计量经济学—序列相关性
序列相关性
5.滞后效应 在经济中,因变量受到自身或另一解释变量的前几期值影响的现象称为 滞后效应。在一个消费支出对收入的时间序列回归中,人们常常发现当前时 期的消费支出除了依赖于其他变量外,还依赖于前期的消有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。而且,在大样本情况下,参数估计量 虽然具有一致性,但仍然不具有渐近有效性。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之 上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。如果存 在序列相关,估计的参数方差 S ˆ ,出现偏误(偏大或偏小) ,t 检验就失去
~ e ~ e t t 1 t
,
~ e ~ ~ e t 1 t 1 2 et 2 t
3
, 。 。 。
醉客天涯之计量经济学
如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是: (1)能够确定序列相关的形式 (2)适用于任何类型序列相关性问题的检验。 3、杜宾-瓦森(Durbin-Watson)检验法(最常用) (1)方法使用条件: ①解释变量 X 非随机; ②随机误差项 i 为一阶自回归形式: i=i-1+i ③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i ④回归含有截距项 ⑤误差项被假定为正态分布 (2)D.W.统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:
D.W .
~ (e
t 2
n
t
~ )2 e t 1
2 t
计量经济学名词解释1
1.经济变量: 经济变量是用来描述经济因素数量水平的指标。
2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。
3.被解释变量:是作为研究对象的变量。
它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
)4.内生变量:是由模型系统内部因素所决定的变量,表现为具有一定概率分布的随机变量,是模型求解的结果。
5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
它影响模型中的内生变量,其数值在模型求解之前就已经确定。
6.滞后变量:是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。
7.前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。
8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。
9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型, 是以数学形式对客观经济现象所作的描述和概括。
10.函数关系:如果一个变量y 的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y 与这个变量或这组变量之间的关系就是函数关系。
11.相关关系:如果一个变量y 的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y 与这个变量或这组变量之间的关系就是相关关系。
12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
13.高斯-马尔可夫定理:在古典假定条件下,OLS 估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。
14.总变差(总离差平方和):在回归模型中,被解释变量的观测值与其均值的离差平方和。
15•回归变差(回归平方和):在回归模型中,因变量的估计值与其均值的离差平方和,也就是由解释变量解释的变差。
自相关序列相关性
变量的自相关也可能反映到ui中,引起ui
自相关。称为“拟自相关”。
三、一阶自回归形式的自相关
1.一阶自回归形式: ut=f(u t-1)
2.一阶线性自回归形式:ut=u t-1+vt 其中, 满足通 常假定 如果是“真实自相关”,基本方法是通过差分变换,对原始数据进行变换的方法,使自相关消除。
令:Yt*= Yt- Y t-1 ,Xt*= (Xt- X t-1), ß0 *= ß0(1- )
则: Yt*= ß0 * + ß1 Xt*+vt 称为广义差分模型,随机项
满足通常假定,对上式可以用OLS估计,求出 bˆ0 bˆ1 .
一阶自回归形式的自相关,既 ut= u t-1 +vt 式中 vt满足 通常假定。
假定,已知,则: Y t-1= ß0+ ß1X t-1+u t-1 两端同
乘 得:
Y t-1= ß0 + ß1 X t-1+ u t-1-------(2)
(1)式减去(2)式得:
Yt- Y t-1= ß0 (1- )+ ß1X (Xt- X t-1)+vt
自相关序列相关性
第一节 自相关(序列相关性)的概念
一、什么是自相关?
1.自相关的概念
假定五不满足:即不同时期Xi与Xj对应的随机项ui 与uj是相关的,即Cov(ui,uj)=E(ui ,uj) 0(i≠j),
则称随机项u是自相关的
2. 统计数据的分类:
(1)时间序列数据 :在不同时点上取得一系列数
随机误差项不存在序列相关
u项自相关在计量经济学研究中是一种普遍现象
W检验 的五个区域讨论:
计量经济学名词解释及简答
一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。
3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。
4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。
2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用表示,该值越接近1,模型对样本观测值拟合得越好。
3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。
4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。
第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。
2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用表示。
3、修正的可决系数:用自由度修正多重可决系数 中的残差平方和与回归平方和。
4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。
计量经济学名词解释与简答
1、完全共线性:对于多元线性回归模型,其基本假设之一是解释变量1x ,2x ,…,k x 是相互独立的,如果存在02211=+++ki k i i x c x c x c ,i=1,2,…,n ,其中c 不全为0,即某一个解释变量可以用其他解释变量的线性组合表示,则称为完全共线性。
2、虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时而导致的序列相关。
3、残差项:是指对每个样本点,样本观测值与模型估计值之间的差值。
4、多重共线性:在经典回归模型中总是假设解释变量之间是相互独立的。
如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
5、无偏性:是指参数估计量的均值(期望)等于模型的参数值。
6、工具变量:是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量的变量。
7、结构分析:经济学中所说的结构分析是指对经济现象中变量之间关系的研究。
8、虚假回归(伪回归):如果两列时间序列数据表现出一致的变化趋势(非平稳),即它们之间没有任何经济关系,但进行回归也会表现出较高的可决系数。
9、异方差性:即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差。
10、计量经济学:它是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科。
11、计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。
12、截面数据:是一批发生在同一时间截面上的数据。
13、回归分析:是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论,其目的在于通过后者的已知和设定值,去估计和(或)预测前者的(总体)均值。
14、随机误差项:观察值围绕它的期望值的离差就是随机误差项。
15、最佳线性无偏估计量(高斯-马尔可夫定理):普通最小二乘估计量具有线性性、无偏性和有效性等优良性质,是最佳线性无偏估计量,这就是著名的高斯-马尔可夫定理。
计量经济学 —理论方法EVIEWS应用--第七章 序列相关性
在其他假设仍然成立的条件下,随机干扰项序列相关意味着
(7-2)
如果仅存在
E ( ) 0 , i 1 , 2 , . . . , n i i 1
(7-3)
则称为一阶序列相关或自相关(简写为AR(1)),这是常见的一种序列相关问题。
D .W .
不存在一阶自相关,构造如下统计量: t
t
( eˆ
t2
n
ˆt 1 ) 2 e
2 t
eˆ
t 1
n
杜宾—沃森证明该统计量的分布与出现在给定样本中的X值有复杂的关系,
其准确的抽样或概率分布很难得到;
因为D.W.值要从
eˆ t 中算出,而 eˆ t
又依赖于给定的X的值。
2 χ 因此D-W检验不同于t、F或 检验,它没有唯一的临界值可以导出拒绝或
用OLS法估计序列相关的模型得到的随机误差项的方差不仅是 有偏的,而且这一偏误也将传递到用OLS方法得到的参数估计 量的方差中来,从而使得建立在OLS参数估计量方差基础上的 变量显著性检验失去意义。
以一元回归模型为例,
Y X i 0 1 i i
2
ˆ) Var ( 1 2 xt
序列相关性及其产生原因序列相关性的影响序列相关性的检验序列相关的补救第一节序列相关性及其产生原因序列相关性的含义对于多元线性回归模型71在其他假设仍然成立的条件下随机干扰项序列相关意味着如果仅存在则称为一阶序列相关或自相关简写为ar1这是常见的一种序列相关问题
—理论· 方法· EViews应用
郭存芝 杜延军 李春吉 编著
二、回归检验法
, eˆ, 以 e ˆ t 为解释变量,以各种可能的相关变量,诸如 t1
序列相关性名词解释
序列相关性名词解释
序列相关又称自相关,是指总体回归模型的随机误差项之间存在相关关系。
序列相关性在计量经济学中指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。
序列相关即不同观测点上的误差项彼此相关。
序列相关产生的原因有很多,一般认为主要有一下几种,经济变量惯性的作用引起随机误差项自相关,经济行为的滞后性引起随机误差项自相关,一些随机偶然因素的干扰引起随机误差项自相关,模型设定误差引起随机误差项自相关,观测数据处理引起随机误差项序列相关。
一般经验告诉我们,对于采用时间序列数据作样本的计量经济学问题,由于在不同样本点上解释变量以外的其他因素在时间上的连续性,带来它们对被解释变量的影响的连续性,所以往往存在序列相关性。
计量经济学序列相关性实验分析
重庆科技学院学生实验报告一,实验目的和要求熟练掌握序列相关行的含义,原因,后果,检验方法,修正方法。
二、实验内容和原理内容:自相关性检验原理:首先采用普通最小二乘法估计模型,以求得随机干扰项的“近似估计量”,然后通过分析这些“近似估计量”之间的相关性以达到判断随机干扰项是否具有序列相关性的目的。
三、主要仪器设备电脑一台;EVIEW50 软件一套;MATHTYFPE8 软件一套;MICROSOFXCE12007 软件一套;四、实验操作方法和步骤一、估计回归方程二、进行序列相关性检验三、序列相关的补救五、实验记录与处理(数据、图表、计算等)(具体过程见下页)六、实验结果及分析(具体分析见下页)说明:此部分的内容和格式各学院可根据实验课程和实验项目的具体需要,自行设计和确定相关内容和栏目,但表头格式应统一;对于设计性实验则只要求说明实验的目的要求、提出可供实验的基本条件和注意事项,实验方案和步骤的设置、仪器的安排等可由学生自己设计。
五、实验记录与处理(数据、图表、计算等)一、估计回归方程工业增加值主要由全社会固定资产投资决定。
为了考察全社会固定资产投资对工业增加值的影响,可使用如下模型:丫二0 i Xi ;其中,X表示全社会固定资产投资,丫表示工业增加值。
下表列出了中国1998-2000的全社会固定资产投资X与工业增加值丫的统计数据。
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time; 08:53Sample: 1SS0 2CU0Included observatiors: 21Variable Coefficient Std. Error t-Statistic Prob.C6E3.0114298 1673 2240392 □ .0372X 1.101861 0 CI1S344 .0SS3O 0 oooc R-squared 0.994936 Mean dependent var 13744 09Adjusted R-squared 0.394669 S D. dependenl var 13029.80S.E. of regression 951.33S8 Akaike info criterion 16.64401Sum squared resid 17195864Schwarz criterion 1674343Lug likelihood -172.7621F-statistic3732.750Durbin-Watson slat 1.282353 FrcbfF-statistic)0 000000由此实验结果可知模型估计结果为:Y=668.0114+1.181861X(2.24039)(61.0963)R2 =0.994936,R 2 =0.994669,SE=951.3388, D.W.=1.282353。
4.2序列相关性
又如:模型本应为:
Yt = 0 +1 Xt +2 Xt2 + t
但建模时设立模型如下:
Yt = 0 +1 Xt + vt
由于vt = 2 Xt2 +t ,解释变量的平方对随机误 差项产生系统性影响,从而使随机误差项呈现出 序列相关性。
三、序列相关性的后果
计量经济学模型一旦出现序列相关性,如果仍 采用OLS估计模型参数,会产生下列不良后果:
§4.2
序列相关性
一、序列相关性的概念 二、序列相关性的产生原因 三、序列相关性的后果 四、序列相关性的检验 五、序列相关性的克服办法 六、实例
一、序列相关性的概念
0 1 X1i 2 X 2i k X k i i 基本假设要求随机误差项之间互不相关:
对于模型 Yi
-4 -4 -2 0 2
U (-1) 4
正自相关的序列图和散点图
4 X
6 X 4
2
2
0
0 -2
-2
-4
-4 10 20 30 40 50 60 70 80 90 100
-6 -6 -4 -2 0 2
X(-1) 4 6
负自相关的序列图和散点图
6 X 4 2 0 -2 -4 -6 10 20 30 40 50 60 70 80 90 100
n
~ et 2
t 1
n
如果存在完全正自相关,则
n
~ ~ ~~ et2 et21 2 et et 1
t 2 t 2 t 2
n
n
1,D.W . 0
如果存在完全负自相关,则
~ et2
t 1
七计量经济学-序列相关性
2、解析法
(1)回归检查法
以 e~i 为被解释变量,以各种可能的相关量, 诸如以 e~i1 、 e~i2 、 e~i2 等为解释变量,建立各
种方程:
e~i e~i 1 i
i=2,…,n
e~i 1e~i1 2 e~i2 i
i=3,…,n
…
对各方程预计并进行明显性检查,如果存 在某一种函数形式,使得方程明显成立,则 阐明原模型存在序列有关性。
2、序列有关产生的因素
(1)惯性
大多数经济时间数据都有一种明显的特点, 就是它的惯性。
GDP、价格指数、生产、就业与失业等时 间序列都呈周期性,如周期中的复苏阶段,大 多数经济序列均呈上升势,序列在每一时刻的 值都高于前一时刻的值,似乎有一种内在的动 力驱使这一势头继续下去,直至某些状况(如 利率或课税的升高)出现才把它拖慢下来。
(3)经验表明,如果不存在一阶自有关, 普通也不存在高阶序列有关。
因此在实际应用中,对于序列有关问题普 通只进行D.W.检查。
四、含有序列有关性模型的预计
• 如果模型被检查证明存在序列有关性, 则需要发展新的办法预计模型。
• 最惯用的办法是广义最小二乘法(GLS: Generalized least squares)、一阶差分 法(First-Order Difference)和广义差分 法(Generalized Difference)。
一阶差分法是将原模型
Yi 0 1 X i i
变换为
i=1,2,…,n
Yi 1X i i i1
其中
i=2,…,n
Yi Yi Yi1
(2.5.10)
• 如果原模型存在完全一阶正自有关,即在
•
i= i-1+ i
计量经济学试题计量经济学中的序列相关性与解决方法
计量经济学试题计量经济学中的序列相关性与解决方法计量经济学试题: 计量经济学中的序列相关性与解决方法序列相关性是计量经济学中重要的概念之一,它描述了时间序列数据之间的相关程度。
在许多经济学研究中,序列相关性可能会导致问题,如伪回归和自相关误差。
为了解决这些问题,研究人员采用了一些方法来处理序列相关性。
本文将介绍序列相关性的定义、影响和解决方法。
一、序列相关性的定义序列相关性是指一组时间序列数据之间存在的相关关系。
它反映了一个变量的当前值与过去值的相关程度。
序列相关性可以判断变量之间是否存在依赖关系,以及时间趋势的演变和预测。
在计量经济学中,序列相关性通常使用自相关函数(acf)和偏自相关函数(pacf)来度量。
自相关函数衡量了序列与其自身在不同滞后期的相关性,而偏自相关函数则控制了其他滞后期的效应。
二、序列相关性的影响序列相关性对计量经济分析的结果具有重要影响。
当存在序列相关性时,经济学模型的估计结果可能会产生偏误。
这是因为序列相关性违反了线性回归模型的基本假设,导致参数估计失真。
此外,当序列相关性存在时,标准误差和t统计量的计算也会出现问题。
标准误差的计算通常基于误差项的无关性假设,而序列相关性违反了这一假设,导致标准误差被低估。
因此,对参数的显著性检验将失去准确性。
三、解决序列相关性的方法为了解决序列相关性的问题,计量经济学提出了许多方法和技术。
下面介绍几种常用的解决方法。
1. 差分法(Differencing Method)差分法是通过对时间序列数据进行差分,消除序列相关性的方法。
差分法可以消除序列的线性趋势,使数据变得稳定。
这种方法利用变量的差分来消除序列的相关性,使得模型的估计结果更可靠。
2. 自相关修正法(Autoregressive Model)自相关修正法是通过引入滞后变量来建模序列相关性。
自相关修正模型考虑变量的滞后值与当前值之间的关系,以控制序列相关性的影响。
常见的自相关修正模型包括自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。
计量经济学名词解释与简答
1、完全共线性:对于多元线性回归模型,其基本假设之一是解释变量1x ,2x ,…,k x 是相互独立的,如果存在02211=+++ki k i i x c x c x c ,i=1,2,…,n ,其中c 不全为0,即某一个解释变量可以用其他解释变量的线性组合表示,则称为完全共线性。
2、虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时而导致的序列相关。
3、残差项:是指对每个样本点,样本观测值与模型估计值之间的差值。
4、多重共线性:在经典回归模型中总是假设解释变量之间是相互独立的。
如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
5、无偏性:是指参数估计量的均值(期望)等于模型的参数值。
6、工具变量:是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量的变量。
7、结构分析:经济学中所说的结构分析是指对经济现象中变量之间关系的研究。
8、虚假回归(伪回归):如果两列时间序列数据表现出一致的变化趋势(非平稳),即它们之间没有任何经济关系,但进行回归也会表现出较高的可决系数。
9、异方差性:即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差。
10、计量经济学:它是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科。
11、计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。
12、截面数据:是一批发生在同一时间截面上的数据。
13、回归分析:是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论,其目的在于通过后者的已知和设定值,去估计和(或)预测前者的(总体)均值。
14、随机误差项:观察值围绕它的期望值的离差就是随机误差项。
15、最佳线性无偏估计量(高斯-马尔可夫定理):普通最小二乘估计量具有线性性、无偏性和有效性等优良性质,是最佳线性无偏估计量,这就是著名的高斯-马尔可夫定理。
计量经济学-序列相关性
PART 03
序列相关性检验方法
杜宾-瓦特森检验
检验原理
通过计算残差序列的一阶自相关系数来检验序列相关性。
检验步骤
首先估计回归模型,计算残差;然后计算残差的自相关系数;最后 根据自相关系数和样本量确定临界值,判断序列相关性。
优缺点
简单易行,但仅适用于一阶自相关的情况,对于高阶自相关检验效 果较差。
将检验结果以表格或图形形式展示出 来,包括检验统计量、P值等。若存 在序列相关性,可采用差分法、 ARIMA模型等方法进行处理,并重新 进行参数估计和检验。
根据检验结果和处理结果,对模型的 适用性和可靠性进行评估。若模型存 在严重序列相关性问题,则需要重新 考虑模型设定和估计方法。
PART 06
总结与展望
检验步骤
在原始回归模型中添加滞后项作为解释变量;然后估计辅 助回归模型,得到回归系数的估计值;最后根据回归系数 的估计值构造统计量,进行假设检验。
优缺点
可以检验任意阶数的自相关,但需要注意滞后项的选择和 模型的设定。
PART 04
序列相关性处理方法
差分法
一阶差分法
通过计算相邻两个时期的数据差值来消除序列相 关性。
运用最小二乘法(OLS)或其他估计方法,对模型参数进行估计。在 EViews中,可通过"Quick"菜单选择"Estimate Equation"选项进行参数估 计。
序列相关性检验及处理结果展示
01
序列相关性检验
02
处理结果展示
03
结果解读
采用Durbin-Wu-Hausman检验、 Breusch-Godfrey检验等方法,检验 模型是否存在序列相关性。在EViews 中,可通过"View"菜单选择 "Residual Diagnostics"选项进行检 验。
计量经济学-名词解释及简答
一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。
3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。
4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。
2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。
3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。
4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。
第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。
2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用2R 表示。
3、修正的可决系数:用自由度修正多重可决系数2R 中的残差平方和与回归平方和。
4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。
计量经济学(重要名词解释)
——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。
与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。
经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。
确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。
没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。
有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。
布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。
布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。
若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。
因此,这是相对于非嵌套对立假设而对一个模型的检验。
在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。
回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。
它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。
怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。
这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。
计量经济学之序列相关性
H0 : 1 2 p 0
备择假设H为 1 ( H1:i i 1,2,, p) 中至少有一个不为零 若为真,则LM统计量在大样本下渐进 2 服从自由度为p的 分布:
LM nR ~
2
其中,n, (p)
2
R
2
分别是辅助回归方程(6)的样本容量和可决系 数
e e e e e e e e e e
t t t 1 t 1 t t 1 2 t 2 t 1 2 t
2 t 1
(3)
当n充分大时, et2 et21 有 et et 1 ˆ et2 所以
ˆ ˆ ˆ
(19)
三 自相关系数ρ的估计
广义差分法得以实施的关键是计算出自相关系数ρ的值,因此,必 须采用一些适当的方法对自回归系数ρ进行估计,通常适用的方法主 要有:经验法、利用 D.W.估计、科克伦-奥科特迭代法等。
下面我们着重介绍一下科克伦-奥科特迭代法: 科克伦-奥科特迭代法其实就是进行一系列的迭代,每一次迭代 都能得到比前一次更好的ρ的估计值。为了叙述方便,我们采用一元 回归模型来阐明这种方法, 多元回归模型下的迭代法与一元回归的原 理相同。 假设给定模型 Yt = β0 + β1 X t + μt 其中, μt = ρ1 μt−1 + ρ2 μt−2 + ⋯ + ρp μt−p + εt t=1+p,2+p,…,n (22) (21)
如果含有 k 个解释变量的多元回归模型(2)存在 p 阶序列相关 性,也可作类似变换,变换结果为
∗ Yt∗ = β0 1 − ρ1 − ⋯ − ρp + β1 X1t + β2 X∗ + ⋯ + βk X∗ + εt 2t kt ∗ 其中,Xit = Xit − ρ1 Xi(t−1) − ⋯ − ρp Xi(t−p)(i=1,2,…,p)。
计量经济学重点内容
第一章导论计量经济学定义:计量经济学(Econometrics)是一门应用数学、统计学和经济理论来分析、估计和检验经济现象与理论的科学。
通过使用统计数据和经济模型,计量经济学试图量化经济关系,以更好地理解经济变量之间的相互作用。
研究的问题(相关关系):计量经济学的目的是研究经济变量之间的关系,例如:1. 消费与收入的关系。
2. 教育与工资的关系。
3. 利率与投资的关系。
第二章 OLS (普通最小二乘法):OLS 是一种用于估计线性回归模型中未知参数的方法。
它通过最小化误差平方和来找到回归线。
在一元线性回归中,我们通常使用普通最小二乘法(OLS)来估计模型参数。
对于模型 Y = α + βX + ε,我们可以使用以下公式来计算α和β:β= Σ( (X - mean(X)) (Y - mean(Y)) ) / Σ( (X - mean(X))^2 ) α̂ = mean(Y) - β̂ * mean(X)这里,mea n(X) 是 X 变量的平均值(即ΣX/n),mean(Y) 是 Y 变量的平均值(即ΣY/n)。
在这些公式中,mean 表示求平均值。
Σ 表示对所有数据点求和,n 是样本大小。
这里α_hat 是截距的估计值,β_hat 是斜率的估计值。
结论及推论:1. 在高斯马尔可夫假设下,OLS 估计量是最佳线性无偏估计量(BLUE)。
2. 当误差项的方差是常数时,OLS 估计量是有效的。
3. 如果模型是正确规范的,并且误差项是独立且同分布的,那么 OLS 估计量是一致的。
4. 如果误差项与解释变量相关,或者存在遗漏变量,那么 OLS 估计量可能是有偏的。
5. OLS 提供了估计的标准误差、t 统计量和其他统计量,这些可以用于进行假设检验和构建置信区间。
第三章一元回归:(1)总函、样函:总函数和样本函数是线性回归模型的两种表现形式。
总函数(总体函数)表示整体样本的关系,一般形式为Y = β0 + β1X + ε。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归形式时,Cov( i , j ) 0 。同理也可证明当 i
存在高阶自回归形式时,仍有 Cov( i , j ) 0 。
这里要说明的是,自相关多发生于时间序列数据 中。若出现于截面数据中,称其为空间自相关。
3、序列相关的来源与后果
误差项存在序列相关,主要有如下几个原因。
(1) 模型的数学形式不妥。
(4.57)式,根据(4.62)式的结果,知
Var(βˆ ) E[(βˆ β)(βˆ β)] E[(XX)1 XεεX(XX)1 ] (XX)1 XE(εε)X(XX)1
2 (XX)1 XΩX(XX)1
(4.64)
与 2 (XX)1不等。
第三节 序列相关性
序列相关性含义及引起的后果 序列相关的检验 序列相关的克服
4.3.1 序列相关性含义及引起的后果
一、序列相关的含义及性质
1、序列相关的含义
针对线性模型(2.1)式
Yi 1 2 X 2i 3 X 3i k X ki i
i 1,2,, n
2、DW(Durbin-Watson)检验法
DW检验是J. Durbin, G. S. Watson于1950年发表 的一篇论文《Testing for Serial Correlation in Least Squares Regression》中提出的。它是利用 残差ei 构成的统计量推断误差项 i是否存在序列 相关。
(1) 只要假定条件 Cov(Xε) 0成立,回归系数 βˆ 仍 具有无偏性。
E(βˆ ) E[(XX)1 XY]
E[(XX)1 X(Xβ ε)]
β (XX)1 XE(ε) β
(4.63)
(2) βˆ 丧失有效性。
如果回归模型中误差项 i 存在一阶自回归形式
i 非序列相关
完全正序列相关
i
i 完全负序列相关
i 有某种程度的正序列相关
i有某种程度的负序列相关
实际中DW = 0, 2, 4 的情形是很少见的。当DW取 值在(0, 2),(2, 4)之间时,怎样判别误差项 是否存在序列相关呢?推导统计量DW的精确抽 样分布是困难的,因为DW是依据残差ei 计算的, 而ei的值又与的形式有关。DW检验与其它统计检 验不同,它没有唯一的临界值用来制定判别规则。 然而Durbin-Watson根据样本容量和被估参数个
E( i ) 0, i 1,2,, n
Var(
i
)
2
,
i 1,2,, n
Cov(i ,i1) 0, i 1, 2, , n
Cov( i , i1 ) 0, i 1,2,, n
针对(4.52)式,利用OLS方法,得到 的估计
公式为,
ˆ =
用残差值 ei计算统计量DW。 n
(ei ei1 )2
DW = i2 n
ei 2
(4.65)
i 1
其中分子是残差的一阶差分平方和,分母是残差
平方和。
把上式展开,
n
n
n
ei 2
e2 i 1
2
ei ei1
DW = i2
t2
i2
n
ei 2
(4.66)
2
2
/(1
2)
(4.60)
其协方差为
Cov( i , i1 ) E( i i1 )
E[( i1 i ) i1 ]
Var( i1 )
同理
2
Cov( i , is
)
sVar( is )
s
2
(s 0 )
当 Cov( i , j ) E( i j ) 0,(i, j n, i j), 即误
差项 i的取值在时间上是相互无关的。称误差项
i非序列相关。
如果 Cov( i , j ) 0 , (i j)
(4.51)
则称误差项 i存在序列相关。
序列相关又称自相关。 原指一随机变量在时间上与其滞后项之间的相关。
i i1 i
(4.57)
的取值范围是 [-1,1]。
当 0 时,称 i存在正序列相关; 当 0时,称 i 存在负序列相关。 当 = 0时,称 i 不存在序列相关。
图4.8 a, c, e, 分别给出具有正序列相关,负序列相
关和非序列相关的三个序列。为便于理解时间序 列的正负序列相关特征,图4.8 b、d、f分别给出 图4.8 a、c、e中变量对其一阶滞后变量的散点图。 正负序列相关以及非序列相关性展现的更为明了。
且与其前若干期的值都有关系时,即
则称 i 具有高阶自回归式。
通常假定误差项的序列相关是线性的。因计量经
济模型中序列相关的最常见形式是一阶自回归形
式,所以下面重点讨论误差项的线性一阶自回归
形式,即
i i1 i
(4.52)
其中 是序列相关回归系数, i是随机误差项。
i 满足通常假设
(4) 若DW取值在(dL, dU)或(4- dU, 4 - dL) 之间,这种检验没有结论,即不能判别 是否存在 一阶序列相关。
判别规则可用图4.9表示。
DW 图4.9 判别规则
当DW值落在“不确定”区域时,有两种处理方 法。
若所用的数学模型与变量间的真实关系不一致, 误差项常表现出自相关。比如平均成本与产量呈 抛物线关系,当用线性回归模型拟合时,误差项 必存在自相关。
(2) 经济变量的惯性。
大多数经济时间序列都存在自相关。其本期值往 往受滞后值影响。突出特征就是惯性与低灵敏度。 如国民生产总值,固定资产投资,国民消费,物 价指数等随时间缓慢地变化,从而建立模型时导 致误差项自相关。
使用DW检验,应首先满足如下三个条件。
(1)误差项 i的自相关为一阶自回归形式。
(2)因变量的滞后值Yi1不能在回归模型中作解释变 量。
(3)样本容量应充分大(n 15)
DW检验的基本思想如下。给出假设
H0: 0( i 不存在序列相关)
H1: 0 ( i 存在一阶序列相关)
这里主要是指回归模型中随机误差项 i 与其滞
后项的相关关系。 序列相关也是相关关系的一种。
序列相关按形式可分为两类。
(1)一阶自回归形式
当误差项 i 只与其滞后一期值有关时,即 i = f ( i1 ),
称 i 具有一阶自回归形式。
(2) 高阶自回归形式
当误差项 i 的本期值不仅与其前一期值有关,而
因为有
i 1
n
ei 2≈
n
≈ ei12
n
ei 2
代i2入(4.6i62)式,有i1
(4.67)
n
n
2
e2 i 1
2
ei ei1
DW≈
i2
t2
n
e 2 i 1
=2(1-
i2
n
ei ei1
i2 n
)= 2 (1 ˆ)
e 2 i 1
i2
(4.68)
普通最小二乘法得到的回归方程去预测,预测是
无效的。
4.3.2 序列相关的检验
1、定性分析法 定性分析法就是依据残差ei 对时间i的序列图的性
质作出判断。由于残差et是对误差项的估计,所 以尽管误差项 i 观测不到,但可以通过ei的变化 判断 i 是否存在序列相关。
定性分析法的具体步骤是,
c. 正序列相关的序列图
6
U
4
2
0
-2
-4
U (-1) -6
-6 -4 -2 0
2
4
6
d. 正序列相关的散点图
6 4 2 0 -2 -4
U -6
20 40 60 80 100 120 140 160 180 200
e. 负序列相关的序列图
6
U
4
2
0
-2
-4
-6
U (-1)
-6 -4 -2
0
2
4
数,在给定的显著性水平下,给出了检验用的上、 下两个临界值dU和dL 。
判别规则如下:
(1) 若DW取值在(0, dL)之间,拒绝原假设H0 , 认为存在一阶正序列相关。
(2) 若DW取值在(4 - dL , 4)之间,拒绝原假设 H0 ,认为存在一阶负序列相关。
(3) 若DW取值在(dU, 4- dU)之间,接受原假设 H0 ,认为 非序列相关。
(3) 有可能低估误差项 i 的方差。低估回归参数
估计量的方差,等于夸大了回归参数的抽样精度,
过高的估计统计量t的值,从而把不重要的解释变
量保留在模型里,使显著性检验失去意义。
(4) 由于 i 存在自相关时,Var(βˆ j )( j 1,2,, k )
和
s
2
都变大,都不具有最小方差性。所以用依据
因为的取值范围是 [-1, 1],所以DW统计量的取值 范围是 [0, 4]。 与DW值的对应关系见表4.1。
表4.1 与0-i <1D< W值的对应关系及意义
DW
i的表现
=0 =1 = -1 0< < 1
-1< < 0
DW = 2 DW = 0 DW = 4 0 < DW < 2 2 < DW <
n
i i1
i2
n
2 i 1 i2
(4.53)
其中n是样本容量。若把 i , i1 看作两个变量,