复旦大学数学分析考研试题及答案
数学分析 复旦大学
第一章 集合
1.1 集合
1.2 数集及其确界
第二章 数列极限
2.1 数列极限
2.2 数列极限(续)
2.3 单调数列的极限
2.4 子列
第三章 映射Leabharlann 实函数 3.1 映射 3.2 一元实函数
3.3 函数的几何特性
第四章 函数极限和连续性
4.1 函数极限
4.2 函数极限的性质
4.3 无穷小量、无穷大量和有界量
第五章 连续函数和单调函数
5.1 区间上的连续函数
5.2 区间上连续函数的基本性质
5.3 单调函数的性质
第六章 导数和微分
6.1 导数概念
6.2 求导法则
6.3 高阶导数和其他求导法则
6.4 微分
第七章 微分学基本定理及应用
7.1 微分中值定理
7.2 Taylor展开式及应用
7.3 LHospital法则及应用
第八章 导数的应用
8.1 判别函数的单调性
8.2 寻求极值和最值
8.3 函数的凸性
8.4 函数作图
8.5 向量值函数
第九章 积分
9.1 不定积分
9.2 不定积分的换元法和分部积分法
9.3 定积分
9.4 可积函数类R[a,b]
第二十六章 Lebesgue积分
26.1 可测函数
26.2 若干预备定理
26.3 Lebesgue积分
26.4(L)积分存在的充分必要条件
26.5 三大极限定理
26.6 可测集及其测度
26.7 Fubini定理
练习及习题解答
复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex
− x ≤ sup S ,即 x ≥ − sup S ;同时对任意 ε > 0,存在 y ∈ S ,使得 y > sup S − ε ,
于是 − y ∈ T ,且 − y < − sup S + ε 。所以 − sup S 为集合 T 的下确界,即
inf T = − sup S 。
5. 证明有界数集的上、下确界唯一。 证 设 sup S 既等于 A ,又等于 B ,且 A < B 。取 ε = B − A > 0 ,因为 B 为
m
可能:
(i)⎜⎛ n ⎟⎞2 < 3 ,由(1)可知存在充分小的有理数 r > 0 ,使得 ⎜⎛ n + r ⎟⎞2 < 3 ,
⎝m⎠
⎝m ⎠
这说明 n + r ∈ S ,与 sup S = n 矛盾;
m
m
(ii) ⎜⎛ n ⎟⎞2 > 3 ,取有理数 r > 0 充分小,使得 4r − r 2 < ⎜⎛ n ⎟⎞2 − 3 ,于是
m +1
n < n < n + 1 ,所以 maxC 与 minC 都不存在。
m+1 m m+1
3. A, B 是两个有界集,证明:
(1) A ∪ B 是有界集;
(2) S = { x + y | x ∈ A, y ∈ B} 也是有界集。 证 (1)设 ∀x ∈ A ,有 x ≤ M1 , ∀x ∈ B ,有 x ≤ M 2 ,则 ∀x ∈ A ∪ B ,有
xn+k
= a。
证
设 lim n→∞
xn
=
a
,则 ∀ε
>
数学分析习题集10复旦大学
4 − x2 ,
x −1 , x0 = 1; x +1 1+ x ⑼ ln , x0 = 0; 1− x
⑴
⑻ (1+x) ln (1-x), ⑽
e−x , x0 = 0。 1− x
1 , n2 Sn(x) = nx(1 - x)n , x x Sn(x) = ln , n n xn , Sn(x) = 1+ xn Sn(x) = (sin x)n , x2 +
1 n
(ii) x ∈ (1,+∞ ) ); (ii) x ∈ (1,+∞ ) ;
⑽ Sn(x) = (sin x) ,
1. 讨论下列函数序列在指定区间上的一致收敛性。
(i) x ∈ (0,1) , x ∈ (0,+∞ ) ; (i) x ∈ (−∞,+∞ ) , (i) x ∈ (0,1) , x ∈ ( −∞,+∞ ) ; x ∈ [0,1] ; (i) x ∈ (0,1) , (i) x ∈ (0,1) , x ∈ [0, π ] ; (i) x ∈ [0,1] ,
3n ⎛ x − 1 ⎞ ⑸ ∑ ⎜ ⎟ ; n =1 n ! ⎝ 2 ⎠
∞
n
ln 2 n n 2 ⑹ ∑ n x ; n=2 n
⑻
∞
⑺ ⑼
n! n x ; ∑ n n =1 n
∞
( n !) 2 n x ; ∑ n =1 ( 2n) !
∞
∑ (2n + 1)!!xn =1 ∞来自∞(2n )!!
n
。
2. 设 a>b>0,求下列幂级数的收敛域。
习
1. 求下列幂级数的收敛半径与收敛域。
数学分析习题集5复旦大学
习
⒈ 对于
题
5.2
x→a +
lim
f ′( x ) = +∞ 或 − ∞ g ′( x )
⒉
的情况证明 L'Hospital 法则。 求下列极限: ⑴ lim
x→0
e x − e− x ; sin x
⑶ lim π
x→ 2
ln(sin x ) ; ( π − 2 x )2
sin 3 x ; tan 5 x xm − am ; lim n ⑷ x →a x − a n
x →+∞
26. 设 f ( x ) 在 ( a , + ∞ ) 上可导,并且 lim f ′( x ) = 0 ,证明 lim
x →+∞
27.设 f ( x ) 在 [ a , b] 连续,在 ( a, b) 二阶可导,证明存在 η ∈ ( a , b ) ,成立
2
f (x) = 0。 x
a+b ⎛b−a⎞ f (b) + f (a ) − 2 f ( )=⎜ ⎟ f " (η ) 。 2 ⎝ 2 ⎠ b−a ⎡a + b ⎤ (提示:在区间 ⎢ ) )。 , b ⎥ 上考虑函数 g ( x) = f ( x) − f ( x − 2 ⎦ ⎣ 2
⑴ 1) (1 + x) ln (1 + x) < x ;
2 2
1 1 1 1 −1 < − < 。 ln 2 ln(1 + x) x 2 14. 对于每个正整数 n ( n ≥ 2 ) ,证明方程 n x + x n −1 + " + x 2 + x = 1 在 (0,1) 内必有唯一的实根 x n ,并求极限 lim x n 。
数学分析(复旦大学版)课后题答案40-45
§udÃF¼êPÂÈ©§y{'4Gª§& 1 ln xy dx9uy Q[ , b ](b > 1)þÂñ. b
+∞ a A
ln
0
b dx x
Âñ
#f (x, y)Q[ a, +∞; c, d ]ë§é[ c, d)þzy§ f (x, y) dxÂñ§¢È©Qy = duÑ. y²ùÈ©Q[ c, d ]Âñ. y²µd f (x, d) dxuѧ&∃ε > 0, ∀A > a, ∃A , A A §¦ f (x, d) dx ε
dx [ p1 , p2 ]
Q
ë
2−p
dx [ p1 , p2 ]
Q
ë
6.
π −1 p 2−p 1 2 1 p π π −1 p 2−p p 2−p p1 2−p1 1 2 1−p1 x→π −0 1 p1 2−p1 p1 π 1 π −1 p−1 2−p1 π π −1 p 2−p 1 2 π p 2−p 1 2 π −1 p 1 2 π 0 p 2−p +∞ +∞
2−p
π −1 1 p 2−p
1 π −1 π sin x sin x sin x sin x dx = dx + dx + dx p (π − x)2−p p (π − x)2−p p (π − x)2−p p (π − x)2−p x x x x 0 0 1 π −1 1 sin x dx p 2−p 0 x (π − x) sin x sin x (0 x 1, 0 < p1 p p2 < 2) p 2 − p p 2 x (π − x) x (π − x)2−p2 sin x 1 lim xp2 −1 p = 2−p 2 − p 2 2 2 x→+0 x (π − x) π 1 sin x p2 < 2 p2 − 1 < 1 dx p2 (π − x)2−p2 x 0 1 sin x dx p ∈ [ p1 , p2 ] p (π − x)2−p x 0 1 sin x sin x (0 , 1 ] × [ p , p ] dx [ p1 , p2 ] 1 2 p (π − x)2−p xp (π − x)2−p x 0 π
数学分析习题集7复旦大学
∫
a
0
f ( x)dx +
∫0
b
f −1 ( y )dy ≥ ab
( a > 0, b > 0 ) 。
lim ∫a | f h ( x ) − f ( x )| dx = 0 。
h→ 0
b
12.设 f ( x ) 和 g ( x ) 在 [a , b] 上都可积,证明不等式 (1) (Schwarz 不等式) ⎡
f ( x) g ( x)dx ⎤ ≤ ∫ f 2 ( x)dx ⋅ ∫ g 2 ( x)dx ; ⎥ a a ⎦
b b
2
2
( x)dx
} + {∫ g ( x)dx}
1 2 b 2 a
1 2
。
lim ∫ [ f ( x)] g ( x)dx
n →∞ a
{
b
} = max f ( x)
7.3
⑵ F(x) =
⑴ 6.
⑵
⎧ − 1, x为有理数, f (x) = ⎨ x为无理数; ⎩1,
x ≠ 0, ⎧ sgn(sin π x ), = ⑷ f (x) ⎨ x = 0. ⎩ 0,
1 在 f ( x)
设 f ( x ) 在 [a , b] 上可积,且在 [a , b] 上满足 | f ( x ) |≥ m > 0 ( m 为常数) ,证明
⑴ lim⎜
n→∞
8.
求下列定积分: ⑴ ⑶ (5)
∫0 cos n xdx ; ∫0 ( a 2 − x 2 ) n dx ;
1 ∫0 x
π 2
π
⑵ ⑷
∫−π sin n x dx ;
∫0 x
e
1 2
数学分析习题集9复旦大学
ln n
2
2n 2 ; ⑵ ∑ 3 n =1 n + 3n ∞ 1 ⑷ ∑ ; n =1 n ! ∞ π⎞ ⎛ ⑹ ∑ ⎜1 − cos ⎟ ; n⎠ n =1 ⎝
⑻ ⑽
∞
1
n
∑(
n =1
∞
n
n − 1) ;
n2 ; ∑ n n =1 2
∞
∑n
n =1 ∞ n =1
∞
2
e −n ;
[2 + (−1) n ]n ; ∑ 2 2 n +1 n =1 ∞ 2 n n! ⑿ ∑ n ; n =1 n
1+ 15. 利用级数的 Cauchy 乘积证明: (1)
1 ∞ (−1) n ⋅∑ = 1; ∑ n! n =0 n ! n =0
∞
(2) ⎜
⎛
∞ ⎞ n ⎞ ⎛ q qn ⎟ = ⎟ ⎜ ∑ ∑ ⎝ n =0 ⎠ ⎝ n =0 ⎠ ∞
∑ (n + 1)q
n =0
∞
n
=
1 (|q|<1 ) 。 (1 − q ) 2
12. 已知任意项级数
14. 利用
1 1 1 + + … + - ln n → γ ( n → ∞ ), 2 3 n ∞ (−1) n +1 其中 γ 是 Euler 常数(见例 2.4.8),求下述 ∑ 的更序级数的和: n n =1 1 1 1 1 1 1 1 1 1+ + + + + - + … 。 3 2 5 7 4 9 11 6
(a>0)。
2. 利用级数收敛的必要条件,证明: (1) lim
n →∞
(2)
数学分析复旦答案
数学分析复旦答案【篇一:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微分的方法算出每只球需要用铜多少克?(铜的密度为8.9g/cm3。
)解球体积v?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。
?0⒉用定义证明,函数y点之外都是可微的。
证当x?0时,?y?微。
当x?0时,?y???3x2在它的整个定义域中,除了x这一?x2是?x的低阶无穷小,所以y?x2在x?0不可?x?x?o(?x),所以y?x2在x?0是可微的。
习题 4.2 导数的意义和性质1.设f?(x0)存在,求下列各式的值:⑴⑵⑶lim?x?0f(x0??x)?f(x0) ?x;limx?x0f(x)?f(x0)x?x0;。
f(x0?(??x))?f(x0) (??x)??f(x0)。
limh?0f(x0?h)?f(x0?h) h解 (1)lim⑵⑶f(x0??x)?f(x0) ?xf(x)?f(x0)x?x0?x?0??lim?x?0x?x0lim?limf(x0?(x?x0))?f(x0) x?x0x?x0?0?f(x0)。
limf(x0?h)?f(x0?h) hf(x0?h)?f(x0)hh?0f(x0?h)?f(x0)hh?0?limh?0?lim?2f(x0)。
2.⑴用定义求抛物线y?2x2?3x?1的导函数;⑵求该抛物线上过点(?1,?2)处的切线方程;⑶求该抛物线上过点(?2,1)处的法线方程;⑷问该抛物线上是否有(a,b),过该点的切线与抛物线顶点与焦点的连线平行?解 (1)因为?y?x?2(x??x)?3(x??x)?1?(2x?3x?1)?xf(x)?lim?y?x?4x?3。
22?4x?3?2?x,所以?x?0(2)由于(3)由于f(?1)??1,切线方程为y??1?[x?(?1)]?(?2)??x?3。
f(?2)??5,法线方程为y??1?5[x?(?2)]?1?x?75。
复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】
由于对任意的 y∈[c,d],有下式成立
所以有
即
.
5 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 2 部分 多变量微分学
第 14 章 偏导数和全微分
解答题 1.已知
1 确定,且 h(x)具有所需的性质.求
所以对任意的 ε>0,取 在(0,0)处连续.
,则当
时,有
,故 f(x,y)
7 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
由于当(x,y)≠(0,0)时,
,故
4.讨论
在(0,0)点的连续性和可微性.[武汉大学研] 解:(1)连续性.可以令 x=ζcosθ,y=ζsinθ,因为
十万种考研考证电子书、题库视频学习平 台
故
12.
解:由
又由
得
[上海交通大学研] 得
,于是
13.设 z 由 求 [南京大学研]
解:由
得 ①式两端再对 x 求导得
定义为 x,y 的隐函数,其中 为二次连续可微,
两边对 x 求导 ①
所以 f(x,y)在(0,0)点连续. (2)可微性.由于 从而
选取特殊路径 y=kx,有 为 1,所以 f(x,y)在(0,0)点不可微.
5. 解:由于
,求 dz.[华东师范大学研]
8 / 54
,极限不
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故
.
6.函数 数.[天津大学研]
同时
,
.
5.若函数 f(x,y)在 上对 x 连续,且存在 L>0,对任意的 x、y′有
数学分析习题集8复旦大学
+∞
∫ [k
+∞ a
1
f ( x) + k 2 g ( x)]dx 也收敛,且
∫
⒊ ⑴
+∞
+∞
a
[k1 f ( x) + k 2 g ( x)]dx = k1 ∫
+∞
a
f ( x)dx + k 2 ∫ g ( x)dx 。
a
+∞
计算下列无穷区间的反常积分(发散也是一种计算结果) :
∫ 0 e −2 x sin 5xdx ;
习
⒈
题
8.1
∞ x q
物理学中称电场力将单位正电荷从电场中某点移至无穷远处所 做的功为电场在该点处的电位。一个带电量 + q 的点电荷产生 的电场对距离 r 处的单位正电荷的电场力为 F = k 数) ,求距电场中心 x 处的电位。
q ( k 为常 r2
图 8.1.4
⒉
证明:若
∫
+∞
a
f ( x)dx 和 ∫ g ( x)dx 收敛, k1和 k2 为常数,则
⑵
x q sin x dx ( p ≥ 0 ); 1+ x p
⑶
∫0
+∞
e sin x cos x dx ; xp
⑷
∫0
+∞
e sin x sin 2 x dx ; xp
1 1 (5) ∫0 p cos 2 dx ; x x
1
1⎞ ⎛ sin⎜ x + ⎟ (6) + ∞ x⎠ ⎝ dx ∫1 p x
⑴
∫2
+∞
⑵ ⑷
∫1
+∞
数学分析复旦大学第四版答案实数基本定理
数学分析复旦大学第四版答案实数基本定理【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。
(1)域公理:(2)全序公理:则或a中有最大元而a中无最小元,或a中无最大元而a中有最小元。
评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。
二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。
主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1证明dedekind分割原理与确界原理的等价性。
习题2用区间套定理证明有限覆盖定理。
习题3用有限覆盖定理证明聚点定理。
评注以上定理哪些能够推广到欧氏空间r?如何叙述?n2闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4用有限覆盖定理证明有界性定理习题5用致密性定理证明一致连续性定理3数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)n定义评注确界定义易于理解;聚点定义易于计算;n定义易于理论证明习题6用区间套定理证明有界数列最大(小)聚点的存在性。
复旦版数学分析答案
⒊ 指出下列表述中的错误:
(1) {0} = ∅ ;
(2) a ⊂ { a,b, c } ;
(3) { a,b } ∈{ a,b, c } ;
(4) { a,b,{a,b} } = { a,b } 。
解 (1){0}是由元素 0 构成的集合,不是空集。
(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)
设f⎜⎛ ⎝xx −{a,b,{a,b}} ⊃ { a,b } ,但{a,b,{a,b}} ≠ { a,b } 。
⒋ 用集合符号表示下列数集:
(1)
满足
x x
− +
3 2
≤
0
的实数全体;
(2) 平面上第一象限的点的全体;
(3) 大于 0 并且小于 1 的有理数全体;
(4) 方程 sin x cot x = 0 的实数解全体。
⒎ 下述命题是否正确?不正确的话,请改正。 (1) x ∈ A ∩ B ⇔ x ∈ A 并且 x ∈ B ; (2) x ∈ A ∪ B ⇔ x ∈ A 或者 x ∈ B 。
解(1)不正确。 x ∈ A ∩ B ⇔ x ∈ A 或者 x ∈ B 。 (2)不正确。 x ∈ A ∪ B ⇔ x ∈ A 并且 x ∈ B 。
第一章 集合与映射
习 题 1.1 集合
复旦版数学分析答案全解ex14-5
f ′(r) + z 2 r2
f ′′(r) ,
所以
div[grad f (r)] = 2 f ′(r) + f "(r) 。
r
由 div[grad f (r)] = 0 ,得 2 f ′(r) + rf ′′(r) = 0 ,解此微分方程,得到
f
(r)
=
c1 r
+
c2
,
其中 c1, c2 为任意常数。
方向 n = i + 2 j + 2k 的环量面密度。
解由
i jk
rotr = ∂ ∂ ∂ = x(z − y)i + y(x − z)j + z( y − x)k ,
∂x ∂y ∂z
xyz xyz xyz
可得
rot r (M ) = −i − 3j + 4k 。
向量场 r = xyz(i + j + k) 在点 M (1,3,2) 沿方向 n 的环量面密度为
(2)圆周 x2 + y2 = 4, z = 1,从 z 轴正向看去为顺时针方向。
解 经计算,可得
a
=
grad⎜⎛ arctan ⎝
y x
⎟⎞ ⎠
=
x2
1 +
y2
(− y, x, 0) ,
2
i
j
k
∂ rot a =
∂
∂ =0,
∂x
∂y
∂z
−y
x
x2 + y2 x2 + y2
0
它在除去 z 轴的空间上是无旋场。
(2)满足 div[grad f (r)] = 0 的函数 f (r) 。