高中数学高考总复习函数的奇偶性习题及详解
高中数学函数的奇偶性经典习题(带答案)
绝密★启用前1.判断下列函数的奇偶性:(1)f(x)=x 3-1x ; (2)f(x)=|2|2x +-; (3)f(x)=(x -(4)f(x). 【答案】(1)奇函数(2)奇函数(3)既不是奇函数也不是偶函数(4)既是奇函数也是偶函数解析:(1)定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2)去掉绝对值符号,根据定义判断.由210|2|20x x ⎧≥⎨≠⎩-,+-,得1104x x x ≤≤⎧⎨≠≠⎩-,且-. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=22x x=+-, 这时有f(-x)=21(x x --)-=-f(x),故f(x)为奇函数. (3)因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4)因为f(x)定义域为{,所以f(x)=0,则f(x)既是奇函数也是偶函数2.下列函数是奇函数的是( )A .()||f x x =-B .()22x x f x -=+C .()lg(1)lg(1)f x x x =+--D .3()1f x x =-【答案】C 解析:对于B ,()22()x x f x f x --=+=,函数()f x 为偶函数,所以B 错;对于C ,由1010x x +>⎧⎨->⎩,故11x -<<,关于原点对称,又()lg(1)lg(1)()f x x x f x -=--+=-对于D ,33()()11()()f x x x f x f x -=--=--≠≠-,函数()f x 既不是奇函数,也不是偶函数,3.已知函数)(x f y =是奇函数,当0>x 时,,lg )(x x f =则( )C.2lgD.-2lg 【答案】D.解析:4.已知函数(1)f x +是奇函数,(1)f x -是偶函数,且(0)2,(4)则f f ==( )A .-2B .0C .2D .3【答案】A 解析:因为函数(1)f x +是奇函数,所以)(x f 的对称中心为(1,0),因为(1)f x -是偶函数,所以)(x f 的对称轴为x=-1。
6 抽象函数奇偶性 高中数学 高考
六、奇偶性问题例1 . (1)已知函数f(x)(x ≠0的实数)对任意不等于零的实数x 、y 都有f(x ﹒y)=f(x)+f(y),试判断函数f(x)的奇偶性。
解析:函数具备奇偶性的前提是定义域关于原点对称,再考虑f(-x)与f(x)的关系:取y=-1有f(-x)=f(x)+f(-1),取x=y=-1有f(1)=2f(-1),取x=y=1有f(1)=0.所以f(-x)=f(x),即f(x)为偶函数。
(2)已知y=f (2x +1)是偶函数,则函数y=f (2x )的图象的对称轴是( D ) A.x =1B.x =2C.x =-21D.x =21 解析:f(2x+1)关于x=0对称,则f(x)关于x=1对称,故f(2x)关于2x=1对称.注:若由奇偶性的定义看复合函数,一般用一个简单函数来表示复合函数,化繁为简。
F (x )=f(2x+1)为偶函数,则f(-2x+1)=f(2x+1)→f(x)关于x=1对称。
例2:已知函数f(x)的定义域关于原点对称且满足())()(1)()()(1x f y f y f x f y x f -+=-,(2)存在正常数a ,使f(a)=1.求证:f(x)是奇函数。
证明:设t=x-y,则)()()(1)()()()(1)()()()(t f x f y f x f y f y f x f x f y f x y f t f -=-+-=-+=-=-,所以f(x)为奇函数。
例3:设)(x f 是定义在R 上的偶函数,且在)0,(-∞上是增函数,又)123()12(22+-<++a a f a a f 。
求实数a 的取值范围。
解析:又偶函数的性质知道:)(x f 在),0(+∞上减,而0122>++a a ,01232>+-a a ,所以由)123()12(22+-<++a a f a a f 得1231222+->++a a a a ,解得30<<a 。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C.【考点】函数的奇偶性.2.若偶函数y=f(x)为R上的周期为6的周期函数,且满足f(x)=(x+1)(x-a)(-3≤x≤3),则f(-6)等于________.【答案】-1【解析】∵y=f(x)为偶函数,且f(x)=(x+1)(x-a)(-3≤x≤3),∴f(x)=x2+(1-a)x-a,1-a=0.∴a=1.f(x)=(x+1)(x-1)(-3≤x≤3).f(-6)=f(-6+6)=f(0)=-1.3.若的图像是中心对称图形,则( )A.4B.C.2D.【答案】B【解析】,因为为偶函数,所以当且仅当,即时,为奇函数,图像关于原点对称.故选B.【考点】奇函数4.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于()A.-3B.-1C.1D.3【答案】A【解析】因为f(x)为定义在R上的奇函数,所以有f(0)=20+2×0+b=0,解得b=-1,所以当x≥0时,f(x)=2x+2x-1,即f(-1)=-f(1)=-(21+2×1-1)=-3.故选A.5.已知函数f(x)=为奇函数,则f(g(-1))=()A.-20B.-18C.-15D.17【答案】C【解析】由于函数f(x)是奇函数,所以g(x)=-f(-x)=-x2+2x,g(-1)=-3.故f(-3)=g(-3)=-15.6.若函数f(x)=(a+)cosx是奇函数,则常数a的值等于()A.-1B.1C.-D.【答案】D【解析】设g(x)=a+,t(x)=cosx,∵t(x)=cosx为偶函数,而f(x)=(a+)cosx为奇函数,∴g(x)=a+为奇函数,又∵g(-x)=a+=a+,∴a+=-(a+)对定义域内的一切实数都成立,解得:a=.7.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=________.【答案】-2【解析】f(-1)=-f(1)=-2.8.已知定义域为R的函数f(x)=是奇函数,则a=________.【答案】2【解析】因为函数f(x)=是定义域为R的奇函数,所以f(-1)=-f(1),即=-,解得a=2.9.函数y=sin22x是().A.周期为π的奇函数B.周期为π的偶函数C.周期为的奇函数D.周期为的偶函数【答案】D【解析】y=sin22x==-cos 4x,则周期为:=,且为偶函数.10.已知,其中是常数.(1))当时,是奇函数;(2)当时,的图像上不存在两点、,使得直线平行于轴.【答案】证明见解析.【解析】(1)奇函数的问题,可以根据奇函数的定义,利用来解决,当然如果你代数式变形的能力较强,可以直接求然后化简变形为,从而获得证明;(2)要证明函数的图像上不存在两点A、B,使得直线AB平行于轴,即方程不可能有两个或以上的解,最多只有一个解,,,因此原方程最多只有一解,或者用反证法证明,设存在,即有两个,且,使,然后推理得到矛盾的结论,从而完成证明.试题解析:(1)由题意,函数定义域, 1分对定义域任意,有:4分所以,即是奇函数. 6分(2)假设存在不同的两点,使得平行轴,则9分化简得:,即,与不同矛盾。
函数的奇偶性问题练习题(含答案)
...函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,...可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.f (x )是定义在(-∞,-5]Y [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0, ∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
高中数学函数的奇偶性(解析版)
1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。
高一数学函数奇偶性练习题及答案解析
高一数学函数奇偶性练习题及答案解析数学函数奇偶性练习题及答案解析1.下列命题中,真命题是A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3x-10是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在-3,0上为减函数D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C.2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为A.10B.-10C.-15D.15解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6-f3=-2×8+1=-15.3.fx=x3+1x的图象关于A.原点对称B.y轴对称C.y=x对称D.y=-x对称解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称.4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________.解析:∵fx是[3-a,5]上的奇函数,∴区间[3-a,5]关于原点对称,∴3-a=-5,a=8.答案:81.函数fx=x的奇偶性为A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:选D.定义域为{x|x≥0},不关于原点对称.2.下列函数为偶函数的是A.fx=|x|+xB.fx=x2+1xC.fx=x2+xD.fx=|x|x2解析:选D.只有D符合偶函数定义.3.设fx是R上的任意函数,则下列叙述正确的是A.fxf-x是奇函数B.fx|f-x|是奇函数C.fx-f-x是偶函数D.fx+f-x是偶函数解析:选D.设Fx=fxf-x则F-x=Fx为偶函数.设Gx=fx|f-x|,则G-x=f-x|fx|.∴Gx与G-x关系不定.设Mx=fx-f-x,∴M-x=f-x-fx=-Mx为奇函数.设Nx=fx+f-x,则N-x=f-x+fx.Nx为偶函数.4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cxA.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选A.gx=xax2+bx+c=xfx,g-x=-x•f-x=-x•fx=-gx,所以gx=ax3+bx2+cx是奇函数;因为gx-g-x=2ax3+2cx不恒等于0,所以g-x=gx不恒成立.故gx不是偶函数.5.奇函数y=fxx∈R的图象必过点A.a,f-aB.-a,faC.-a,-faD.a,f1a解析:选C.∵fx是奇函数,∴f-a=-fa,即自变量取-a时,函数值为-fa,故图象必过点-a,-fa.6.fx为偶函数,且当x≥0时,fx≥2,则当x≤0时A.fx≤2B.fx≥2C.fx≤-2D.fx∈R解析:选B.可画fx的大致图象易知当x≤0时,有fx≥2.故选B.7.若函数fx=x+1x-a为偶函数,则a=________.解析:fx=x2+1-ax-a为偶函数,∴1-a=0,a=1.答案:18.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③fx=0x∈R既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.答案:③④9.①fx=x2x2+2;②fx=x|x|;③fx=3x+x;④fx=1-x2x.以上函数中的奇函数是________.解析:1∵x∈R,∴-x∈R,又∵f-x=-x2[-x2+2]=x2x2+2=fx,∴fx为偶函数.2∵x∈R,∴-x∈R,又∵f-x=-x|-x|=-x|x|=-fx,∴fx为奇函数.3∵定义域为[0,+∞,不关于原点对称,∴fx为非奇非偶函数.4fx的定义域为[-1,0∪0,1]即有-1≤x≤1且x≠0,则-1≤-x≤1且-x≠0,又∵f-x=1--x2-x=-1-x2x=-fx.∴fx为奇函数.答案:②④10.判断下列函数的奇偶性:1fx=x-1 1+x1-x;2fx=x2+x x<0-x2+x x>0.解:1由1+x1-x≥0,得定义域为[-1,1,关于原点不对称,∴fx为非奇非偶函数. 2当x<0时,-x>0,则f-x=--x2-x=--x2+x=-fx,当x>0时,-x<0,则f-x=-x2-x=--x2+x=-fx,综上所述,对任意的x∈-∞,0∪0,+∞,都有f-x=-fx,∴fx为奇函数.11.判断函数fx=1-x2|x+2|-2的奇偶性.解:由1-x2≥0得-1≤x≤1.由|x+2|-2≠0得x≠0且x≠-4.∴定义域为[-1,0∪0,1],关于原点对称.∵x∈[-1,0∪0,1]时,x+2>0,∴fx=1-x2|x+2|-2=1-x2x,∴f-x=1--x2-x=-1-x2x=-fx,∴fx=1-x2|x+2|-2是奇函数.12.若函数fx的定义域是R,且对任意x,y∈R,都有fx+y=fx+fy成立.试判断fx的奇偶性.解:在fx+y=fx+fy中,令x=y=0,得f0+0=f0+f0,∴f0=0.再令y=-x,则fx-x=fx+f-x,即fx+f-x=0,∴f-x=-fx,故fx为奇函数.感谢您的阅读,祝您生活愉快。
高中数学高考总复习函数的奇偶性习题及详解
高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)以下函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,假设x =0在定义域内,那么应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,应选A.(理)以下函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.应选D.2.(2021·安徽理,4)假设f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,那么f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,应选A.3.(2021·河北唐山)f (x )与g (x )分别是定义在R 上奇函数与偶函数,假设f (x )+g (x )=log 2(x 2+x +2),那么f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2021·北京崇文区)f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,那么f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2021·山东日照)函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),假设f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2021·辽宁锦州)函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.假设g (x )=f (x )+2,那么g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,那么函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 那么f (x )=4-x 2-x ,f (x )+f (-x )=0,应选B.7.f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),那么a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .应选C.8.函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),那么f (2021)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2021)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,那么使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,应选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,那么f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,应选A.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是以下图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,应选C.二、填空题11.(文)f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),那么f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,那么f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2021·深圳中学)函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如下图,那么不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)假设f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.那么f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,那么f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2 x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2021·山东枣庄模拟)假设f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,那么a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,那么问题变得比拟简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2021·吉林长春质检)函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,那么使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2021·杭州外国语学校)f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)假设曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)假设当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2021·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)当x ∈[-2,0]时,-x ∈[0,2],由得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2021)+f (2021)+f (2021)+f (2021)=0.∴f (0)+f (1)+f (2)+…+f (2021)=0.17.(文)函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数.(1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)假设f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 假设m >0,那么n <0.那么F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 假设m <0,那么n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。
高中函数奇偶单调练习题及讲解
高中函数奇偶单调练习题及讲解# 高中函数奇偶性与单调性练习题及讲解## 练习题### 题目一:奇偶性判断给定函数 \( f(x) = x^2 - 4x + 3 \),判断该函数的奇偶性。
### 题目二:单调性判断考虑函数 \( g(x) = -3x^2 + 2x + 5 \),确定其在定义域内的单调性。
### 题目三:综合应用已知函数 \( h(x) = \frac{2x}{x^2 + 1} \),求证其在 \( (-\infty, 0) \) 上单调递增。
### 题目四:函数图像画出函数 \( f(x) = |x - 2| \) 的图像,并判断其奇偶性。
### 题目五:函数性质综合对于函数 \( k(x) = \sqrt{x} \),分析其奇偶性与单调性。
## 解题步骤与讲解### 题目一讲解要判断函数的奇偶性,我们可以使用奇偶函数的定义:- 奇函数:\( f(-x) = -f(x) \)- 偶函数:\( f(-x) = f(x) \)对于 \( f(x) = x^2 - 4x + 3 \),代入 \( -x \) 得到 \( f(-x) = (-x)^2 + 4x + 3 = x^2 - 4x + 3 = f(x) \),因此 \( f(x) \) 是偶函数。
### 题目二讲解判断函数的单调性,我们可以求导数:- 如果 \( g'(x) > 0 \),则函数在该区间上单调递增。
- 如果 \( g'(x) < 0 \),则函数在该区间上单调递减。
对于 \( g(x) = -3x^2 + 2x + 5 \),求导得到 \( g'(x) = -6x + 2 \)。
令 \( g'(x) = 0 \) 解得 \( x = \frac{1}{3} \)。
因此,函数在 \( (-\infty, \frac{1}{3}) \) 上单调递增,在\( (\frac{1}{3}, +\infty) \) 上单调递减。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数为奇函数,且当时,则()A.B.C.D.【答案】A【解析】由已知有,故选A.【考点】函数的奇偶性.2.已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则( ).A.B.C.D.【答案】C【解析】由定义在上的函数是奇函数且满足知,= = =,所以= = = =,所以的周期为3,由得,,当n≥2时,=,所以=,所以=-3,=-7,=-15,=-31,=-63,所以 ====3,故选C.【考点】函数的奇偶性、周期性,数列的递推公式,转化与化归思想3.下列函数在定义域内为奇函数的是()A.B.C.D.【答案】A【解析】根据奇函数的定义:A选项:,所以函数为奇函数;B选项:,所以函数为偶函数;C选项:,所以函数为偶函数;D选项:,所以函数为偶函数;可知A正确。
【考点】函数的奇偶性.4.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】由函数的定义域为,且是奇函数,是偶函数,可得:和均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C.【考点】函数的奇偶性5.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数,函数(1)若=4,求函数的反函数;(2)根据的不同取值,讨论函数的奇偶性,并说明理由.【答案】(1),;(2)时为奇函数,当时为偶函数,当且时为非奇非偶函数.【解析】(1)求反函数,就是把函数式作为关于的方程,解出,得,再把此式中的互换,即得反函数的解析式,还要注意的是一般要求出原函数的值域,即为反函数的定义域;(2)讨论函数的奇偶性,我们可以根据奇偶性的定义求解,在,这两种情况下,由奇偶性的定义可知函数具有奇偶性,在时,函数的定义域是,不关于原点对称,因此函数既不是奇函数也不是偶函数.试题解析:(1)由,解得,从而,∴,∵且∴①当时,,∴对任意的都有,∴为偶函数②当时,,,∴对任意的且都有,∴为奇函数③当且时,定义域为,∴定义域不关于原定对称,∴为非奇非偶函数【考点】反函数,函数奇偶性.6.已知f(x)=asinx+bx+c(a,b,c∈R),若f(0)=-2,f()=1,则f(-)=________.【答案】-5【解析】由题设f(0)=c=-2,f()=a+b-2=1所以f(-)=-a-b-2=-5.7.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.(-1,0)B.(-∞,0)∪(1,2)C.(1,2)D.(0,2)【答案】D【解析】根据函数的性质作出函数f(x)的图象如图.把函数f(x)向右平移1个单位,得到函数f(x-1),如图,则不等式f(x-1)<0的解集为(0,2),选D.8.已知函数f(x)=为奇函数,则a+b=________.【解析】当x>0时,-x<0,由题意得f(-x)=-f(x),所以x2-x=-ax2-bx,从而a=-1,b=1,a+b=0.9.下面四个命题:①已知函数f(x)=sin x,在区间[0,π]上任取一点x0,则使得f(x)>的概率为;②函数y=sin 2x的图象向左平移个单位得到函数y=sin的图象;③命题“∀x∈R,x2-x+1≥”的否定是“∃x0∈R,x2-x+1<”;④若函数f(x)是定义在R上的奇函数,则f(x+4)=f(x),则f(2 012)=0.其中所有正确命题的序号是________.【答案】①③④【解析】②错误,应该向左平移;①使得f(x)>的概率为p==;④f(2 012)=f(0)=0.10.函数的图象大致是()A.B.C.D.【答案】A【解析】易知函数是偶函数,当x=0时,. 所以选A.11.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.12.函数的图像大致为( ).【答案】A【解析】由条件,得函数的定义域为,排除C、D;又==,所以函数为奇函数,排除B,故选A.【考点】函数图象.13.设直线l与曲线f(x)=x3+2x+1有三个不同的交点A、B、C,且︱AB︱=︱BC︱=,则直线l的方程为()A.y=5x+1B.y=4x+1C.y=3x+1D.y=x+1【答案】C【解析】由曲线关于(0,1)中心对称,则B(0,1),设直线l的方程为y=kx+1,代入y=x3+2x+1,可得x3=(k-2)x,∴x=0或x=±,∴不妨设A(,k·+1)(k >2),∵|AB|=|BC|=∴(-0)2+(k·+1-1)2=10∴k3-2k2+k-12=0,∴(k-3)(k2+k+4)=0,解得k=3,∴直线l的方程为y=3x+1,故选C.【考点】1.函数的周期性;2.函数奇偶性的性质.14.将函数的图象向左平移个单位长度后得到函数,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数,也不是偶函数【答案】B【解析】,由题意知,因此函数为偶函数,故选B.【考点】1.三角函数图像变换;2.辅助角公式;3.三角函数的奇偶性15.设函数的定义域为,如果存在正实数,对于任意,都有,且恒成立,则称函数为上的“型增函数”,已知函数是定义在上的奇函数,且当时,,若为上的“2014型增函数”,则实数的取值范围是()A.B.C.D.【答案】C【解析】是定义在上的奇函数,设,则.,..①当时,由,可得,化为,由绝对值的几何意义可得,解得②当时,由f(2014+x)>f(x),分为以下两类研究:当时,可得,化为,由绝对值的几何意义可得,解得.当,,化为,故时成立.当时,,③当时,由可得,当时成立,当时,.综上可知:的取值范围是,故选C.【考点】1.奇函数的性质;2.绝对值的意义;3.分类讨论思想.16.设偶函数满足,则( )A.B.C.D.【答案】B【解析】的解集为,因为是偶函数,关于轴对称,所以的解集为或,那么的解集为或,故解集为或,故选B.【考点】1.函数的奇偶性;2.解不等式.17.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x+1,则当x<0时,f(x)=________.【答案】x3+x-1【解析】若x<0,则-x>0,f(-x)=-x3-x+1,由于f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=x3+x-1.18.设函数f(x)=x(e x+ae-x)(x∈R)是偶函数,则实数a的值为______________.【答案】-1【解析】由题意可得g(x)=e x+ae-x为奇函数,由g(0)=0,得a=-1.19.已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有<0,给出下列命题:①f(2)=0;②直线x=-4是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[-4,4]上有四个零点;④f(2 014)=0.其中所有正确命题的序号为________.【答案】①②④【解析】令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,因为函数f(x)为偶函数,所以f(2)=0,①正确;因为f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函数f(x)的一条对称轴,②正确;当x1,x2∈[0,2],且x 1≠x2时,都有<0,说明函数f(x)在[0,2]上是单调递减函数,又f(2)=0,因此函数f(x)在[0,2]上只有一个零点,由偶函数知函数f(x)在[-2,0]上也只有一个零点,由f(x+4)=f(x),知函数的周期为4,所以函数f(x)在(2,6]与[-6,-2)上也单调且有f(6)=f(-6)=0,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f(2)=f(6)=f(10)=…=f(2 014)=0,④正确.20.已知函数f(x)是定义域为R上的奇函数,且周期为2.若当x∈[0,1)时,f(x)=2x-1,则f(的值是 ().A.-B.-5C.-D.-6【答案】C【解析】∵f(x)是在R上的奇函数,且周期为2.∴f=-f(log26)=-f(log26-2)=-f(log2),又x∈[0,1)时,f(x)=2x-1,从而f=+1=-+1=-21.设函数f(x)=x(e x+a e-x)(x∈R)是偶函数,则实数a=________.【答案】-1【解析】g(x)=e x+a e-x为奇函数,由g(0)=0得a=-1.22.设为实常数,是定义在上的奇函数,且当时,.若对一切成立,则的取值范围是 .【答案】【解析】因为是定义在上的奇函数,所以当时,;当时,,因此且对一切成立所以且,即.【考点】函数奇偶性,不等式恒成立23.函数的图象大致为( )【答案】A【解析】观察函数可知,該函数是偶函数,其图像关于轴对称,据此可排除B,D.又在轴附近,函数值接近1,所以C不符合.选A.【考点】函数的奇偶性,函数的图像.24.设偶函数满足,则不等式的解集为()A.或B.或C.或D.或【答案】B【解析】画出的图象,再关于轴对称,得到偶函数左侧的图象,再将所得图象向右平移2个单位,得到的图象,由图观察得的解集为或.【考点】1偶函数的图象和性质;2、图象的变换;3、不等式解法.25..定义在上的偶函数,当x≥0时,,则满足的x取值范围是()A.(-1,2)B.(-2,1)C.[-1,2]D.(-2,1]【答案】A【解析】设,则,因为当时,,所以,又因为函数定义在上的偶函数,所以.所以当时,,如图所示:因为,所以,解得:.故选A.【考点】函数的奇偶性,抽象函数及其应用.26.已知函数为奇函数,且当时,则当时,的解析式( )A.B.C.D.【答案】B【解析】因为求当时,的解析式时的解析式,设在任意的则,.又因为函数为奇函数.所以.故选B.本小题考查的分段函数的奇偶性问题.【考点】1.分段函数的解析式.2.函数的奇偶性.27.设函数,其中为已知实数,,则下列各命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则【答案】D【解析】由函数,可化简得:,则,,则在中,若,则,即正确;在中,若,则函数,有是奇函数,即正确; 在中,若,则函数,有是偶函数,即正确;在中,由知不同时为,则函数的最小正周期为,若,则,即错误.【考点】1.三角化简;2.函数的奇偶性;3.函数的同周期性28.若为偶函数,且是的一个零点,则-一定是下列哪个函数的零点()A.B.C.D.【答案】D【解析】因为函数为偶函数.所以f(-x)=f(x).是的一个零点所以.又因为.所以.即.所以是函数的零点.即是函数的零点.因为.所以是函数的零点.故选D.【考点】1.函数的奇偶性.2.函数的零点问题.3.函数的对称性.29. R上的奇函数满足,当时,,则()A.B.C.D.【答案】A【解析】据题意得,这是一个周期为3的周期函数,且为奇函数.所以.选A.【考点】函数的性质.30.是定义在R上的以3为周期的偶函数,且,则方程在区间(0,6)内解的个数的最小值是 .【答案】【解析】因为函数是周期为的偶函数,所以由可知,,,所以有,,所以在区间内,方程至少有,,,四个解.【考点】1.函数的周期性;2.偶函数31.若函数,则函数()A.是偶函数,在是增函数B.是偶函数,在是减函数C.是奇函数,在是增函数D.是奇函数,在是减函数【答案】A【解析】由定义易得,函数为奇函数.求导得:.(这里之所以在分子提出来,目的是便于将分子求导)再令,则.当时,,所以在时单调递减,,从而.所以在上是减函数,由偶函数的对称性知,在上是增函数.巧解:由定义易得,函数为奇函数.结合选项来看,函数在上必单调,故取特殊值来判断其单调性. ,,所以在上是减函数,由偶函数的对称性知,在上是增函数.选A【考点】函数的性质.32.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.33.设函数是定义在R上的偶函数,当时,,若,则实数的值为【答案】【解析】当时,由有,得,又由函数是定义在R上的偶函数,根据对称性知,当时,由,应有,所以实数的值为.【考点】函数的奇偶性.34.若为奇函数且在)上递增,又,则的解集是()A.B.C.D.【答案】D【解析】为奇函数且在上递增,则在上递减.又,所以等价于.根据题设作出的大致图象如图所示:由图可知,的解集是:.所以选D.【考点】1、抽象函数;2、函数的单调性和奇偶性;3、解不等式.35.已知可以表示为一个奇函数与一个偶函数之和,若不等式对于恒成立,则实数的取值范围是____________.【答案】【解析】依题意,g(x)+h(x)= .....(1),∵g(x)是奇函数,∴g(-x)=-g(x);∵h(x)是偶函数,∴h(-x)=h(x);∴g(-x)+h(-x)="h(x)-g(x)=" (2)解(1)和(2)组成的方程组得h(x)=,g(x)=∴ag(x)+h(2x)=a +,∴a· +≥0在x∈[1,2]恒成立令t=,∴=,当x∈[1,2]时,t∈[2,4],∴原不等式化为a(t-)+(t2+)≥0在t∈[2,4]上恒成立,由不等式a(t-)+(t2+)≥0,可得a(t-)≥-(t2+),∵当t∈[2,4]时,t-t>0恒成立,∴a≥ == ,即a≥在t∈[2,4]上恒成立,令u=t-,求导得=1+>0恒成立,∴u=t-在t∈[2,4]上单调递增∴u∈[ ],令f(u)=u+,u∈[],求导得(u)=1->0在u∈[]上恒成立,∴f(u)在u∈[]上单调递增即当u=,f(u)取最小值f()= ,当u=时,可解得t=2(另一根不在t∈[2,4]内故舍去)∴当t=2时,取最小值为,即取最大值为-,∴a≥-,当t=2,x=1时取等号,∴a的最小值为-.【考点】1.函数的奇偶性;2.不等式的性质;3.导数的性质.36.已知是奇函数,且.若,则_______ .【答案】【解析】令为奇函数, ,,从而,.【考点】函数的奇偶性.37.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】.【解析】当时,,解得;当时,,由于函数是偶函数,,解得,综上所述,.【考点】函数的奇偶性38.已知偶函数满足,且在区间上单调递增.不等式的解集为()A.B.C.D.【答案】B【解析】因为偶函数在区间上是增函数且,所以可化为,则有,解得的取值范围是,选B.【考点】函数的性质。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,(x+1),则f(-2012)+f(2013)=________________.f(x)=log2【答案】1【解析】试题分析:∵函数f(x)是(-∞,+∞)上的偶函数,∴f(-x)=f(x),又∵对于x≥0都有f(x+2)=f(x),∴T=2∴f(-2012)+f(2013)=f(2012)+f(2013)=f(1006×2)+f(1006×2+1)=f(0)+f(1)=log21+log22=1.故答案为:1.【考点】函数的周期性2.已知,分别是定义在上的偶函数和奇函数,且,则.【答案】.【解析】∵,∴,又∵,分别是定义在上的偶函数和奇函数,∴,,∴,∴.【考点】函数的奇偶性.3.已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则( ).A.B.C.D.【答案】C【解析】由定义在上的函数是奇函数且满足知,= = =,所以= = = =,所以的周期为3,由得,,当n≥2时,=,所以=,所以=-3,=-7,=-15,=-31,=-63,所以 ====3,故选C.【考点】函数的奇偶性、周期性,数列的递推公式,转化与化归思想4.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C.【考点】函数的奇偶性.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.若是偶函数,则____________.【答案】【解析】因为函数为偶函数,所以,故填.【考点】奇偶性对数运算7. [2013·重庆高考]已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log10))=5,则f(lg(lg2))=2()A.-5B.-1C.3D.4【答案】C【解析】∵f(x)=ax3+bsinx+4,①∴f(-x)=a(-x)3+bsin(-x)+4,即f(-x)=-ax3-bsinx+4,②①+②得f(x)+f(-x)=8,③又∵lg(log10)=lg()=lg(lg2)-1=-lg(lg2),2∴f(lg(log10))=f(-lg(lg2))=5,2又由③式知f(-lg(lg2))+f(lg(lg2))=8,∴5+f(lg(lg2))=8,∴f(lg(lg2))=3.故选C.8.已知函数y=f(x)是定义在R上且以3为周期的奇函数,当x∈时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数为()A.3B.5C.7D.9【答案】C【解析】当x∈时,-x∈,f(x)=-f(-x)=-ln(x2+x+1);则f(x)在区间上有3个零点(在区间上有2个零点).根据函数周期性,可得f(x)在上也有3个零点,在上有2个零点.故函数f(x)在区间[0,6]上一共有7个零点.9.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】由题意知f(x)与|g(x)|均为偶函数.A项,偶+偶=偶;B项,偶-偶=偶,错;C项与D项分别为偶+奇=偶,偶-奇=奇,均不恒成立.10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=()A.﹣3B.﹣1C.1D.3【答案】A【解析】因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选A.11.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.12.已知是奇函数,且,若,则= .【答案】【解析】因为为奇函数,所以.∵,∴,∴.13.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.14.已知函数是定义在上的偶函数,且对任意,都有,当时,,设函数在区间上的反函数为,则的值为()A.B.C.D.【答案】D【解析】由得,所以函数周期为,所以时,,所以=,又函数为偶函数,所以时,则=.令==19,解得=,从而=,故选D.【考点】1、反函数;2、函数奇偶性的性质;3、函数的周期性.15.设偶函数满足,则( )A.B.C.D.【答案】B【解析】的解集为,因为是偶函数,关于轴对称,所以的解集为或,那么的解集为或,故解集为或,故选B.【考点】1.函数的奇偶性;2.解不等式.16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.若函数f(x)=(a+)cosx是奇函数,则常数a的值等于()A.-1B.1C.-D.【答案】D【解析】设g(x)=a+,t(x)=cosx,∵t(x)=cosx为偶函数,而f(x)=(a+)cosx为奇函数,∴g(x)=a+为奇函数,又∵g(-x)=a+=a+,∴a+=-(a+)对定义域内的一切实数都成立,解得:a=.18.设a为实数,函数f(x)=x3+ax2+(a-2)x的导数是f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=-2x B.y=3xC.y=-3x D.y=4x【答案】A【解析】由已知得f′(x)=3x2+2ax+a-2为偶函数,∴a=0,∴f(x)=x3-2x,f′(x)=3x2-2.又f′(0)=-2,f(0)=0,∴y=f(x)在原点处的切线方程为y=-2x.19.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】当x≥0时,f(x)=x2-4x<5的解集为[0,5),又f(x)为偶函数,所以f(x)<5的解集为(-5,5).由于f(x)向左平移两个单位即得f(x+2),故f(x+2)<5的解集为{x|-7<x<3}.20.已知是定义域为R的奇函数,当x≤0时,,则不等式的解集是()A.(5,5)B.(1,1)C.(5,+)D.(l,+)【答案】C【解析】因为是定义在R上的奇函数,所以对于任意实数x,都有且.又当时,则当时,,有,所以:,则,解不等式,即或或得,选C.【考点】函数的奇偶性,分段函数,一元二次不等式的解法.21.设函数()(Ⅰ)若函数是定义在R上的偶函数,求a的值;(Ⅱ)若不等式对任意,恒成立,求实数m的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)函数是定义在R上的偶函数,则恒成立,代入解析式得:,.即对任意都成立,由此得,.(Ⅱ)不等式对任意,恒成立,则小于等于的最大值,而.所以对任意恒成立,令,这是关于的一次函数,故只需取两个端点的值时不等式成立即可,即,解之即可得实数m的取值范围.试题解析:(Ⅰ)由函数是定义在R上的偶函数,则恒成立,即,所以,所以恒成立,则,故. 4分(Ⅱ).所以对任意恒成立,令,由解得,故实数m的取值范围是. 12分【考点】1、函数的奇偶性;2、不等式恒成立问题.22.函数f(x)是偶函数,则下列各点中必在y=f(x)图象上的是( )A.B.C.D.【答案】A【解析】由于函数上必过点.又因为函数是偶函数所以函数经过点 .又因为.所以函数一定经过和.故选A.本小题关键是考查函数的的奇偶性问题.【考点】1.函数的奇偶性.2.函数的对称性问题.23.已知函数是上的奇函数,且的图象关于直线对称,当时,,则 .【答案】-1【解析】∵的图象关于直线对称,∴,又是上的奇函数,∴,∴,即4为的周期,∴.由时,,得,由,得,∴,故答案为.【考点】函数的奇偶性、周期性24.已知函数.(1)当时,判断的奇偶性,并说明理由;(2)当时,若,求的值;(3)若,且对任何不等式恒成立,求实数的取值范围.【答案】(1)既不是奇函数,也不是偶函数;(2)所以或;(3)当时,的取值范围是,当时,的取值范围是;当时,的取值范围是.【解析】(1)时,为确定的函数,要证明它具有奇偶性,必须按照定义证明,若要说明它没有奇偶性,可举一特例,说明某一对值与不相等(不是偶函数)也不相反(不是奇函数).(2)当时,为,这是含有绝对值符号的方程,要解这个方程一般是分类讨论绝对值符号里的式子的正负,以根据绝对值定义去掉绝对值符号,变成通常的方程来解.(3)不等式恒成立时要求参数的取值范围,一般要把问题进行转化,例如分离参数法,或者转化为函数的最值问题.即为,可以先把绝对值式子解出来,这时注意首先把分出来,然后讨论时,不等式化为,于是有,即,这个不等式恒成立,说明,这时我们的问题就转化为求函数的最大值,求函数的最小值.试题解析:(1)当时,既不是奇函数也不是偶函数(2分)所以既不是奇函数,也不是偶函数(4分)(2)当时,,由得(1分)即(3分)解得(5分)所以或(6分)(3)当时,取任意实数,不等式恒成立,故只需考虑,此时原不等式变为(1分)即故又函数在上单调递增,所以;(2分)对于函数①当时,在上单调递减,,又,所以,此时的取值范围是(3分)②当,在上,,当时,,此时要使存在,必须有,此时的取值范围是(4分)综上,当时,的取值范围是当时,的取值范围是;当时,的取值范围是(6分)【考点】(1)函数的奇偶性;(2)含绝对值的方程;(2)含参数的不等式恒成立问题.25.如图,直角坐标平面内的正六边形ABCDEF,中心在原点,边长为a,AB平行于x轴,直线(k为常数)与正六边形交于M、N两点,记的面积为S,则关于函数的奇偶性的判断正确的是()A.一定是奇函数B.—定是偶函数C.既不是奇函数,也不是偶函数D.奇偶性与k有关【答案】B【解析】:∵当直线与边重合时,,当直线与重合时,,∴,∵正六边形即是中心对称图形又是轴对称图形,∴函数为偶函数.【考点】1.函数的奇偶性;2.数形结合思想.26.设函数是偶函数,则实数的值为___________.【答案】-1.【解析】因是偶函数,则,所以.【考点】函数的奇偶性.27.设是周期为2的奇函数,当时,=,则=.【答案】【解析】由是周期为2的奇函数可知,.【考点】函数的周期性与奇偶性.28.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.29.已知m为常数,函数为奇函数.(1)求m的值;(2)若,试判断的单调性(不需证明);(3)若,存在,使,求实数k的最大值.【答案】(1);(2)在R上单调递增;(3).【解析】(1)由奇函数的定义得:,将解析式代入化简便可得m的值;(2),结合指数函数与反比例函数的单调性,便可判定的单调性;(3)对不等式:,不宜代入解析式来化简,而应将进行如下变形:,然后利用单调性去掉,从而转化为:.进而变为:.由题设知:.这样只需求出的最大值即可.将配方得:.所以在时,取得最大值,最大值为10.∴,从而.试题解析:(1)由,得,∴,即,∴. 4分(2),在R上单调递增. 7分(3)由,得, 9分即.而在时,最大值为10.∴,从而 12分【考点】1、函数的奇偶性和单调性;2、二次函数的最值;3、不等关系.30.已知函数是上的偶函数,若对于,都有,且当时,,则=____________.【答案】1【解析】由题意可知函数的周期,于是,又函数是上的偶函数,所以,则.【考点】周期函数、奇偶性.31.若函数满足,且时,,则函数的图象与函数的图象的交点的个数为()A.3B.4C.6D.8【答案】C【解析】由题意知,函数是个周期为2的周期函数,且是个偶函数,在一个周期上,图象是两条斜率分别为1和-1的线段,且,同理可得到在其他周期上的图象.函数也是个偶函数,先看在[0,+∞)上的交点个数,则它们总的交点个数是在[0,+∞)上的交点个数的2倍,在(0,+∞)上,,图象过(1,0),和(4,1),是单调增函数,与交与3个不同点,∴函数的图象与函数的图象的交点的个数为6个,故选.【考点】函数的奇偶性、周期性,对数函数的图象和性质.32.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性33.已知是定义域为实数集的偶函数,,,若,则.如果,,那么的取值范围为( )A.B.C.D.【答案】B【解析】∵,,,则,∴定义在实数集上的偶函数在上是减函数.∵, ∴, 即.∴或解得或.∴.故选B.【考点】函数的奇偶性、单调性.34.函数()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.35.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。
函数的奇偶性题型解析(含答案)
函数奇偶性的判定问题1. 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|;(2)f (x )=(x -1)·xx -+11; (3)f (x )=2|2|12-+-x x ; (4)f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x (5)xx x f 2)21()(2+= 2.判断下列函数的奇偶性2211(0)2()11(0)2x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩3.判断函数f (x )=⎩⎪⎨⎪⎧ x 3-3x 2+1x >0x 3+3x 2-1x <0的奇偶性.4.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是( )答案:BA. B.C. D.1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )AA .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数5.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A. 1 B. 2 C. 3 D. 47.若y =(m +1)x 2+8mx +3是偶函数,则m =_________.0【例15】若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间。
2.已知函数是偶函数,那么是( )答案:A A.奇函数 B.偶函数C.既奇且偶函数D.非奇非偶函数已知函数121)(+-=x a x f )(R x ∈,若)(x f 为奇函数,则=a ___;9.若f (x )=1222+-+⋅x x a a 为奇函数,求实数a 的值.2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) AA .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =01.设函数的定义域为,且是奇函数,则实数a 的值是( )答案:CA. B.1 C.D.36.已知函数是偶函数,且,则的值为( )答案:DA.-1B.1C.-5D.54.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )AA .-26B .-18C .-10D .102.已知函数)(x f y =为R 上的奇函数,若1)2()3(=-f f ,则=---)3()2(f f ____;5.函数1111)(22+++-++=x x x x x f 是( )BA .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数8.函数2122)(x x x f ---=奇偶性为_____奇函数___(填奇函数或偶函数))(x f 是定义在R 上的奇函数,则)0(f =___;若有3)2(=-f ,则=)2(f ___;若7)5(=f ;则=-)5(f ___;已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f 。
高一数学函数的奇偶性试题答案及解析
高一数学函数的奇偶性试题答案及解析1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。
【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。
2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.设函数为奇函数,,,则=()A.0B.C.D.-【答案】C.【解析】由题意知,,又因为函数为奇函数,所以,且,再令中得,,即,所以,故选C.【考点】函数的奇偶性;抽象函数.4.已知为偶函数,当时,,则满足的实数的个数为().A.2B.4C.6D.8【答案】D【解析】令,则,解得;又因为为偶函数,所以当时,,则或;当时,,方程无解;,方程有两解;,方程有一解;,方程有一解;即当时,有四解,由偶函数的性质,得当时,也有四解;综上,有8解.【考点】函数的性质、方程的解.5.偶函数满足,且在时,,若直线与函数的图像有且仅有三个交点,则的取值范围是()A.B.C.D.【答案】B【解析】因为,所以函数的图像关于直线对称,又是偶函数,所以,即有,所以是周期为2的函数,由,得,即,画出函数和直线的示意图因为直线与函数的图像有且仅有三个交点,所以根据示意图易知:由直线与半圆相切,可计算得到,由直线与半圆相切可计算得到,所以,选B.【考点】1.函数的对称性、奇偶性、周期性;2.函数图像;3.直线与圆的位置关系;4.点到直线的距离公式.6.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.7.已知函数是偶函数(1)求k的值;(2)若函数的图象与直线没有交点,求b的取值范围;(3)设,若函数与的图象有且只有一个公共点,求实数的取值范围【答案】(1);(2);(3)【解析】(1)因为函数是偶函数,所以根据偶函数的定义,得到一个关于x,k的等式.由于对于任意的x都成立,相当于恒过定点的问题,所以求得k的值.(2)因为函数的图象与直线没有交点,所以对应的方程没有解,利用分离变量的思维可得到一个等式,该方程无解.所以等价两个函数与没有交点,所以求出函数的最值.即可得到b的取值范围.(3)因为,若函数与的图象有且只有一个公共点,所以等价于方程有且只有一个实数根.通过换元将原方程化为含参的二次方程的形式,即等价于该二次方程仅有一个大于零的实根,通过讨论即可得到结论.试题解析:(1)因为为偶函数,所以,即对于任意恒成立.于是恒成立,而不恒为零,所以. 4分(2)由题意知方程即方程无解.令,则函数的图象与直线无交点.因为,由,则,所以的取值范围是 . 8分(3)由题意知方程有且只有一个实数根.令,则关于的方程 (记为(*))有且只有一个正根.若,则,不合题意, 舍去;若,则方程(*)的两根异号或有两相等正根.由或;但,不合题意,舍去;而;若方程(*)的两根异号综上所述,实数的取值范围是. 12分【考点】1.函数的奇偶性.2.函数的与方程的思想的转化.3.换元法的应用.4.含参数的方程的根的讨论.8.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.9.定义在上的函数,对任意都有,当时,,则________.【答案】【解析】由可知函数是周期函数且周期为;所以,而当时,,故.【考点】1.函数的周期性;2.抽象函数;3.函数的解析式.10.已知是定义在上的奇函数,当时,,那么的值是( ) A.B.C.D.【答案】A【解析】因为是定义在上的奇函数,所以.【考点】奇函数的定义.11.已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D.【答案】A【解析】因为函数的定义域为,所以在函数中,,则函数的定义域为,又因为为偶函数,所以,故选A.【考点】本题主要考查了抽象函数的定义域,以及偶函数的性质.12.已知定义在R上的单调递增函数满足,且。
高一数学函数的奇偶性试题答案及解析
高一数学函数的奇偶性试题答案及解析1.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断2.若定义在上的奇函数和偶函数满足,则()A.B.C.D.【答案】A【解析】为奇函数和为偶函数,由可得,即,,可解得.故选A.【考点】函数的奇偶性.3.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,如图所示,那么不等式f(x)cosx<0的解集是( ).A.B.C.D.【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.【考点】奇函数的性质,余弦函数的图象,数形结合思想.4.已知函数为偶函数,且若函数,则= .【答案】2014【解析】由函数为偶函数,且得从而,故应填入2014.【考点】函数的奇偶性.5.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.6.函数的图像大致是()【答案】A【解析】因为的定义域为且,所以为上的偶函数,该函数的图像关于轴对称,只能是图像A、C选项之一,而,故选A.【考点】1.函数的图像;2.函数的奇偶性.7.已知,,则_ ____.【答案】5【解析】函数,,又为奇函数,所以.【考点】函数奇偶性.8.已知是奇函数,且,则.【解析】令,因为此函数是奇函数,所以。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数则实数的取值范围是()A.B.C.D.【答案】C【解析】由偶函数定义可得是偶函数,故,原不等式等价于,又根据偶函数定义,,函数在单调递增,,.【考点】函数的性质、解不等式.2.设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=()x,若对任意的x∈[a, a+l],不等式f(x+a)≥f2(x)恒成立,则实数a的取值范围是____ 。
【答案】【解析】是定义在上的偶函数,不等式恒成立等价为恒成立,当时,不等式等价为恒成立,即在上恒成立,平方得,即在上恒成立,设,则满足,∴,即.【考点】1.函数的奇偶性;2.利用函数性质解不等式.3.设f(x)是定义在R上的奇函数,当x<0时,f(x)=x+e x(e为自然对数的底数),则f(ln 6)的值为________.【答案】ln 6-【解析】由f(x)是奇函数得f(ln 6)=-f(-ln 6)=-(-ln 6)-e-ln 6=ln 6-.4.已知函数为偶函数,且,若函数,则.【答案】.【解析】设,则为偶函数,由于,另一方面,所以,故.【考点】函数的奇偶性5.已知函数f(x)是(-∞,+∞)上的偶函数,且f(5+x)=f(5-x),在[0,5]上只有f(1)=0,则f(x)在[-2 012,2 012]上的零点个数为()A.804B.805C.806D.808【答案】C【解析】f(5+x)=f(5-x)=f(x-5),故f(x)是周期为10的偶函数,且f(9)=f(1)=0,f(x)在[0,2 010]上有402个零点,f(2 011)=f(1)=0,故f(x)在[0,2 012]上有403个零点,又f(x)是偶函数,故f(x)在[-2 012,2 012]上共有806个零点.6.下列函数为偶函数的是A.y=sinx B.y=C.y=D.y=ln【答案】D【解析】观察可得:四个选项的定义域均为R,且只有函数y=ln是偶函数,故选D.【考点】本题考查函数的性质(奇偶性),属基础题.7.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=( )A.-2B.0C.1D.2【答案】A【解析】当x>0时,f(x)=x2+,∴f(1)=12+=2.∵f(x)为奇函数,∴f(-1)=-f(1)=-2.8.已知定义在实数集上的偶函数满足,且当时,,则关于的方程在上根的个数是()A.B.C.D.【答案】B【解析】由题意可得,.即函数为周期为的周期函数,又是偶函数,所以,在同一坐标系内,画出函数,的图象,观察它们在区间的交点个数,就是方程在上根的个数,结合函数图象可知,共有个交点,故选.【考点】函数的奇偶性、周期性,函数的图象,函数的零点.9.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.10.设函数是偶函数,则实数a的值为_______【答案】【解析】∵函数是偶函数设,则为奇函数∴.11.函数是定义在R上的奇函数,当时,,则函数的零点为( )A.2B.C.3D.0【答案】D【解析】∵是的反函数∴的零点即为的值.又函数是定义在R上的奇函数,∴∴的零点为012.函数则函数是()A.奇函数但不是偶函数B.偶函数但不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数【答案】A【解析】当时,,,,…,当时,,由数学归纳法知对任意的,有,同理当时,,因此的定义域是且不可能是偶函数,由于是奇函数,,假设是奇函数,则,即也是奇函数,因此对任意的,有是奇函数,本题选A.【考点】数学归纳法,函数的奇偶性.13.设函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2015)=________.【答案】1【解析】由条件,f(2015)=f(671×3+2)=f(2)=f(-1)=-f(1)=1.14.判断下列函数的奇偶性:(1)f(x)=x3-;(2)f(x)=;(3)f(x)=(x-1);(4)f(x)=.【答案】(1)奇函数(2)奇函数(3)既不是奇函数也不是偶函数(4)既是奇函数也是偶函数【解析】(1)定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2)去掉绝对值符号,根据定义判断.由得.故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x+2>0.从而有f(x)=,这时有f(-x)==-f(x),故f(x)为奇函数.(3)因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4)因为f(x)定义域为{-,},所以f(x)=0,则f(x)既是奇函数也是偶函数15.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为.【答案】(-5,0)∪(5,+∞)【解析】设x<0,则-x>0,f(-x)=x2+4x,所以x<0时,f(x)=-x2-4x.所以f(x)=当x≥0时,由x2-4x>x,解得x>5,当x<0时,由-x2-4x>x,解得-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).16.已知函数f(x)=为奇函数,则f(g(-1))=()A.-20B.-18C.-15D.17【答案】C【解析】由于函数f(x)是奇函数,所以g(x)=-f(-x)=-x2+2x,g(-1)=-3.故f(-3)=g(-3)=-15.17.若二次函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=.【答案】-2x2+4【解析】【思路点拨】化简f(x),函数f(x)为偶函数,则一次项系数为0可求b.值域为(-∞,4],则最大值为4,可求2a2,即可求出解析式.解:∵f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2是偶函数,则其图象关于y轴对称.∴2a+ab=0,∴b=-2或a=0(舍去).∴f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],∴2a2=4,f(x)=-2x2+4.18.已知函数f(x)为奇函数,且当x>0时, f(x) =x2+,则f(-1)=()A.-2B.0C.1D.2【答案】A【解析】f(-1)=-f(1)=-2.19.设a为实数,函数f(x)=x3+ax2+(a-2)x的导数是f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=-2x B.y=3xC.y=-3x D.y=4x【答案】A【解析】由已知得f′(x)=3x2+2ax+a-2为偶函数,∴a=0,∴f(x)=x3-2x,f′(x)=3x2-2.又f′(0)=-2,f(0)=0,∴y=f(x)在原点处的切线方程为y=-2x.20.已知函数=x+sinx.项数为19的等差数列满足,且公差.若,则当=__________时, .【答案】10【解析】函数的定义域为,且,所以为奇函数。
【高中数学】函数的奇偶性 (含答案详解)
B. f (−2) f (1) f (−1)
C. f (−2) f (−1) f (1)
D.无法确定
6.已知函数 f (x) 是偶函数,其图象与 x 轴有 9 个交点,则方程 f (x) = 0 的所有实根之和为
()
A.0
B.3
C.6
D.9
7.若函数 f (x) =
x
为奇函数,则 a = .
请你写出你认为比较常见的奇函数: y = x 偶函数: y = x2
3.函数奇偶性的判断方法
y=1 x
y
=
1 x2
y = x3
利用定义法判断函数奇偶性的步骤是:
① 首先考察定义域是否关于原点对称;
② 然后验证 f (−x) = f (x) 或 f (−x) = − f (x) .
二、课堂练习
1.判断具体函数的奇偶性 例 1.判断下列函数的奇偶性 (1) f (x) = x + 1
(2) f (x) = 2x2 + 2x ; x +1
(3)
f
(x)
=
x(1 − x(1 +
x), x),
x x
0 0
.
2.判断下列函数的奇偶性:
(1) f (x) = x − 1 ; x
(2) f (x) = x + 1 ; x
(3)
f
(x)
=
−x2 + x + 1, x
x2
+
x
− 1,
x
0
(1)一次函数 y = kx + b 为奇函数,则 b 要满足的条件是 b = 0 .
(2)二次函数 y = ax2 + bx + c 为偶函数,则要满足的条件是 b = 0 .
高一数学函数的奇偶性试题答案及解析
高一数学函数的奇偶性试题答案及解析1.已知是定义在上的奇函数,当时,则当时___________.【答案】【解析】设,则,又是定义在上的奇函数,则,故填.【考点】函数的奇偶性.2.设是定义在R上的奇函数,且的图象关于直线对称,则=________【解析】因为是定义在R上的奇函数,所以f(-x)=-f(x).又因为的图象关于直线对称.所以f(x)=f(1-x).所以由上两式可得f(1-x)=-f(-x)即f(-x)="-" f(1-x)=f(2-x).所以函数是一个周期为2的函数.所以.又因为函数是R上的奇函数所以,.所以填0.【考点】1.函数的周期性.2.函数的对称性.3.函数的奇偶性.3.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性4.已知函数,下列叙述(1)是奇函数;(2)是奇函数;(3)的解为(4)的解为;其中正确的是________(填序号).【答案】(1)(3)【解析】这类问题,必须对每个命题都判断其真假,根据的解析式,显然对任意的都有,即是奇函数,(1)正确;当然此时函数是偶函数,(2)错误;对(3)按照分类讨论,可解得不等式的解是,(3)正确;而对不等式来讲,时,不等式就不成立,故(4)错误.填(1)(3).【考点】分段函数,函数的奇偶性,分类讨论.5.已知是定义在上的偶函数,那么=【答案】【解析】是定义在上的偶函数,因为偶函数定义域关于原点对称,,又由偶函数关于轴对称得:,所以【考点】偶函数的性质应用6.已知函数是定义在上的偶函数.当时,,则当时,.【答案】【解析】把转化为,利用偶函数的定义即可得所求.试题解析:时,.所以,.因为是是定义在上的偶函数,所以.【考点】偶函数,转化与化归思想7.定义在上的奇函数,当时,,则方程的所有解之和为.【答案】【解析】利用奇函数的图象关于原点对称的性质,通过观察图象可知方程的解是及的解的相反数.试题解析:作出时的图象,如下所示:方程的解等价于的图象与直线的交点的横坐标,因为奇函数的图象关于原点对称,所以等价于()的图象与直线的交点的横坐标和()的图象与直线的交点的横坐标的相反数,.由得.所以方程的所有解之和为.【考点】奇函数,方程与函数思想8.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数是定义在R上的奇函数,,当时,有成立,则不等式的解集是A.B.C.D.【答案】A【解析】由当时,有成立,知函数的导函数在上恒成立,所以函数在上是增函数,又因为函数是定义在R上的奇函数,所以函数是定义域上的偶函数,且由得,由此可得函数的大致图象为:由图可知不等式的解集是.故选A.【考点】1.函数导数的求导法则;2.函数的奇偶性;3. 利用函数的单调性解不等式.2.若为偶函数,则实数 .【答案】.【解析】∵为偶函数,∴,.【考点】偶函数的性质.3.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x,则f(log94)的值为()A.-2B.C.D.2【答案】B【解析】根据对数性质,f(log94)=f(log32)因为f(x)是奇函数,于是f(log32)=-f(-log32)=-f(log3),且log3<0故f(log94)=-f(log3)=-【考点】函数的奇偶性,分段函数4.对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是()A.B.C.D.【答案】D【解析】由为准偶函数的定义可知,若的图象关于对称,则为准偶函数.在D 中,的图象关于对称,故选D.【考点】新定义,函数的图象和性质.5.下列函数为奇函数的是()A.B.C.D.【答案】A【解析】对于A选项中的函数,函数定义域为,,故A选项中的函数为奇函数;对于B选项中的函数,由于函数与函数均为奇函数,则函数为偶函数;对于C选项中的函数,定义域为,,故函数为偶函数;对于D选项中的函数,,,则,因此函数为非奇非偶函数,故选A.【考点】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题.6.已知是定义在上的奇函数,当时,,则函数的零点的集合为()A.B.C.D.【答案】D【解析】因为是定义在上的奇函数,当时,,所以,所以,由解得或;由解得,所以函数的零点的集合为,故选D.【考点】函数的奇偶性的运用,分段函数,函数的零点,一元二次方程的解法,难度中等.7.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.【答案】(1)π-4. (2)4【解析】解:(1)由f(x+2)=-f(x),得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,从而得f(π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,=4×(×2×1)=4.则S=4S△OAB8. x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]的最小正周期是________.【答案】1【解析】如图,当x∈[0,1)时,画出函数图像,再左右扩展知f(x)为周期函数.9.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于________.【答案】3【解析】由已知可得,-f(1)+g(1)=2,f(1)+g(1)=4,两式相加解得,g(1)=3.10.已知函数f(x)=为奇函数,则a+b=________.【解析】当x>0时,-x<0,由题意得f(-x)=-f(x),所以x2-x=-ax2-bx,从而a=-1,b=1,a+b=0.11.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=( )A.-2B.0C.1D.2【答案】A【解析】当x>0时,f(x)=x2+,∴f(1)=12+=2.∵f(x)为奇函数,∴f(-1)=-f(1)=-2.12.函数的图象大致是()A.B.C.D.【答案】A【解析】易知函数是偶函数,当x=0时,. 所以选A.13.设为定义在R上的奇函数,当时,(b为常数),则()A.3B.1C.D.【答案】D【解析】因为为定义在R上的奇函数,所以有,解得,所以当时,,即.14.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.15.将函数的图象向左平移个单位长度后得到函数,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数,也不是偶函数【答案】B【解析】,由题意知,因此函数为偶函数,故选B.【考点】1.三角函数图像变换;2.辅助角公式;3.三角函数的奇偶性16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.函数y=f(x-1)为奇函数,y=f(x+1)为偶函数(定义域均为R).若0≤x<1时,f(x)=2x,则f(10)=.【答案】1【解析】依题意得f(-x-1)=-f(x-1),f(-x+1)=f(x+1),所以f(x+4)=-f(x),f(x+8)=f(x),故函数周期为8.f(10)=f(2)=f(1+1)=f(1-1)=f(0)=1.18.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】∵g(x)是R上的奇函数,∴|g(x)|是R上的偶函数,从而f(x)+|g(x)|是偶函数,故选A.19.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.【解析】由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),故1-|1+a|=1-|-1+a|,所以a=0.20.函数是上的奇函数,是上的周期为4的周期函数,已知,且,则的值为___________.【答案】2【解析】本题就是要待计算式中的每个式子计算化简,由已知,,因此,,,,,从而已知式为,∴.【考点】奇函数与周期函数的定义.21.已知,函数且,且.(1) 如果实数满足且,函数是否具有奇偶性? 如果有,求出相应的值;如果没有,说明原因;(2) 如果,讨论函数的单调性。
高中函数试题及答案解析
高中函数试题及答案解析试题一:函数的奇偶性1. 判断函数f(x) = x^2 - 2x + 3的奇偶性,并说明理由。
2. 若f(x)为奇函数,且f(1) = 5,求f(-1)的值。
试题二:函数的单调性3. 判断函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上的单调性。
4. 若函数h(x) = 2x^3 - 6x^2 + 3x + 1在区间[-1, 1]上单调递减,求h'(x)的值。
试题三:复合函数的单调性5. 若f(x) = x^2 + 1,g(x) = 2x - 3,求复合函数f(g(x)),并判断其单调性。
6. 若复合函数f(g(x))在区间[-2, 1]上单调递增,求g'(x)的值。
试题四:函数的值域7. 求函数y = 3x + 2在x∈[-1, 4]上的值域。
8. 若函数y = 1/x在x∈(0, 1]上的值域为[2, +∞),求y的最小值。
试题五:函数的极值9. 求函数k(x) = x^3 - 3x^2 + 2x在x = 1处的极值。
10. 若函数m(x) = x^4 - 4x^3 + 4x^2 + 8x + 1在x = 2处取得极小值,求m'(x)和m''(x)的值。
答案解析:1. 函数f(x) = x^2 - 2x + 3为偶函数,因为f(-x) = (-x)^2 - 2(-x) + 3 = x^2 + 2x + 3 = f(x)。
2. 由于f(x)为奇函数,所以f(-1) = -f(1) = -5。
3. 函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上单调递增,因为g'(x) = -6x + 6,当x < 1时,g'(x) > 0。
4. 函数h(x)的导数h'(x) = 6x^2 - 12x + 3,由于h(x)在区间[-1, 1]上单调递减,所以h'(x) < 0,即6x^2 - 12x + 3 < 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)下列函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域内,则应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,故选A.(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.2.(2010·安徽理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A.3.(2010·河北唐山)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2+x +2),则f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2010·山东日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2010·辽宁锦州)已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.若g (x )=f (x )+2,则g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,则函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 则f (x )=4-x 2-x ,f (x )+f (-x )=0,故选B.7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.8.已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2011)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2011)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,故选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,则f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A. (理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sinπ6=π3>1,排除B ,故选C.二、填空题11.(文)已知f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.则f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)已知函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,则f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2 x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2010·山东枣庄模拟)若f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,则a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,则问题变得比较简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2010·吉林长春质检)已知函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,则使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2010·杭州外国语学校)已知f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2011).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)当x ∈[-2,0]时,-x ∈[0,2],由已知得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2008)+f (2009)+f (2010)+f (2011)=0.∴f (0)+f (1)+f (2)+…+f (2011)=0. 17.(文)已知函数f (x )=1-42a x +a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 若m >0,则n <0.则F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 若m <0,则n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。