定积分中值定理的推广

合集下载

定积分中值定理的条件

定积分中值定理的条件

定积分中值定理的条件1. 定积分中值定理的条件之一那就是函数要在闭区间上连续呀!你想想看,就像跑步要在规定的跑道上一样,不能乱跑呀!比如函数 f(x)=x 在[0,1]上,它就是连续的呀。

2. 还有哦,被积函数要在闭区间上有界呢!这就好比是风筝要有线牵着,不能无限制地飞呀!像 f(x)=1/x 在(0,1]上就不行啦,因为它在 0 点无界呀。

3. 函数在闭区间内可积也是个重要条件呢!哎呀,这就好像搭积木,得能一块一块堆起来才行呀!比如 f(x)=[x]在[0,1]上,它就不可积呀。

4. 定积分中值定理还要求积分区间是闭区间呀,这可不是随便说说的哟!就如同比赛要有明确的起点和终点一样呀!像如果是开区间,那可就不符合条件啦。

5. 被积函数得是个正经函数呀,不能乱七八糟的!这就好像交朋友,得是靠谱的人呀!比如一些奇奇怪怪没有规律的函数,可能就不满足条件咯。

6. 闭区间的两端点得是确定的呀,这可不能含糊!好比目的地得明确,不能模模糊糊的呀!像那种不确定端点的,肯定不行呀。

7. 函数在闭区间上不能有太多间断点呀,不然怎么能符合要求呢!这就像走路,不能老是有大坑小坑的阻碍呀!例如有很多间断点的函数,就不太行了。

8. 定积分中值定理的条件得都满足才行呀,少一个都不行呢!这就像搭房子,少一块砖都不牢固呀!想想看是不是这个道理呀。

9. 条件都具备了,定理才能发挥作用呀!就像汽车零件都齐了才能跑起来呀!要是缺这个少那个,那可就糟糕啦。

10. 这些条件都很关键呀,大家可一定要记住呀!别不当回事儿呀!就像记住重要的事情一样呀!比如在做题的时候,就得时刻想着这些条件呢。

我的观点结论就是:定积分中值定理的这些条件真的很重要,必须要严格遵守呀,不然就没法正确运用定理啦!。

牛顿莱布尼茨公式与积分中值定理

牛顿莱布尼茨公式与积分中值定理

牛顿莱布尼茨公式与积分中值定理牛顿-莱布尼茨公式与积分中值定理牛顿-莱布尼茨公式和积分中值定理是微积分中两个重要且基本的定理,它们为我们理解和应用积分提供了重要的工具。

本文将先介绍牛顿-莱布尼茨公式的概念和推导过程,接着详细阐述积分中值定理及其应用。

牛顿-莱布尼茨公式,也被称为基本定理,是微积分中极为重要的定理之一。

它是针对定积分和不定积分之间的关系提出的,表达了定积分和不定积分之间的联系。

其公式可表示为:∫[a,b]f(x)dx = F(b) - F(a)其中,f(x)是定义在区间[a,b]上的连续函数,F(x)是其在[a,b]上的一个原函数。

牛顿-莱布尼茨公式的意义在于,它将定积分与不定积分联系了起来,通过求函数的原函数可以得到函数的不定积分,而定积分则可以通过对不定积分在[a,b]上的两个端点求差得到。

牛顿-莱布尼茨公式的推导过程并不复杂,我们可以通过牛顿-莱布尼茨公式的符号表达式进行推导。

以∫[a,b]f(x)dx为例,我们可以通过对其求导得到:d/dx ∫[a,b]f(x)dx = d/dx (F(b) - F(a))根据导数的定义和求导法则,上式可以展开为:f(x) = dF(x)/dx其中,f(x)表示函数f(x)的导数,dF(x)/dx表示函数F(x)对x的导数。

从上式可以看出,函数f(x)等于函数F(x)对x的导数,即f(x)是F(x)的导函数。

这就是牛顿-莱布尼茨公式的基本思想。

接下来,我们将介绍积分中值定理。

积分中值定理,也被称为微积分的基本定理之一,是由罗尔定理推导而来的。

积分中值定理的基本思想是将一个函数在某个区间上的平均值与其在该区间上的某一点处的函数值相等。

其表达式形式如下:f(c) = 1/(b-a) ∫[a,b]f(x)dx其中,f(x)是定义在区间[a,b]上的连续函数,c是[a,b]上的某一点,∫[a,b]f(x)dx表示f(x)在[a,b]上的定积分。

积分中值定理是通过对函数在[a,b]上进行积分平均值的计算,得到函数在某一点c处的函数值。

定积分的性质中值定理

定积分的性质中值定理

VS
详细描述
设函数f(x)和g(x)在区间[a, b]上可积,则有 ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx。
区间可加性
总结词
定积分的区间可加性是指,对于任意两个子区间[a, c]和[c, b],其上的积分值等于整个区间[a, b]上的积分值。
详细描述
设函数f(x)在区间[a, b]上可积,则对于任意c∈[a,b],有∫(a,b)f(x)dx=∫(a,c)f(x)dx+∫(c,b)f(x)dx。
重要性及应用领域
在微积分学中,定积分的性质中值定理是理解积分概念和性质的关键,它为解决定积分问题提供了一 种有效的方法。
在应用领域,定积分的性质中值定理广泛应用于物理学、工程学、经济学等领域,例如在计算面积、 解决物理问题、预测经济趋势等方面都有重要的应用。
02 定积分的性质
线性性质
总结词
定积分的线性性质是指,对于两个函数 的积分和或差,其积分值等于各自积分 值的和或差。
可以用来研究函数的单调性、极值等问题, 并且在解决一些复杂的数学问题时也很有用。
04 定积分与中值定理的关系
定积分与连续函数的关系
01
定积分是研究连续函数的一种工具,它能够计算连 续函数在一定区间上的积分值。
02
连续函数在一定区间上的定积分等于该函数在区间 端点上取值的差与该区间长度乘积的一半。
拉格朗日中值定理是微分学中的基本定理之一,它说 明了一个函数在开区间上可导时,其导函数在区间内 至少存在一个中值点。
详细描述
拉格朗日中值定理是由法国数学家拉格朗日提出的,定 理表述为:如果一个函数f(x)在闭区间[a, b]上连续,在 开区间(a, b)上可导,那么在开区间(a, b)内至少存在一 点ξ,使得f'(ξ)=(f(b)-f(a))/(b-a)。这个定理说明了函数 在某区间的变化率与该区间两端函数值之差成正比,这 在研究函数的单调性、极值等问题时非常有用。

定积分第二中值定理

定积分第二中值定理

定积分第二中值定理
定积分的第二中值定理是微积分中的重要定理,它是关于定积分的性质之一。

定积分的第二中值定理表述为,如果函数f(x)在区间[a, b]上连续,那么存在一个ξ∈[a, b],使得定积分∫[a, b]f(x)dx等于函数f(x)在区间[a, b]上的平均值乘以区间的长度(b-a),即∫[a, b]f(x)dx = f(ξ)(b-a)。

从几何意义上来理解,定积分的第二中值定理可以解释为,在函数f(x)的图像下方与x轴之间的有界区域的平均高度乘以区域的宽度等于定积分的值。

这个ξ就是函数在区间[a, b]上的平均值所对应的横坐标,也就是说,存在这样一个点ξ,使得函数在这一点的函数值等于定积分的平均值。

定积分的第二中值定理可以被看作是定积分的平均值定理的推广,它为我们提供了一种通过平均值来理解定积分的方法。

这个定理在实际问题中有着重要的应用,比如在物理学中,可以用来解释物体在一段时间内的平均速度等问题。

总之,定积分的第二中值定理是微积分中的重要定理,它提供
了定积分与函数平均值之间的关系,有助于我们更深入地理解定积分的性质和应用。

中值定理的应用方法与技巧

中值定理的应用方法与技巧

中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。

微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。

积分中值定理有积分第一中值定理和积分第二中值定理。

积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。

积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。

一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。

由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。

这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。

例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。

证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。

证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。

任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。

《积分中值定理》课件

《积分中值定理》课件
积分中值定理在实数理论中有重要应用, 如证明实数的连续性、稠密性等性质。
在其他数学领域的应用实例
复变函数
积分中值定理在复变函数中有广泛的应用, 如在解决柯西积分公式、留数定理等问题时 起到关键作用。
概率论与数理统计
积分中值定理在概率论与数理统计中有重要 应用,如在计算期望、方差等统计量时起到 关键作用。
03
综上所述,积分中值定理是一个具有 重要性和意义的数学定理。在未来的 研究中,我们需要进一步深入探索其 应用范围和条件,并尝试将其应用于 更广泛的领域,以推动数学和其他学 科的发展。
THANKS
感谢观看
利用微积分基本定理证明积分中值定理
总结词
通过利用微积分基本定理和函数的单调性,证明积分中值定理。
详细描述
首先,我们选取一个连续函数$f(x)$,并设其在区间$[a, b]$上非负且不恒为零。然后 ,我们证明函数$F(x) = int_{a}^{x}f(t)dt$在$[a, b]$上单调增加。由于$F(x)$单调增加 ,存在一个点$c in (a, b)$使得$frac{F(b) - F(a)}{b - a} = f(c)$。最后,我们得出结论
对积分中值定理未来的研究方向和展望
01
积分中值定理的研究已经取得了丰硕 的成果,但仍有许多值得探索的问题 。例如,对于更一般的函数空间和更 复杂的积分问题,如何应用积分中值 定理进行有效的处理?这需要我们进 一步深入研究积分中值定理的适用范 围和条件。
02
随着数学和其他学科的不断发展,积 分中值定理的应用领域也在不断扩大 。未来,我们可以尝试将积分中值定 理应用于更广泛的领域,如金融、经 济、生物等,以解决实际问题。同时 ,我们也可以探索积分中值定理与其 他数学理论的交叉应用,以推动数学 的发展。

积分中值定理的推广及应用

积分中值定理的推广及应用

㊀㊀㊀㊀数学学习与研究㊀2022 31积分中值定理的推广及应用积分中值定理的推广及应用Һ丁建华㊀(甘肃有色冶金职业技术学院教育系,甘肃㊀金昌㊀737100)㊀㊀ʌ摘要ɔ本文首先对积分中值定理的几何特征进行详细介绍,并对该定理中f(x)在[a,b]上恒为常数㊁f(x)在[a,b]上不为常数函数做出一定的补充,并证明此结论也是成立的;其次,对第一积分中值定理和第二积分中值定理进行了推广,并进一步证明了结论的准确性;最后,通过不等式的证明㊁极限的求值进一步验证了改进结论的正确性.ʌ关键词ɔ中值定理;连续性;不等式一㊁积分中值定理的几何特征与补充积分中值定理的几何意义可以理解为:若函数f(x)在闭区间[a,b]上非负连续时,定积分ʏbaf(x)dx在几何上可以表示为y=f(x),x=a,x=b及x轴所围成的曲边梯形面积(如图1,定积分ʏbaf(x)dx表示曲边梯形AabB的面积).根据闭区间上连续函数的性质,f(x)在[a,b]上存在最大值M和最小值m,即∀xɪ[a,b],有mɤf(x)ɤM,从而m(b-a)ɤʏbaf(x)dxɤM(b-a).它可以化为mɤ1b-aʏbaf(x)dxɤM.由连续函数的介值定理,则至少有这样的一个点ξɪ[a,b],使得f(ξ)=1b-aʏbaf(x)dx,则ʏbaf(x)dx=f(ξ)(b-a).根据上面知识点,我们可以获得数学分析中常用的重要积分学性质和定理.积分中值定理㊀若函数f(x)在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得ʏbaf(x)dx=f(ξ)(b-a)(aɤξɤb).这里要求函数f(x)在[a,b]上连续即可,对函数没有严格要求.进一步地,我们可将f(x)在[a,b]上连续的这一条件更改为f(x)在[a,b]上可积,其结论仍然成立.当f(x)在[a,b]上连续且非负时,积分公式ʏbaf(x)dx=f(ξ)(b-a)有着明显的几何意义,即y=f(x)在[a,b]上的曲边梯形面积等于以图1所示的f(ξ)为高㊁[a,b]为底的矩形面积,即以f(ξ)为高的矩形AabD的面积.㊀图1通过对上面图1进一步分析,我们可以发现定理中的ξɪ[a,b]可以改为ξɪ(a,b),事实上,若ξ仅取在[a,b]的端点上,不妨设ξ=a,则可从图2中看出,曲边梯形AabB的面积ʏbaf(x)dx与矩形AabD的面积不可能相等.㊀图2本文给出如下两种证明.证法一:若函数f(x)在闭区间[a,b]上恒为常数,则ξ取(a,b)内任意一点,结论都是成立的.若f(x)在[a,b]上为一个变量函数,设M,m分别为f(x)在[a,b]上的最大值与最小值,则存在x0ɪ(a,b),使得mɤf(x0)ɤM.事实上,若这样的x0不存在,则在[a,b]上必存在一点x1,使得f(x)在a,x1[]上恒有f(x)=m或f(x)=M(),在[x1,b]上恒有f(x)=M(或f(x)=m).这样一来,x1是间断点,与f(x)在区间[a,b]上连续矛盾.又f(x)在x0连续,则存在δ>0,x0-δ,x0+δ()⊂[a,b],当x-x0<δ时,有f(x)-f(x0)<M-f(x0)2和f(x)-f(x0)<f(x0)-m2,从而M-f(x0)>M-f(x0)2>0,f(x0)-m>f(x0)-m2>0,于是ʏx0+δx0-δ[M-f(x)]dxȡʏx0+δx0-δM-f(x0)2éëêùûúdx,即ʏx0+δx0-δf(x)dxɤM-f(x0)2ʏx0+δx0-δdx,又f(x0)<M,ʏx0+δx0-δf(x)dx<Mʏx0+δx0-δdx,同理有ʏx0+δx0-δf(x)dx>mʏx0+δx0-δdx,于是ʏbaf(x)dx=ʏx0-δaf(x)dx+ʏx0+δx0-δf(x)dx+ʏbx0+δf(x)dx<Mʏx0-δadx+Mʏx0+δx0-δdx+Mʏbx0+δdx=M(b-a).同理可得ʏbaf(x)dx>m(b-a),㊀㊀㊀㊀㊀数学学习与研究㊀2022 31因此m(b-a)<ʏbaf(x)dx<M(b-a),即m<1b-aʏbaf(x)dx<M.由介值定理,存在ξɪ(a,b),使得f(ξ)=1b-aʏbaf(x)dx,即ʏbaf(x)dx=f(ξ)(b-a),其中ξɪ(a,b).证法二:作辅助函数F(x)=ʏxaf(t)dt,xɪ[a,b],则F(x)是[a,b]上的可微函数,且Fᶄ(x)=f(x),由微分中值定理,至少存在一点ξɪ(a,b),使得F(a)-F(b)=Fᶄ(ξ)(b-a).注意到,F(b)=ʏbaf(x)dx,F(a)=0,则有ʏbaf(x)dx=f(ξ)(b-a),ξɪ(a,b).于是,我们可以进一步将积分中值定理进行推广.设f(x),g(x)在[a,b]上连续,g(x)在[a,b]上不能等于零,同时符号不会改变,在这样特殊的情形下,可以得到如下的结论,ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).令F(x)=ʏxaf(t)g(t)dt,G(x)=ʏxag(t)dt,则由微分学的柯西中值定理知,F(b)-f(a)G(b)-G(a)=Fᶄ(ξ)G(ξ),ξɪ(a,b),即有ʏbaf(x)g(x)dxʏbag(x)dx=f(ξ)g(ξ)g(ξ),ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).但当g(x)在[a,b]只是可积分,并且恒为正或恒为负时,前面我们进行推导的思路完全行不通,即不可能成立,因为可积不变号时,g(x)可以等于零,我们就不能使用上面的结论了.二㊁第一㊁第二积分中值定理的推广及其证明积分第一中值定理设函数f(x)在[a,b]上连续,g(x)在[a,b]上可积不变号,则在[a,b]存在一点ξ,使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.积分第二中值定理设(ⅰ)g(x)在[a,b]上连续;(ⅱ)f(x)在[a,b]上单调递增且连续;(ⅲ)f(x)ȡ0,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(b)ʏbξg(x)dx.推论1.若积分第二中值定理中的递增改为递减,其他条件不变的情况下,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx.2.若积分第二中值定理中的f(x)ȡ0去掉,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbξg(x)dx.当ξ所在区间[a,b]变为(a,b),其余条件㊁结论不变,我们就可以将积分中值定理进一步推广.接下来,我们进一步证明积分中值定理的推广定理,先验证积分第一中值定理的推广.证明㊀由于f(x)在[a,b]上连续.设M为f(x)在[a,b]上的最大值,m为f(x)在[a,b]上的最小值,即有mɤf(x)ɤM,又由于g(x)在[a,b]上定号,不妨令g(x)ȡ0(g(x)ɤ0的情况同理),从而有mf(x)ɤf(x)g(x)ɤMg(x),即mʏbag(x)dxɤMʏbag(x)dx.(1)ʏbag(x)dx=0,由上面不等式的结论可知,ʏbaf(x)g(x)dx=0,因此有ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(2)ʏbag(x)dx>0.(ⅰ)如果mʏbag(x)dx<ʏbaf(x)g(x)dx<Mʏbag(x)dx,即m<ʏbaf(x)g(x)dxʏbag(x)dx<M时,由闭区间上连续函数的介值定理我们可以知道,有一ξɪ(a,b),使得f(ξ)=ʏbaf(x)g(x)dxʏbag(x)dx,即ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(ⅱ)如果mʏbag(x)dx=ʏbaf(x)g(x)dx,(a)假如有一ξɪ(a,b),都有f(ξ)=m,我们可以得到mʏbag(x)dx=f(ξ)ʏbag(x)dx结论成立.(b)除此之外,对任意的xɪ(a,b),都有f(x)>m,而由ʏbag(x)dx>0,必定存在充分小的数η,使得ʏb-ηa+ηg(x)dx>0(倘若不然的话,对于任意的正数η,都有ʏb-ηa+ηg(x)dxɤ0,从而ʏbag(x)dx=limηң0ʏb-ηa+ηg(x)dxɤ0与ʏbag(x)dx>0矛盾).于是得到0=ʏba[f(x)-m]g(x)dxȡʏb-ηa+η[f(x)-m]g(x)dx.利用原积分中值定理,得ʏb-ηa+η[f(x)-m]g(x)dx=[f(ξᶄ)-m]ʏb-ηa+ηg(x)dx>0,ξᶄɪ[a+η,b-η]⊂(a,b).与之比较,知矛盾.(ⅲ)Mʏbag(x)dx=ʏbaf(x)g(x)dx,这个证明类似于证㊀㊀㊀㊀数学学习与研究㊀2022 31明(ⅱ)的过程.综上所述,存在ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx成立.证毕!根据积分第一中值定理的推广证明,我们同样可以对积分第二中值定理的推广进行证明.接下来,我们试证积分第二中值定理的推广结果.证明㊀由f(x)在[a,b]上连续,F(x)=ʏxaf(t)dt在[a,b]上可导,从而有ʏbaf(x)g(x)dx=ʏbag(x)dF(x)=g(b)F(b)-ʏbaF(x)gᶄ(x)dx-g(a)F(a)=g(b)ʏbaf(x)dx-ʏbaF(x)gᶄ(x)dx.对于ʏbaF(x)gᶄ(x)dx应用推广的第一积分中值定理,得到ʏbaF(x)gᶄ(x)dx=F(ξ)[g(b)-g(a)],其中ξɪ(a,b),从而有ʏbaF(x)gᶄ(x)dx=g(b)ʏbaf(x)dx-F(ξ)[g(b)-g(a)]=g(b)ʏξaf(x)dx+ʏbξf(x)dx[]-ʏξaf(x)dx[g(b)-g(a)]=ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbag(x)dx.证毕!三㊁积分中值定理的应用例1㊀证明下列积分不等式:(1)π2<ʏπ2011-12sin2xdx<π2;(2)2e-14<ʏ20ex2-xdx<2e2.证明㊀(1)由积分中值定理,有π2<ʏπ2011-12sin2xdx=11-12sin2ξ㊃π2,其中ξɪ0,π2(),当ξɪ0,π2()时,有0<sin2ξ<1,从而1<11-12sin2ξ<2,因此有π2<ʏπ2011-12sin2ξdx<π2.证毕.(2)由定积分性质,有ʏ20ex2-xdx=ʏ120ex2-xdx+ʏ212ex2-xdx=12eξ21-ξ1+32eξ22-ξ2,其中ξ1ɪ0,12(),ξ2ɪ12,2(),又ex在-ɕ,+ɕ()上严格单调递增,而f(x)=x2-x在0,12[]上严格单调递减,在12,2[]上严格单调递增,所以,当ξ1ɪ0,12()时,e-14<eξ21-ξ1<1;当ξ2ɪ12,2()时,e-14<eξ22-ξ2<e2.从而12eξ21-ξ1+32eξ22-ξ2>12e-14+32e-14=2e-14,12eξ21-ξ1+32eξ22-ξ2<12+32e2<2e2,因此2e-14<ʏ20ex2-xdx<2e2.如果ξ取自任意闭区间,使得积分中值定理成立,则需要将例1的证明结果做进一步的讨论.由此可见,对积分中值定理进行改进或者推广对我们的学习很有帮助,当然,我们也要合理使用该定理,否则就会出现错误的结论.例2㊀证明:limnңɕʏ10xn1+xdx=0.如果利用积分中值定理,得ʏ10xn1+xdx=ξn1+ξ,其中ξɪ0,1(),从而limnңɕʏ10xn1+xdx=limnңɕʏ10ξn1+ξdx=0,这是错误的,因为ξ与n有关.正确的解法是:因为0ɤxn1+xɤxn,xɪ0,1[],所以0ɤʏ10xn1+xdxɤʏ10xndx,而ʏ10xndx=11+n,limnңɕ11+n=0,因此limnңɕʏ10xn1+xdx=0.证毕!ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.[2]黎金环,刘丽霞,朱佑彬.积分中值定理在一道极限题的应用分析[J].高等数学研究,2021(2).[3]同济大学数学教研室.高等数学[M].北京:高等教育出版社,1993.[4]郝玉芹,时立文,欧阳占瑞.对积分中值定理结论的一点改动[J].河北能源职业技术学院学报,2007(3).[5]周冰洁.巧用积分中值定理[J].现代职业教育,2019(31).[6]余小飞.积分中值定理在积分不等式中的应用[J].当代教育实践与教学研究,2017(8).。

数学分析9.4定积分的性质

数学分析9.4定积分的性质

第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。

定积分中的定理

定积分中的定理

定积分是积分学中的一个重要概念,它涉及到曲线、面积、速度等多个领域。

在定积分中,有几个重要的定理,它们对于理解和应用定积分具有关键的作用。

1.微积分基本定理(也称为牛顿-莱布尼兹公式):这是定积分中的核心定理。

它建立了定积分与不定积分(原函数)之间的联系,即一个函数在区间上的定积分等于其原函数在该区间的端点值的差。

这个定理使得定积分的计算变得更为简单,因为它允许我们通过找到被积函数的原函数来求解定积分。

2.中值定理:定积分的中值定理表明,在闭区间[a,b]上连续的函数f(x)在[a,b]
上的定积分等于f(x)在[a,b]上的某一个值c乘以区间[a,b]的长度,即∫abf(x)dx=f(c)(b−a)。

这个定理在理论上很重要,因为它揭示了定积分与函数值之间的关系。

3.可积性定理:如果一个函数在闭区间[a,b]上只有有限个第一类间断点,那么
这个函数在[a,b]上是可积的。

这个定理给出了函数可积的充分条件,是定积分存在性的基础。

以上三个定理在定积分中占据重要地位。

它们不仅提供了定积分的计算方法,还揭示了定积分与被积函数之间的关系,以及定积分存在的条件。

在理解和应用定积分时,这些定理都是不可或缺的。

积分第一中值定理

积分第一中值定理

§1.1 积分第一中值定理若函数()f x 在闭区间[,]a b 上连续,则在[,]a b 上至少存在一点ξ,使得()()()baf x dx f b a ξ=-⎰证明:由定积分性质知()()()bam b a f x dx M b a -≤≤-⎰ (1)其中M ,m 分别是函数()f x 在闭区间[,]a b 上的最大值和最小值。

把(1)式各除以b a -,得1()bam f x dx M b a ≤≤-⎰。

这表明,确定的数值1()ba f x dxb a-⎰介于函数()f x 的最小值m 和最大值M 之间。

根据闭区间上连续函数的介值定理,在[,]a b 上至少存在着一点ξ,使得函数()f x 在点ξ处的值与这个确定的数值相等,即应有:1()()ba f x dx fb aξ=-⎰ (a b ξ≤≤) 两端乘以b a -,即得所要证的等式。

说明:这里的ξ是在[,]a b 上取值,实际上,也可以在开区间(,)a b 的,即(,)a b ξ∈时,定理同样成立。

现证明如下:记()baf x dx b aμ=-⎰,则(())0baf x dx μ-=⎰。

若a x b <<时()()0f x μ-><,则,(())()0baf x dx μ-><⎰,均矛盾。

故有,12,a b x x <<使1()f x μ≤,2()f x μ≥, 故存在(,)a b ξ∈使()f ξμ=。

即()()()ba f x dx fb a ξ=-⎰证明完毕推广的积分第一中值定理:若函数()f x 与()g x 在闭区间[,]a b 上连续,且()g x 在[,]a b 上不变号,则在[,]a b 上至少存在一点ξ,使得:()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ (a b ξ≤≤)证明: 因为()f x 在[,]a b 上连续,()f x 在[,]a b 上必有最大值M 和最小值m ,又由于()g x 在[,]a b 上可积且不变号,不妨设()0g x ≥,()ba I g x dx =⎰,于是()()()(m g x f x g x M g x≤≤ 从而 ()()bam I f x g x d x MI ≤≤⎰(2) 若I =0,则由(2)式知 ()()0baf xg x dx =⎰,从而任取ξ(,)a b ∈均可以使等式成立。

积分第一中值定理的推广研究

积分第一中值定理的推广研究

积分第一中值定理的推广研究【摘要】本文主要研究了积分第一中值定理的推广研究。

在介绍了研究背景、研究目的以及研究意义。

在分别讨论了积分第一中值定理的基本概念、推广方法、应用领域分析、案例研究以及数学证明。

结合实际案例,探讨了该定理在实际问题中的应用和价值。

在总结了积分第一中值定理的推广效果,提出了未来研究方向。

通过深入研究和推广,该定理可以在更广泛的领域得到应用,对数学研究具有重要意义。

本研究将为相关领域的研究提供新的理论支持和启发,推动数学理论的发展。

【关键词】积分第一中值定理,推广研究,基本概念,推广方法,应用领域,案例研究,数学证明,推广效果,未来研究方向,总结。

1. 引言1.1 研究背景积分第一中值定理是微积分中的一个重要概念,它解决了函数在区间上的平均值与某一点的函数值之间的关系。

随着数学的发展,人们对积分第一中值定理的应用也越来越广泛。

目前对于积分第一中值定理的推广研究还比较有限。

研究背景部分将探讨当前对积分第一中值定理的研究现状,包括已有的成果、存在的问题和挑战。

通过对这些信息的梳理和分析,我们可以更清晰地认识到积分第一中值定理的重要性和研究的必要性。

研究背景还可以为我们打开新的思路和方法,拓展对积分第一中值定理的理解和应用范围。

在本文中,我们将从研究背景出发,逐步展开对积分第一中值定理的推广研究,探讨其基本概念、推广方法、应用领域分析、案例研究和数学证明等内容。

通过对这些方面的深入探讨,我们希望能够为积分第一中值定理的推广研究提供新的思路和方法,推动该领域的发展。

1.2 研究目的研究目的是通过对积分第一中值定理的推广研究,探索其在更广泛的数学领域和实际应用中的价值和作用。

具体来说,我们希望通过深入理解积分第一中值定理的基本概念和推广方法,分析其在不同应用领域中的实际运用情况,并通过案例研究来展示其在解决具体问题中的作用。

通过这些研究,我们旨在揭示积分第一中值定理的推广效果,为未来的数学研究和应用提供参考和指导。

)积分中值定理的推广和应用情形

)积分中值定理的推广和应用情形

积分中值定理的推广和应用———积分中值定理的推广定理和应用情形The Integral Mean Value Theorem for Its Spreading andApplication——Extension theorem of integral mean value theorem and itsapplication论文作者:专业:指导老师:完成时间:摘要积分中值定理和微分中值定理在微积分学中有着重要的地位,微分中值定理是研究函数的有力工具,反映了导数的局部性和与函数的整体性之间的关系,而积分中值定理在证明有关中值问题时具有极其重要的作用。

它是数学分析课程中定积分部分的一个基本定理之一。

积分中值定理包括积分第一中值定理和积分第二中值定理,在之前的数学分析课程中我们已经学习了这两个定理的证明,但这两个定理的推广与应用尚未提及。

在这里,我讨论了积分第一中值定理和积分第二中值定并给出了这些定理的详细证明过程,并且给出了集中推广形式。

在积分中值定理的应用方面,我给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号等,并且通过列举例题,加以归纳总结,并且充分体现积分中值定理在学习解题练习中的应用。

The integral mean value theorem and the differential mean value theorem play an important role in the calculus.Differential mean value theorem is a powerful tool to study the function.It reflects the relation between the local property of the derivative and the integral of the function. And the integral mean value theorem plays a very important role in the proof of the mean value problem.It is one of the basic theorems of the definite integral part in the course of mathematical analysis.The integral mean value theorem includes the first mean value theorem of integrals and the second mean value theorem of integrals,we have learned the proof of the two theorems In the course of mathematical analysis.But the extension and application of these two theorems have not been mentioned yet.Here, I discuss the first mean value theorem of integrals and the second mean value of the integrals and give a detailed proof of these theorems and I give the form of centralized generalizations here.In the application of the integral mean value theorem, I give some simple situations such as the estimation of the integral value, and the limit of the definite integral, the integral number and so on.And by citing examples,I summarized and fully reflect the integral mean value theorem in the application of learning problem solving exercises.关键词:积分中值定理;推广;应用Keyword:mean value theorem of integrals; extension; Application1 引言中值定理在数学分析中占有非常重要的地位,学好积分中值定理和微分中值定理能为进一步学好微积分理论打下坚实的基础。

定积分的性质中值定理

定积分的性质中值定理

系是______________________; 系是______________________; ______________________ 4、 积分中值公式


b
a
f ( x )dx = f (ξ )( b − a ) , ( a ≤ ξ ≤ b ) 的 几 何 意 义
_______________; _______________;

∫a [ g( x ) − f ( x )]dx ≥ 0, b b ∫a g( x )dx − ∫a f ( x )dx ≥ 0,
∫a f ( x )dx ≤ ∫a g( x )dx .
b b
b
于是
性质5的推论: 性质5的推论: (2) ) 证
∫a f ( x )dx ≤ ∫a
b
b
b
f ( x )dx . ( a < b )
x → +∞
求 lim
x → +∞ x

x+2
3 t sin f ( t )dt . t
解 由积分中值定理知有 ξ ∈ [ x , x + 2],
3 3 使 ∫x t sin f ( t )dt = ξ sin f (ξ )( x + 2 − x ), t ξ x+2 3 3 lim ∫x t sin f ( t )dt = 2 lim ξ sin f (ξ ) x → +∞ ξ → +∞ t ξ
n→ ∞ 0
π
上连续,证明: 七、设 f ( x ) 及 g( x )在[ a , b ]上连续,证明:
b
[a , b]上 f ( x ) ≡ 0 ; 2、若在[a , b]上, f ( x ) ≥ 0

定积分的性质中值定理

定积分的性质中值定理

klim 0i1
f(i)xi
a
abk(xf)dxkabf(x)dx
性质2(区间可加性) 假 设 acb
则 f 在 [ a , b ] 上可积的充要条件是 f 在 [ a , c
和 [ c , b bf(x )dx
y
从几何上意义考虑
区间[a,b]上至少存在一个点,使

a b f(x ) d x f()b ( a )
f()b 1aabf(x)dx
积分中值定理的几何解释:
1
b
f (x)dx
ba a
,使得曲边梯形的面积 f()的一个矩形的面积.
等于底为 b - a ,而高为
为 f 在 [ a ,b ]上的平均 值.
定义 设 f ∈C [ a ,b], 称
2xlnxd x 23 xlnxd
1
1
x
当f(x)在区间[a,b]上非负连续且ab f (x)dx
即abf(x)dxabf(x)d.x abf(x)dxabf(x)dx bbb
af(x)dxaf(x)dxaf(x)d,x
推论2 如果 f 在 [a , b] 上可积 ,则∣f∣在 [a , b] 上也可积 , 并有 证
a
n
b
li0mi1[f(i)g(i)]xi a
b
bb
a[f(x)g(x)d]xaf(x)daxg(x)dx
n
lim 0i1
f(i)xi
b
n
g(x)dx
a
lim0i1g(i)xi

( 为常数)
证 性质1’
b
n
l im0i1kf(i)xi
n
limk 0 i1
f(i)xi

牛顿 莱布尼茨公式

牛顿 莱布尼茨公式

因为函数在区间上可积,任取区间的分割 在区间上任取一点,则有 其次,对于分割,有 在区间上对函数应用拉格朗日中值定理得 其中因此有 证毕。
定理推广
二重积分形 式
曲线积分形 式
设函数在矩形区域上连续,如果存在一个二元函数,使得 , 则二重积分
பைடு நூலகம்
与格林公式和高斯公式的设D为单连通区域,与在区域D上有连续的一阶偏导数, 若存在一个二元函数,使得 在区域D中任意取两个点,则对连接的任意一条光滑曲线L, 都有
发展简史
1670年,英国数学家伊萨克·巴罗在他的著作《几何学讲义》中以几何形式表达了切线问题是面积问题的逆 命题,这实际是牛顿-莱布尼茨公式的几何表述。
1666年10月,牛顿在它的第一篇微积分论文《流数简论》中解决了如何根据物体的速度求解物体的位移这一 问题,并讨论了如何根据这种运算求解曲线围成的面积,首次提出了微积分基本定理。
谢谢观看
牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
定理定义
定义
弱化条件
如果函数在区间上连续,并且存在原函数, 则
如果函数区间上有定义,并且满足以下条件: (1)在区间上可积; (2)在区间上存在原函数 ; 则
公式推导
推导一
推导二
定义一个变上限积分函数,让函数获得增量,则对应的函数增量 根据积分中值定理可得, ,(ξ在x与x+Δx之间) , 所以 , 因为 ,所以,即 所以 即 证毕。
德国数学家莱布尼茨在研究微分三角形时发现曲线的面积依赖于无限小区间上的纵坐标值和,1677年,莱布 尼茨在一篇手稿中明确陈述了微积分基本定理:给定一个曲线,其纵坐标为y,如果存在一条曲线z,使得 dz/dx=y,则曲线y下的面积∫ydx=∫dz=z。

积分中值定理

积分中值定理

积分中值定理的“中值”研究吕立平(绍兴文理学院 数学系 浙江 绍兴 312000)摘要:本文将积分中值定理中的ξ[]b a ,∈加强为()b a ,∈ξ,并给出了不同的证明方法,最后举例说明其应用.关键词:积分中值定理; 介值定理; 微分中值定理;在数学分析中学习“积分中值定理”这一内容时,常把它与微分中值定理进行比较,提出为什么微分中值定理中的“中值”()b a ,∈ξ,而积分中值定理中的“中值”[]b a ,∈ξ,能不能把积分中值定理的闭区间[]b a ,改进为开区间()b a ,呢?其实这是可以的.本文就是对这一问题进行研究。

作为解决问题的准备,首先证明一个引理.引理 设)(x f 在[]b a ,上连续且)(x f 0≥, 若∫=badx x f 0)(, 则0)(≡x f .证明 若不然, 存在[]b a x ,0∈使得0)(0>x f , 由连续函数局部保号性,存在0x 的某邻域()δδ+−00,x x ,使∈∀x ()δδ+−00,x x 有02)()(0>≥x f x f .(当a x =或b x =时,则考虑右邻域或左邻域),又∫∫∫∫−+−+++=ba x a x x bx dx x f dx x f dx x f dx x f δδδδ0000)()()()(,所以≥∫ba dx x f )(∫+−δδ00)(x x dx x f 0)(22)(00>=≥δδx f x f . 这与∫=badx x f 0)(矛盾, 因此 0)(≡x f .下面我们给出定理并证明之.定理1 (积分第一中值定理)若)(x f 在()b a ,上连续,则在()b a ,上至少存在一点ξ,使得∫−=baa b f dx x f ))(()(ξ.证明 由于)(x f 在[]b a ,上连续,根据闭区间上连续函数的性质,)(x f 在[]b a ,上存 在最大值M 与最小值m .即 m M x f ≤≤)(,[]b a x ,∈. 有∫−≤≤−baa b M dx x f a b m )()()(.1 若 M m =, 则)(x f 为常值函数.显然有()b a ,∈∀ξ,满足∫−=baa b f dx x f ))(()(ξ.2 若 M m < (1) 当 )()()(a b M dx x f a b m ba−<<−∫即 M a b dxx f m ba<−<∫)()(,由闭区间上连续函数的介值定理知,存在()b a ,∈ξ使得)()()(a b dxx f f ba−=∫ξ,即∫−=baa b f dx x f ))(()(ξ.(2) 当∫−=baa b m dx x f )()( 即0])([=−∫dx m x f ba,设m x f x F −=)()(,则)(x F 在 []b a ,上连续且0)(≥x F ,又由∫=badx x F 0)(. 据引理知0)(≡x F ,即m x f ≡)(.所以存在()b a ,∈ξ使得∫−=baa b f dx x f ))(()(ξ成立.(3)当∫−=baa b M dx x f )()(,证明完全类似于(2).综上所得,在开区间()b a ,内存在ξ使得∫−=baa b f dx x f ))(()(ξ成立.前面我们提出了积分中值定理是否与微分中值定理有关系的思考,其实在一定条件下,他们之间有密切的联系.下面用微分中值定理来简单的证明上述定理.另证 作函数∫=xadt t f x F )()(,则)(x F 在[]b a ,上可导,而且)()('x f x F =,根据拉格朗日中值定理得,在()b a ,内存在一点ξ,有ab dtt f ab dtt f dt t f ab a F b F F babaaa−=−−=−−=∫∫∫)()()()()()('ξ即ab dtt f f ba−=∫)()(ξ,因此()b a ,∈∃ξ ,使得∫−=baa b f dx x f ))(()(ξ成立.对于第一积分中值定理的推广中的[]b a ,∈ξ,我们也可把它改进为()b a ,∈ξ定理2 (推广的积分第一中值定理) 若)(x f 在[]b a ,上连续,且)(x g 在[]b a ,上连续不变号,则在()b a ,内至少存在一点ξ,使得∫∫=babadx x g f dx x g x f )()()()(ξ.证明 由)(x f 在],[b a 上连续,则存在最大值、最小值m M 、.即M x f m ≤≤)(,[]b a x ,∈.又)(x g 在[]b a ,上不变号,不妨设)(x g ≥0,[]b a x ,∈,从而有)()()()(x Mg x g x f x mg ≤≤⇒∫∫∫≤≤b ab abadx x g M dx x g x f dx x g m )()()()(.1.若∫=badx x g 0)( 则由上述不等式得∫=badx x g x f 0)()(,此时显然()b a ,∈∀ξ,∫∫=bab adx x g f dx x g x f )()()()(ξ2.若∫>b adx x g 0)((1) 当M m =时,结论显然成立. (2) 当M m <时, 如果 ∫∫∫<<bab abadx x g M dx x g x f dx x g m)()()()(, 即M dxx g dxx g x f m baba<<∫∫)()()(.由闭区间上连续函数的介值定理知,存在()b a ,∈ξ使得∫∫=babadxx g dxx g x f f )()()()(ξ,即∫∫=babadx x g f dx x g x f )()()()(ξ.如果 dx x g x f dx x g mbab a∫∫=)()()(,即∫=−badx x g m x f 0)(])([,因为∫>badx x g 0)(,必[]()b a b a ,,11⊂∃使得恒有0)(>x g ,[]11,b a x ∈.(若不然,对于任何闭子区间[]),(,b a ⊂βα上都有],[βαξ∈使0)(=ξg .使用定积分定义便有∫=badx x g 0)( .这与∫>b adx x g 0)(矛盾).对于[]11,b a x ∈∀,[]0)()(≥−x g m x f .据此必有∫=−110)(])([b a dx x g m x f .(否则由∫≥−10)(])([a adx x g m x f ,∫>−110)(])([b a dx x g m x f ,∫≥−bb dx x g m x f 1)(])([得∫>−badx x g m x f 0)(])([.这与∫=−badx x g m x f 0)(])([矛盾.)则根据引理知[]0)()(=−x g m x f ,[]11,b a x ∈.又在[]11,b a 上0)(>x g ,所以m x f =)(,[]11,b a x ∈.因此存在[]()b a b a ,,11⊂∈∃ξ,使得∫∫=b abadx x g f dx x g x f )()()()(ξ.如果dx x g x f dx x g Mbaba∫∫=)()()( ,证明类似于前面.总之,存在()b a ,∈ξ使得∫∫=babadx x g f dx x g x f )()()()(ξ.对此同样可以用微分中值定理来证明.另证(此时需假定],[,0)(b a x x g ∈≠) 设∫=xadt t g t f x F )()()(,∫=xadt t g x G )()(.则)(x F 、)(x G 在[]b a ,上可导,且)()()('x g x f x F =,)()('x g x G =,由柯西微分中值定理,在()b a ,内存在ξ使得)()()()()(')('a G b G a F b F G F −−=ξξ,或 ∫∫=babadxx g dxx g x f g g f )()()()()()(ξξξ,即∫∫=babadxx g dxx g x f f )()()()(ξ,也就是∫∫=babadx x g f dx x g x f )()()()(ξ.下面举例应用以上定理. 例1 求∞→n limxdx n ∫2sin π解 ⎟⎠⎞⎜⎝⎛∈∀2,0πε,有ξππnn xdx sin 2sin 02 0 =≤∫,⎟⎠⎞⎜⎝⎛∈2,0πξ.由于0sinlim =∞→ξnn ,所以 ∞→n lim0sin 2=∫xdx n π.例2 证明 ∞→n lim 0110 =+∫dx xx n证明 设 xx f +=11)(,nx x g =)(, 由定理2,()1,0∈∃n ξ,使得 ndx x dx x x n n nn ++=+=+∫∫1111111110 ξξ由于011lim ,1110=+<+<∞→n n nξ,所以∞→n lim 01111lim 110 =++=+∞→∫n dx x x nn n ξ.例3 证明:如果)(x f 在[]π,0上连续,且0cos )( 0=∫πxdx x f , 则存在1ξ,2ξ且21ξξ≠使)()(21ξξf f =.证明 ==∫πcos )(0xdx x f +∫2cos )(πxdx x f ∫ππ2cos )(xdx x f+=∫201cos )(πξxdx f )()(cos )(2122ξξξππf f xdx f −=∫所以)()(21ξξf f =.其中⎟⎠⎞⎜⎝⎛∈2,01πξ,⎟⎠⎞⎜⎝⎛∈ππξ,22,21ξξ≠. 熟知,积分第二中值定理在数学分析中有非常重要的理论价值和应用价值,下面我们将这一定理的特殊情况予以推广并加以证明。

积分中值定理

积分中值定理

证 f(x ) 0 ,f(i)0, ( i 1 ,2 , ,n )
n
xi0, f(i)xi 0,
i1 m x 1 , x a 2 , , x x n }{
n
lim
0 i1
f(i
)xi
b
f(x)dx0. a
例 1比 较 积 分 值 2 e x d 和 x 2 x d的 x 大 小 .
证 f( x ) g ( x ), g (x ) f(x ) 0 ,
b
a[g(x)f(x)d ] x0,
b
b
ag (x)d x af(x)d x 0 ,
于 是 a b f ( x ) d x a b g ( x ) d . x
性质5的推论:
(2)
b
b
af(x)d xaf(x)d.x(ab)
2 、 若 在 a , b 上 , f ( x ) 0 , 且 f ( x ) 不 恒等于 0 , 则
b
a f ( x )dx 0 ;
3 、 若 在 a , b 上 f ( x ) g ( x ) ,且
b
f ( x )dx
a
b
g ( x )dx
a
, 则 在 a
, b 上
f(x)
g(x)
积分中值公式的几何解释:
y
在 区 间 [a,b]上 至 少 存 在 一
个 点 , 使 得 以 区 间 [ a ,b ] 为
f ()
底 边 , 以 曲 线 yf(x )
o a
为 曲 边 的 曲 边 梯 形 的 面 积
等 于 同 一 底 边 而 高 为 f()
b x 的 一 个 矩 形 的 面 积 。
例4设f(x)可 导 , 且limf(x)1, x

3.3.3 积分中值定理

3.3.3 积分中值定理

第三单元 Ch10 定积分3.3.2 积分第一中值定理[,],[,],f a b a b ξ∈若在上连续则存在使()d ()().b a f x x f b a ξ=-⎰证 因 f 在 [a , b ] 上连续,()d ()d b ba a mb a m x f x x -=≤⎰⎰(),[,],m f x M x a b ≤≤∈d (),ba M x Mb a ≤=-⎰故存在最大值 M 和最小值 m . 由于因此定理10.14(积分第一中值定理)则由连续函数的介值定理, 必恒有1()()d ,(,).b a f x f t t x a b b a<∈-⎰或恒有1()()d ,(,),b af x f t t x a b b a >∈-⎰注2积分第一中值定理的几何意义如下图所示:ξa b 1()()d b af f x x b a ξ=-⎰,()f ξ为底为高的矩形面积.而[,]a b 在上的曲边梯形的面积,这是有限个数的算术平均值的推广.()[,]f x a b 可理解为在上所有函数值的平均值,若在上连续在上可积且不变号,[,],()[,]f a b g x a b [,],()()d ()()d .b ba a ab f x g x x f g x x ξξ∃∈=⎰⎰则使()()()(),[,].mg x f x g x Mg x x a b ≤≤∈≤≤⎰⎰⎰()d ()()d ()d .b b ba a a m g x x f x g x x M g x x 则对上式两边积分得[,]a b 在上的下确界与上确界,则证 ()0,[,].g x x a b ≥∈不妨设,()m M f x 若分别是定理10.15(推广的积分第一中值定理)(),()d a b a f g x x ξ=⎰⎰()()d ()()d .b b a a f x g x x f g x x ξ=⎰⎰即若 u (x ), v (x ) 在 [a, b ] 上有 (n +1) 阶连续导函数, 则(1)()()d b n a u x v x x+⎰()(1)[()()()()n n u x v x u x v x -'=-+1(1)(1)()()d .b n n a u x v x x +++-⎰ 泰勒公式的积分型余项由此可得以下带积分型余项的泰勒公式:()(1)()()]b n n a u x v x ⋅⋅⋅+-()()(),n n f x P x R x =+则()(),n P x f x n 为的阶泰勒多项式余项为其中00()()1,f x x U x n +设在的某邻域内有阶连续导数0(1)1()()()d .!x n n n x R x f t x t t n +=-⎰于是,泰勒公式的余项00()()]!n f x x x n +-()!,n n R x =0(1)1()()()d !x n n n x R x f t x t tn +=-⎰(1)10001(())(1)().!n n n f x x x x x n θθ++=+---此式称为泰勒公式的柯西型余项.10210()ex x x --=--12e 1-=--+11e -=--2 =π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档