初二下学期期末考试数学试卷.pdf
数学八年级下册期末试卷和答案详解(PDF可打印)
2020-2021学年重庆市江北区八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请用2B铅笔将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,C.13,14,15D.6,8,10 2.(4分)下列函数中,y随x的增大而减小的函数是()A.y=3x B.y=4x﹣1C.y=﹣x﹣2D.y=3x﹣1 3.(4分)已知关于x的一元二次方程x2+2x﹣k=0的解为x=1,则k值为()A.1B.2C.3D.﹣34.(4分)某地连续10天的最高气温统计如下:最高气温(℃)22232425天数1234这组数据的中位数和众数分别是()A.23.5,24B.24,25C.25,24D.24.5,25 5.(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=89分,=89分,S甲2=247,S乙2=290,那么成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定6.(4分)已知y是x的正比例函数,且函数图象经过点(4,﹣6),则在此正比例函数图象上的点是()A.(2,3)B.(﹣4,6)C.(3,﹣2)D.(﹣6,4)7.(4分)若菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.488.(4分)对于一次函数y=﹣x+4,下列结论错误的是()A.函数的图象与x轴的交点坐标是(0,4)B.函数值随自变量的增大而减小C.函数的图象不经过第三象限D.函数的图象向下平移4个单位长度得y=﹣x的图象9.(4分)在正方形ABCD中,对角线AC=BD=8cm,点P为AB边上的任一点,则点P 到AC、BD的距离之和为()A.4cm B.5cm C.4cm D.8cm 10.(4分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是2,4,6,8,10,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.2,8,10B.4,6,10C.6,8,10D.4,4,8 11.(4分)有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M和方程N有一个相同的根,那么这个根必是x=1C.如果7是方程M的一个根,那么是方程N的一个根D.如果方程M有两根符号相同,那么是方程N的两根符号也相同12.(4分)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车;②公交车的速度为400米/分钟;③小明下公交车后跑向学校的速度为100米/分钟;④小明上课没有迟到.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共计24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)一元二次方程x2+2x=0的解是.14.(4分)在Rt△ABC中,两直角边的长分别为7和24,则其斜边上的中线长为.15.(4分)从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:﹣2.8,0.1,﹣8.3,1.2,10.8,﹣7.0,这6名男生的平均身高约为cm.(结果保留到小数点后第一位)16.(4分)如图,四边形ABCD是周长为24的菱形,点A的坐标是(4,0),则点D的坐标为.17.(4分)函数y=x+的图象与x轴、y轴分别交于A、B两点,点C在函数y=x+的图象上,若△ABC为等腰三角形,则满足条件的点C共有个.18.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=9,AC=11.5,则边BC的长为.三、解答题(本大题共8小题,前面7小题每小题10分,第8小题8分,共78分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.(10分)解方程:(1)2x2﹣3x=0;(2)x2﹣7x+8=0.20.(10分)如图,已知在Rt△ABC中,∠ACB=90°,M为边AC延长线上一定点.(1)用直尺和圆规在边BC的延长线上求作一点N,使得∠CMN=∠BAC,并连接BM、AN(不写作法和证明,保留作图痕迹);(2)在(1)的情况下,若AC=CM,猜想四边形ABMN是哪种特殊的四边形?并证明你的猜想.21.(10分)某校八年级两个班,各选派10名学生参加学校举行的“汉字听写大赛”预赛,各参赛选手的成绩如下:八(1)班:91,92,93,93,93,94,98,88,98,100;八(2)班:93,93,93,95,96,96,98,89;98,99.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差八(1)班100a939312八(2)班9995b c8.4(1)直接写出表中a,b,c的值;(2)依据数据分析表,有人说:“八(1)班的最高分100大于八(2)班的最高分99,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩比较好,请给出两条支持八(2)班成绩好的理由.22.(10分)在一次函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.以下是我们研究函数y=a|x|+b性质及其应用的部分过程,请按要求完成下列各小题.(1)根据下表信息,求这个函数的解析式,并求出m、n的值;x…﹣4﹣3﹣2﹣101234…y…﹣6﹣4m02n﹣2﹣4﹣6…(2)在给定的平面直角坐标系中画出该函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.()②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大.()(3)请在同一平面直角坐标系中再画出函数y=2x﹣1的图象,结合你所画的函数y=a|x|+b的图象,直接写出不等式a|x|+b>2x﹣1的解集.23.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各600件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售120件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1200元?24.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“少2数”.定义:对于一个自然数,如果这个数除以7余数为5,且除以5余数为3,则称这个数为“少2数”.例如:33÷7=4……5,33÷5=6……3,所以33是“少2数”;43÷5=8……3,但43÷7=6……1,所以43不是“少2数”.(1)判断68和89是否为“少2数”?请说明理由;(2)求大于100且小于200的所有“少2数”.25.(10分)如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.26.(8分)如图AB=10,C为AB上一动点(不含端点和中点),以AC,BC为边向上作正方形AEDC,CFGB.连接EF并作DH平行EF交直线FG于H,再以CD,DH为边作平行四边形CDHJ,连接BJ.(1)求∠CBJ的度数.(2)当四边形BJHG的面积为15时,求AC的长.(3)当△BCJ是等腰三角形时,直接写出AC的长.2020-2021学年重庆市江北区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请用2B铅笔将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,C.13,14,15D.6,8,10【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、12+22≠22,不能构成直角三角形,故不符合题意;B、12+12≠()2,不能构成直角三角形,故不符合题意;C、132+142≠152,不能构成直角三角形,故不符合题意;D、62+82=102,能构成直角三角形,故符合题意.故选:D.2.(4分)下列函数中,y随x的增大而减小的函数是()A.y=3x B.y=4x﹣1C.y=﹣x﹣2D.y=3x﹣1【考点】正比例函数的性质;一次函数的性质.【分析】根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.【解答】解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,C选项y=﹣x﹣2中,k=﹣1<0,y随x的增大而减少.故选:C.3.(4分)已知关于x的一元二次方程x2+2x﹣k=0的解为x=1,则k值为()A.1B.2C.3D.﹣3【考点】一元二次方程的解.【分析】把x=1代入方程x2+2x﹣k=0得到关于k的方程,然后解关于k的方程即可.【解答】解:把x=1代入方程x2+2x﹣k=0,得1+2﹣k=0,解得k=3.故选:C.4.(4分)某地连续10天的最高气温统计如下:最高气温(℃)22232425天数1234这组数据的中位数和众数分别是()A.23.5,24B.24,25C.25,24D.24.5,25【考点】众数;中位数.【分析】根据众数和中位数的定义就可以求解.【解答】解:在这一组数据中25是出现次数最多的,故众数是25;处于这组数据中间位置的两个个数都是24,那么由中位数的定义可知,这组数据的中位数是=24;故这组数据的中位数与众数分别是24,25.故选:B.5.(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=89分,=89分,S甲2=247,S乙2=290,那么成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定【考点】方差.【分析】根据方差的大小进行判断即可.【解答】解:甲、乙两个班的平均分相同,而S甲2<S乙2,因此甲班的成绩比较整齐,故选:A.6.(4分)已知y是x的正比例函数,且函数图象经过点(4,﹣6),则在此正比例函数图象上的点是()A.(2,3)B.(﹣4,6)C.(3,﹣2)D.(﹣6,4)【考点】一次函数图象上点的坐标特征.【分析】利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(﹣4,6)在此正比例函数图象上,此题得解.【解答】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,﹣6),∴﹣6=4k,∴k=﹣.∵当x=﹣4时,y=﹣x=6,∴点(﹣4,6)在此正比例函数图象上.故选:B.7.(4分)若菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.48【考点】菱形的性质;勾股定理.【分析】由菱形的性质可得AC与BD互相平分,AC⊥BD,利用勾股定理可求边长,即可求解.【解答】解:∵四边形ABCD是菱形,∴AC与BD互相平分,AC⊥BD,菱形的边长===5,∴个菱形的周长=4×5=20,故选:A.8.(4分)对于一次函数y=﹣x+4,下列结论错误的是()A.函数的图象与x轴的交点坐标是(0,4)B.函数值随自变量的增大而减小C.函数的图象不经过第三象限D.函数的图象向下平移4个单位长度得y=﹣x的图象【考点】一次函数图象与几何变换;正比例函数的图象;一次函数的性质.【分析】根据一次函数图象上点的坐标特征,一次函数的性质,一次函数图象与系数的关系以及一次函数图象与几何变换进行分析判断.【解答】解:A、函数的图象与x轴的交点坐标是(4,0),故符合题意;B、由于y=﹣x+4中的k=﹣1<0,所以函数值随自变量的增大而减小,故不符合题意;C、由于y=﹣x+4中的k=﹣1<0,b=4>0,所以函数的图象不经过第三象限,故不符合题意;D、一次函数y=﹣x+4的图象向下平移4个单位长度得到y=﹣x+4﹣4=﹣x,即y=﹣x的图象,故不符合题意;故选:A.9.(4分)在正方形ABCD中,对角线AC=BD=8cm,点P为AB边上的任一点,则点P 到AC、BD的距离之和为()A.4cm B.5cm C.4cm D.8cm【考点】正方形的性质.【分析】先根据正方形ABCD中,对角线的长为8cm,即可得到AO=BO=4cm,再根据面积法即可得AO×BO=AO×PE+BO×PF,进而得出PE+PF=4cm.【解答】解:如图所示,连接PO,∵正方形ABCD中,对角线的长为8cm,∴AO=BO=4cm,又∵∠AOB=90°,PE⊥AO,PF⊥BO,∴AO×BO=AO×PE+BO×PF,即4×4=4PE+4PF,∴PE+PF=4cm,即点P到AC、BD的距离之和是4cm,故选:A.10.(4分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是2,4,6,8,10,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.2,8,10B.4,6,10C.6,8,10D.4,4,8【考点】勾股定理.【分析】运用勾股定理将符合条件的三种情形列举出来,分别计算直角三角形的面积,比较大小即可.【解答】解:当选取的三块纸片的面积分别是4,6,10时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,8,10时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,4,6时,围成的直角三角形的面积是,∵,因为当选取2,4,8;2,4,10;4,6,8;6,8,10;四种情况时,都不能构成直角三角形,∴要使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是4,6,10.故选:B.11.(4分)有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M和方程N有一个相同的根,那么这个根必是x=1C.如果7是方程M的一个根,那么是方程N的一个根D.如果方程M有两根符号相同,那么是方程N的两根符号也相同【考点】根与系数的关系;一元二次方程的一般形式;根的判别式.【分析】根据M、N两方程根的判别式相同,即可得出A正确;用方程M﹣方程N,可得出关于x的一元二次方程,解方程即可得出x的值,从而得出B错误.将x=7代入方程M中,方程两边同时除以49即可得出是方程N的一个根,C正确;根据“和符号相”,即可得出D正确;综上即可得出结论.【解答】解:A、在方程ax2+bx+c=0中Δ=b2﹣4ac,在方程cx2+bx+a=0中Δ=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠0,∴x2=1,解得:x=±1,错误.C、∵7是方程M的一个根,∴49a+7b+c=0,∴a+b+c=0,∴是方程N的一个根,正确;D、∵和符号相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;故选:B.12.(4分)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车;②公交车的速度为400米/分钟;③小明下公交车后跑向学校的速度为100米/分钟;④小明上课没有迟到.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】根据图象可以确定他家与学校的距离,公交车时间是多少,他步行的时间和公交车的速度和小明从家出发到学校所用的时间.【解答】解:①小明从家出发乘上公交车的时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车的速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校的速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为15﹣12=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.二、填空题(本大题共6小题,每小题4分,共计24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)一元二次方程x2+2x=0的解是0或﹣2.【考点】解一元二次方程﹣因式分解法.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程可变形为:x(x+2)=0,解得x1=0,x2=﹣2.14.(4分)在Rt△ABC中,两直角边的长分别为7和24,则其斜边上的中线长为.【考点】勾股定理;直角三角形斜边上的中线.【分析】根据勾股定理先求出斜边的长,再利用直角三角形斜边上的中线等于斜边的一半即可.【解答】解:在Rt△ABC中,两直角边的长分别为7和24,由勾股定理可得:斜边为,∴斜边上的中线为.故答案为:.15.(4分)从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:﹣2.8,0.1,﹣8.3,1.2,10.8,﹣7.0,这6名男生的平均身高约为164.0 cm.(结果保留到小数点后第一位)【考点】算术平均数.【分析】根据算术平均数的计算方法进行计算即可.【解答】解:165.0+=165.0+(﹣1)=164.0(cm),故答案为:164.0.16.(4分)如图,四边形ABCD是周长为24的菱形,点A的坐标是(4,0),则点D的坐标为(0,﹣2).【考点】菱形的性质;坐标与图形性质.【分析】由菱形的性质可得AD=6,AC⊥BD,在Rt△AOD中,由勾股定理可求OD,即可求解.【解答】解:∵四边形ABCD是周长为24的菱形,∴AD=6,AC⊥BD,∵点A的坐标是(4,0),∴AO=4,∴DO===2,故点D坐标为(0,﹣2),故答案为:(0,﹣2).17.(4分)函数y=x+的图象与x轴、y轴分别交于A、B两点,点C在函数y=x+的图象上,若△ABC为等腰三角形,则满足条件的点C共有5个.【考点】一次函数图象上点的坐标特征;等腰三角形的判定.【分析】分别画出函数y=x+的图象,函数y=x+的图象,结合图象可得到使△ABC 为等腰三角形的点C,答案可得.【解答】解:如图:由图象得:满足条件的点C共有5个,故答案为:5.18.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=9,AC=11.5,则边BC的长为3.【考点】勾股定理;等腰三角形的判定与性质.【分析】延长BD到F,使得DF=BD,连接CF,过点C作CH∥AB,BF于点H,则△BCF是等腰三角形,得出BC=CF,再证明HF=CH,EH=CE,AC=BH,求出DH、CH的长,最后由勾股定理求出CD的长与BC的长即可.【解答】解:延长BD到F,使得DF=BD,连接CF,如图所示:∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C作CH∥AB,交BF于点H,∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=CH,∵EB=EA,∴∠ABE=∠BAE,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴∠CHE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=9,AC=11.5,∴DH=BH﹣BD=AC﹣BD=11.5﹣9=,∴HF=CH=DF﹣DH=BD﹣DF=9﹣2.5=,在Rt△CDH中,由勾股定理得:CD===6,在Rt△BCD中,由勾股定理得:BC===3,故答案为:3.三、解答题(本大题共8小题,前面7小题每小题10分,第8小题8分,共78分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.(10分)解方程:(1)2x2﹣3x=0;(2)x2﹣7x+8=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)利用因式分解法求解即可;(2)利用公式法求解即可.【解答】解:(1)∵2x2﹣3x=0,∴x(2x﹣3)=0,则x=0或2x﹣3=0,解得x1=0,x2=1.5;(2)∵x2﹣7x+8=0,∴a=1,b=﹣7,c=8,则Δ=(﹣7)2﹣4×1×8=17>0,∴x==,∴x1=,x2=.20.(10分)如图,已知在Rt△ABC中,∠ACB=90°,M为边AC延长线上一定点.(1)用直尺和圆规在边BC的延长线上求作一点N,使得∠CMN=∠BAC,并连接BM、AN(不写作法和证明,保留作图痕迹);(2)在(1)的情况下,若AC=CM,猜想四边形ABMN是哪种特殊的四边形?并证明你的猜想.【考点】作图—复杂作图.【分析】(1)利用尺规作∠CMN=∠CAB即可.(2)连接BM,AN,四边形ABMN是菱形.根据对角线垂直的平行四边形是菱形证明即可.【解答】解:(1)如图,点N即为所求.(2)连接BM,AN,四边形ABMN是菱形.理由:在△ACB和△MCN中,,∴△ACB≌△MCN(ASA),∴BC=CN,∵AC=CM,∴四边形ABMN是平行四边形,∵AM⊥BN,∴四边形ABMN是菱形.21.(10分)某校八年级两个班,各选派10名学生参加学校举行的“汉字听写大赛”预赛,各参赛选手的成绩如下:八(1)班:91,92,93,93,93,94,98,88,98,100;八(2)班:93,93,93,95,96,96,98,89;98,99.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差八(1)班100a939312八(2)班9995b c8.4(1)直接写出表中a,b,c的值;(2)依据数据分析表,有人说:“八(1)班的最高分100大于八(2)班的最高分99,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩比较好,请给出两条支持八(2)班成绩好的理由.【考点】方差;中位数;众数.【分析】(1)利用平均数,中位数,以及众数的定义计算所求即可;(2)从平均分,以及中位数角度考虑,合理即可.【解答】解:(1)八(1)班的平均分a=×(91+92+93+93+93+94+98+88+98+100)=94;将八(2)班的成绩从小到大排列为:89,93,93,93,95,96,96,98,98,99.八(2)班的中位数b==95.5;八(2)班的成绩出现最多的是93,∴八(2)班的成绩的众数c=93;故答案为:94,95.5,93;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩的中位数为95.5,大于八(1)班的成绩的中位,故八(2)班成绩好.22.(10分)在一次函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.以下是我们研究函数y=a|x|+b性质及其应用的部分过程,请按要求完成下列各小题.(1)根据下表信息,求这个函数的解析式,并求出m、n的值;x…﹣4﹣3﹣2﹣101234…y…﹣6﹣4m02n﹣2﹣4﹣6…(2)在给定的平面直角坐标系中画出该函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.(√)②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大.(√)(3)请在同一平面直角坐标系中再画出函数y=2x﹣1的图象,结合你所画的函数y=a|x|+b的图象,直接写出不等式a|x|+b>2x﹣1的解集﹣2<x<.【考点】一次函数与一元一次不等式;一次函数的图象;一次函数的性质;一次函数图象与几何变换.【分析】(1)观察表格,函数图象经过点(﹣1,0),(0,2),将这两点的坐标分别代入y=a|x|+b,利用待定系数法即可求出这个函数的表达式;把x=﹣2代入所求的解析式,即可求出m,将x=1代入所求的解析式,即可求出n;(2)根据表格数据,描点连线即可画出该函数的图象,根据图象即可判断该函数性质的说法是否正确;(3)在同一平面直角坐标系中画出直线y=x﹣1与函数y=a|x|+b的图象,找出直线y=x﹣1落在y=a|x|+b的图象下方的部分对应的自变量的取值范围即可.【解答】解:(1)∵函数y=a|x|+b的图象经过点(﹣1,0),(0,2),∴,解得,∴这个函数的表达式是y=﹣2|x|+2;∴当x=﹣2时,m=﹣2×|﹣2|+2=﹣2,当x=1时,n=﹣2×|1|+2=0.∴m=﹣2,n=0;(2)函数y=﹣2|x|+2的图象如图所示:①该函数图象是轴对称图形,它的对称轴为y轴.正确;②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大,正确;故答案为:√;√;(3)在同一平面直角坐标系中画出直线y=2x﹣1与函数y=﹣2|x|+2的图象,如图.把y=2x﹣1代入y=﹣2x+2,得2x﹣1=﹣2x+2,解得x=,根据图象可知,不等式a|x|+b>2x﹣1的解集是x<.故答案为:x<.23.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各600件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售120件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1200元?【考点】二元一次方程组的应用;列代数式;代数式求值.【分析】(1)设甲商品的零售单价为x元,乙商品的零售单价为y元,由“甲、乙两种商品的进货单价之和是3元,按零售单价购买甲商品3件和乙商品2件,共付了12元”列出方程组,可求解;(2)由“商店每天销售甲、乙两种商品获取的总利润为1200元”列出方程可求解.【解答】解:(1)设甲商品的零售单价为x元,乙商品的零售单价为y元,由题意可得:,解得:,答:甲商品的零售单价为2元,乙商品的零售单价为3元,(2)由题意可得:甲的进货单价=2﹣1=1(元),乙商品进货单价==2(元),则(2﹣1﹣m)(600+×120)+(3﹣2)×600=1200,解得:m=0(不合题意舍去),m=0.5,答:当m为0.5时,商店每天销售甲、乙两种商品获取的总利润为1200元.24.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“少2数”.定义:对于一个自然数,如果这个数除以7余数为5,且除以5余数为3,则称这个数为“少2数”.例如:33÷7=4……5,33÷5=6……3,所以33是“少2数”;43÷5=8……3,但43÷7=6……1,所以43不是“少2数”.(1)判断68和89是否为“少2数”?请说明理由;(2)求大于100且小于200的所有“少2数”.【考点】解一元一次不等式组.【分析】(1)根据“少2数”的定义,即可判断68和89是否为“少2数”;(2)根据题意,可以写出大于100且小于200的数除以7余5的数,然后再从中选出除以5余3的数,从而可以得到大于100且小于200的所有“少2数”.【解答】解:(1)68是“少2数”,89不是“少2数”,理由:68÷5=13……3,68÷7=9……5,所以68是“少2数”;89÷7=12……5,但89÷5=17……4,所以89不是“少2数”;(2)大于100且小于200的数除以7余5的数为103,110,117,124,131,138,145,152,159,166,173,180,187,194,其中除以5余3的数是103,138,173,即大于100且小于200的所有“少2数”是103,138,173.25.(10分)如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)根据一次函数的表达式,求得点A,B的坐标,便可求△AOB的面积;(2)根据点M的位置不同,分两段求△COM的面积;。
2023北京海淀区初二(下)期末数学试题及答案
2023北京海淀初二(下)期末数 学考生须知:1.本试卷共8页,共3道大题,26道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4考试结束,请将本试卷交回.一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.1. x 的取值范围是( )A. 0x > B. 0x < C. 0x ≥ D. 0x ≤2. 用长度相等的火柴棒首尾相连拼接直角三角形,若其中两条直角边分别用6根和8根火柴棒,则斜边需用火柴棒的根数为( )A. 12B. 10C. 8D. 63. 下列化简正确的是( )3=13= C. 3==4. 在平面直角坐标系xOy 中,点()12,A y ,()23,B y 在函数3y x =-的图像上,则( )A. 12y y > B. 12y y = C. 12y y < D. 以上都有可能5. 如图,A ,B 两点被池塘隔开,小林在池塘外选定一点C ,然后测量出CA ,CB 的中点D ,E 的距离,若5m DE =,则A ,B 两点间的距离为( )A. 5mB. 7.5mC. 10mD. 15m6. 一次函数y ax b =+的自变量和函数值的部分对应值如下表所示:x 05y35则关于x 的不等式ax b x +>的解集是( )A. 5x <B. 5x >C. 0x <D. 0x >7. 如图,12AB =,45A ∠=︒,点D 是射线AF 上的一个动点,DC AB ⊥,垂足为点C ,点E 为DB的中点,则线段CE 的长的最小值为( )A. 6B. D. 8. 某校足球队队员年龄分布如图所示,下面关于该队年龄统计数据的法正确的是( )A. 平均数比16大B. 中位数比众数小C. 若今年和去年的球队成员完全一样,则今年方差比去年大D. 若年龄最大的选手离队,则方差将变小二、填空题(本大题共18分,每小题3分)9. 在ABCD Y 中,若140A C ∠+∠=︒,则B ∠=__________︒.10. 如图,数轴上点A ,B ,C ,D 所对应的数分别是1-,1,2,3,若点E 对应的数是E 落在__________之间.(填序号)①A 和B ②B 和C ③C 和D11. 如图,大正方形是由四个全等的直角三角形和面积分别为1S ,2S 的两个正方形所拼成的.若直角三角形的斜边长为2,则12S S +的值为__________.12. 在一次演讲比赛中,甲的演讲内容、演讲能力、演讲效果成绩如下表所示:项目演讲内容演讲能力演讲效果成绩908090若按照演讲内容占50%,演讲能力占40%,演讲效果占10%,计算选手的综合成绩,则该选手的综合成绩为__________.13. 在矩形ABCD 中,BAD ∠的角平分线交BC 于点E ,连接ED ,若5ED =,3CE =,则线段AE 的长为__________.14. 已知直线:(0)l y kx b k =+≠,将直线l 向上平移5个单位后经过点(3,7),将直线l 向下平移5个单位后经过点(7,7),那么直线l 向__________(填“左”或“右”)平移__________个单位后过点(1,7).三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15. 计算:(1);(2.16. 如图,将平行四边形ABCD 的对角线BD 向两个方向延长,分别至点E 和点F ,且使BE DF =.求证:四边形AECF 是平行四边形.17. 已知一次函数21y x =-+.(1)在下图所示的平面直角坐标系中,画出该一次函数的图象;(2)该一次函数图象与x 轴交点坐标为__________.当0y <时,自变量x 的取值范围是__________.18. 如图,小明在方格纸中选择格点作为顶点画ABCD Y 和BCE .(1)请你在方格纸中找到点D ,补全ABCD Y ;(2)若每个正方形小格的边长为1,请计算线段CE 的长度并判断AD 与CE 的位置关系,并说明理由.19. 快递公司为顾客交寄的快递提供纸箱包装服务.现有三款包装纸箱,底面规格如下表:型号长宽小号20cm 18cm中号25cm20cm大号30cm 25cm已知甲、乙两件礼品底面都是正方形,底面积分别为280cm ,2180cm ,若要将它们合在一个包装箱中寄出,底面摆放方式如左上图,从节约枌料的角度考虑,应选择哪种底面型号的纸箱?请说明理由.20. 已知一次函数的图像经过点(2,4)A ,(1,1)B -.(1)求这个一次函数的解析式;(2)若正比例函数(0)y mx m =≠的图像与线段AB 有公共点,直接写出m 的取值范围.21. 如图,在ABC 中,AB AC =,点D ,E ,F 分别为BC ,AB ,AC 的中点.(1)求证:四边形AEDF 是菱形;(2)若6AB =,10BC =,求四边形AEDF 的面积.22.的矩形叫做“黄金矩形”.黄金矩形给我们以协调、匀称的美感.若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的黄金矩形ABMN ,小松同学的作法如下:①作AB 的垂直平分线分别交AB ,CD 于点E ,F ;②连接AF ,作BAF ∠的角平分线,交BC 于点M ;③过点M 作MN AD ⊥于点N ;矩形ABMN 即为所求.(1)根据上述作图过程,补全图形;(2)小松证明四边形ABMN 是黄金矩形的思路如下:作MP AF ⊥于点P ,连接MF ,设BM x =,根据角平分线的性质,可知MP BM x ==.根据条件,可求得AF 的长度为__________,AP 的长度为__________.在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.由此可列关于x 的方程为__________.解得BM x ==__________.所以BM AB =,矩形ABMN 为黄金矩形.23. 甲、乙两名选手参加25米手枪速射资格赛.资格赛规则为每名选手完成60发射击,得分按整数计.例如:9.7环计9分,每发最高得10分,满分600分.甲、乙各射击60发的成绩如下表所示:得分频数选手678910甲332121乙331227已知甲、乙两名选手在资格赛中9分段的详细数据如下:甲的9分段频数分布表分组(环)频数9.09.2x ≤<29.29.4x ≤<39.49.6x ≤<29.69.8x ≤<59.810x ≤<9根据以上信息,整理分析两名选手得分数据如下:选手平均数中位数众数甲8.99,10乙9(1)补全上述表格中的信息;(2)进入决赛后,资格赛成绩不带入决赛,每名选手最多完成40发,每发按照“击中”或“脱靶”统计,9.6环及以上计为击中,9.6环以下计为脱靶、只有击中才累计环数,按照总环数高低进行排名.若甲、乙两名选手均进入决赛,请你推断哪位选手更可能获胜,并说明理由.24. 实数a 与b 满足b =.(1)写出a 与b 的取值范围;(2是有理数.①当a 是正整数时,求b 的值;②当a 是整数时,将符合条件的a 的值从大到小排列,请直接写出排在第3个位置和第11个位置的数.25. 在正方形ABCD 中,点E 在射线BD 上,点M 在BC 的延长线上,CN 为DCM ∠的角平分线,点F 为射线CN 上一点,且CE FE =.(1)如图,当点E 在线段BD 上时,补全图形,求证:2180BEC CEF ∠+∠=︒;(2)在(1)的条件下,用等式表示线段CF ,DE ,BE 之间的数量关系,并证明;(3)若4AB =,3BE DE =,直接写出线段CF 的长.26. 在平面直角坐标系xOy 中,对于点00(,)P x y ,给出如下定义:若存在实数1x ,2x ,1y ,2y 使得0112x x x x -=-且0112y y y y -=-,则称点P 为以点11(,)x y 和22(,)x y 为端点的线段的等差点.(1)若线段m 的两个端点坐标分别为(1,2)和(3,2)-,则下列点是线段m 等差点的有__________;(填写序号即可)①1(16)P -,;②2(20)P ,;③3(4,4)P -;④4(5,6)P -.(2)点A ,B 都在直线y x =-上,已知点A 的横坐标为2-,(0)M t ,,(11)N t +,.①如图1,当1t =-时,线段AB 的等差点在线段MN 上,求满足条件的点B 的坐标;②如图2,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,在正方形ACBD 的边上(包括顶点)任取两点连接的线段中,若线段MN 上存在其中某条线段的等差点,直接写出t 的取值范围__________.参考答案一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.题号12345678答案CBDACADD二、填空题(本大题共18分,每小题3分)9. 110︒10.③.11. 4.12. 8613. .14.左,4.三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15.(1)解:-+=-+=(2=42=-2=16.证明:如图,连接AC ,设AC 与BD 交于点O .四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,…………………1分又BE DF = ,OE OF ∴=.…………………3分∴四边形AECF 是平行四边形.…………………4分17. (1)解:当0x =时,2011y =-⨯+=,当0y =时,021=-+x ,∴12x =.如图,…………………2分(2)∵0y =时,12x =,∴一次函数图象与x 轴交点坐标为1,02⎛⎫ ⎪⎝⎭.…………………3分由图象可知,当0y <时,自变量x 的取值范围是12x >.故答案为:1,02⎛⎫ ⎪⎝⎭,12x >.…………………4分18. (1)解:如图所示,即为所求;(2)解:如图所示,过点C 作CH AB ⊥于H ,记AD 与CE 相交于点F 理由如下:∵∴CE BC ====∵10BE =,∴222CE BC BE +=∴90BCE ∠=︒,…………………3分∵四边形ABCD 是平行四边形,∴AD BC ∥,∴90AFE ∠=︒∴AD CE ⊥.…………………4分19. =…………………1分=,…………………2分∴甲、乙两件礼品的边长之和为=,∵2025=<<<,61820<=<…………………3分∴应选择中号的纸箱.…………………4分20. (1)解:设一次函数解析式为(0)y kx b k =+≠∵一次函数的图像经过点(2,4)A ,(1,1)B -,,∴241k b k b +=⎧⎨-+=⎩,…………………1分解得,12k b =⎧⎨=⎩,…………………2分∴一次函数解析式为2y x =+.(2)12m m ≤-≥或21.(1)∵AB AC =,点D 为BC 的中点∴AD BC⊥∴90ADB ADC ∠=∠= …………………1分∵点E ,F 分别为AB ,AC 的中点,∴DE 是ABC 的中位线,12AF AC =,∴12DE AC AF ==,同理可得12DF AB AE ==,∴DE AF AE DF ===,∴四边形AEDF 是菱形;(2)解:设AD EF 、交于O ,同理可证EF 是ABC 的中位线,∴152EF BC ==,∵6AB =,∴3AE =,∵四边形AEDF 是菱形,∴12.52AD EF OE EF ==⊥,,2AD OA =,在Rt AEO △中,由勾股定理得OA ==∴AD =,∴12AEDF S AD EF =⋅=菱形.22.(1)解:如图所示,即为所求;(2)证明:作MP AF ⊥于点P ,连接MF ,设BM x =,则2CM x =-,根据角平分线的性质,可知MP BM x ==,∵EF 是AB 的垂直平分线, ∴112DF CF AD ===,∴AF ==∵AM AM BM PM ==,,∴()Rt Rt HL ABM APM △≌△,∴2AP AB ==,∴2PF AF AP =-=-,在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.∴)()2222212x x -+=+- .解得1BM x ==-.所以BM AB =,∴矩形ABMN 为黄金矩形.23. (1)解:∵每名选手完成60发射击,∴甲得分为8的频数为:6033212112----=,乙得分为9的频数为:6033122715----=,∴甲乙射击的图如下所示, 得分频数选手678910甲12乙15…………………1分选手平均数中位数众数甲9乙910…………………4分(2)解:乙更可能获胜,理由如下:①从“击中”个数来看,甲在资格赛中射出9.6环以上共35次,乙在资格赛中射出9.6环及以上共38次,乙比甲多;②从累计环数来看,若将甲9.69.8x ≤<分段的按9.8分计,9.810x ≤<分段的按10分计,甲的最高累计环数为9.851091021349,⨯+⨯+⨯=而将乙9.69.8x ≤<分段的按9.6分计,9.810x ≤<分段的按9.8分计,乙的最低累计环数为9.639.881027377.2⨯+⨯+⨯=,乙的最低累计环数比甲的最高累计环数还高…………………5分24. (1)解:由题可知:40a b -≥⎧⎨≥⎩解得:40a b ≤≥,;…………………2分(2)①∵a 是正整数时,∴a 可以取1234,,,,这时b 0,,是有理数,∴b =或0b =;…………………4分是有理数,∴b 当a 是正整数时,则41a a ==,,由①可知第3个数b =11个数b =,即4124300a a -=-=,,解得:8296a a =-=-,.…………………5分25. (1)解:如图所示,即为所求;…………………1分∵四边形ABCD 是正方形,∴4590DBC BCD DCM =︒==︒∠,∠∠,∵CN 为DCM ∠的角平分线,∴1452FCM DCM ==︒∠∠,∴FCM DBC =∠∠,∴BD CF ,∴BEC ECF ∠=∠,∵CE FE =,∴ECF EFC ∠=∠,∵180ECF EFC CEF ∠+∠+∠=︒,∴2180ECF CEF ∠+∠=︒,∴2180BEC CEF ∠+∠=︒;(2)解:BE CF DE =+,证明如下:如图所示,在BD 上截取BH CF =,连接CH DF 、,∵CN 为DCM ∠的角平分线,∴1452DCF DCM ==︒∠,∵四边形ABCD 是正方形,∴45DBC BC CD ∠=︒=,,∴CBH DCF =∠∠,∴()SAS CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴180BDF DFC ∠+∠=︒,∵180DHC BHC +=︒∠∠,∴EHC EDF =∠∠,∵2180BEC CEF ∠+∠=︒,180BEC CEF DEF ∠+∠+=︒∠,∴CEH FED =∠∠,∴()AAS CEH FED △≌△,∴HE DE =,∵BE BH HE =+,∴BE CF DE =+;(3)解:如图3-1所示,当点E 在BD 上时,∵在正方形ABCD 中,4AB =,∴490BC CD BCD ===︒,∠,∴BD ==∵3BE DE =,∴3144BE BD DE BD ====,由(2)的结论可知BE CF DE =+,∴CF BE DE =-=;如图3-2所示,当点E 在BD 延长线上时,在射线BE 上截取BH CF =,连接CH DF 、,同理可证明CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴FDE CFD =∠∠,DEC ECF HEF EFC ==∠∠,∠∠∴FDE CHE =∠∠;∵EC EF =,∴ECF EFC ∠=∠,∴DEC HEF =∠∠,∴DEF HEC=∠∠∴()AAS DEF HEC △≌△,∴HE DE =,∵BH BE EH =+,∴CF BE DE =+,∵3BE DE BD ==,,∴BE DE ==∴CF =;综上所述,CF =CF =.26. (1)解:m 的两个端点坐标分别为(1,2)和(3,2)-①1(16)P -,:∵1113,622(2)--=--=--∴1(16)P -,是等差点;②2(20)P ,:∵2113,-¹-且2331-¹-∴2(20)P ,不是等差点;③3(4,4)P -:∵4113-¹-,且4331-¹-∴3(4,4)P -不是等差点;④4(5,6)P -:∵5331-=-且6(2)(2)2---=--∴4(5,6)P -是等差点.故答案为①④.(2)解:①∵点A 直线y x =-上,横坐标为2-,∴(2,2)A -当1t =-时,(1,0)M -,(0,1)N 设直线MN 解析式为(0)y kx b k =+≠,则01k b b -+=⎧⎨=⎩,解得11k b =⎧⎨=⎩,∴直线MN 解析式为1y x =+,联立y x =-,得1y x y x =+⎧⎨=-⎩,解得0.50.5x y =-⎧⎨=⎩∴交点即等差点坐标为(0.5,0.5)-;设点(,)B a a -,则0.5(2),a a --=--或0.5(2)(2)a ---=--,解得 1.25a =-或 3.5a =-∴( 1.25,1.25)B -或( 3.5,3.5)-;②如图,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,可知(2,2)A -,(2,2),(2,2),(2,2)B C D ---,(0)M t ,,(11)N t +,,分别在x 轴、直线1y =上,如图,根据等差点定义知,正方形上两点()()2,2,2,1.5-的一个等差点为(6,1)-,点(11)N t +,位于1(6,1)N -时,t 取最小值,16t +=-,7t =-;如图,正方形上两点(2,2),(2,1)-的一个等差点为(6,0),点(0)M t ,位于4(6,0)M 时,t 取最大值,6t =;正方形ACBD 的边上(包括顶点)任取两点连接的线段的等差点不可能出现在正方形内部,故2t ≤-,或12t +≥,即1t ≥,综上,72t -≤≤-或16t ≤≤.。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案
2023—2024学年度下学期八年级数学学科参考答案及评分标准一、选择题(每小题3分,共计30分)二、填空题(每小题3分,共计30分)三、解答题(其中21题6分,22-24题各8分,25-27题各10分,共计60分)21.(本题6分)解:22231x x x -+=+22410x x -+=......................................................................1分241a b c ==-=,,224(4)b ac D =-=--4×2×1=8>0.....................................................2分方程有两个不等的实数根................................2分即12222222x x +-==,........................................................1分22.(本题8分)解:(1)如图1,正确画图(答案不唯一)...................................................4分(2)如图2,正确画图....................................................................4分12345678910ABBBCDCDAC题号1112131415答案x≠2-18x≥223题号1617181920答案5.8205±12②③(第22题答案图1)(第22题答案图2)23.(本题8分)解:(1)14.5.............................................................................2分+分(2)∠BCD 是直角,理由:连接BD.由勾股定理得,2222420BC =+=,222125CD =+=,2223425BD =+=......................................................................1分∴22220525BC CD BD +=+==.........................................................2分∴∠BCD 是直角...........................................................................1分24.(本题8分)解:(1)设(0)y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩...............................................................2分解得2515k b =⎧⎨=⎩.............................................................................2分2515y x ∴=+............................................................................1分(2)当0.3x m =时,250.31522.5()y m =⨯+=................................................2分∴当这种树的胸径为0.3m 时,其树高为22.5m ................................................1分25.(本题10分)解:(1)450.............................................................................2分6750....................................................................................2分(2)设销售单价定位x 元时,利润为8000元.根据题意,得[](40)50010(50)8000x x ---=.................................................2分解得126080x x ,==......................................................................1分当x=60时,销售量为500-10(60-50)=400(套),成本为400×40=16000>10000...................1分当x=80时,销售量为500-10(80-50)=200(套),成本为200×40=8000<10000....................1分∴x=80答:月销售成本不超过10000元的情况下,该商品的销售单价应定为每套80元可使月销售利润达到8000元......................................................................................1分26.(本题10分)解:(1)①∠DEF 的大小不发生变化,∠DEF=90°............................................1分理由:如图1,作EG⊥AB,EH⊥AD,垂足分别为点G、H.∵四边形ABCD 是正方形∴∠DAB=90°,∠BAC=∠DAC=12∠DAB=45°,AC⊥BD ∴EG=EH又∵EF=DE∴Rt△EFG≌Rt△EDH.............................................1分∴AG=AH,∠FEG=∠DEH 在四边形AGEH 中,∠GEH=360°-90°-90°-90°=90°∴∠DEF=∠DEH+∠FEH=∠FEG+∠FEH=∠GEH=90°..............................................1分∴∠DEF 的大小不发生变化,∠DEF=90°②AF=2OE..............................................................................1分理由:如图1,令AG=m,OE=2n ,则AH=m.在Rt△AEH 中∵∠AEH=90°-∠EAH=90°-45°=45°=∠EAH∴EH=AH=m∴22222AE AH EH m m m =+=+=.....................................................1分∴OA=AE+OE=222()m n m n +=+同理:在Rt△OAD 中,22()2()AD m n m n =⨯+=+∴DH=AD-AH=2(m+n)-m=m+2n=FG ∴AF=FG-AG=m+2n-m=2n∴AF=2OE......................1分(2)AF=CE理由:如图2,作EM⊥AB,EN⊥AD,垂足分别为点M、N.令AM=a,OE=b.∵四边形ABCD 是菱形∴AB=BC=AD ,∠BAC=∠DAC,AC⊥BD,AC=2OA......................1分∴EM=EN 又∵EF=DE∴Rt△EFM≌Rt△EDN.............................................1分∴FM=DN∵AB=BC,∠ABC=60°∴△ABC 为等边三角形∴∠DAC=∠BAC=60°,AC=AB∵∠EAM=∠EAN,∠EMA=∠ENA=90°,AE=AE ∴△AEM≌Rt△AEN∴AN=AM=a在Rt△AEN 中∵∠AEN=90°-∠EAN=90°-60°=30°∴AE=2AN=2a...........................1分∴OA=AE+OE=2a+b ∴AC=2OA=4a+2b=AD∴CE=AC-AE=4a+2b-2a=2a+2b∵FM=DN=AD-AN=4a+2b-a=3a+2b ∴AF=FM-AM=3a+2b-a=2a+2b=CE.............................1分27.(本题10分)解:(1)y=3x+3当x=0时,y=3×0+3=3∴C(0,3)当y=0时,0=3x+3∴x=-1∴B(-1,0)..........................................1分∴OB=1∴OA=3×1=3∴A(3,0)设直线AC 解析式为y=kx+b∴303bk b=⎧⎨=+⎩解得13k b =-⎧⎨=⎩(第26题答案图1)(第26题答案图2)∴直线AC 的解析式为y=-x+3...............................................................1分(2)如图1,∵点D 是线段AC 上一个动点,且横坐标为t∴D(t,-t+3)过点D 作DK⊥x 轴于K,则DK=-t+3..........................................................1分∵A(3,0),B(-1,0)∴AB=3-(-1)=4∴12ABC ABD S S S △△=-=×AB×OC-12×AB×DK=12×4×3-12×4×(-t+3)=2t.....................2分(3)过点D 作DR⊥x 轴于R,过点G 作GP⊥AE 于P,过点G 作直线l∥x 轴交y 轴于T,过点A 作AN⊥l于N,过点E 作EM⊥l 于M,交x 轴于L.∵AE∥BD,BF//AC ∴四边形ADBF 是平行四边形,∠DAR=∠FBO ∴AD=BF又∵∠ARD=∠BOF=90°∴△ADR≌△BFO∴AR=OB=1,OF=DR∴t=OR=OA-AR=3-1=2∴OF=DR=-t+3=1,S=2t=4∴F(0,-1).................................................1分设直线AF 的解析式为y=mx+n∴103n m n -=⎧⎨=+⎩解得131m n ⎧=⎪⎨⎪=-⎩∴直线AF 的解析式为113y x =-由33113y x y x =+⎧⎪⎨=-⎪⎩解得3232x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴E(32-,32-)∵MN∥AL ∴∠ALE+∠M=180°∴∠ALE=180°-90°=90°=∠M=∠N ∴四边形ALMN 为矩形∴AN=ML,MN=AL=3+32=92在Rt△AEL 中,2222333()(3)10222AE EL AL =+=++=∵454545432328AEG S S ==´=△∴12×3102×GP=458∴GP=3104...................1分∵GE=GA,GP⊥AE∴AP=EP=12AE=3104=GP ∴∠PEG=∠PGE,∠PAG=∠PGA,2222333(10)(10)5442EG EP GP =+=+=又∵∠PEG+∠PGE=90°,∠PAG+∠PGA=90°∴∠PGE=∠PGA=45°∴∠EGA=90°(第27题答案图1)(第27题答案图2)∴∠AGN+∠EGM=90°又∵∠GEM+∠EGM=90°∴∠AGN=∠GEM 又∵∠N=∠M=90°,AG=EG∴△AGN≌△GEM∴GN=EM,AN=MG 令EM=c,则GN=c,MG=AN=ML=c+32∵MG+GN=MN ∴c+32+c=92∴c=32∴MG=3=AN=ML ∴GT=MG-MT=3-32=32∵∠OLM=∠M=∠LOT=90°∴四边形OLMT 为矩形∴OT=ML=3∴G(32,-3)..............1分当点G,E,H 在同一条直线时,GH EH EG-=当点G,E,H 不在同一条直线时,在△EGH 中,GH EH EG -<综上所述:GH EH EG -£=,GH EH -...........................1分此时点H 是直线EG 与x 轴的交点设直线EG 的解析式为y=ex+f∴3322332e f e f ⎧-=-+⎪⎪⎨⎪-=+⎪⎩解得1294e f ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EG 的解析式为1924y x =--当y=0时,19024x =--∴x=92-∴H(92-,0)....................................1分(以上各解答题如有不同解法并且正确,请按相应步骤给分)。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
人教新版八年级下册数学期末试卷和答案详解(PDF可打印)
2020-2021学年内蒙古乌海市八年级(下)期末数学试卷一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2 3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20 4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6 6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.38.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.211.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<112.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是.14.(3分)已知y=,则x y的值为.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN 折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间x(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.2020-2021学年内蒙古乌海市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【考点】二次根式的性质与化简.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.2.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x≤.故选:B.3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,进行计算即可解答.【解答】解:A、∵(32)2+(42)2=337,(52)2=625,∴(32)2+(42)2≠(52)2,∴以32,42,52不能构成直角三角形,故A不符合题意;B、∵72+242=625,252=625,∴72+242=252,∴以7,24,25能构成直角三角形,故B符合题意;C、∵82+132=233,172=289,∴82+132≠172,∴以8,13,17不能构成直角三角形,故C不符合题意;D、∵102+152=325,202=400,∴102+152≠202,∴以10,15,20不能构成直角三角形,故D不符合题意;故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;坐标与图形性质.【分析】根据点P的坐标为(﹣2,3),勾股定理求出OP的长,得出点A的坐标,再判定出3<<4,即可得出﹣的范围.【解答】解:∵点P的坐标为(﹣2,3),∴OP=,∴A(﹣,0),∵9<13<16,∴3<<4,∴﹣4<,故选:A.5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的两条对角线相交于平行四边形的两边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.【解答】解:∵平行四边形ABCD∴OA=OC=3,OB=OD=5∴在△AOB中,OB﹣OA<x<OB+OA即:2<x<8故选:B.6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件【考点】加权平均数.【分析】直接利用加权平均数求法进而分析得出答案.【解答】解:由题意可得,这一周小张平均每天投递物品的件数为:=(件),故选:C.7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.3【考点】命题与定理.【分析】根据矩形的判定、中位数和众数的判定、算术平方根的性质判断即可.【解答】解:①若=a,则a≥0,原命题是假命题;②的算术平方根是2,是真命题;③对角线相等的平行四边形是矩形,原命题是假命题;④一组数据5,6,7,8,9的中位数是7,但众数不是7,原命题是假命题;故选:B.8.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【考点】菱形的性质.【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH ⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数【解答】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【考点】菱形的判定.【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2【考点】一次函数的定义.【分析】直接利用一次函数的定义得出m的值进而得出答案.【解答】解:∵关于x的函数y=(m﹣1)x|m|﹣5是一次函数,∴|m|=1,m﹣1≠0,解得:m=﹣1.故选:B.11.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<1【考点】一次函数图象上点的坐标特征.【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,∴当﹣1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m﹣1<0,解得m<,故选:A.12.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【解答】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选:D.二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是 4.4.【考点】方差;算术平均数.【分析】先根据平均数是5,求出a的值,然后利用方差的计算公式求解即可.【解答】解:因为3、4、3、a、8的平均数是5,所以3+4+3+a+8=25,解得a=7,故这组数据为3,4,3,7,8,所以这组数据的方差为×[(3﹣5)2+(4﹣5)2+(3﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.14.(3分)已知y=,则x y的值为.【考点】二次根式有意义的条件.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y 的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是﹣9.【考点】一次函数图象上点的坐标特征.【分析】将点的坐标代入直线中可得出b=a﹣2,整理得到3b﹣a=﹣6,代入代数式求得即可.【解答】解:∵P(a,b)是直线y=x﹣2上的点,∴b=a﹣2,∴3b﹣a=﹣6,∴6b﹣2a+3=2×(﹣6)+3=﹣9.故答案为:﹣9.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=25°.【考点】作图—复杂作图;平行四边形的性质.【分析】利用平行四边形的性质求出∠ABC=50°,再利用角平分线的定义,平行线的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知BE平分∠ABC,∴∠EBC=∠ABC=25°,∴∠AEB=∠EBC=25°,故答案为:25°.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为 2.5.【考点】三角形中位线定理.【分析】根据直角三角形斜边上的中线的性质求出DF,根据三角形中位线定理求出DE,计算即可.【解答】解:在Rt△AFB中,D为AB的中点,AB=7,∴DF=AB=3.5,∵DE为△ABC的中位线,BC=12,∴DE=BC=6,∴EF=DE﹣DF=2.5,故答案为:2.5.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质可以证明△DEM≌△DCN,得DM=DN,再根据折叠可得∠BNM =∠DNM=∠DNC,可证明△DMN是等边三角形,再根据等边三角形的性质即可求出AD的长.【解答】解:由折叠可知:点B与点D重合,∴∠EDN=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠EDM+∠MDN=∠CDN+∠MDN,∴∠EDM=∠CDN,∵∠E=∠C=90°,DE=DC,∴△DEM≌△DCN(ASA),∴DM=DN,由折叠,∠BNM=∠DNM,∠DNC=∠DNM,∴∠BNM=∠DNM=∠DNC=180°=60°,∴△DMN是等边三角形,∴DM=MN=5,点C恰好落在MN上的点F处可知:∠DFN=90°,即DF⊥MN,∴MF=NF=MN=,∴CN=ME=AM=,∴AD=AM+DM=.故答案为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b﹣kx+1>0的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.故答案为:x>﹣1.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是①②③.【考点】平行四边形的性质;全等三角形的判定.【分析】①根据等腰直角三角形的性质即可判断;②通过三角形全等和平行四边形的性质即可判断;③根据平行四边形的性质和线段的等量代换即可判断;④通过角的关系即可求得结果;【解答】解:∵∠DBC=45°,DE⊥BC,∴BD=BE,BE=DE,∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°,∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC(SAS),∴∠BHE=∠C,BH=CD,∵四边形ABCD是平行四边形,∴∠C=∠A,AB=CD,∴∠A=∠BHE,AB=BH,∴正确的有①②③;故答案为:①②③.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)先根据完全平方公式和分母有理数将式子展开,然后再合并同类项和同类二次根式即可;(2)根据二次根式的除法化简即可.【解答】解:(1)(﹣2)2++6=3﹣4+4+2+2=7;(2)(3﹣2+)÷2=﹣+===3﹣+2=4.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3584分析数据:补全下列表格中的统计量:平均数中位数众数808181得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为B;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?【考点】统计量的选择;用样本估计总体;频数(率)分布表.【分析】根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)(3)结果.【解答】解:(1)根据上表统计显示:样本中位数和众数都是81,平均数是80,都是B 等级,故估计该校学生每周的用于课外阅读时间的情况等级为B.(2)∵=160∴该校现有学生400人,估计等级为“B”的学生有160名.(3)以平均数来估计:×52=26∴假设平均阅读一本课外书的时间为160分钟,以样本的平均数来估计该校学生每人一年(按52周计算)平均阅读26本课外书.故答案为:5,4,81,81,B;23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可得DP=20米,然后分别在Rt△BDP和Rt△CDP中,利用锐角三角函数的定义求出BD,CD的长,进行计算即可解答.【解答】解:由题意得:DP=20米,在Rt△BDP中,∠BPD=60°,∴BD=DP•tan60°=20(米),在Rt△CDP中,∠CPD=45°,∴CD=DP•tan45°=20(米),∴BC=BD﹣CD=(20﹣20)米,∴标语牌的宽度BC为(20﹣20)米.24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意即可列出一元一次方程,即可求解.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,根据题意得到a的取值,再列出w关于a的一次函数.②根据一次函数的性质即可求解.【解答】解:(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意得:10a+15(a﹣2)=1570,解得:a=64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,依题意可得:,解得0≤a≤且x为整数,∴w=(83﹣64)(10+a)+(78﹣62)(50﹣a+15),=1230+3a,∴w与a之间的函数关系式为w=3a+1230.②∵3>0,∴w随a的增大而增大,=1230+3×33=1329(元).∴当a=33时,y最大∴购进甲种盲盒33个,购进乙种盲盒17个;才能使售完这二批盲盒获得总利润最大;最大利润是1329元.26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)联立两直线解析式求出A的坐标即可;(2)根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;(ii)当四边形OP2CQ2为菱形时;(iii)当四边形OQ3P3C为菱形时;分别求出P坐标即可.【解答】解:(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直线CD解析式为y=﹣x+6;(3)在直线l1:y=﹣x+6中,当x=0时,y=6,∴C(0,6),存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);(ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线CP1的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3);(iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);综上可知存在满足条件的点的P,其坐标为(6,0)或(3,3)或(3,﹣3+6).。
2024—2025学年最新人教新版八年级下学期数学期末考试试卷(精品试卷含有参考答案)
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C.cm D.5cm或cm 3、为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数B.中位数C.众数D.方差4、以下列各组数为边长,能构成直角三角形的是()A.1、2、3B.3、4、5C.4、5、6D.、、5、P1(x1,y1),P2(x2,y2)是一次函数y=2x﹣3图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y26、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 7、已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD8、勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a,b(a>b)表示直角三角形的两直角边,则下列结论不正确的是()A.a2+b2=25B.a+b=5C.a﹣b=1D.ab=129、如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.10、已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.46二、填空题(每小题3分,满分18分)11、二次根式中,字母x的取值范围是.12、某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.13、直线y=kx+b经过点(3,﹣2),当﹣1≤x≤5时,y的最大值为6,则k的值为.14、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为.15、一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4<2x的解集是.16、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合).且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个说法:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.其中正确的是.第14题图第15题图第16题图2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19、已知y+1与x﹣2成正比例,且当x=1时,y=﹣3.(1)求y关于x的函数关系式;(2)当m≤x≤m+3时,y的最大值为7,求m的值.20、在某次体育节中,实验中学学生会开展“爱心义卖”活动,准备笔记本和便利贴两种文创产品共100本.若售出3本笔记本和2本便利贴收入65元,售出4本笔记本和3个便利贴收入90元.(1)求笔记本和便利贴的售价各是多少元;(2)已知笔记本数量不超过便利贴的3倍,则准备笔记本和便利贴各多少本的时候总收入最多,并求出总收入的最大值?21、为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a=;(2)本次抽样调查中,中位数是,扇形统计图中课外阅读6本的扇形的圆心角大小为度;(3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.22、已知:矩形ABCD,AC、BD交于点O,过点O作EF⊥BD分别交AB、CD于E、F.(1)求证:四边形BEDF是菱形..(2)若BC=3,CD=5,求S菱形BEDF23、直线y=﹣2x+4与x轴,y轴分别交于点A、B,过点A作AC⊥AB于点A,且AC=AB,点C在第一象限内.(1)求点A、B、C的坐标;(2)在第一象限内有一点P(3,t),使S△P AB =S△ABC,求t的值.24、如图,直线与x轴,y轴分别交于点A,B,直线y=kx﹣1与线段AB交于点C,与y轴交于点P,与x轴交于点D.(1)直接写出点A,B,P的坐标;(2)连接BD,若BD=AD,求S△PBC的值;(3)若∠PCB=45°,求点C的坐标.25、如图,直线y=kx﹣4k(k≠0)与坐标轴分别交于点A,B,过点A、B作直线AB,以OA为边在y轴的右侧作四边形AOBC,S=8.△AOB(1)求点A,B的坐标;(2)如图,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE;①如图1,问点E是否在定直线上,若是,求该直线的解析式;若不是,请说明理由;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请直接写出点H的坐标.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、x≥2且x≠3 12、513、﹣2或4 14、16 15、x>1.516、①③④三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、018、证明略19、(1)y=2x﹣5 (2)m的值为320、(1)笔记本的售价是15元,便利贴的售价是10元(2)总收入的最大值为1375元21、(1)图略20 (2)6,129.6(3)52822、(1)证明(2)10.223、(1)C(6,2)(2)t的值为824、(1)P(0,﹣1)(2)(3)C(,)25、(1)A(0,4),B(4,0)(2)①点E在定直线y=x﹣4上②点H坐标为(12,8)或(6,2)。
2023年部编版八年级数学(下册)期末试卷及答案(A4打印版)
2023年部编版八年级数学(下册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.函数132y x x =--+中自变量x 的取值范围是__________. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD 中,AC =2,BD =3AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、23x -<≤3、14、(-4,2)或(-4,3)5、:略6、132三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、4ab ,﹣4.3、(1)a ≥2;(2)-5<x <14、略5、(1)2;(2)60︒ ;(3)见详解6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
八年级数学下期末测试试题及答案.pdf
( 7 3)( 7 3)
= -----------------------------------------------------------------------2 分
14 43 3 4
= -------------------------------------------------------------------------------3 分
1)2 n ,
1) .(每空 1 分)
2
2
三、认真算一算(本题共 16 分,第 19 题 8 分,第 20 题 8 分)
19.( 1)解:
28
1 4
(7
2)
2
= ----------------------------------------------------------2
2 7 2 2 ( 7 2) 分
5.已知关于 x 的方程 x 2 6x m 1 0 有两个不相等的实数根,则 m 的取值范围是 ( ).
A. m 10 B . m 10 C . m 10 D . m 10
A
6.如图,等腰梯形 ABCD中, AD∥BC, BD平分∠ ABC,B
∠DBC=30°, AD=5,则 BC等于( ).
D C
二、细心填一填(本题共 16 分,每小题 2 分)
11.若 ( x 2) 2 y 3 0 ,则 x y 的值为 ___________.
12.在“ 2011 年北京郁金香文化节”中,北京国际鲜花港的 3 106 株郁金香为京城
增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为 n (单位:株 / 平
A1A2 为对角线作第一个正方形 A1C1 A2B1,以 A2 A3 为对角线作第二个正方形 A2C2 A3B2 ,
通州区2022-2023学年八年级下学期数学期末试题(解析版)
通州区2022—2023学年第二学期八年级期末质量检测数学试卷2023年6月考生须知1.本试卷共6页,共三道大题,27个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 五边形的外角和等于()A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和等于360°解答.【详解】解:五边形的外角和是360°.故选B.【点睛】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.2. 志愿服务,传递爱心,传递文明,下列志愿服务标志为中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A .不是中心对称图形,故此选项不符合题意;B .是中心对称图形,故此选项符合题意;C .不是中心对称图形,故此选项不符合题意;D .不是中心对称图形,故此选项不符合题意;故选B .【点睛】本题主要考查了中心对称图形的定义,解题的关键在于能够熟练掌握中心对称图形的定义. 3. 用配方法解方程2430x x --=,配方后方程是( )A. 2(2)7x -=B. 2(2)7x +=C. 2(2)1x -=D. 2(2)1x +=【答案】A【解析】 【分析】将方程常数移到右边,再配方—方程两边同时加上4即可得到答案.【详解】解:方程2430x x --=,移项得:243x x -=,配方得:2447x x -+=,即()227x -=,故选:A .【点睛】此题考查了解一元二次方程的方法—配方法,熟练掌握完全平方公式是解题的关键.4. 矩形具有而菱形不具有的性质是( ).A. 两组对边分别平行B. 对角线相等C. 对角线互相平分D. 两组对角分别相等 【答案】B【解析】【分析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:【详解】A .矩形与菱形的两组对边都分别平行,故本选项错误,不符合题意;B .矩形的对角线相等,菱形的对角线不相等,故本选项正确,符合题意;C .矩形与菱形的对角线都互相平分,故本选项错误,不符合题意;D .矩形与菱形的两组对角都分别相等,故本选项错误,不符合题意.故选B .5. 某工厂由于管理水平提高,生产成本逐月下降.原来每件产品的成本是1600元,两个月后降至900元,的若产品成本的月平均降低率为x ,下面所列方程正确的是( )A. ()216001900x -=.B. ()160012900x -=.C. ()216001900x-=D. ()16001900x -= 【答案】A【解析】【分析】根据原价(1)n x ⨯+=现价直接列式求解即可得到答案;【详解】解:由题意可得, ()216001900x -=,故选A .【点睛】本题考查一元二次方程解决平均变化的实际应用题,解题的关键是熟练掌握平均变化的等量关系式原价(1)n x ⨯+=现价.6. 已知一次函数2y x =-+ ,那么下列结论正确的是( )A. y 的值随 x 的值增大而增大B. 图象经过第一、二、三象限C. 图象必经过点()0,2D. 当2x < 时,y <0 【答案】C【解析】【分析】根据一次函数的性质逐项进行分析即可.【详解】解:A 、由于一次函数y =-x +2的k =-1<0,所以y 的值随x 的值增大而减小,故该选项不符合题意;B 、一次函数y =-x +2的k =-1<0,b =2>0,所以该函数过一、二、四象限,故该选项不符合题意;C 、将(0,2)代入y =-x +2中得2=0+2,等式成立,所以(0,2)在y =-x +2上,故该选项符合题意;D 、一次函数y =-x +2的k =-1<0,所以y 的值随x 的值增大而减小,所以当x <2时,y >0,故该选项不符合题意.故选:C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的相关知识是解题的关键.7. 方差的统计含义:表示一组数据的每个数( )A. 偏离它的众数的差的平均值B. 偏离它的平均数的差的绝对值的平均值C. 偏离它的中位数的差的平方数的平均值D. 偏离它的平均数的差的平方数的平均值【答案】D【解析】【分析】根据方差的含义求解即可.【详解】解:方差的统计含义:表示一组数据的每个数偏离它的平均数的差的平方数的平均值,故选:D.【点睛】题目主要考查方差的定义,理解此定义是解题关键.8. 下面的四个问题中都有两个变量:变量y与变量x之间的函数关系可以用如图所示的图象的是()A. 汽车从A地匀速行驶到B地,汽车的行驶路程y与行驶时间xB. 用长度一定的绳子围成一个矩形,矩形的一条边长y与另一条边长xC. 将水匀速注入水箱中,水箱中的水量y与注水时间xD. 在弹簧测力计的弹性范围内,弹簧挂重物伸长后的总长度y与所挂重物质量x【答案】B【解析】【分析】A根据汽车的行驶路程y随行驶时间x的增加而增加判断即可;B根据矩形的周长公式判断即可.C根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;【详解】解:汽车从A地匀速行驶到B地,根据汽车的行驶路程y随行驶时间x的增加而增加,故A不符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形的一条边长y随另一条边长x的增加而减少,是一次函数关系,故B符合题意;将水匀速注入水箱中,,根据水箱中的水量y随注水时间x的增加而增加,故C不符合题意;在弹簧测力计的弹性范围内,弹簧挂重物伸长后的总长度y与所挂重物质量x成正比例;故D不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是B.故选:B.【点睛】本题考查了利用函数的图象解决实际问题,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共8个小题,每小题2分,共16分)9. 在平面直角坐标系xoy 中,点()3,4A -和点()3,4B 关于______轴对称.【答案】y【解析】【分析】根据两点纵坐标相同,横坐标互为相反数即可得到答案;【详解】解:∵点()3,4A -和点()3,4B 两点纵坐标相同,横坐标互为相反数,∴A 、B 两点关于y 轴对称,故答案为:y .【点睛】本题考查坐标系中关于坐标轴对称点的特征:关于谁对称谁不变,另一个互为相反数. 10. 函数6y x -x 的取值范围是_______.【答案】x≥6.【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,即可解答. 【详解】6x -60x -≥,∴6x ≥.故答案为:6x ≥. 考点:1.函数自变量的取值范围;2.二次根式有意义的条件. 11. 如图所示,某居民小区为了美化居住环境,要在一块三角形ABC 空地上围一个四边形花坛BCFE ,已知点E 、F 分别是边AB AC 、的中点,量得16BC =米,则EF 的长是______米. 【答案】8 【解析】 【分析】由题意知,EF 是ABC 的中位线,根据12EF BC =,计算求解即可. 【详解】解:由题意知,EF 是ABC 的中位线,的∴182EF BC ==, 故答案为:8.【点睛】本题考查了中位线.解题的关键在于熟练掌握中位线的性质,平行于底边且等于底边的一半. 12. 已知关于x 的方程x 2+3x +k =0的一个根是-1,则k 的值是_____.【答案】2【解析】【分析】将=1x -代入x 2+3x +k =0中,即可求出k 的值.【详解】解:将=1x -代入x 2+3x +k =0中可得:()()21310k -+⨯-+=解得2k =故答案为:2.【点睛】本题考查的是一元二次方程的根,即方程的解的定义:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.13. 已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是_____..【答案】1【解析】【详解】解:∵关于x 的一元二次方程220x x m ++=有两个相等的实数根,∴∆=0,∴4﹣4m=0,∴m=1,故答案为1.14. 《九章算术》是中国传统数学最重要的著作,在《九章算术》中的勾股卷中有这样一道题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思为:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原处竹子3尺远,则原处还有几尺的竹子?这个问题中,如果设原处还有x 尺的竹子,则可列方程为______.(注:1丈=10尺)【答案】()22910x x +=-【解析】【分析】竹子折断后刚好构成一个直角三角形,设竹子折断处离地面x 尺,则斜边长为()10x -尺,利用勾股定理求解即可.【详解】解:设竹子折断处离地面x 尺,则斜边长为()10x -尺,根据勾股定理:()222310x x +=-,故答案为:()222310x x +=-. 【点睛】本题考查了勾股定理,熟练掌握勾股定理的方程思想是解题的关键,学会数形结合将实际转化成数字问题.15. 下表记录了四名运动员100米短跑几次选拔赛的成绩,现要选一名成绩好且发挥稳定的运动员参加市运动会100米短跑项目,应选择______. 甲 乙 丙 丁平均数(秒) 12.2 12.1 12.2 12.1方差6.3 5.2 5.8 6.1【答案】乙【解析】【分析】先比较平均数,平均数相同时选择方差较小的参加比赛.【详解】解:...平均数非常接近,但乙的方差最小,.选择乙参加比赛.故答案为乙.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16. 如图,在ABCD Y 中,O 为AC 的中点,点E ,M 为ABCD Y 同一边上任意两个不重合的动点(不与端点重合),EO MO ,的延长线分别与ABCD Y 的另一边交于点F ,N ,连接EN MF ,,下面四个推断:.EF MN =.EN MF ∥.若ABCD Y 是菱形,则至少存在一个四边形ENFM 是菱形.对于任意的ABCD Y ,存在无数个四边形ENFM 是矩形其中,所有正确的有______.(填写序号)【答案】..##④②【解析】【分析】由“ASA ”可证EAO FCO ≌,EAO FCO ≌,可证四边形EMFN 是平行四边形,可得EN MF ∥,EF 与MN 不一定相等,故.错误,.正确,由菱形的判定和性质和矩形的判定可判断.错误,.正确.【详解】解:如图1,.O 为ABCD Y 对角线AC 的中点,.OA OC =,AD BC ∥,.EAO FCO ∠=∠,在.AOE 和.COF 中,EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,.()ASA AOE COF ≌△△,.AE CF =,同理可得:AM CN =,.AM AE CN CF -=-,即EM FN =;又.EM FN ∥,.四边形EMFN 是平行四边形,.EN MF ,故.正确;根据现有条件无法证明EF MN =,故.错误.若平行四边形ABCD 是菱形,则AC BD ⊥,.90AOD ∠=︒,.点E ,M 为AD 边上任意两个不重合的动点(不与端点重合),.90EOM ∠<︒,.四边形EMFN 不可能是菱形,故.不正确;如图2,当OE OM =时,则EF MN =,∵四边形EMFN 是平行四边形,.边形EMFN 是矩形,又.存在无数个点E 、M 满足OE OM =,.对于任意的ABCD Y ,存在无数个四边形ENFM 是矩形,故.正确;故答案为:.④.【点睛】本题考查了矩形的判定,菱形的判定和性质,平行四边形的性质与判定,全等三角形的判定和性质,证明四边形ENFM 是平行四边形是解题的关键.三、解答题(本题共68分,第17题10分;第18、20、22、23、25每题5分;第19、21、24每题6分;第26题8分;第27题7分)解答应写出文字说明、演算步骤或证明过程. 17. 解方程:(1)23270x -=;(2)2420x x --=【答案】(1)13x =,23x =-(2)126x =,226x =【解析】【分析】(1)利用直接开平方法,即可解方程;(2)利用配方法,即可解方程.【小问1详解】解:23270x -=,移项得 2327x =,系数化为1得29x =解得13x =,23x =-【小问2详解】解:2420x x --=,移项得2x 4x 2-=,配方得2446x x -+=,即()226x -=, 开方得26x -= 解得126x =,226x =【点睛】本题考查了解一元二次方程,熟练挑选正确地方法解一元二次方程是解题的关键. 18. 一次函数()0y kx b k =+≠的图像经过点()0,2和()2,2-.(1)求这个一次函数的表达式;(2)画出该函数的图像;(3)结合图像回答:当0y <时,x 的取值范围是______.【答案】(1)22y x =-+(2)图见解析 (3)1x >【解析】【分析】(1)将两点代入函数解析式求解即可得到答案;(2)描出两点,过两点画直线即可得到答案;(3)根据图像找到x 轴下方图像的图像规律即可得到答案;【小问1详解】解:将点()0,2和()2,2-代入()0y kx b k =+≠可得,222b k b =⎧⎨+=-⎩, 解得:22b k =⎧⎨=-⎩, ∴22y x =-+;【小问2详解】在直角坐标系中描出点()0,2和()2,2-,过两点画直线如下图所示,;【小问3详解】解:根据图像可得,当0y =时,220x -+=,1x =,∴当0y <时,x 的取值范围是1x >,故答案为:1x >;【点睛】本题考查求一次函数解析式,画一次函数图像,根据一次函数与不等式的关系结合图像求解,解题的关键是求出解析式正确画出图像.19. 下面是小乐设计的“利用已知矩形作一个内角为45°角的菱形”的尺规作图过程.已知:矩形ABCD .求作:菱形AEFD ,使45EAD ∠=︒.作法:.作BAD ∠的角平分线AP ;.以点A 为圆心,以AD 长为半径作弧,交射线AP 于点E ;.分别以点E 、D 为圆心,以AD 长为半径作弧,两弧交于点F ,连结EF 、DF .则四边形AEFD 即为所求作的菱形.(1)请你用直尺和圆规,依作法补全图形(保留作图痕迹);(2)填空:.四边形AEFD 是菱形的依据__________________;.连结BE 、CF ,四边形BEFC 的形状是______,依据是__________________.【答案】(1)见解析 (2).四条边都相等的四边形是菱形;.平行四边形,一组对边平行且相等的四边形是平行四边形【解析】【分析】(1)根据作法可知:AD AE EF DF ===,由此即可得出四边形是菱形(2)根据菱形和矩形性质可证明EF BC ∥,EF BC =,继而判定四边形BEFC 是平行四边形.【小问1详解】解:如图所示,,【小问2详解】.由作法可知:AD AE EF DF ===,.四边形AEFD 是菱形,依据是:四条边都相等的四边形是菱形;.连结BE 、CF ,.四边形AEFD 是菱形,.AD EF =,AD EF ,.在矩形ABCD 中,AD BC =,AD BC ∥,.EF BC ∥,EF BC =,.四边形BEFC 是平行四边形,依据是:一组对边平行且相等的四边形是平行四边形。
广东省深圳市深圳高级中学2023-2024学年八年级下学期期末考试数学试卷(含答案)
深圳高级中学 2023-2024学年第二学期期末测试卷初二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1-10题,共30分,第Ⅱ卷为第11-22题, 共70分,全卷共计100分.考试时间为90分钟.第Ⅰ卷 (本卷共计30分)一、选择题(本题共10小题,每小题3分,共30分.答案填在答卷的指定位置上,否则不给分)1.2024年4月25日搭载神舟十八号载人飞船的长征二号F遥十八运载火箭成功发射升空,叶光富、李聪、李广苏 3 名航天员开启“太空出差”之旅,展现了中国航天科技的新高度,下列航空航天图标中,其文字上方的图案是中心对称图形的是(※ )2.下列从左到右的变形中,是因式分解的为 (※ )A.(x+3)²=x²+6x+9B. x―3xy=x(1―3y)C.3xy²=3x⋅y⋅yD.x²+2x+2=x(x+2)+23.根据下表中的数值,判断方程(ax²+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是(※ )x 3.23 3.24 3.25 3.26ax²+bx+c-0.04-0.010.020.06A. 3<x<3.23B. 3.23<x<3.24C. 3.24<x<3.25D. 3.25<x<3.264.如图,下列条件能使平行四边形ABCD是菱形的为(※ )①AC⊥BD; ②∠BAD=90°; ③AB=BC; ④AC=BD.A. ①③B. ②③C. ③④D. ①④5.用配方法解下列方程,其中应在方程两边同时加上4的是(※)A.x²―2x=5B.x²+4x=5C.x²+2x―5=0D.4x²+4x=56.如图,小明荡秋千,位置从A点运动到了A'点,若∠OAA'=55°,则秋千旋转的角度为(※ )A. 55°B. 60°C. 65°D. 70°7. 如图, ▱ABCD的对角线AC、BD相交于点O,∠ADC的平分线与边AB相交于点P, E是PD中点,连接PE, 若AD=4, CD=8, 则OE的长为( ※ )A. 4B. 3C. 2D. 18.如图,直线y₁=kx+b与直线y₂=―x+5交于点(1,m),则不等式y₁<y₂的解集为(※ )A. x<1B. x>1C. x≤1D. x≥19.下列说法正确的是(※ )A.对角线互相垂直的四边形是菱形B.顺次连接矩形四边中点形成的图形是菱形C.对角线相等的矩形是正方形D.对角线相等的四边形是矩形10. 如图, 四边形ABCD中, BC∥AD, AC⊥BD, AC=3, BD=6,BC=1, 则AD的长为( ※ )A. 8B.32―1C.32+1D.35―1第Ⅱ卷 (本卷共计70分)二、填空题(每小题3分,共15分.答案填在答卷的指定位置上,否则不给分)11. 因式分解: x²―4y²=.※12.若m是一元二次方程x²―3x―5=0的一个解,则2m²―6m=.※13.一个正多边形的内角和减外角和等于360°,则它的边数为※ .14. 关于x的不等式组{x―m<03―2x≤3(x―2)有且仅有3个整数解,那么m的取值范围为※ .15. 如图, 在□ABCD中, AG⊥BC, ∠ADB=30°,BG=25,CG=3,AG=4,E为平行四边形对角线BD上一点, F为CD边上一点,且BE=CF,连接AE、AF, 则AE+AF的最小值为※ .三、解答题(共7题,合计55分.答案填在答卷的指定位置上,否则不给分)16.(6分)计算: (1)x²―4x=0;(2)x+13≤x―52.17.(6分) 先化简, 再求值: x2―6x+9x2―9÷x―3x+2,其中x=3―3.18.(8分)如图, 在▱ABCD中, BC=2AB, E、F分别是BC、AD的中点, AE与BF交于点O, 连接EF、OC.(1) 求证: 四边形 ABEF 是菱形;(2) 若BC=8, ∠ABC=60°, 求OC的长.19.(8分)某粮食生产基地积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多3万元,用30万元购买甲种农机具的数量和用21万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共10件,且购买的总费用不超过90万元,则甲种农机具最多能购买多少件?20.(8分)仅利用已有的格点与无刻度直尺作图.(保留作图痕迹)(1)在图1中,作出面积最大的平行四边形ABCD.(2) 在图2中, D是 AC 中点, 在AB边上找到点E, 连接DE, 使DE∥BC.(3) 在图3中, 在 CD边上找到点 E, 连接BE, 使 BE 平分∠ABC.21.(9分)先阅读材料,再回答问题.我们定义:形如x+mnx=m+n(m、n为非零实数),且两个解分别为x₁=m,x₂=n的方程称为“可分解分式方程”.例如:x+6x =5为可分解分式方程,可化为x+2×3x=2+3,∴x1=2,x2=3.应用上面的结论解答下列问题:(1)若x―12x=4为可分解分式方程,则:x₁=,x₂=.(2)若可分解分式方程方程:x―7x =5的两个解分别为x₁=a,x₂=b,求ab+ba的值.(3)若关于x的可分解分式方程x―k2―k―61―x=2k的两个解分别为x₁、x₂(k为实数),且x₁⋅x ₂=6,求k的值.22.(10分)【问题感知】(1) 如图1, 在四边形ABCD 中, ∠ABC=∠ADC=90°,∠A+∠C=180°,, 且AD=CD,①请直接写出AB、BC、BD的数量关系: ;②证明: BD平分∠ABC;【迁移应用】(2) 如图2, 四边形 ABCD 中, ∠ABC=60°, ∠ADC=120°, BE⊥AD, AB=BC= 13,CD=1, 计算 BE的长度;【拓展研究】(3)如图3, 正方形ABCD中, E为BC边上一点, 连接AE, F为AE边上一点, 且AF=BC,FG 垂直DF 交 AB于点G, EF=2, AG=5, 直接写出正方形的边长.深圳高级中学2023-2024学年第二学期期末测试卷参考答案初二数学一、选择题(本题共10小题,每小题3分,共30分.答案填在答卷的指定位置上,否则不给分)1-5: CBCAB6-10: DCABD二、填空题(每小题3分,共15分.答案填在答卷的指定位置上,否则不给分)11. (x+2y)(x――2y)12. 1013. 614. 4<m≤515. 7三、解答题(共7题,合计55分.答案填在答卷的指定位置上,否则不给分)16.(6分) 计算: (1)x²―4x=0;(2)x+13≤x―52.(1) 解: x(x―4)=0x₁=0,x₂=4(2) 解: 6x+2≤3(x―5) 6x+2≤3x―153x≤―17x≤―17317.(6分) 先化简, 再求值: x 2―6x +9x 2―9÷x ―3x +2,其中 x =3―3.原式 =(x ―3)2(x ―3)(x +3)⋅x +2x ―3=x +2x +3将 x =3―3带入原式 =3―3+23―3+3=3―3318.(8分)如图, 在▱ABCD 中, BC=2AB, E 、F 分别是 BC 、AD 的中点, AE 与BF 交于点O, 连接EF 、OC.(1) 求证: 四边形 ABEF 是菱形;(2) 若BC=8, ∠ABC=60°, 求OC 的长.证明:∵四边形ABCD 是平行四边形∴AD ∥BC, AD=BC ∴AF ∥BE∵点E 、F 分别是BC 、AD 的中点 ∴AF =12AD ,BE =12BC ∴AF=BE∴四边形ABEF 是平行四边形∵ BC=2AB,且BC=2BE ∴AB= BE∴四边形ABEF 是菱形;(2) 如图, 过点O 作OH ⊥BC 于H由(1) 知, 四边形 ABEF 是菱形, ∠ABC=60°∴∠ABO =∠OBH =12×60∘=30 ∘,BO ⊥AE ∵ AB=4 ∴AO =12AB =2∴BO =AB 2―AO 2=23 ∴OH =12BO =3∴BH=BO2―OH2=(23)2―(3)2=3∵BC=2AB=2×4=8HC=BC-BH=8-3=5∴OC=OH2+HC2=(3)2+52=27.19.(8分)某粮食生产基地积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多3万元,用30万元购买甲种农机具的数量和用21万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共10件,且购买的总费用不超过90万元,则甲种农机具最多能购买多少件?解:(1)设乙种农机具一件需x万元,则甲种农机具一件需(x+3)万元根据题意得:30x+3=21x解得: x=7经检验:x=7是原方程的解,且符合题意.∴一台甲种农机具需7+3=10万元.答:甲种农机具一件需10万元,乙种农机具一件需7万元(2)设甲种农机具最多能购买m件由题意得10m+7(10―m)≤90解得m≤203∵m为正整数,则m的最大值为6,答:甲种农机具最多能购买6件.20.(8分)仅利用已有的格点与无刻度直尺作图.(保留作图痕迹)(1)在图1中,作出面积最大的平行四边形 ABCD.(2) 在图2中, D是 AC 中点, 在 AB边上找到点E, 连接DE, 使DE∥BC.(3) 在图3中, 在 CD边上找到点 E, 连接BE, 使 BE 平分∠ABC.21.(9分)先阅读材料,再回答问题.我们定义:形如x+mnx=m+n(m、n为非零实数),且两个解分别为x₁=m,x₂=n的方程称为“可分解分式方程”.例如:x+6x =5为可分解分式方程,可化为x+2×3x=2+3,∴x1=2,x2=3.应用上面的结论解答下列问题:(1)若x―12x=4为可分解分式方程,则:x₁=,x₂=.(2)若可分解分式方程方程x―7x =5的两个解分别为x₁=a,x₂=b,求ab+ba的值.(3)若关于x的可分解分式方程x―k2―k―61―x=2k的两个解分别为x₁、x₂(k为实数),且x₁⋅x ₂=6,求k的值.解: (1) 解: ∵方程x―12x =4是可分解分式方程,可化为x+6×(―2)x=6+(―2),∴x1=6,x2=―2,故答案为: 6, -2.(-2, 6亦可以)(2)解:∵可分解分式方程x―7x=5的两个解分别为x₁=a,x₂=b,∴ab=―7, a+b=5,∵ab +ba=a2+b2ab=(a+b)2―2abab,∴ab +ba=52―2×(―7)―7=―397.(3)解:方程x―k2―k―61―x=2k是可分解分式方程,可化为x―1+(k+2)(k―3)x―1=2k―1=(k+2)+(k―3),∵k为实数,不妨设x₁―1=k+2,x₂―1=k―3∴x₁=k+3,x₂=k―2∴x₁⋅x₂=(k+3)(x―2)=k²+k―6=6,∴k²+k―12=0∴(k+4)(k―3)=0∴k₁=―4,k₂=3(舍去)22. (10分)【问题感知】(1) 如图1, 在四边形ABCD 中, ∠ABC=∠ADC=90°,∠A+∠C=180°,, 且AD=CD,①请直接写出AB、BC、BD的数量关系: ;②证明: BD平分. ∠ABC;【迁移应用】(2)如图2, 四边形ABCD 中, ∠ABC=60∘,∠ADC=120∘,BE⊥AD,AB=BC=13 ,CD=1, 计算 BE 的长度;【拓展研究】(3)如图3, 正方形ABCD中, E为BC边上一点, 连接AE, F为AE 边上一点, 且AF=BC,FG 垂直DF 交 AB 于点G,EF=2,AG=5,直接写出正方形的边长.解: (1)circle1AB+BC=2BD②证明: 将△DAB绕点D逆时针旋转90°至△DCE∴∠DCB+∠DCE=∠DCB+∠DAB=180°∴B、C、E三点共线∵∠ADB+∠BDC=∠CDE+∠BDC=90°, BD=CD∴△BDE是等腰直角三角形∴∠DBC=∠DEC=∠DBA=45°∴BD平分∠ABC(2) 连接BD, 将△BCD绕点D逆时针旋转60°至△BAD'∴AD′=CD=1,BD′=BD,∠D′BA=∠DBC在四边形ABCD中,∠BAC+∠ABC+∠BCD+∠ADC=360°∴∠BAD+∠BAD'=∠BAD+∠BCD=180°∴B、D、D'三点共线又∠∠ABD′+∠ABD=∠BCD+∠ABD=60°,BD=BD所以△BDD′是等边三角形∵BE⊥AD∴BE平分∠D'BE∴∠D′BE=30°∴BE=3D′E设AE=x则BE=3(AD′+AE)=3(1+x)在Rt△ABE中, AE²+BE²=AB²则x2+[3(1+x)]2=13(舍)解得x1=1,x2=―52∴AE=1∴BE=23(3)25+5。
2023-2024学年八年级第二学期期末考数学试卷附答案
第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。
辽宁省沈阳市皇姑区2023-2024学年八年级下学期期末考试数学试题
辽宁省沈阳市皇姑区2023-2024学年八年级下学期期末考试数学试题一、单选题1.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.若m n >,则下列不等式中正确的是( ) A .22m n -<-B .5353m n -<-C .1144m n ->-D .0n m ->3.若分式242x x --的值为0,则x 的值为( )A .2±B .2-C .0D .24.下列变形是因式分解的是( ) A .()()22224x y x y x y +-=- B .()am bm m m a b +-=+C .221122y y y ⎛⎫-+=- ⎪⎝⎭D .()()()22963x y x y x y ++++=++5.如图,在一块长为11米,宽为5米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移1米就是它的右边线,这块草地的绿地面积是( )平方米.A .50B .55C .40D .446.如图,为测量池塘边A 、B 两点的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE =14m ,则A 、B 间的距离是().A .18mB .24mC .28mD .30m7.如图,某市的三个城镇中心A 、B 、C 构成△ABC ,该市政府打算修建一个大型体育中心P ,使得该体育中心到三个城镇中心A 、B 、C 的距离相等,则P 点应设计在( )A .三个角的角平分线的交点B .三角形三条高的交点C .三条边的垂直平分线的交点D .三角形三条中线的交点8.一项工程,甲单独做需要m 天完成,乙单独做需要n 天完成,则甲、乙合作完成工程需要的天数为( ) A .m +nB .2m n+ C .mnm n+ D .m n nm + 9.如图,矩形ABCD 的对角线AC 、BD 交于点O ,且425DE A C C E B D B C C E==∥、∥,,.,则四边形ODEC 的面积为( )A .6B .7C .8D .1210.如图,在Rt ABC V 中,90C =o ∠,以顶点A 为圆心,适当长为半径画弧,分别交,AC AB于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径面弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4,14CD AB ==,则ABD △的面积是( )A .14B .28C .42D .56二、填空题11.第五套人民币中的5角硬币色泽为镍白色,正、反面的内周边缘均为正十一边形,则其内角和为.12.如图,一次函数1y x b =+与()230y kx k =+≠的图象相交于点()12P ,,则关于x 的不等式3x b kx +>+的解集是.13.如图平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB AC ⊥,3AB =,5AD =,则BD 的长是.14.正方形ABCD 和正方形CEFG 中,点D 在CG 上,1,3BC CE ==,H 是AF 的中点,那么CH 的长是 .15.如图,在平面直角坐标系中,A ,C 两点分别在x 轴,y 轴上,点A 的坐标为()8,0,点C 的坐标为()0,6,点P 为射线OA 上一动点,点O 关于直线PC 的对称点为点B ,当ABP V 为直角三角形时,OP 的长为.三、解答题 16.计算:(1)因式分解:()()22925x y x y +--; (2)计算:22221244a b a b a b a ab b---÷+++. 17.解不等式组:()32421152x x x x ⎧--≥⎪⎨++<⎪⎩.18.如图,在平面直角坐标系中,ABC V 的顶点()1,1A -,()4,2B -,()3,3C -.(1)平移ABC V ,若点A 的对应点1A 的坐标为()3,1-,画出平移后的111A B C △; (2)将ABC V 以点(0,2)为旋转中心旋转180°,画出旋转后对应的222A B C △;(3)已知将111A B C △绕某一点旋转可以得到222A B C △,则旋转中心的坐标为__________. 19.(列分式方程解应用题)辽宁省新中考体育考试,新增专项技能三选一项目考试(足球,篮球,排球),其中篮球项目为:运球绕杆往返跑,运球路线的总路程为36米.在一次练习测试中,小红和小强依次完成运球绕杆往返跑后,根据两人的测试成绩,小强说:“咱俩共用时42秒.”小红说:“如果我的平均速度不变,用你这次测试的用时我只能跑20米.”求这次测试小红和小强各用时多少秒?20.如图,已知ABC V 中,点D 是BC 边上一点,取AD 的中点E ,过点A 作BC 的平行线交CE 的延长线于点F ,连接DF .(1)求证:四边形ACDF 是平行四边形;(2)当AD 与CF 满足条件______时,四边形ACDF 是矩形(直接填空).21.蓝天白云,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A ,B 两种型号的帐篷.已知购买1顶A 种型号帐篷需600元,购买1顶B 种型号帐篷需1000元.(1)若该景区需要购买A ,B 两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,则最多能购买几顶A 种型号帐篷?(2)在(1)的条件下,设购买A ,B 两种型号帐篷的总费用为w 元,求w 的最小值. 22.如图①,正方形ABCD 中,点E ,F 是边BC ,CD 上的动点(不与正方形顶点重合),AE BF =,AE 与BF 相交于点M .设BE 长为x ,DF 长为y ,y 与x 的函数图象如图②所示,图象经过点()1,3P .(1)结合函数图象,求AB 的长; (2)连接AF ,当AF AE =时,求x 的值; (3)在(2)的条件下,连接DM ,求DM 的长.23.在一次数学活动课上,老师带领同学们探究图形的变换问题.老师先提出这样一个问题:有一张矩形纸片ABCD ,其中4AB =,BC =形吗?【操作】小明同学是这样操作的:如图①,先将矩形ABCD 沿MN 对折;展开后,再将点C沿BE 折叠,使点C 落在MN 上的点F 处;再展开,连接BF ,CF ,则BC F △为等边三角形. 【验证】(1)求证:BCF △为等边三角形; 【应用】(2)连接AF ,DF ,如图②,求AF 的长;【拓展】(3)将图②中的BCF △绕着点F 顺时针旋转α(090α︒<<︒)得到B C F ''△(点B ,C 的对应点分别为B ',C '),连接AB ',DC ',当AFB 'V 为等腰三角形时,直接写出线段DC '的长.。
八年级下期末数学试卷(解析版)
八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。
八年级下册数学期末试卷3份PDF
�mc________为约度高的鞋凉穿所则 �段身金黄到达 ”材身“ 使鞋凉双一穿要她 �m1 为离距的脚的到脐肚 �m7.1 为高身的人某 。段身金黄的看好较比是时 6.0 为约比的高身与离距的脐肚到脚人个一当 �说般一 �41 �___________为率概的致一好恰色颜则�起一在配搭盖杯只一和杯茶只一取拿黑摸妈妈�电停 然突后完洗�杯茶盖有的同相都余其外色颜除只三洗清在妈妈的明小�上晚天一�31 �_________________为解的
x ��1+x�程方 2
3 � 2
2� 3
1� 1� 2
2� 0 1
2 2 1�
1 3 2�
3 2
4 3�
x �=y 2
1+x�=y x
�表下如值应对的 y 与 x,
�_______= n � m 则 �零为值的式分 4=x 当�义意无
x �=y 数函例比反与 1+x�=y 数函次一�21 2
n�x 式分�时 1=x 当�11 m2 � x
中案方工施种三为认你)2(
�来出充补分部的染污水墨被中)C(将请)1(
1�
5� x �5� x x � �� � �4 �程方了出列意题据根�天 x 为期工的定规设学同一。工完期如好正也 4�x � 1 1�
)C(�天 5 用多期工定规比要程工项此成完独单队乙)B( �工完期如好刚�程工项这成完独单队甲)A(
81=a 2=k)1(�42 后天 4 做合乙、甲)1(�32 061=b)2( 略轴数 5�41 069)1(�22 7≤x�3��91
9 2
9 )2( 1
C)2(
6
元万 82
C
工误 B
元万 03
2024年人教版初二数学下册期末考试卷(附答案)
一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。
A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。
()2. 任何数乘以1都等于它本身。
()3. 0既不是正数也不是负数。
()4. 两个锐角相加一定大于90度。
()5. 任何数都有相反数。
()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。
2. 任何数乘以______都等于它本身。
3. 两个负数相乘,结果是______。
4. 两个锐角相加一定______90度。
5. 任何数都有______数。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等边三角形的性质。
3. 简述矩形的性质。
4. 简述平行四边形的性质。
5. 简述勾股定理。
五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。
2. 已知等边三角形的周长为18,求它的面积。
3. 已知矩形的周长为20,求它的面积。
4. 已知平行四边形的面积为30,求它的周长。
5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。
六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。
2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30、 1 + 1
5
;
x x+1 2x+2
31、 x b 2 x a a+b 0 ;
a
b
五、3 2、先化简后求值: 2 x 6 x2 4x 4
x2 x 6 x 2 ,其中 x 3 x2
(6′)
八、综合题:(2′+ 3′=5′)
36、已知: x2 5 x 1 0 ,计算: x2
1 x2 的值;
六、计算与证明 (5′+3′=8′) 33、已知:如图在△ ABC 中,AB=AC ,点 D 在 AC 上,且 BD=BC= AD,求△ABC 的各角的度数;
C、有一个角是 30°的直角三角形不是轴对称图形;
D 、三角形按角分类分为锐角三角形与钝角三角形;
24、下列命题中正确的是(
)
A 、两个全等形一定是轴对称图形;
B、关于一条直线对称的两个图形一定是全等形;
C、两个图形全等,它们一定关于一条直线对称; D、两个等腰直角三角形一定关于某条直线对称;
25、已知 a+ b 2 , ab 5 ,则 a + b 的值为(
17、下列有理数中,属于分式的个数是(
B、分式不是有理式;
D、当 x
1 时,分式 4 无意义; x+1
)
28m 2n ;
2x ;
7x
-;
3
;
x+ y
11
4
2x 3
;
5
1
;
x+1 ;
ab
4x
A、 1
B、 2
C、3
D 、 4;
1 18、分式 3a 3b 4 a
和
1
b 3 6a 2b5 a
的最简公分母是(
b2
)
A 、18a 3b 5 a
3
b;
B、6a5b9 a
b
5
;
C、12 a 2b 5 a
b
3
;
D、 6a 3b 5 a
b
3
;
19、下列各式中,正确的变形是(
)
mn mn
A、
m+n
;
m+n
0.01m 3n m 300n
C、
;
0.1m 0.2n 10m 20n
20、下列各式中,正确的是(
)
m3 4 A、 m2
)
ba
2
A、 ;
5
7
B、 ;
5
三、计算题: (4′×4=16′)
x2 4
x3
26、 x 2 4x+3 ? x2+3x+2 ;
14
C、
;
5
24
D、
;
5
27、
12 a2
+ 9
3
2 a
;
34、如图:在△ ABC 中,BD⊥ AC 于 D,CE⊥AB 于 E, BD=CE,求证: AB=AC
2
x+ y
28、
14、若 x 2 =25,则 x =____________________;_
15、一个正数的正的平方根叫这个数的 ______________;_ 二、选择题:(2′× 10=20)
16
17
18
19
20
21 22
23
24
25
16、下列判断正确的是(
)
A 、分式是有除法运算的式子;
C、当 x 5 时,分式 1 的值为正; x5
8、在 RT△ABC 中,∠C=90°, a=12, b=5,则 C=______________________;_ 9、等腰三角形一底角为 30°,底边上的高为 9cm,则这个等腰三角形的腰长是 ________cm,顶角是 ____________; 10、等腰直角三角形一条直角边长为 1 cm,那么它斜边上的高是 _________________ cm; 11、已知线段 AB 和点 C、D,且 CA =CB,DA=DB,那么直线 CD 是线段 AB 的____________________;_ 12、线段的对称轴是 ___________________;_13、到角两边距离相等的点,必在这个角的 ________________________;_
xy
x2
2
y2
2
;
xy
29、
m+1 m2+ m
2
m 2+ 3 ; m+2
七、列分式方程解应用题:(7′) 35、甲、乙两班学生同时从学校出发支距学校 15 千米的公园植树, 乙班行走的速度是甲班的 1.2 倍,结果 乙班比甲班先半小时到达目的地,求甲、乙两班每小时各走多少千米?
四、解关于 x 的方程(4′× 2=8′)
22、下列计算错误的是(
)
A、 m + n
1;
m+ n m+ n
B、 m + n
1;
mn nm
b3 2
C、
2a
b6 ; 2a2
D、 m n m+ n 2 ;
n
n
D、扩大 4 倍;
23、下列命题中正确的是(
)
A、 一个内角是 45°的直角三角形不是轴对称图形;
B、三角形可以分为直角三角形与等腰三角形两类;
9 值为零;
m3
5、已知公式 S= V0t 1 at 2 用 S,V O,t 表示 a 为________; 2
x 2+4 x+ 3 6、化简 x 2+ x 6
____________________ _ ;
7、等腰三角形的底角等于 15°,腰长为 2a ,则腰上的高为 _________________;_
m6 ;
B、 1+ 1 ab
a+b ;
a 2+ b2
C、
a+ b
a+ b;
D、 b2 a 2 ab
a b;
B、 9
9;
m+ n m+ n
D、 a+ b m
a b; m
21、把分式 x+ y 中的 x,y 都扩大 2 倍,那么分式的值(
)
xx y
A 、扩大 2 倍;
B、缩小为原来的 1 ; 2
C、不变;
37、证明四个连续自然数的积再加上 1 一定是一个完全平方数。
初二数学期末考试试卷
一、 填空题:(2′× 15=30′)
1、 分解因式: x 2 -4=____________;
2、分解因式: l 6 y + 9 y 2 =_________________;_
3、当
x___________时,分式
3x 1
有意义;
m2
4、当 m=__________时,分式