一元一次不等式综合讲义

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式综合讲义

地区:江苏

教材版本:苏教版

学生学习情况:

一元一次不等式

本节课的主要内容

1.不等式的认识与不等式的解以及解集

2.不等式的基本性质

3.一元一次不等式以及一元一次不等式的解

4.一元一次不等式组和解集以及不等式组的运用

5.知识回顾

6.本次作业

【知识梳理1】

不等式的认识与不等式的解以及解集

1. 不等式:

用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.

要点诠释:

(1)不等号的类型:

①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;

②“>”读作“大于”,它表示左边的数比右边的数大;

③“<”读作“小于”,它表示左边的数比右边的数小;

④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;

⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;

(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:

由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:

一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式14<-x 的解集是5

要点诠释:

不等式的解集必须符合两个条件:

(1)解集中的每一个数值都能使不等式成立;

(2)能够使不等式成立的所有的数值都在解集中。

例题精讲

【题目】根据下面的等量关系,列不等式

(1)x 是非负数

(2)C 与4的和的一半不大于-5

(3)a 乘以5的积减去0.5至多为6

【答案】略

牛刀小试

【题目】

【题目】

【知识梳理2】

不等式的基本性质

4:不等式的基本性质

基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 符号语言表示为:如果b a >,那么c b c a ,c b c a ->-+>+。 基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。 符号语言表示为:如果b a >,并且0>c ,那么bc ac >(或c

b c a >)。 基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果b a >,并且0

b c a <) 要点诠释:

(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;

(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的

数,还有相同的单项式或多项式;

(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;

(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

牛刀小试

【题目】如果a>b,则a+m b+m;

如果a

【知识梳理3】

一元一次不等式以及一元一次不等式的解

5.一元一次不等式的概念

只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。

要点诠释:

(1)一元一次不等式的概念可以从以下几方面理解:

①左右两边都是整式(单项式或多项式);②只含有一个未知数;

③未知数的最高次数为1。

(2)一元一次不等式和一元一次方程可以对比理解。

相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。

6.一元一次不等式的解法

(1).解不等式:

求不等式解的过程叫做解不等式。

(2).一元一次不等式的解法:

与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次

不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;

(5)系数化为1.

要点诠释:

(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用

(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。

(3).不等式的解集在数轴上表示:

在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。 要点诠释:

在用数轴表示不等式的解集时,要确定边界和方向:

(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左

注意:规律方法指导(包括对本部分主要题型、思想、方法的总结):

1、不等式的基本性质是解不等式的主要依据。(性质

2、3要倍加小心)

2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。

3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为a x >或a x <的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。

相关文档
最新文档