()≤小于--不小于、大于等于、至少、不低于()< ()≥正数——非正数 负数--非负数()0> ()0≤ ()0< ()0≥二.不等式的性质:1. 传递性:a b b c a c >>>若,,则2. 不等式两边加上(或减去)同一个数,不等式仍成立a b a c b c >+>+若,则3. 不等式两边乘以(或除以)同一个正数,不等式仍成立0a b a b c ac bc c c>>>>若,,则, 不等式两边乘以(或除以)同一个负数,不等式改变方向后仍成立0a b a b c ac bc c c><<<若,,则,三.一元一次不等式解法:(与一元一次方程解法类比)注:乘数或除数是负数时,解不等式时要改变不等号的方向。

四.用数轴表示不等式的解集小于向左画,大于向右画;有等画实心,无等画空心。

五.解一元一次不等式的简便方法与技巧(一)、凑整法例1.解不等式10.50.257.52x x +--> 分析:根据不等式性质,两边同乘以适当的数,将小数转化为整系数。

解:两边同乘以4-,得302x x +<--16x ∴<-(二)、化分母为整数例2.解不等式4 1.550.8 1.50.50.20.1x x x ----> 分析:根据分数基本性质,将两边分母化成整数。

解:原不等式变形,得 ()832541510x x x --->-714x ∴-> 即2x <-(三)、裂项法例3.解不等式2141411364x x x -++->- 分析:本题若采用去分母法,步骤较多,由除法意义,裂项相合并,过程简洁。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式综合讲义
地区:江苏
教材版本:苏教版
学生学习情况:
一元一次不等式
本节课的主要内容
1.不等式的认识与不等式的解以及解集
2.不等式的基本性质
3.一元一次不等式以及一元一次不等式的解
4.一元一次不等式组和解集以及不等式组的运用
5.知识回顾
6.本次作业
【知识梳理1】
不等式的认识与不等式的解以及解集
1. 不等式:
用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.
要点诠释:
(1)不等号的类型:
①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;
②“>”读作“大于”,它表示左边的数比右边的数大;
③“<”读作“小于”,它表示左边的数比右边的数小;
④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;
⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;
(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:
由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:
一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式14<-x 的解集是5<x . 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

要点诠释:
不等式的解集必须符合两个条件:
(1)解集中的每一个数值都能使不等式成立;
(2)能够使不等式成立的所有的数值都在解集中。

例题精讲
【题目】根据下面的等量关系,列不等式
(1)x 是非负数
(2)C 与4的和的一半不大于-5
(3)a 乘以5的积减去0.5至多为6
【答案】略
牛刀小试
【题目】
【题目】
【知识梳理2】
不等式的基本性质
4:不等式的基本性质
基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

符号语言表示为:如果b a >,那么c b c a ,c b c a ->-+>+。

基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

符号语言表示为:如果b a >,并且0>c ,那么bc ac >(或c
b c a >)。

基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果b a >,并且0<c ,那么bc ac <(或c
b c a <) 要点诠释:
(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;
(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的
数,还有相同的单项式或多项式;
(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;
(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

牛刀小试
【题目】如果a>b,则a+m b+m;
如果a<b,则a-m b-m。

【知识梳理3】
一元一次不等式以及一元一次不等式的解
5.一元一次不等式的概念
只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。

要点诠释:
(1)一元一次不等式的概念可以从以下几方面理解:
①左右两边都是整式(单项式或多项式);②只含有一个未知数;
③未知数的最高次数为1。

(2)一元一次不等式和一元一次方程可以对比理解。

相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。

6.一元一次不等式的解法
(1).解不等式:
求不等式解的过程叫做解不等式。

(2).一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次
不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;
(5)系数化为1.
要点诠释:
(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用
(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。

(3).不等式的解集在数轴上表示:
在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。

要点诠释:
在用数轴表示不等式的解集时,要确定边界和方向:
(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左
注意:规律方法指导(包括对本部分主要题型、思想、方法的总结):
1、不等式的基本性质是解不等式的主要依据。

(性质
2、3要倍加小心)
2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。

3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为a x >或a x <的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。

这五个步骤根据具体题目,适当选用,合理安排顺序。

但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。

相关文档
最新文档