温室智能控制系统的软件设计

合集下载

基于plc控制的温室大棚系统设计

基于plc控制的温室大棚系统设计
我国温室产业起步比较晚。自70年代末起,我国先后从日本、美国、荷兰和保加利亚等国引进了40套左右的现代化温室成套设备。虽然这些温室技术领先、设备先进,但在我国的使用过程中还存在较严重问题,主要有以下几点:引进价格高,运行经济效益差;技术要求过高,要求经营者既要懂农业技术,熟悉英文,还要掌握电脑操作和机械运营和维护;运营模式没有与中国的实际结合起来,不适合于我国的气候特征。所以,研究开发符合我国国情、产生明显经济效益并适用于大范围推广应用的自动控制温室系统己经迫在眉睫。基于以上的种种原因,我国的农业工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度、光照等单因子控制技术的研究,并逐步推出既适宜我国经济发展水平又能满足不同生态气候条件要求的温室控制系统.
要依据苗圃的最适生长环境来制定温室环境,将最重要的环境因素如温室内空气温度、湿度、光照、二氧化碳浓度作为基本监测和控制项目, 这样避免了太复杂的控制方案。根据温室本身的特点设置了如图2 - 1所示控制系统的总体设计方案。
PLC在工业控制中应用多年,属于大批量生产的产品,其在生产、调试、应用、服务等方面都有一套完备的标准,所以产品质量稳定、可靠性高。
采用PLC成本虽然比单片机高,但要考虑到稳定性、可维护性等综合因素,采用PLC比单片机具有较高的性价比。而且当上位机发生故障时,PLC控制器可以自行实现数据采集、显示和输出等控制,不影响温室的自动运行。
智能温室控制系统将实现对农业生产的准确管理.通过控制器实时监测温室内空气温度、空气湿度、土壤温度、土壤湿度值,使对作物生长环境监测与普通简单温度、湿度计测量相比,更准确、更可靠。人们能够通过这些监测手段实时准确地了解情况,完成相关设备调节,避免了监测误差和监测滞后带来的损失。
智能温室将自动化技术引入了农业生产,为农业科研活动提供了有利的科学手段.通过参数设置及自动数据记录,为农艺工作者完成相关农艺科学研究,了解不同生产条件对作物的生长、品质影响及生产方法的改进,都提供了简便、准确的手段。

温室智能化温控管理系统

温室智能化温控管理系统

考虑使用无线通讯技术,如Wi-Fi、Zigbee、LoRa等,以便在
温室内部署灵活、扩展性强的网络系统。
通讯协议
03
确保所选通讯设备支持通用的通讯协议,以便与其他设备和系
统进行集成。
电源供应和防护措施
电源供应
为系统提供稳定、可靠的电源供应,考虑使用不间断电源(UPS)或 备用电源,以确保系统在意外断电时仍能正常工作。
输入/输出模块
数据存储和处理能力
评估控制器的数据存储和处理能力, 以便记录和分析温室环境参数的历史 数据。
确保控制器具有足够的输入/输出模块 ,以便连接各种传感器和执行器。
通讯设备兼容性考虑
有线通讯
01
选择稳定、可靠的有线通讯方式,如以太网、RS485等,确保
数据传输的稳定性和实时性。
无线通讯
02
选用适合的编程语言和开发环境,如 C、Python、Java等,以及相应的集 成开发环境(IDE),提高开发效率 。
数据采集、传输和处理模块设计
01
设计合理的数据采集模块,实现对温度、湿度等环 境参数的实时采集。
02
选用稳定的数据传输方式,如有线传输、无线传输 等,确保数据传输的准确性和实时性。
03
用户可通过手机、电脑等终端设备远程控 制系统,实现温室环境的远程监控和管理 。
数据统计与分析
报警与预警功能
系统能够自动记录温室环境参数和设备运 行数据,为用户提供数据统计和分析功能 ,帮助用户优化生产管理。
当温室环境参数超出设定范围时,系统能够 自动报警并提示用户采取相应措施,避免生 产风险。
应用场景及价值
农业生产领域
温室智能化温控系统广泛 应用于农业生产领域,提 高农产品的产量和品质, 降低研实验提供 稳定的温室环境,促进农 业科研工作的开展。

219335452_基于阿里云的智慧温室大棚系统设计

219335452_基于阿里云的智慧温室大棚系统设计

2023年 / 第6期 物联网技术1310 引 言随着物联网信息技术的发展,我国农业形式正在由传统农业向数字农业、精确农业再到智慧农业转变[1]。

我国作为农业生产大国,农业生产在国民经济发展过程中发挥着不可替代作用。

如今,现有的农业大棚种植大多还是以传统种植方式为主,智能化程度低,消耗人力严重,种植者无法准确获取农作物实时数据并进行科学管理,利用有限的土地创造出更多的农作物产量,提升作物产值。

所以我国必须进行大棚农业种植升级转型,根据传统大棚作物缺陷,智慧温室大棚系统利用物联网技术、传感器技术、阿里云等开发平台设计了一套智慧温室大棚系统。

智慧温室大棚能够根据不同作物对环境的不同要求进行智能感知与调控,使大棚种植向高效率、高产量、低成本的现代农业逐步转变。

1 智慧温室大棚系统设计框架智慧温室大棚系统是基于阿里云平台,主要由智能传感器、MCU 、被控部件和人机交互界面组成,多重传感器分别用来测量作物环境温湿度、土壤湿度、棚内紫外线强度、CO 2浓度、土壤pH 等;控制部件采用STM32F407单片机作为微控制器;被控部件主要由调温设备、控湿设备、通风设备、喷洒设备、CO 2发生器构成,人机交互界面主要是PC 界面与底层数据显示界面[2]。

在保证智能温室大棚软件系统稳定运行的情况下,通过优化底层硬件提升系统稳定性与可靠 性[3]。

智慧温室大棚系统设计框架如图1所示。

图1 智慧温室大棚系统设计框架传感器作为系统的感知部分,也为系统的基础部件。

智能传感器将采集到的作物环境温湿度、棚内紫外线强度、CO 2浓度等信息通过微处理器STM32F407单片机处理,通过4G Cat 1模组上传至阿里云平台,阿里云平台针对大棚内环境信息做出分析与反馈。

2 智慧温室大棚系统硬件设计2.1 传感器模块温湿度传感器具有数据传输稳定、功耗低、控制简单等特点,在选择温湿度传感器时,考虑到温室大棚内的环境温度和湿度对作物影响状况,且系统对数据传输的稳定性要求较高,同时用户希望系统能够操作简单,因此,系统选择常见的DHT11温湿度传感器作为测量大棚内的温湿度情况[4]。

基于plc的智能温室综合控制系统

基于plc的智能温室综合控制系统

控制系统:在该案例中,PLC被广泛应用于多个温室的控制系统中,同时结合现代物联网技术实现整个园区的智能化管理。
该系统能够实现整个农业园区的智能化管理,提高生产效率和管理水平。
该农业园区基于PLC的智能温室综合控制系统,将多个温室进行统一管理,实现了环境参数的实时监测和设备的自动化控制。同时,通过物联网技术将各个温室的数据进行汇总和分析,为决策提供科学依据。此外,该系统还具备智能预警功能,能够及时发现环境异常并采取相应措施进行处理。通过该系统的应用,整个农业园区的生产效率和管理水平得到了显著提高。
基于plc的智能温室控制系统应用案例
该蔬菜温室基于PLC的智能控制系统,能够根据不同的蔬菜品种和生长阶段,对温室内的环境参数进行精细调节,营造适宜的生长环境。同时,该系统还具备远程监控和数据分析功能,方便管理人员及时掌握温室内的环境状况,预测作物生长趋势,为决策提供科学依据。
控制系统:采用PLC作为控制核心,通过传感器采集温室内温度、湿度、光照、CO2浓度等参数,通过算法控制温室设备(如风机、湿帘、喷淋、补光灯等)进行调节,实现智能化控制。
PLC控制程序使用Ladder逻辑编程语言编写,实现温室内环境参数的采集、处理和控制。
组态界面可以显示温室内环境参数的实时数据、趋势图和控制按钮等,方便用户进行操作和维护。
03
CHAPTER
基于plc的智能温室控制系统实现
总结词
合理、高效、节能
详细描述
在智能温室控制系统中,PLC控制器是整个系统的核心。选择合适的PLC控制器需要考虑控制精度、响应速度、可靠性、可扩展性以及成本等多个因素。同时,还需要根据实际需求对PLC进行配置,包括输入输出模块、通讯接口、编程语言等。
该系统能够显著提高蔬菜的产量和质量,降低能耗和人工成本,提高生也采用PLC作为控制核心,通过传感器采集温室内温度、湿度、光照、CO2浓度等参数,但需要根据花卉生长的不同要求进行个性化定制。

温室大棚自动化控制系统设计与实现

温室大棚自动化控制系统设计与实现

温室大棚自动化控制系统设计与实现一、引言随着科技的不断进步和农业发展的需求,现代农业越来越多地依赖于自动化技术。

温室大棚自动化控制系统作为农业自动化的重要组成部分,可以提高种植效率,降低劳动成本,改善环境条件,保障农作物的生长。

本文将介绍温室大棚自动化控制系统的设计与实现。

二、温室大棚自动化控制系统的概念与原理温室大棚自动化控制系统是指利用传感器、执行器、控制器等设备,根据农作物的生长环境需求,自动调控温度、湿度、光照、通风等参数,实现对农作物生长环境的精确控制。

其原理是通过传感器对环境参数进行监测,然后通过控制器对执行器进行指令控制,从而实现对温室大棚环境的自动调节。

三、温室大棚自动化控制系统的硬件设计1. 传感器选择与布置:温度、湿度、光照等环境参数是温室大棚生长的关键因素,因此需要选择相应的传感器对这些参数进行准确检测。

同时,要合理布置传感器位置,尽量避免测量误差和干扰。

2. 执行器选择与布置:根据温室大棚的要求,选择合适的执行器进行控制操作。

比如温度控制可以通过风机、加热器等设备来实现,湿度控制可以通过雾化器,通风控制可以通过开关门等方式实现。

3. 控制器选择:温室大棚自动化控制系统中,控制器起到控制传感器和执行器的作用。

可以选择单片机、PLC等控制器,根据实际需求进行配置和编程。

四、温室大棚自动化控制系统的软件设计1. 数据采集与处理:根据传感器采集到的环境参数数据,进行处理和分析,得出决策结果。

可以使用数据采集协议,如MODBUS等。

2. 控制策略设计:根据农作物的需求和环境参数,设计合理的控制策略。

比如温度过高,可以通过控制风机加大通风量以降低温度;湿度过低,可以通过控制雾化器增加湿度等。

3. 用户界面设计:为了方便用户对温室大棚自动化控制系统进行操作和监控,需要设计一个友好的用户界面。

可以通过触摸屏、远程监控等方式实现。

五、温室大棚自动化控制系统的实现与应用1. 系统搭建与调试:按照设计需求和硬件配置,搭建温室大棚自动化控制系统,并进行连通性测试和功能调试。

基于ESP32的温室大棚环境远程监控系统设计

基于ESP32的温室大棚环境远程监控系统设计

第43卷第3期Vol.43No.32022年3月Mar.2022中国农机化学报Journal of Chinese Agricultural MechanizationDOI:10.13733/j.jcam.issn.2095⁃5553.2022.03.006基于ESP32的温室大棚环境远程监控系统设计*李国利,周创,牟福元(金陵科技学院机电工程学院,南京市,211169)摘要:为提高设施农业环境监测水平,设计一种基于ESP32模块的温室大棚环境远程监控系统。

系统主要包括环境信息采集模块、ESP32模块、输出控制模块和智能手机监控终端等。

基于Android 平台采用Blinker 物联网解决方案设计了监控终端APP 。

系统能够采集温室大棚环境温湿度、光照强度、PM2.5浓度、CO 2浓度和门禁等信息,并通过WiFi 网络将信息发送给手机终端,管理人员通过手机APP 可查看温室大棚环境信息,也可对有关设备进行远程控制。

制作样机并进行系统测试,结果表明,系统数据采集上传成功率最低为97.3%,平均网络丢包率为2.17%。

系统运行稳定,具有成本低、实时性好、通信安全性高、工作可靠及操作简单等特点。

关键词:温室大棚;远程监控;ESP32;Android ;Blinker 中图分类号:S24文献标识码:A文章编号:2095⁃5553(2022)03⁃0047⁃06李国利,周创,牟福元.基于ESP32的温室大棚环境远程监控系统设计[J].中国农机化学报,2022,43(3):47-52Li Guoli,Zhou Chuang,Mou Fuyuan.Design of remote monitoring and control system for agricultural greenhouse environment based on ESP32[J].Journal of Chinese Agricultural Mechanization,2022,43(3):47-520引言随着现代农业生产技术的发展和生活水平提高,温室大棚化种植得到迅速地推广和应用。

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现随着科技的不断发展,智慧农业大棚监控系统的设计与实现已经成为现代农业发展的必然趋势。

智慧农业大棚监控系统可以通过对大棚内环境的实时监测和数据分析,提供更加精准的种植管理方案,有效提高农作物的产量和质量,同时降低生产成本和人力资源的浪费。

智慧农业大棚监控系统的设计主要需要考虑以下几个方面:环境参数监测:为了能够及时了解大棚内的环境情况,需要对大棚内的温湿度、土壤水分、二氧化碳浓度等环境参数进行实时监测。

这些数据可以通过各种传感器采集,再通过数据传输模块传输到控制中心进行数据分析。

数据处理与分析:通过对采集的数据进行处理和分析,可以得出大棚内环境的变化趋势和规律,进而提供更加精准的种植管理方案。

例如,通过对土壤水分和温湿度数据的分析,可以得出大棚内的灌溉需求和通风需求等。

控制系统:根据数据分析结果,控制系统可以自动调节大棚内的环境参数,例如开启或关闭通风窗、灌溉设备等。

控制系统还可以通过智能算法实现自动化种植管理,提高农作物的生长效率和产量。

报警系统:为了确保大棚内的环境参数始终处于最佳状态,需要设置报警系统。

当监测到异常数据时,报警系统会立即发出警报,及时通知农民或管理人员采取相应的措施。

云平台与APP:为了方便远程监控和管理,智慧农业大棚监控系统可以搭载云平台和手机APP,让用户可以通过互联网或移动设备随时随地了解大棚内的环境情况和数据变化趋势,进而实现远程种植管理。

为了实现智慧农业大棚监控系统,需要以下关键技术的支持:传感器技术:传感器技术是实现环境参数监测的关键技术之一。

针对不同的环境参数监测需求,需要选择不同的传感器。

例如,温湿度传感器可以监测空气中的温湿度数据;土壤水分传感器可以监测土壤中的水分含量;二氧化碳浓度传感器可以监测空气中的二氧化碳浓度等。

数据传输技术:为了能够将监测到的数据实时传输到控制中心,需要使用数据传输技术。

常用的数据传输技术包括无线通信、物联网等。

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现随着人们对农业生产的要求越来越高,智能温室大棚系统的设计与实现变得越来越重要。

本文将介绍基于单片机的智能温室大棚系统的设计与实现。

一、系统的功能需求智能温室大棚系统在设计之初需要明确系统的功能需求,主要包括以下几个方面:1. 自动控制温度和湿度,保持适宜的生长环境;2. 监测土壤湿度,为植物提供适量的水分;3. 控制灌溉系统,实现自动灌溉;4. 监测环境光照强度,及时调节遮阳设备;5. 实现远程监控和控制,方便用户对温室大棚的管理。

二、系统的硬件设计1. 单片机选择本系统采用了Arduino单片机作为控制核心,因为Arduino具有体积小、易学易用、扩展性强等特点,非常适合用于嵌入式系统的设计。

2. 传感器系统需要使用温湿度传感器、土壤湿度传感器和光照传感器来实时监测环境参数。

同时还需要使用电磁阀等执行器来实现自动控制。

3. 通信模块为了实现远程监控和控制,系统中需要加入Wi-Fi模块或者GSM模块,使得用户可以通过手机或者电脑远程监控和控制温室大棚系统。

三、系统的软件设计1. 控制算法设计系统需要根据传感器采集到的数据进行相应的控制,比如根据温度和湿度数据控制通风系统,根据土壤湿度数据控制灌溉系统等。

2. 用户界面设计系统需要设计一个用户界面,用户可以通过该界面实现远程监控和控制,以及查看环境参数的历史数据。

3. 远程通信协议设计系统需要设计相应的远程通信协议,使得用户端设备可以与温室大棚系统进行数据通信和指令控制。

四、系统的实现1. 硬件搭建根据系统的硬件设计,搭建相应的硬件平台,并连接传感器、执行器和通信模块。

2. 软件开发根据系统的软件设计,编写控制算法、用户界面和远程通信协议的相应程序,并上传到单片机中。

3. 调试测试对系统进行调试测试,保证系统的各个功能正常运行。

4. 应用推广将系统推广应用到实际的温室大棚中,实现农业生产的自动化和智能化。

五、系统的优势1. 自动化程度高系统实现了温度、湿度、光照等环境参数的自动监测和控制,大大减轻了人工管理的负担。

基于PLC的大棚温度自动控制系统设计

基于PLC的大棚温度自动控制系统设计

清华大学毕业设计(论文)题目基于PLC的大棚温度自动控制系统设计系(院)自动化系专业电气工程与自动化班级2009级3班学生姓名雷大锋学号**********指导教师王晓峰职称副教授二〇一三年六月二十日独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本声明的法律后果由本人承担。

作者签名:年月日毕业设计(论文)使用授权声明本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。

本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。

(保密论文在解密后遵守此规定)作者签名:年月日基于PLC的大棚温度自动控制系统设计摘要大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。

该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。

这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。

关键词:大棚,温度控制,PLCThe Automatic Greenhouse Temperature ControlSystem Based on PLCAbstractThe system is a way to providing the best conditions to plants and promoting them growth very well ,avoiding the bad weather and effect of seasons outside the shed .This system uses FX2N series PLC as the next machine and PC as upper machine, using the Mitsubishi D-720 general frequency Manager. The sensor of temperature, humidity and light collecting scene signal, these simulation volumes are turned into digital signal by PLC, then compared with the setting value. At last, the PLC disposes of them, then contorts with wind machine, covering Yin curtain. According to the actual measured value of each sensor and the value determined in advance about greenhouse environmental factors. This system can suitable for the automation and mass production, the laboring productivity has been increasing by a wide margin through changing the target value of greenhouse environment, and we can control the greenhouse temperature automatically.Key words: greenhouse, temperature control, PLC目录第一章绪论 (1)1.1 大棚温度控制系统发展背景及现状 (1)1.2 大棚温度控制系统研究目的及意义 (2)第二章系统概述 (3)2.1 系统设计任务 (3)2.2 系统技术介绍 (3)2.2.1 传感技术 (3)2.2.2 PLC (4)2.2.3 上位机 (5)2.3 系统工作原理 (5)2.4小结 (7)第三章硬件部分设计 (8)3.1 环境调控系统 (8)3.2 传感器的选择 (10)3.3 系统硬件接线图 (12)3.3.1 系统主电路设计 (12)3.3.2 系统其他部分电路设计 (14)3.3.3 PLC部分电路设计 (15)3.4小结 (16)第四章软件设计 (17)4.1 PLC的I/O分布图 (17)4.2 系统程序 (18)4.2.1 系统温度PID调节程序 (18)4.2.2 系统主程序 (18)4.3 小结 (19)第五章结论 (20)参考文献 (21)谢辞 (22)第一章绪论1.1 大棚温度控制系统发展背景及现状如今塑料大棚、日光温室逐渐成为我国设施结构的主要结构类型。

基于PLC的智能温室控制系统的设计

基于PLC的智能温室控制系统的设计

基于PLC的智能温室控制系统的设计一、本文概述随着科技的不断进步和智能化的发展,温室控制技术已成为现代农业科技的重要组成部分。

传统的温室控制方法往往依赖于人工操作和经验判断,无法实现精准、高效的环境调控,而基于PLC(可编程逻辑控制器)的智能温室控制系统则能够实现对温室内部环境参数的实时监控和精确控制,从而提高温室作物的生长质量和产量。

本文旨在探讨基于PLC的智能温室控制系统的设计方法,包括系统的硬件和软件设计,以及实际应用中的性能测试和效果评估。

通过对该系统的研究,旨在为现代农业温室控制提供一种新的、更加智能化和高效的控制方案,为农业生产的可持续发展做出贡献。

二、智能温室控制系统的总体设计在设计基于PLC的智能温室控制系统时,我们首先需要对整个系统的总体架构进行明确规划。

本系统的设计目标是实现温室环境的自动化、智能化调控,以提高农作物的生长质量和产量。

智能温室控制系统由传感器网络、PLC控制器、执行机构和用户交互界面等部分组成。

传感器网络负责采集温室内的温度、湿度、光照、土壤养分等环境参数;PLC控制器作为核心,负责接收传感器数据,进行逻辑运算和决策,向执行机构发送控制指令;执行机构根据指令调节温室内的环境设备,如通风设备、灌溉设备、遮阳设备等;用户交互界面则提供人机交互功能,便于用户查看当前环境参数、历史数据以及手动控制温室设备。

考虑到温室控制系统的复杂性和实时性要求,我们选用性能稳定、编程灵活的PLC控制器。

具体选型时,我们综合考虑了控制器的处理速度、输入输出点数、通信接口以及扩展能力等因素,确保所选PLC 能够满足智能温室控制系统的需求。

传感器是获取温室环境参数的关键设备,我们选择了高精度、快速响应的传感器,以确保数据的准确性和实时性。

执行机构则是实现温室环境调控的重要手段,我们根据温室内的设备类型和调控需求,选择了相应的执行机构,如电动阀、电动窗帘等。

在智能温室控制系统中,各个组成部分之间需要进行高效的数据传输和通信。

《2024年基于PLC的智能温室监控系统》范文

《2024年基于PLC的智能温室监控系统》范文

《基于PLC的智能温室监控系统》篇一一、引言随着科技的快速发展和农业生产的需求变化,智能温室监控系统逐渐成为现代农业技术的重要组成部分。

该系统能够实时监测和控制温室环境,提高农作物的生长环境,从而提高农作物的产量和质量。

基于PLC(可编程逻辑控制器)的智能温室监控系统更是成为了现代智能农业发展的趋势。

本文旨在详细介绍基于PLC的智能温室监控系统的设计与实现。

二、系统概述基于PLC的智能温室监控系统是一种集成了传感器技术、PLC控制技术、网络通信技术和人机交互界面的现代农业控制系统。

该系统通过实时监测温室内的环境参数(如温度、湿度、光照等),并利用PLC进行数据处理和控制决策,实现对温室环境的精确控制,为农作物提供最佳的生长环境。

三、系统设计1. 硬件设计硬件部分主要包括传感器、PLC控制器、执行器等。

传感器用于实时监测温室内的环境参数,如温度传感器、湿度传感器、光照传感器等。

PLC控制器作为整个系统的核心,负责接收传感器的数据,进行处理和决策,然后通过执行器控制温室环境的参数。

执行器则包括加湿器、风扇、灯光等设备,用于调整温室环境。

2. 软件设计软件部分主要包括PLC程序设计、人机交互界面设计等。

PLC程序设计是整个系统的核心,它需要实现对传感器数据的实时采集、处理和决策,以及执行器的精确控制。

人机交互界面则用于显示实时数据、历史数据和报警信息等,方便用户进行操作和监控。

四、系统实现1. 数据采集与处理系统通过传感器实时采集温室内的环境参数,如温度、湿度、光照等。

这些数据经过PLC处理后,将实时数据与预设的阈值进行比较,判断当前环境是否适宜农作物的生长。

如果环境参数超出预设范围,PLC将自动调整执行器的工作状态,调整温室环境。

2. 执行器控制PLC根据数据处理结果,通过控制执行器的工作状态来调整温室环境。

例如,当温度过高时,PLC将控制加湿器或风扇工作,降低室内温度;当光照不足时,PLC将控制灯光设备工作,提高光照强度。

智能蔬菜大棚温度控制系统设计

智能蔬菜大棚温度控制系统设计

Part 5
系统软件设计
系统主流程
系统软件设计
开开始始
6、升温电路
➢ 系统通电,个器件初始化
➢ 温度传感器启动,同时读 取当前环境温度值,读取 成功后线性拟合数据。
➢ 将温度数据在显示器显示。
➢ 将读取的环境温度值与设 定的温度上下限进行比较, 如果环境温度过限,则蜂 鸣器发出声音报警,并启 动机械控制设备;
➢ K4:减小键,减小上限 温度和下限温度,分度 值1℃;
➢ K5:确定键
系统硬件设计
5、机械控制电路
➢ 直流电机 ➢ 继电器 ➢ 通过三极管的导通与截
止,控制电机的转动, LED的发光。
系统硬件设计
6、升温电路
➢ 发热电阻丝 ➢ 继电器 ➢ 通过三极管的导通与截
止,控制发热电阻丝的 通电与断电,LED的发 光。
Part 2
论文主要内容
论文结构 具体内容
论文主要内容
系统设计方案
➢ 系统设计要求
➢ 系统功能需求分析
➢ 系统的结构组成
➢ 各模块的设计
02
系统软件设计
➢ 主程序
➢ 测温读取子程序 ➢ 显示子程序
04
➢ 机械控制子程序
➢ 定时器子程序
01
系统硬件设计
➢ 单片机最小系统
➢ 温度采集电路
➢ 显示电路
聆听谢
恳请各位老师批评指正!
系统硬件设计
2、温度采集电路
➢ DS18B20温度传感器 ➢ 测量范围为-55℃~
+125℃ ➢ 可以直接读出被测
温度值
3、显示电路
➢ LCD1602 ➢ 可以显示2行16个
字符
系统硬件设计

智能温室环境控制系统开发方案

智能温室环境控制系统开发方案

智能温室环境控制系统开发方案第1章项目背景与需求分析 (3)1.1 背景介绍 (3)1.2 需求分析 (3)1.2.1 温室环境控制需求 (3)1.2.2 系统功能需求 (3)1.3 技术可行性分析 (4)1.3.1 技术现状 (4)1.3.2 技术可行性 (4)第2章系统总体设计 (4)2.1 设计原则 (4)2.2 系统架构 (5)2.3 技术选型 (5)第3章环境参数监测模块设计 (5)3.1 环境参数选取 (5)3.2 传感器选型与布置 (6)3.2.1 传感器选型 (6)3.2.2 传感器布置 (6)3.3 数据采集与处理 (6)3.3.1 数据采集 (7)3.3.2 数据处理 (7)第4章控制策略与算法设计 (7)4.1 控制策略概述 (7)4.1.1 温度控制策略 (7)4.1.2 湿度控制策略 (7)4.1.3 光照控制策略 (7)4.1.4 二氧化碳浓度控制策略 (7)4.2 算法设计 (8)4.2.1 温度控制算法 (8)4.2.2 湿度控制算法 (8)4.2.3 光照控制算法 (8)4.2.4 二氧化碳浓度控制算法 (8)4.3 系统优化 (8)第五章硬件系统设计 (9)5.1 主控制器选型 (9)5.2 执行器选型与设计 (9)5.3 通信模块设计 (10)第6章软件系统设计 (10)6.1 软件架构 (10)6.1.1 系统架构概述 (10)6.1.2 表现层设计 (10)6.1.3 业务逻辑层设计 (10)6.2 数据处理与分析 (11)6.2.1 数据处理 (11)6.2.2 数据分析 (11)6.3 界面设计与交互 (11)6.3.1 界面设计 (11)6.3.2 交互设计 (11)第7章系统集成与调试 (12)7.1 系统集成 (12)7.1.1 系统架构设计 (12)7.1.2 硬件集成 (12)7.1.3 软件集成 (12)7.2 功能测试 (12)7.2.1 传感器测试 (12)7.2.2 控制器测试 (12)7.2.3 执行器测试 (12)7.3 稳定性测试 (12)7.3.1 长时间运行测试 (13)7.3.2 环境干扰测试 (13)7.3.3 故障恢复测试 (13)第8章系统功能扩展 (13)8.1 云平台接入 (13)8.1.1 数据存储与备份 (13)8.1.2 数据分析与挖掘 (13)8.1.3 远程监控与控制 (13)8.2 智能决策支持 (13)8.2.1 数据预测 (13)8.2.2 优化调控策略 (14)8.2.3 异常报警与处理 (14)8.3 互联网农业应用 (14)8.3.1 农业物联网 (14)8.3.2 智能施肥与灌溉 (14)8.3.3 虚拟现实(VR)与增强现实(AR) (14)8.3.4 移动端应用 (14)第9章系统安全与维护 (14)9.1 系统安全 (14)9.1.1 安全策略 (14)9.1.2 防火墙与入侵检测 (15)9.1.3 数据安全 (15)9.2 数据备份与恢复 (15)9.2.1 备份策略 (15)9.2.2 恢复策略 (15)9.3 系统维护与升级 (15)9.3.1 系统维护 (15)第10章项目总结与展望 (15)10.1 项目总结 (16)10.2 技术展望 (16)10.3 市场前景分析 (16)第1章项目背景与需求分析1.1 背景介绍现代农业技术的快速发展,智能温室技术在提高农作物产量、改善品质以及减少资源消耗方面发挥着重要作用。

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现智能温室大棚系统是利用现代科技手段,结合单片机技术、传感器技术及自动控制技术,实现对温室环境的智能监测和自动控制,提高农作物生长的质量和产量。

本文将针对基于单片机的智能温室大棚系统进行设计与实现进行详细介绍。

一、系统结构设计智能温室大棚系统硬件结构设计主要包括传感器模块、执行器模块、单片机模块、通信模块和电源模块。

传感器模块用于监测温度、湿度、光照等环境参数,执行器模块用于控制灌溉、通风、遮阳等设备,单片机模块作为系统的核心控制单元,对传感器数据进行采集和处理,并根据预设的控制策略控制执行器模块实现自动控制,通信模块用于与上位机进行通信,实现远程监控与控制。

系统软件结构设计主要包括嵌入式控制程序和上位机监控程序。

嵌入式控制程序负责单片机的控制逻辑实现,包括传感器数据采集、控制策略实现和执行器控制等功能。

上位机监控程序通过通信模块与单片机进行数据交互,实现对温室环境参数的实时监测和控制,同时具备数据存储和分析功能,可以对历史数据进行回放和分析。

1. 温室环境参数监测功能系统通过温度传感器、湿度传感器、光照传感器等传感器模块实时监测温室内的环境参数,将数据传输至单片机进行处理,并通过通信模块传输至上位机,实现对温室环境参数的实时监测。

2. 自动控制功能系统根据预设的控制策略,通过单片机实时控制执行器模块,实现对温室灌溉、通风、遮阳等设备的自动控制。

在温度过高时自动开启通风设备;在土壤湿度过低时自动开启灌溉设备等。

3. 远程监控与控制功能系统可以通过通信模块实现与上位机的远程通信,用户可以通过上位机监控程序实时监测温室环境参数的变化,并可以远程控制温室的灌溉、通风、遮阳等设备,实现远程智能化管理。

三、系统实现方案1. 硬件实现方案系统硬件方案采用Arduino单片机作为核心控制单元,通过与传感器模块和执行器模块的连接,实现对温室环境的监测和控制。

通信模块采用Wi-Fi、蓝牙等无线通信技术,与上位机实现远程通信。

基于PLC的温室大棚控制系统设计

基于PLC的温室大棚控制系统设计

四、PLC程序设计
PLC(可编程逻辑控制器)是本系统的关键部件,负责实现模糊控制算法和 驱动执行器。在本系统中,我们将采用一种流行的PLC编程语言——Ladder Diagram(梯形图)来进行程序设计。梯形图是一种图形化编程语言,易于理解 和实现。在程序设计过程中,我们将根据模糊控制算法构建相应的逻辑控制流程, 包括数据采集、模糊化、模糊推理和去模糊化等步骤。
1、时钟和计数器:设置PLC的时钟和计数器,用于记录大棚内的温度、湿度、 光照等参数的平均值和变化量。
2、传感器数据读取:通过PLC的输入输出点读取温度、湿度、光照等传感器 的数据,并转换为实际数值。
3、控制逻辑:根据大棚的实际需求和控制目标,编写控制逻辑程序,实现 自动控制。例如,当大棚内温度过高时,启动通风设备进行降温;当大棚内湿度 过低时,启动灌溉设备进行浇水。
三、模糊控制算法
模糊控制算法是本系统的核心,它基于模糊集合论和模糊逻辑,能够处理不 确定性和非线性问题。在本系统中,我们将温度和湿度作为输入变量,将控制信 号作为输出变量。通过设定温度和湿度的上下限值,我们可以构建模糊条件语句, 并根据这些语句生成控制规则。在PLC控制器中,我们将采用模糊逻辑控制器来 实现这些控制规则,通过计算得出控制信号,以实现对温室大棚温湿度的精确控 制。
4、通讯接口:通过PLC的通讯接口将控制数据上传至计算机或云平台,实现 远程监控和管理。
参考内容
一、引言
温室大棚在现代农业生产中起到了关键作用,特别是在反季节种植和气候敏 感作物的种植上。温室内的温湿度环境是影响作物生长的重要因素,因此,如何 实现温湿度的精确控制是温室大棚管理的核心问题。本次演示将介绍一种基于模 糊控制理论的温室大棚温湿度控制系统,并详细阐述其PLC程序设计方法。

基于PLC的智能温室控制系统设计

基于PLC的智能温室控制系统设计

基于PLC的智能温室控制系统设计毕业设计(论文)任务书题目基于PLC的智能温室控制系统设计学生姓名班级学号题目类型工程指导教师系主任一、毕业设计(论文)的技术背景和设计依据温室产业及相关技术在国内外的发展速度很快。

高水平大型温室的环境控制系统能够根据传感器采集室温、叶湿、地湿、室内温度、土壤含水量、溶液浓度、二氧化碳浓度、风速、风向、以及植物作物生长状态等有关参数,结合作物生长所需最佳条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

(1)根据外界环境对植物影响因素,选择作物环境条件的实时检测系统、智能温室控制系统两个部分。

自动检测包括:温室、湿度、光照、二氧化碳、土壤水分等传感器与变送器。

智能控制系统包括:双向天窗角度开闭驱动,遮阳网驱动,通风机,喷灌滴灌控制,节能加温、降温控制等。

(2)开发智能温室组态监控界面。

二、毕业设计(论文)的任务1.熟悉题目要求,查阅相关科技文献2.方案设计(包括方案论证与确定、技术经济分析等内容)3.硬件和软件设计(其中还包括理论分析、设计计算、实验及数据处理、设备及元器件选择等)4.撰写设计说明书(毕业论文),绘制图纸5.指定内容的外文资料翻译6.其它三、毕业设计(论文)的主要内容、功能及技术指标1、毕业设计(论文)的主要内容(1)智能温室控制系统硬件设计(2)智能温室控制系统程序设计2、功能与技术指标(1)介绍所使用PIC及控制系统所涉及其它设备的基本情况(2)系统软件设计主要包括PIC控制程序和上位机组态软件3、其它需要说明的问题四、毕业设计(论文)提交的成果1、开题报告(不少于3000字)2、设计说明书(约3万字左右),或毕业论文(约2万字左右)3、图纸(2#图纸至少三张,图纸数量根据论文情况自定)4、中、英文摘要(中文摘要约200字,3—5个关键词)5、论文简介6、外文资料翻译(约5000汉字)五、毕业设计(论文)的主要参考文献和技术资料1、参考文献和技术资料[1] 郁汉琪.可编程控制器原理及应用.中国电力出版社,2004[2] 努尔哈孜·朱玛力.可编程控制器在电炉温度控制系统中应用的研究.新疆大学学报,2006,13(2):267—268[3] 黄柱深,黄超麟.基于PLC的高精度温度控制系统.机电工程技术,2006,10(2):123—125[4] 高钦和.可编程控制器应用技术与设计实例.人民邮电出版社,2004[5] 赵燕.可编程控制器原理及应用.中国林业出版社,2006[6] 李方园.人机界面设计及应用.化学工业出版社,2008[7] 严盈富.触摸屏与PLC入门.人民邮电出版社,2006[8] 张扬.S7—200PLC原理与应用系统设计.机械工业出版社,2007[9] 付家才.PLC实验与实践.高等教育出版社,2006[10] 刘继修.PLC应用系统设计.福建科技出版社,2007[11] 徐亚飞,刘官敏,高国章.温箱温度PID与预测控制.武汉理工大学学报交通科学与工程版,2004,28(4):554—557[12] 曾贵娥,邱丽,朱学锋.PID控制器参数整定方法的仿真与实验研究.石油化工自动化,2005,7(4):89—91[13] 肖宝兴.西门子S7—200PLC的使用经验和技巧.机械工业出版社,2011六、毕业设计(论文)加选专题部分毕业设计(论文)选做内容说明七、毕业设计(论文)各阶段安排摘要温室大棚对现在的人们来说,是非常熟悉的一个名词,因为现在我们生活中的很多花卉、蔬菜、水果都是从温室大棚中种植出来的。

基于PLC的温室温度控制系统设计

基于PLC的温室温度控制系统设计

基于PLC的温室温度控制系统设计
简介
本文档介绍了基于PLC的温室温度控制系统的设计方案。


室作为植物生长的机械化生产基地,必须具备一定的环境条件,特
别是温度要满足植物生长的需要。

因此,为了保证温室内环境稳定,需要设计一套可以自动控制温室温度的系统。

系统组成
该系统由温度传感器、PLC控制器、电磁阀和风机等部分组成。

传感器负责感知温度,将采集的温度数据送至控制器进行处理。


制器根据设定的温度范围,遥控电磁阀和风机实现对温室温度的控
制和调节。

系统设计
1. 硬件设计
温度传感器采用DS18B20数字温度传感器,配合水晶震荡器,实现温度采集。

整个系统采用基于S7-200Smart PLC 的结构设计,
该PLC控制器内置模拟口和数字口,为系统搭建提供了保障。


磁阀选用2位通风电磁阀,以保障温室内环境的空气流动。

风机选
用5W风扇,配合两用龙头,实现温室内外空气的交替。

2. 软件设计
该系统采用WPL Soft进行编程设计。

根据采集到的温度数据,通过PLC对电磁阀和风机进行控制,实现温度的稳定控制。

具体
实现方式为:如果温度小于目标温度范围的下限值,PLC将打开电
磁阀和风机,吹入热空气;如果温度大于目标温度范围的上限值,PLC则将关闭电磁阀,同时打开风机,实现温室内外空气的交替。

总结
本文档介绍了基于PLC的温室温度控制系统的设计方案。


需要采集温度,然后将数据通过PLC进行控制,实现对温室温度
的自动调控,节省了人力和物力成本,提高了温室生产效率。

蔬菜温室大棚智能控制系统的设计

蔬菜温室大棚智能控制系统的设计

文献标识码 : A
文章编号 :1 6 7 4 ~ 7 7 1 2 ( 2 0 1 3 ) 1 6 — 0 1 0 0 一 叭
器 节 点设 计 等 。 ( 一 )Z i g B e e节 点程 序 设计 。本 系统 软件 开 发 平 台为 T I ,使用 8 0 5 1 C / C + + 编译器对其进 行开发,并且是在 Z - S t a c k 中的 S a m p l e A p工程基础上进行 的各个模 块程序 的设计 与实现 的。 此软件开发平台的优 点在于无需再次实现 Z i g B e e 协议栈 , 应用用户层主要完成节点程序的设计就可以了。在此系统 中, 数据采集节点与数据汇聚节 点共 同组成 了 Z i g B e e节点的硬件


部分, 因此, 在进行应用程序的设计时, 也要分别进行设计实现 。 ( 二) 无线传感器节点设计。 无线传感器节点主要用来采集 温室大棚内的环境数据, 如温度、 湿度、 光线强度及 C 0 2浓度 等 数据采集出来, 将通过数据汇集节点将这些 数据传 送到 D S P控 制平台上。 本系统要求数据采集要定时进行, 这就需要定义一个 周期性扫描函数来实现。除了要对无线传感 节点进行设计外, 还 要对 Z i g B e e汇聚节点的软件进行设计, 还有低功耗程序设计。 ( 三) D S P 监 控平台设计。 D S P监控平 台设计主要包括 D S P 主程序设计、 模糊控制程序设计、 液 晶显示与键盘输入程序设计、 D S P串口程序设计 以及 自动加载程 序设计。 D B P主程 序设计首先 要进行程序的初始化然后通过启动串口中断来进行数据的采集, 数 据采集的时间可 以手动设定, 默认时间为 1 O 分 钟。 数据采集 完成后, 各个子节点的数据被整合到一起 , 得出数据汇总与分析 结果, 对结果进行完模糊化处理后可 以将控制结果输出来。

基于PLC的现代农业大棚自动控制设计

基于PLC的现代农业大棚自动控制设计

基于PLC的现代农业大棚自动控制设计1. 引言现代农业大棚自动控制是农业科技进步的重要方向之一。

基于PLC的现代农业大棚自动控制设计是一种先进的技术手段,能够提高农业生产效率、节约资源、保护环境。

本文将深入探讨基于PLC的现代农业大棚自动控制设计,以期为农业科技发展提供有益的参考。

2. 农业大棚自动化发展概述2.1 农业大棚自动化的背景随着人口增长和城市化进程加快,对食品供应和安全要求也越来越高。

传统的种植方式已经难以满足人们对食品品质和数量的需求,因此引入先进技术来提高生产效率成为必然选择。

2.2 农业大棚自动化发展现状目前,全球范围内已经出现了许多应用于农业大棚的自动化系统。

这些系统主要包括传感器、执行器、控制器等设备,通过互联网实现远程监测和控制。

3. 基于PLC的现代农业大棚自动控制设计原理3.1 PLC的基本概念和工作原理PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的计算机设备,它具有高可靠性、高性能和易于编程的特点。

PLC通过接收传感器信号、处理逻辑运算,并通过执行器实现对设备的控制。

3.2 PLC在农业大棚自动化中的应用基于PLC的农业大棚自动化系统主要包括传感器、执行器和控制器。

传感器用于收集环境参数信息,如温度、湿度、光照等;执行器用于实现对设备的控制,如灌溉系统、通风系统等;控制器则负责处理传感器信号,并根据预设逻辑进行决策。

4. 基于PLC的现代农业大棚自动控制设计实例4.1 设计需求分析在设计基于PLC的现代农业大棚自动化系统时,首先需要进行需求分析。

根据种植作物类型和环境要求,确定需要监测和控制的参数,并确定所需传感器和执行机构。

4.2 系统硬件设计根据需求分析结果,选择合适型号和规格的传感器和执行机构,并进行布置和连接。

同时,设计适当的电路和电源供应系统,确保系统的可靠性和稳定性。

4.3 系统软件设计编写PLC程序,实现对传感器信号的采集、处理和控制信号的输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言设施农业是近十多年来随着农业环境工程技术的突破,迅速发展起来的一种集约化程度很高的农业生产技术。

由于设施农业是在人为可控环境保护设施下的农业生产,他摆脱了传统农业生产条件下自然气候、季节的制约,以超时令、反季节生产的设施园艺作物为主,不仅使单位面积产量及畜禽个体生产量大幅度增长,而且保证了农牧业产品,尤其是蔬菜、瓜果和肉、蛋、奶的全年均衡供应。

设施农业目前已由简易塑料大棚、温室发展到具有人工环境控制设施的自动化、机械化程度极高的现代化大型温室和植物工厂。

设施农业在具有高附加值、高效益、高科技含量的设施园艺领域发展迅速,其栽培对象主要为蔬菜、花卉和果树。

近年来,设施畜牧业养殖也在逐渐兴起。

随着设施园艺栽培技术的不断提高和发展,新品种、新技术及农业技术人才的投入,提高了设施园艺的科技含量。

现已培育出一批适于保护设施栽培的耐低温、弱光、抗逆性强的设施专用品种。

工厂化育苗、嫁接育苗、喷灌、滴灌、无土栽培技术、小型机械、生物技术和微电脑自控及管理的使用,提高了劳动生产率,使栽培作物的产量和质量得以提高。

随着社会的进步和科学的发展,设施农业的发展将向着地域化、节能化、专业化发展,向着高科技、自动化、机械化、规模化、产业化的工厂型农业发展,为社会提供更加丰富的无污染、安全、优质的绿色健康食品。

温室是以采光覆盖材料作为全部或部分围护结构材料,可在冬季或其它不适宜露地植物生长的季节供栽培植物的建筑。

1.1 概述设施农业是指具有一定的设施,能在局部范围内改善或创造环境气象因素,为动植物生长发育提供适宜的环境条件,进而进行有效生产的农业。

因其能提供动植物所需的最佳环境条件,也就能创造出最佳的经济效益,因此,设施农业受到越来越多人的关注。

设施农业主要包括设施栽培和设施养殖。

设施栽培主要是指蔬菜、花卉及果类的设施栽培,其主要设备有各类温室、塑料棚和人工气候室(箱)及其配套设备;设施养殖主要是指畜禽、水产品及特种动物的设施养殖,主要设施有各类保温、遮荫棚舍和现代集约化饲养畜禽舍及配套设施。

设施农业能够按照农作物和禽畜水产在生长过程中所需要的光、温、湿、气、水、肥、饲料、废物处理等综合环境条件进行适时的调节控制;可以应用农业及畜牧业的最新科研成果,可以采用适当的农业工程措施在局部空间的一定范围内控制气候环境,实施相应的从品种选择到生产管理全过程的整套技术,充分发挥因控制环境所获得的增加产量和提高产品质量的巨大潜力;是农业实现高产、优质、高效的最佳方式。

温室是一种性能较为完善的保护地类型,在我国北方冬季可以生产各种叶菜和果菜,但其造价比其它栽培设施高得多。

有些温室内部装备有各种环境调节装置,如采暖、通风、灌溉、二氧化碳施肥、补充照明等装置,使得温室的性能进一步完善,因而可以周年利用,获得高产。

1.2 本设计的市场前景上述几点不难看出,虽然我国的设施农业有了很大的进步.但是我们和发达国家还是有一定的差距,现在的设施农业缺乏科学性的指导和科学化的设备.经过市场调查发现,市场上不缺乏好的设备.可是相对的说,我们的顾客只能对这些设备望而止步,价格太贵难以承受.因此,需要一种价格便宜而效果相对又不错的湿温控制系统成了他们所希望的,本产品造价一般,而且简单方便.可以增大使用人群的推广.在设施农业的发展中,人类对其需求量越来越大.特别是温室的反季节蔬菜收到很多人的追捧.因此,湿温自动控制系统的前景会很广阔.2 PID控制算法的研究人脑的发达程度应当是人类相对于地球上的其它生命之所以如此优越的生活的一个最本质的原因。

同样,对于一个控制系统,其控制算法的好坏对于整个系统控制性能的好坏也将起着至关重要的作用。

对于此次恒温、恒湿控制箱的温度在10度一140度之间按任意给定曲线跟随,其控制精度均在正负0. 2度之间,抖坡函数和阶跃函数的拐点处无尖峰,也即无超调。

同时,无欠调。

因此采用智能PID控制。

此次设计,湿度控制相对于温度控制精度不是很高,但是,湿度和温度一起拉制难免受温度影响,尤其在高温高湿的控制条件下。

因此,要严格遵守相关的国家标准,从每个环节着手,尽量减小误差。

2.1 PID控制在大多数情况下,为了控制系统的静态和动态性能满足工程上的要求,往往在系统中加进一些校正装置,以改善系统的特性,满足工程的要求。

这种措施称为校正。

为此目的加入的装置称为校正装置。

在控制系统中,进行校正的方式有很多,串联校正采用的比较普遍。

它的作用通常是对系统中的误差信号进行比例、积分、微分等运算,形成适用的控制信号,以获得满意的控制性能.校正装置所进行的运算叫做系统的控制规律,其中,用以实现比例、积分、微分控制规律(即PID算法)的校正装置称为比例积分微分控制器.2.2 PID各控制环节的作用比例环节的作用是改变比例环节的系数即增大系统开环比例系数以提高系统的静态精度,降低系统的惰性,加快响应速度。

但比例系数太大,会对系统的稳定性造成影响。

积分环节的作用是可以消除静态残差。

在静态下,积分拉制器的输入信号e (t)虽然为零,但它的输出信号u (t)仍可以维持在某一非零值。

靠该u tt)控制信号的控制作用,使该系统的静态输出量y (t)保持与输入量X (t)相等。

这一点是比例控制器做不到的。

因为对于比例控制器,不等于零的拉制信号要求有不等于零的误差信号。

也就是说,在静态必须靠一定的误差来维持输出与输入之间的比例关系然而,系统中加入积分单元,可以改变系统的闭环特征多项式,从而可能使一个稳定的系统变为一个不稳定的系统。

同时,积分作用往往导致系统响r迟缓。

微分环节可以改善系统的动态特性。

当动态过程接近于达到静态时,误差信号变化不大或是变化缓慢,微分作用也就微不足道。

所以,微分作用不能单独使用,它总是与比例作用结合起来使用。

以比例加微分控制器为例来说明微分环节的作用。

该控制器的传递函数:Gc (s) =Kp* (1+Td*s)如果它的输入信号是e (t) ,输出信号是u (t),则有:u (t) =Kp*e (t)+Kp*Td*e (t)′可见它所产生的控制作用不仅反映误差信号而且还反映误差信号的变化率。

总之,PID调解就是调整比例、积分和微分各环节参数(Kp, Ti,Td),使系统相互制约的快速性,稳定性,动态特性和静态精度满足主要方面,兼顾其它方面,达到最优的控制效果。

其参数的选择,通常通过凑试法,实验法或由试验得来的经验公式来确定,是一个比较复杂的过程。

2.3 PID控制算式的数字化在模拟调节系统中,PID 控制算法的模拟表达式为:(2.1)式中:y (t)一一调节器的输出信号;e (t)一一调节器的偏差信号Kp 一一调节器的比例系数;Ti 一一调节器的积分时间;Td 一一调节器的微分时间; ()()()000n nn i i e t dt e j t T e j ===∆=∑∑⎰ (2.2) ()(1)()()(1)e n e n de t e n e n dt t T----≈=∆ (2.3) 将式(2.2)和式(2.3)带入式(2.1),则可得到离散的PID 表达式:()()()()()0{[1]}n dp i i T T Y n k e n e j e n e n T T ==++--∑ (2.4)n 一一采样序号,n=0, 1, 2...e (n)一一第n 次采样时的偏差;△t=T 一一采样周期;e (n-1)一一第n-1次采样时的偏差.通常把(2. 4)式称为位置控制算式。

由式(2. 4)可以看出,要想计算Y (n ),不仅需要本次与上次的偏差信号e (n)和e (n-1),而且还要在积分项把历次的偏差信号e(j)进行相加。

这样,不仅使得计算繁琐,且为了保留e (j)还需要占用很大的内存。

因此,进行如下改动:根据推理,可写出第(n-1)次的PID 的输出表达式:(2.5)用式(2.4—2.5)可得到:()()()()()()()()()1[1][212]2.6p i d Y n Y n K e n e n K e n K e n e n e n --=--++--+-式()()()()()1[]p d i de t Y t k e t e t d t T T dt=++⎰()()()()()101{1[12]}n d p i i T T Y n k e n e j e n e n T T-=-=-++---∑中:;.d i p d p i T T K K K K T T== 由式(2.6)可知,要计算第n 次输出值Y (n),只需知丫(n-1) . e (n) .e (n-1) , e (n-2)即可,与式(2. 4)相比,计算要简单得多。

在很多控制系统中,由于执行机构是采用步进电机或多圈电位器进行控制的,因此,此时给一个增量信号即可。

式(2. 6)还可以表示为下式:()()()()()()()()[1][212]2.7p i d Y n K e n e n K e n K e n e n e n ∆=--++--+-式(2. 7)表示第n 次输出的增量△Y (n) ,等于第n 次与第n-1次调节器的差值,即在第n-1次的基础之上增加(减少)的量。

式(2. 7)叫做PID 的增量控制式。

2.4 智能PID 控制控制论的三个最为基本而又重要的概念:信.息、反馈和控制。

今天,随着科学技术的进步,信.息已经变得越来越重要了。

显然,控制系统中的信息也不单纯的仅仅是一种信号数值的大小,而且包括知识、经验等在内的多种信息;反馈的概念已经不再理解为单一的负反馈模式,根据控制的需要,可以暂时不加负反馈以开环形式运行,也可以根据特殊需要加正反馈等;控制也已经不是单纯地执行某一单一控制规律,而是根据动态过程需要采取多种策略组合,以进行更有效的控制。

从信息、反馈和控制的内涵发生的变化可以看出,信.6,已经广义化了,反馈模式已推广了,控制方式已多样化了,他们变化的本质特征在于智能化。

从这个意义上讲,可以把具有智能信息处理、智能反馈和智能拉制决策的控制方式,称为智能控制。

从智能拉制论的观点去解决复杂不确定性系统的拉制问题而设计的系统,就称为智能控制系统。

仿人智能控制算法,从控制结构和控制行为两方面模仿了人的一些特点和功能,其中包括人的在线特性辫识、特性记忆以及直觉推理逻辑等。

具体说来,主要根据控制器的输入信号(即系统误差)的大小、方向及其变化趋势作出相应的决策,以选择适当的拉制模式进行控制。

这种智能控制算法的最主要优点是,它既不需要事先知道也不需要在线辫识被控制对象的精确模型,就能实现既快速又高精度的控制,且具有极强的鲁棒性.此次设计的控制算法可以归纳如表2-1所示。

表中e=r-y 为系统误差,r 为给定值,y为被调量。

相关文档
最新文档