考研数学二答题卡完美版

合集下载

2022考研答题卡电子版

2022考研答题卡电子版

2022考研答题卡电子版中考网权威发布广东惠州2022中考答题卡的结构组成,更多广东惠州2022中考答题卡的结构组成相关信息请访问中考网。

各县(区)教育考试中心:我市2022年初中毕业生学业考试采用“计算机网上辅助评卷(网上评卷)”方式,考试时要求考生必须直接在“答题卡”上进行作答,否则答案无效。

为了保证考试时考生能够正确作答,保证网上评卷工作顺利进行,各县(区)要高度重视考生答题训练工作,安排好训练时间,落实好考生答题训练工作。

各县(区)务必在考试前对参加2022年初中毕业生学业考试的考生(初二年级、初三年级)进行答题训练,使考生了解正确的答题方式。

5月20日前,各中学将本校考生答题训练情况反馈给各县(区)教育考试中心,各县(区)教育考试中心再将本县(区)考生答题训练情况反馈给市教育考试中心。

一、答题卡的结构组成 1.初三年级:各考试科目的答题卡由若干张A4双面的答题卡组成(附件3),答题卡的下方标有该考试科目的答题卡的总页(面)数和页(面)号。

每张答题卡的正面由考生信息区(准考证号、姓名、注意事项、条码粘贴区、考场号、座位号、缺考[ ]等)和答题区(“选择题区”或“非选择题答题区”)组成,每张答题卡的反面由“请勿在此处作任何标记”区域和答题区(通常是“非选择题答题区”)组成;答题区规定了每道题的作答区域(标出了相应的题号)。

2.初二年级:各考试科目的答题卡是一张单面的标准化答题卡(附件4),答题卡由“考生信息区”(准考证号、姓名、注意事项、条码粘贴区、考场号、座位号、缺考[ ]等)和答题区(“选择题答题区”)组成。

3.条形码(条码)上打印有考生的“姓名”、“准考证号”、“科目”、“考场号”、“座位号”等信息。

二、答题卡作答注意事项 1.初三年级答题卡作答注意事项:①考生领到条形码(条码)时,请检查条码上打印的是否是本人的“姓名”、“准考证号”、“科目”、“考场号”、“座位号”等信息,条形码数量和答题卡张数是否一致。

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.1ln 1y x e x ⎛⎫=+⎪-⎝⎭曲线的渐近线方程为( )。

A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【答案】B【解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D【解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。

2023年考研数学(二)真题(试卷+答案)

2023年考研数学(二)真题(试卷+答案)

2023年全国硕士研究生入学统一考试数学(二)(科目代码:302)(考试时间:上午8:30-11:30)考生注意事项1.答题前,考生须在试题册指定位置填写考生姓名和考生编号;在答题卡指定位置填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。

2.选择题答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内,超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。

3.填(书)写部分必须使用黑色签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B 铅笔填涂。

4.考试结束,将答题卡和试题册按规定交回。

2023年全国硕士研究生入学统一考试数学(二)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的. (1)函数1ln(e )1y x x =+-的渐近线为( ) (A )e y x =+. (B )1e y x =+. (C )y x =.(D )1ey x =-.(2)0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪≤=⎨+->⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪+≤=⎨+->⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(3)设数列{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21n n y y +=,当n →∞时( ) (A )n x 是n y 的高阶无穷小 (B )n y 是n x 的高阶无穷小 (C )n x 是n y 的等价无穷小 (D )n x 是n y 的同阶但非等价无穷小(4)微分方程0y ay by '''++=的解在(,)-∞+∞有界,则,a b 的取值范围为( ) (A )0,0a b <> (B )0,0a b >>(C )0,0a b => (D )0,0a b =<(5)由确定,则( )(A )()f x 连续,()0f '不存在(B )()0f '存在,()f x '在0x =处不连续 (C )()f x '连续,()0f ''不存在 (D )()0f ''存在,()f x ''在0x =处连续 (6)若函数()121()ln f dx x x +∞+=⎰αα在若0=αα处取得最大值,则0α是( )(A )1ln ln 2-(B )lnln2- (C )1ln 2(D )ln2(7)设函数2()()x f x x a e =+.若()f x 无极值点,但有拐点,则a 的取值范围为( )(A )[0,1) (B )[1,)+∞ (C )[1,2) (D )[2,)+∞(8)已知A ,B 都为n 阶矩阵,E 为n 阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*⎛⎫⎪⎝⎭A E OB 为( )(A )****⎛⎫- ⎪ ⎪⎝⎭A B B A OB A(B )****⎛⎫- ⎪ ⎪⎝⎭A B A B OB A (C )****⎛⎫- ⎪ ⎪⎝⎭B A B A OA B(D )****⎛⎫- ⎪ ⎪⎝⎭B A A B OA B(9)设二次型222123121323(,,)()()4()f x x x x x x x x x =+++--,则该二次型的规范形为( )(A )2212y y + (B )2212y y - (C )2221234y y y +-(D )222123y y y +-(10)设121221,31αα⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭、122150,91ββγ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭、既可由12αα、线性表示,也可由12ββ、线性表示,则γ为( ) (A )33,4R k k ⎛⎫⎪⎪⎝⎭∈⎪(B )35,10R k k ⎛⎫ ⎪⎪⎪⎝⎭∈(C )-11,2R k k ⎛⎫ ⎪⎪⎪⎝⎭∈(D )15,8R k k ⎛⎫ ⎪⎪⎝⎭∈⎪二、填空题:11~16小题,每小题5分,共30分. (11)设22()ln(1),()cos x f x ax bx x g x e x =+++=-,且()f x 与()g x 为等价无穷小,则ab = . (12)设()y x =⎰,则此曲线的弧长为 .(13)已知(,),2zz z x y e xz x y =+=-,求22z x∂=∂ .(14)23532x y y =+确定()y y x =,则()y y x =在1x =处的法线斜率为 . (15) 函数)(x f 满足⎰==-+200)(,)()2(dx x f x x f x f ,则⎰=31)(dx x f .(16)方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,已知0111412a a a =,则 11120a a a b = .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本题目满分10分) 设曲线)(:x y y L =)(e x >经过点)0,(2e ,L 上任一点),(y x P 到y 轴距离等于该点处的切线在y 轴上的截距. (1)求)(x y ;(2)在L 上求一点使该点处的切线与两坐标轴所围三角形的面积最小并求此最小面积.(18)(本题满分12分) 求函数2cos (,)e2yx f x y x =+的极值.(19)(本题满分12分)已知平面区域{(,)|01}D x y y x =≤≤≥(1)求平面区域D 的面积; (2)求D 绕x 轴旋转一周的旋转体体积.(20) (本题满分12分)设平面有界区域D位于第一象限,曲线22221,2,,x y xy x y xy y +-=+-==0y =围成,求221.3Ddxdy x y +⎰⎰ (21) (本题满分12分)函数()f x 在[,]a a -上具有二阶连续导数. 证明: (1)若(0)0f =, 则存在(,)a a ξ∈-使得21()[()()]f f a f a a ξ''=+-. (2)若()f x 在(,)a a -取极值,则存在(,)a a η∈-使得21()()()2f f a f a a η''+-.(22)(本题满分12分)已知112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭对所有x 均成立.(1)求矩阵A ;(2)求可逆矩阵P 和对角阵Λ,使得1P AP -=Λ.参考答案一、选择题二、填空题 (11)【答案】2-(12)【答案】43π(13)【答案】32-. (14)【答案】 119-(15)【答案】12(16)【答案】8 三、解答题(17)【答案】(1)x x x x y 2ln )(+-=,(2))21,(2323e e ,3min e S =(18)【答案】极小值为2(,2)2e f e k π-=-.(19)【答案】(1)ln(1(2)(1)4ππ-(20). (21)【答案】(Ⅰ)泰勒公式在0=x 处展开; (Ⅱ)泰勒公式在极值点处展开.(22)【答案】(1)111211011A⎛⎫⎪=-⎪⎪-⎝⎭;(2)410301121P⎛⎫⎪= ⎪⎪--⎝⎭,212⎛⎫⎪Λ=-⎪⎪-⎝⎭.。

2020年全国硕士研究生招生考试数学二解析

2020年全国硕士研究生招生考试数学二解析

2020年全国硕士研究生招生考试数学(二)(科目代码:301)考生注意事项1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。

2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。

3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B 铅笔填涂。

4、考试结束,将答题卡和试题册按规定交回。

以下信息考生必须认真填写)一.选择题(1~8小题,每小题4分,共32分,下列每题给出的四个选项中只有一个选项是符合要求的・)1.当工TO+时,下列无穷小量中最高阶的是B:/ ln(l + √i 3)dt 解析:木题选D 考査的内容主要就是无穷小虽之间的比较,同时也考察了变限积分洛必达相关知识点。

/ (”一1)血Iim ——— ---- 2- ∙0* X (/ (c√'-1)衣)=e r' —]〜云 (/ In (1 + ∖∕P)dt) = In(I ⅛ V Z Z^)〜H / f tf ∆nr ∖ f I / sint 2dt J = Sin(SinZ)2 ・cos 工〜 / ∕∙1 — co<x WO 闯⅛⅛=肥呑若存在故归考试中可宜接求导比较会比较方便 Λ→σ*TLX V Z Sinhd 寸 =[sin(1 — CoSa:)]7 ∙sinx~\;'(⅞^) 'x ^ 故选D 2•函数/(X) =才吾罟务的第二类间断点个数为 4:1 B:2 C :3 解析:本题选C 。

考查的内容就是第••类间断点的定义与极限的运算方法 分母为()的点或者无定义的点有工= Ie = -I ,工=(),工=2 ]⅛(^Z ⅛⅛⅛)=芒卍哩Cm=Oo不存在故为第一类间断点 e 7ττln∣ 1 -H ⑦ ln2 尸5|1 +;Tl 叽(―)=3(1-e -1)-1⅛lnll+Il = OCW 在故*-1 为第二类间断点 ElnI l 卄 1 • χ→o(e r— 1)(X —2) -2:% X l¾(⅛⅛⅛)=⅛k ⅜l¾⅛=∞7fζ存在故*2为第二类间断点UIiln 也土卫=-舟为可去间断点不屈丁•第二类间断点 3.广霁墮血= JQ \/x(l — x) 4 TT 2斤2 Zb T B:T 解折:木题选爪。

2019年全国硕士研究生招生考试数学二解析

2019年全国硕士研究生招生考试数学二解析

2019年全国硕士研究生招生考试
数学(二)
(科目代码:301)
考生注意事项
1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。

2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。

3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。

4、考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)
考试编号
考生姓名。

2023年考研数二真题及答案解析

2023年考研数二真题及答案解析

2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。

2007数二答案

2007数二答案
1
1??
c.
?0dy2
??arcsiny?
f(x,y)dx
d.
?0dy2
1
??arcsiny?
f(x,y)dx
(9)设向量组?1,?2,?3线形无关,则下列向量组线形相关的是:( )(a)
?1??2,?2??3,?3??1(b)?1??2,?2??3,?3??1
(c)?1?2?2,?2?2?3,?3?2?1(d)?1?2?2,?2?2?3,?3?2?1
(1)当x?
0()
a. 1??
b.ln
1x
c. 1
d.1?在区间???,??上的第一类间断点是x?( )
(2)函数f(x)?
(e?e)tanxx(e?e)
1x
a. 0 b. 1c. ?
?
2
d.
? 2
(3)如图.连续函数y?f(x)在区间??3,?2?,?2,3?上的图形分别是直径为1的上、下半圆周,在区间
??(a,b),使得f(?)?g(?). f(a)?g(a),f(b?)g(证明:存在b)
(22)(本题满分11分)
?x2.
?
设二元函数f(x,y)?计算二重积分
d
x?y?1.1?x?y?2.
??f(x,y)d?.其中d??(x,y)
x?y?2
?
(23)(本题满分11分)
?x1?x2?x3?0?
设线性方程组?x1?2x2?ax3?0
2007年考研数学二真题解析
一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)
(2)当x?
0(b)
a. 1??

2024考研新版答题卡数学

2024考研新版答题卡数学

2024考研新版答题卡数学2024年考研数学新版答题卡的变化以及应对策略随着2024年考研的临近,考生们对于数学这一科目的备考也进入了关键阶段。

今年,考研数学将启用新版答题卡,这对于广大考生来说,无疑是一个全新的挑战。

为了帮助大家更好地应对这一变化,本文将对2024年考研数学新版答题卡的变化以及应对策略进行详细介绍。

一、确定文章类型和主题本文为说明文,旨在向考生们介绍2024年考研数学新版答题卡的变化以及应对策略。

通过本文的阅读,考生们将了解新版答题卡的主要变化,学习如何调整备考策略以适应这一变化,最终在考研数学中取得好成绩。

二、制定提纲以下是本文的提纲:1、引言 a. 考研数学新版答题卡的变化 b. 应对新版答题卡的必要性2、新版答题卡的主要变化 a. 题目排版及分值分配 b. 作答区域的调整 c. 特殊题型的设计3、调整备考策略 a. 了解新版答题卡的特点 b. 重新规划答题时间c. 重视模拟练习4、实际应用及建议 a. 在模拟练习中检验策略效果 b. 根据个人情况调整策略 c. 保持良好心态,积极应对挑战三、展开论述1、引言随着2024年考研的临近,新版答题卡的启用给广大考生带来了新的挑战。

为了帮助大家更好地应对这一变化,本文将对2024年考研数学新版答题卡的变化以及应对策略进行详细介绍。

2、新版答题卡的主要变化新版答题卡在题目排版、分值分配、作答区域以及特殊题型设计等方面都发生了变化。

具体来说,题目排版更加合理,分值分配更加均衡,作答区域更加明确,特殊题型设计更加贴近实际。

这些变化不仅影响着考生的答题方式,也对考生的备考策略提出了新的要求。

3、调整备考策略面对新版答题卡的变化,考生需要调整备考策略以适应这一挑战。

首先,要了解新版答题卡的特点,做到知己知彼。

其次,要重新规划答题时间,根据分值分配合理安排作答顺序。

最后,要重视模拟练习,提高应对变化的能力。

只有通过不断地练习和调整,才能更好地适应新版答题卡的要求。

2021考研数学二真题及答案

2021考研数学二真题及答案

2021考研数学真题及答案解析(数二)数学(二)一、选择题(本题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一个选项是符合题目要求,把所选选项前的字母填在答题卡指定位置上.)(1)当0x →时,230(1)x t e dt -⎰时7x 的(A)低阶无穷小.(B)等价无穷小.(C)高阶无穷小.(D)同阶但非等价无穷小.【答案】C.【解析】因为当0x →时,23670(1)2(1)2x t x e dt x e x '⎡⎤-=-⎢⎥⎣⎦⎰ ,所以23(1)x t e dt -⎰是7x 高阶无穷小,正确答案为C.(2)函数1,0()=1,0x e x f x x x ⎧-≠⎪⎨⎪=⎩,在0x =处(A)连续且取极大值.(B)连续且取极小值.(C)可导且导数为0.(D)可导且导数不为0.【答案】D.【解析】因为001lim ()=lim 1(0)x x x e f x f x→→-==,故()f x 在0x =处连续;因为200011()(0)11lim =lim lim 002x x x x x e f x f e x x x x x →→→-----==--,故1(0)2f '=,正确答案为D.(3)有一圆柱体底面半径与高随时间变化的速率分别为2cm/s ,3-cm/s ,当底面半径为10cm ,高为5cm 时,圆柱体的体积与表面积随时间变化的速率分别为(A)1253/cm s π,402/cm s π.(B)1253/cm s π,-402/cm s π.(C)-1003/cm s π,402/cm s π.(D)-1003/cm s π,-402/cm s π.【答案】D.【解析】由题意知,2,3,dr dhdt dt==-又2,2,V r h S rh ππ==则22,22,dV dr dh dS dr dh rh r h r dt dt dt dt dt dtππππ=+=+当10,5r h ==时,100,40,dV dSdt dtππ=-=-选D.(4)设函数()ln (0)f x ax b x a =->有两个零点,则ba的取值范围是(A)(,)e +∞.(B)(0,)e .(C)1(0,)e.(D)1(,)e+∞.【答案】A.【解析】令()ln 0f x ax b x =-=,()b f x a x '=-,令()0f x '=有驻点b x a =,ln 0b b b f a b a a a ⎛⎫=⋅-⋅< ⎪⎝⎭,从而ln1b a >,可得be a>,正确答案为A.(5)设函数()sec f x x =在0x =处的2次泰勒多项式为21ax bx ++,则(A)11,.2a b ==-(B)11,.2a b ==(C)10,.2a b ==-(D)10,.2a b ==【答案】D.【解析】由22(0)()(0)(0)()2f f x f f x x o x '''=+++知当()sec f x x =时,2300(0)sec01,(0)(sec tan )0,(0)(sec tan sec )1,x x f f x x f x x x =='''=====+=则221()sec 1().2f x x x o x ==++故选D.(6)设函数(),f x y 可微,且2(1,)(1)x f x e x x +=+,22(,)2ln f x x x x =,则(1,1)df =(A)dx dy +.(B)dx dy -.(C)dy .(D)dy -.【答案】C.【解析】212(1,)(1,)(1)2(1)xxxf x e e f x e x x x ''+++=+++①2212(,)2(,)4ln 2f x x xf x x x x x''+=+②将00x y =⎧⎨=⎩,11x y =⎧⎨=⎩分别带入①②式有12(1,1)(1,1)1f f ''+=,12(1,1)2(1,1)2f f ''+=联立可得1(1,1)0f '=,2(1,1)1f '=,12(1,1)(1,1)(1,1)df f dx f dy dy ''=+=,故正确答案为C.(7)设函数()f x 在区间[]0,1上连续,则()1f x dx =⎰(A)1211lim22nn k k f n n →∞=-⎛⎫ ⎪⎝⎭∑.(B)1211lim2nn k k f n n →∞=-⎛⎫ ⎪⎝⎭∑.(C)2111lim2nn k k f n n→∞=-⎛⎫ ⎪⎝⎭∑.(D)2012lim2nx k k f n n→=⎛⎫⋅ ⎪⎝⎭∑.【答案】B.【解析】由定积分的定义知,将[0,1]分成n 份,取中间点的函数值,则11211()lim ,2nn k k f x dx f n n→∞=-⎛⎫=∑ ⎪⎝⎭⎰即选B.(8)二次型222123122331(,,)()()()f x x x x x x x x x =+++--的正惯性指数与负惯性指数依次为(A)2,0.(B)1,1.(C)2,1.(D)1,2.【答案】B.【解析】22221231223312122313(,,)()()()2222f x x x x x x x x x x x x x x x x =+++--=+++所以011121110A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故特征多项式为11||121(1)(3)11E A λλλλλλ---=---=+---令上式等于零,故特征值为1-,3,0,故该二次型的正惯性指数为1,负惯性指数为1.故应选B.(9)设3阶矩阵()123,,ααα=A ,()123,,B βββ=,若向量组123,,ααα可以由向量组12,ββ线性表出,则(A)0Ax =的解均为0Bx =的解.(B)0TA x =的解均为0TB x =的解.(C)0Bx =的解均为0Ax =的解.(D)0TB x =的解均为0TA x =的解.【答案】D.【解析】令123123(,,),(,,),A a a a B βββ==由题123,,a a a 可由123,,βββ线性表示,即存在矩阵P ,使得,BP A =则当00TB x =时,000()0.TTTTA x BP x pB x ===恒成立,即选D.(10)已知矩阵101211125-⎛⎫⎪=- ⎪ ⎪--⎝⎭A 若下三角可逆矩阵P 和上三角可逆矩阵Q ,使PAQ 为对角矩阵,则P ,Q 可以分别取(A)100010001⎛⎫ ⎪ ⎪ ⎪⎝⎭,101013001⎛⎫⎪ ⎪ ⎪⎝⎭.(B)100210321⎛⎫ ⎪- ⎪ ⎪-⎝⎭,100010001⎛⎫⎪ ⎪ ⎪⎝⎭.(C)100210321⎛⎫ ⎪- ⎪ ⎪-⎝⎭,101013001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D)100010131⎛⎫ ⎪ ⎪ ⎪⎝⎭,123012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.【答案】C.【解析】101100101100101100()211010013210013210125001026101000321---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭A,E (,)=F P ,则100210321⎛⎫⎪=- ⎪ ⎪-⎝⎭P ;101100013010000000100101010013001001-⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪⎛⎫⎛⎫→= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭F E ΛQ ,则101013001⎛⎫⎪= ⎪ ⎪⎝⎭Q .故应选C.二、填空题(本题共6小题,每小题5分,共30分.请将答案写在答题纸指定位置上.)(11)23x x dx +∞--∞=⎰.【答案】1ln 3.【解析】222220113233()3ln 3ln 3x x x x x dx x dx d x +∞+∞+∞----+∞-∞==--=-⋅=⎰⎰⎰.(12)设函数()y y x =由参数方程2214(1)t t x e t y t e t⎧=++⎨=-+⎩确定,则202t d ydx ==.【答案】23.【解析】由4221t t dy te t dx e +=+,得223(442)(21)(42)2(21)t t t t tt d y e te e te t e dx e +++-+=+,将0t =带入得20223t d ydx ==.(13)设函数(,)z z x y =由方程(1)ln arctan(2)1x z y z xy ++-=确定,则(0,2)zx ∂=∂.【答案】1.【解析】方程两边对x 求导得2212(1)014z z y z x y x z x x y ∂∂+++-=∂∂+,将0,2x y ==带入原方程得1z =,再将0,2,1x y z ===带入得1zx∂=∂.(14)已知函数11()t x f t dx dy y =⎰,则2f π⎛⎫' ⎪⎝⎭.【答案】2ππ【解析】交换积分次序有21()sinty xf t dx y =-⎰,从而211()sin cos cos t y x tf t dx y dyy y ⎛⎫=-=- ⎪⎝⎭⎰11cos cos ty dy y ydy y =-21cos t t y ydy=-23332cos cos cos()2t u tf t t du tu t t⎛⎫'=+-⋅-⎝,故2fπ⎛⎫'=⎪⎝⎭2ππ-(15)微分方程0y y-=的通解y=.【答案】12123123cos sin,,,22xxy C e e C C C C C R-⎛⎫=++∈⎪⎪⎝⎭.【解析】由特征方程310λ-=得12,311,22iλλ==-±,故方程通解为12123123cos sin,,,22xxy C e e C C C C C R-⎛⎫=++∈⎪⎪⎝⎭.(16)多项式12121()211211x x xxf xxx-=-中3x项的系数为______________.【答案】-5.【解析】12211211112 121()1121211221211112131211 211x x xx x xxf x x x x x x xxx x xx----==-------所以展开式中含3x项的有33,4x x--,即3x项的系数为-5.三、解答题(本题共6小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.)(17)(本题满分10分)求极限211lim1sinx txxe dte x→⎛⎫+⎪-⎪-⎪⎝⎭⎰.【答案】12.【解析】2200001sin11lim lim1sin(1)sinx xt tx xx xe dt x e dte x e x→→⎛⎫+--⎪-=⎪--⎪⎝⎭⎰⎰又因为22233001(1())()3x xt e dt t o t dt x x o x=++=++⎰⎰,故原式=3333222111(())(1())()3!3!2limxx x o x x x o x x x o xx→-++++--+=22201()12lim 2x x o x x →+=.(18)(本题满分12分)已知()1x xf x x=+,求()f x 的凹凸性及渐近线.【答案】凹区间(,1)-∞-,()0,+∞,凸区间(1,0)-.斜渐近线是1y x =-,1y x =--.【解析】因为22,01(),01x x xf x x x x⎧>⎪⎪+=⎨-⎪≤⎪+⎩,故0x >,()222()1x x f x x +'=+,()32()1f x x ''=+,0x <,()222()1x x f x x --'=+,()32()1f x x -''=+,所以x (,1)-∞-1-(1,0)-0()0,+∞()f x ''+-+()f x 凹拐点凸拐点凹凹区间(,1)-∞-,()0,+∞,凸区间(1,0)-.1lim1x x xx →-=∞+,1x =-是垂直渐近线.lim 1(1)x x x x x →+∞=+,lim (1) 1.(1)x x x x →+∞-=-+lim 1(1)x x x x x →-∞=-+,lim (1) 1.(1)x x x x →+∞-=-+斜渐近线是1y x =-,1y x =--.(19)(本题满分12分)()f x 满足216x x C =-+,L 为曲线()(49)y f x x =≤≤,L 的弧长为s ,L 绕x 轴旋转一周所形成的曲面的面积为A ,求s 和A .【答案】4259π.113x =-,31221()3f x x x =-,曲线的弧长944223s ===⎰⎰.曲面的侧面积31992244122(3A x xππ==-⎰⎰4259π=.(20)(本题满分12分)函数()y y x =的微分方程66xy y '-=-,满足10y =,(1)求()y x ;(2)P 为曲线()y y x =上的一点,曲线()y y x =在点P 的法线在y 轴上的截距为y I ,为使y I 最小,求P 的坐标.【答案】(1)()61.3x y x =+(2)41,3P ⎛⎫± ⎪⎝⎭时,y I 有最小值11.6【解析】(1)66'y y x x -=-,666()dx dx x x y e e dx C x -⎡⎤⎰⎰∴=-+⎢⎥⎣⎦⎰66611x C Cxx ⎛⎫=+=+ ⎪⎝⎭将10y =代入,13C =,()61.3x y x ∴=+(2)设(),P x y ,则过P 点的切线方程为()52Y y x X x -=-,法线方程为()512Y y X x x-=--,令0X =,641132y x Y I x∴==++,偶函数,为此仅考虑()0,+∞令()'55220y I x x =-=, 1.x =()0,1x ∴∈,()'0y I <,()1116y y I I >=;()1,x ∈+∞,()'0y I >,()1116y y I I >=41,3P ⎛⎫∴± ⎪⎝⎭时,y I 有最小值11.6(21)(本题满分12分)曲线22222()(0,0)x y x y x y +=-≥≥与x 轴围成的区域为D ,求Dxydxdy ⎰⎰.【答案】148【解析】340sin cos Dxydxdy d drπθθθ=⎰⎰⎰2401cos 2sin cos 4d πθθθθ=⎰2401cos 2cos 216d πθθ=-⎰4301cos 248πθ=-148=.(22)(本小题满分12分)设矩阵210=1201A a b ⎛⎫ ⎪⎪ ⎪⎝⎭仅有两个不同的特征值.若A 相似于对角矩阵,求a ,b 的值,并求可逆矩阵P ,使1P AP -为对角矩阵.【解析】由210120()(3)(1)01E A b a bλλλλλλλ---=--=---=---当3b =时,由A 相似对角化可知,二重根所对应特征值至少存在两个线性无关的特征向量,则110(3)11010E A a -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭知,1a =-,此时,123λλ==所对应特征向量为12101,001αα⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,31λ=所对应的特征向量为3111α-⎛⎫⎪= ⎪⎪⎝⎭,则1331P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭当1b =时,由A 相似对角化可知,二重根所对应特征值至少存在两个线性无关的特征向量,则110()11010E A a --⎛⎫ ⎪-=-- ⎪ ⎪--⎝⎭,知1a =,此时,121λλ==所对应特征向量为12101,001ββ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,33λ=所对应的特征向量为3111α⎛⎫⎪= ⎪⎪⎝⎭,则1113P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.。

2024考研新版答题卡数学

2024考研新版答题卡数学

2024考研新版答题卡数学2024年考研数学新版答题卡的变化和应对策略一、引言随着考研数学的难度逐年提升,2024年考研数学新版答题卡的推出引起了广大考生的关注。

新版答题卡在设计和答题方式上都有所改变,旨在更准确地评估考生的数学能力。

本文将详细介绍2024年考研数学新版答题卡的变化,并提供相应的应对策略,为考生提供有力的备考支持。

二、考研数学新版答题卡的变化1、答题卡设计:新版答题卡采用全新的设计,颜色由原来的蓝色改为现在的绿色,更加清新自然。

页面布局也进行了调整,使考生填写答案的空间更加充足。

2、题目形式:新版答题卡在题目形式上进行了改革,取消了原有的填空题,增加了应用题的比重,以更全面地考察考生的数学应用能力。

3、答题方式:与旧版答题卡不同,新版答题卡采用电子化阅卷,考生需将答案直接写在答题卡上,不再将答案写在试卷上。

这要求考生在答题时更加规范、清晰地书写答案。

三、应对新版答题卡的策略1、熟悉答题卡:考生在备考过程中,应提前熟悉新版答题卡,了解各题型的分布和答题位置,以免在考试时因不熟悉答题卡而耽误时间。

2、训练答题速度:由于新版答题卡取消了填空题,增加了应用题的比重,因此对考生的答题速度和数学应用能力提出了更高的要求。

建议考生在备考过程中加强模拟练习,提高自己的答题速度和准确率。

3、提高解题技巧:新版答题卡中应用题的比重增加,要求考生具备更强的解题技巧和分析问题的能力。

因此,考生在复习过程中要注重解题技巧的训练,掌握各种解题方法和思路。

4、注意书写规范:由于新版答题卡采用电子化阅卷,考生的书写规范显得尤为重要。

建议考生在答题时字迹清晰、步骤简洁,避免因书写不规范而影响阅卷评分。

5、关注考纲变化:2024年考研数学大纲有所变化,考生要密切关注考纲的变化,及时调整自己的备考策略,确保在考试中取得好成绩。

四、总结2024年考研数学新版答题卡的推出对考生提出了新的挑战。

为了应对这一变化,考生需要在备考过程中熟悉新版答题卡,提高解题技巧和答题速度,注意书写规范,并关注考纲变化。

数学(陕西卷)(答题卡)

数学(陕西卷)(答题卡)

2023年陕西省中考数学第二次模拟考试卷数学·答题卡第一部分(请用2B 铅笔填涂)第二部分请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!二、填空题(每小题3分,计15分)9.______________ 10._______________ 11._______________ 12.______________ 13.______________三、解答题(计81分,解答应写出文字说明,证明过程或演算步骤)14.(5分)一、选择题(每小题3分,计24分) 1.[ A ] [ B ] [ C ] [ D ] 2.[ A ] [ B ] [ C ] [ D ] 3.[ A ] [ B ] [ C ] [ D ] 4.[ A ] [ B ] [ C ] [ D ]5.[ A ] [ B ] [ C ] [ D ]6.[ A ] [ B ] [ C ] [ D ]7.[ A ] [ B ] [ C ] [ D ]8.[ A ] [ B ] [ C ] [ D ]姓 名:__________________________ 准考证号:贴条形码区考生禁填: 缺考标记 违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例: 正确填涂错误填涂 [×] [√] [/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。

2.选择题必须用2B 铅笔填涂;非选择题必须用0.5 mm 黑色签字笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。

3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠、不要弄破。

注意事项16.(5分)17.(5分)18.(5分)19.(5分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!21.(6分)22.(7分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!23.(7分)24.(8分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!25.(8分)26.(10分)。

2023全国硕士研究生招生考试数学试题(数学二)真题解析

2023全国硕士研究生招生考试数学试题(数学二)真题解析

2023 考研数学二真题及解析一、选择题:1~10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.曲线1ln e 1y x x=+ −的斜渐近线方程为( ). (A )ey x =+(B )1ey x =+(C )yx = (D )1ey x =−【答案】(B )【解析】方法1. 1ln e 11limlim x x y k x x →∞→∞=+==− ()()11lim lim ln e 1lim ln e ln 111e 1x x x b y x x x x x →∞→∞→∞=−=+−=++− −−()11lim e 1ex xx →∞=−故曲线的斜渐近线方程为1ey x =+.故选(B ) 方法2. ()()11ln e 11ln 1e 1e 1y x x x x=+=++−−()11ln 1e 1e x x x x α =++=++ −,其中lim 0x α→∞=,故1e y x =+为曲线的斜渐近线. 【评注】由()11lim ln 1e 1e x x x →∞+= − ,知()11ln 1e 1ex x α +=+ − 【评注】1.由()11lim ln 1e 1e x x x →∞ += − ,知()11ln 1e 1e x x α +=+ −2.本题属于常规题:《基础班》《强化班》的例子不再对应列举,《答题模版班》思维定势19【例13】2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A) ), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤= +−>(C) ), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤= ++>【答案】 (D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C ==++∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫ 由于()F x 在0x =处可导性,故()F x 在0x =处必连续 因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln ,1.x x f x x x −< = ≥ 则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<=−≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= +−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.设数列{}{},n n x y 满足211111,sin ,2n n n n x y x x y y ++====()1,2,n = ,则当n →∞时( ) (A )n x 是n y 的高阶无穷小(B )n y 是n x 的高阶无穷小(C )n x 是n y 的等阶无穷小 (D )n x 是n y 的同阶但不等价无穷小 【答案】(B )【解析】由2111,,2n n y y y +==知2112nn y + =,则有112n n y y +< 利用12sin n n n x x x π+=>,则1112n nx x π+<故21111111224444n n nn nn n n n n y y y y y x x x x x πππππ+−+− ≤=≤≤≤= 于是1110lim lim 04nn n n n y x +→∞→∞+ ≤≤= ,由夹逼准则lim 0nn ny x →∞=,选(B ) 【评注】本题属于今年难度较大的题,涉及到两个递推数列确定的无穷小的比较,涉及到不等式的放缩,有一定的综合性.4.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin ax y x c x c x ββ−=+.只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题.5.设()y f x =由2,sin ,x t t y t t =+=确定,则( ) (A )()f x 连续,(0)f ′不存在 (B )(0)f ′存在,()f x ′在0x =不连续 (C )()f x ′连续,(0)f ′′不存在 (D )(0)f ′′存在,()f x ′′在0x =不连续 【答案】(C ) 【解析】0t ≥时3,sin ,x t y t t == ,即有sin 33x xy =.0t <时,sin ,x t y t t = =−,即有sin y x x =−.sin ,033sin ,0x x x y x x x ≥= −< ,显然有()f x 在0x =不连续,且(0)0f = 0x >时,sin cos 33(3)9x x x xf x =+′;0x <时,sin ()cos x f x x x ′=−−, 利用导数定义可得()0sin 0330lim 0x x xf x ++→−′==,()0sin 0lim 0x x x f x+−→−′==,即得(0)0f ′= 易验证()0lim ()lim ()00x x f x f x f +−→→′′===,即()f x ′在0x =连续()01sin cos 233930lim 9x x x xf x ++→+′′=,()0sin cos 0lim 2x x x x f x+−→−−′′==−,故(0)f ′′不存在 ,选(C ) 【评注】此题考查参数方程确定的分段函数,只要在参数方程中去掉绝对值的过程,就成了我们常规的分段函数求导的问题,无论是《基础班》第二讲例24,《强化班》第二讲例17. 6.若函数()()121d ln f x x x αα+∞+=∫在0αα=处取得最小值,则0α=( )(A )()1ln ln 2−(B )()ln ln 2−(C )1ln 2−(D )ln 2【答案】(A )【解析】反常积分的判别规律知11α+>,即0α>时反常积分()121d ln x x x α+∞+∫收敛此时()()()212111d ln ln f x x x x αααα+∞+∞+==−∫()11ln 2αα=令()()()2111ln ln 2ln 2ln 2f ααααα′=−−()2111ln ln 20ln 2ααα =−+= 得唯一驻点()1ln ln 2α=−,故选(A )【评注】此题是属于由反常积分确定的函数求最值的问题,积分本身不难,积分结果再求导,找驻点得结果.难度不大,只要基本计算能力过关,可轻松应对.《基础班》《强化班》相应问题得组合而已. 7.设函数()()2e xf x xa =+,若()f x 没有极值点,但曲线()f x 有拐点,则a 的取值范围是( )(A )[)0,1(B )[)1,+∞ (C )[)1,2 (D )[)2,+∞【答案】(C )【解析】()()2e xf x xa =+,()()22e x f x xa x ′=++,()()242e x f x xa x ′′=+++由()()211e x f x x a ′=++−,知10a −≥时,()0f x ′≥,此时()f x 无极值点.由()()222e x f x x a ′′=++−,知20a −<时,()f x ′′在2x =±的左右两侧变号,依题意有[)1,2a ∈,选(C )【评注】本题考查了极值点、拐点的必要条件与判定,题目本身是常规的,分开对这两个考点出题,在《基础班》和《强化班》都讲过,但这种问法有些学生可能会觉得很别扭.8.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B O B A(C )****−B A B A O A B (D )**** −B A A B O A B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− − ==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B ,选(D ) 【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B9.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y +(B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B ) 【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143=− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+222222322332323126616222x x x x x x x x x x x +++++−=+− ()22231237222x x x x x + =+−− 故所求规范形为()2212312,,f x x x y y =−,故选(B )【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型 123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ). (A)21y (B)2212y y + (C) 2212y y − (D) 222123y y y ++10.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k − (D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可 即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β = − ,2343β−=−时,求所有既可由21,αα线性表出, 又可21,ββ线性表出的向量。

2019年考研数学(二)真题及解析

2019年考研数学(二)真题及解析

2019年考研数学二真题一、选择题 1—8小题.每小题4分,共32分.1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( ) (A )1 (B )2 (C )3 (D )4 2.曲线3sin 2cos ()22y x x x x ππ=+-<<的拐点是( ) (A )(0,2) (B )(,2)π- (C )(,)22ππ-(D )33(,)22ππ- 3.下列反常积分发散的是 ( ) (A )x xe dx +∞-⎰(B )2x xe dx +∞-⎰(C )20arctan 1x dx x +∞+⎰(D )201xdx x+∞+⎰ 4.已知微分方程xy ay by ce '''++=的通解为12()x xy C C x e e -=++,则,,a b c 依次为( )(A )1,0,1 (B )1,0,2 (C )2,1,3 (D )2,1,45.已知平面区域{(,)|}2D x y x y π=+≤,记1DI =,2DI =⎰⎰,3(1DI dxdy =-⎰⎰ ,则 ( )(A )321I I I << (B )213I I I << (C )123I I I << (D )231I I I << 6.设函数(),()f x g x 的二阶导函数在x a =处连续,则2()()lim0()x af xg x x a →-=-是两条曲线()y f x =,()y g x =在x a =对应的点处相切及曲率相等的 ( )(A )充分不必要条件 (B )充分必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 7. 设A 是四阶矩阵,*A 为其伴随矩阵,若线性方程组0Ax =的基础解系中只有两个向量,则(*)r A =( )(A )0 (B )1 (C )2 (D )38.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若22A A E +=,且4A =,则二次型T x Ax 的规范形是 ( )(A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222123y y y ---二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.()20lim 2xxx x →+= .10.曲线sin 1cos x t t y t =-⎧⎨=-⎩在32t π=对应点处的切线在y 的截距为 .11.设函数()f u 可导,2y z yf x ⎛⎫= ⎪⎝⎭,则2z zx y x y ∂∂+=∂∂ . 12.曲线ln cos (0)6y x x π=≤≤的弧长为 .13.已知函数21sin ()xt f x xdt t=⎰,则10()f x dx =⎰ .14.已知矩阵1100211132210034A -⎛⎫⎪-- ⎪= ⎪-- ⎪⎝⎭,ij A 表示元素ij a 的代数余子式,则1112A A -= .三、解答题15.(本题满分10分)已知函数2,0()1,0xx xx f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求函数()f x 的极值.16.(本题满分10分)求不定积分2236(1)(1)x dx x x x +-++⎰.17.(本题满分10分)设函数()y x是微分方程22x y xy e '-=满足条件(1)y =的特解.(1)求()y x 的表达式;(2)设平面区域{(,)|12,0()}D x y x y y x =≤≤≤≤,求D 绕x 轴旋转一周所形成的旋转体的体积. 18.(本题满分10分)设平面区域2234{(,)|,()}D x y x y x y y =≤+≤,计算二重积分D.19.(本题满分10分)设n 是正整数,记n S 为曲线求曲线sin (0)xy e x x n π-=≤≤与x 轴所形成图形的面积,求n S ,并求lim .n n S →∞20.(本题满分11分)已知函数(,)u x y 满足关系式22222230u u ux y y ∂∂∂-+=∂∂∂.求,a b 的值,使得在变换(,)(,)ax by u x y v x y e +=之下,上述等式可化为函数(,)v x y 的不含一阶偏导数的等式.21.(本题满分11分)已知函数()f x 在[]0,1上具有二阶导数,且(0)0,(1)1f f ==,1()1f x dx =⎰,证明:(1)至少存在一点(0,1)ξ∈,使得()0f ξ'=; (2)至少存在一点(0,1)η∈,使得()2f η''<-.. 22.(本题满分11分)已知向量组Ⅰ:12321111,0,2443a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭;向量组Ⅱ:12321011,2,3313a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭.若向量组Ⅰ和向量组Ⅱ等价,求常数a 的值,并将3β用123,,ααα线性表示.23.(本题满分11分)已知矩阵22122002A x -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与21001000B y ⎛⎫⎪=- ⎪ ⎪⎝⎭相似.(1)求,x y 之值;(2)求可逆矩阵P ,使得1P AP B -=.2019年考研数学二真题解析一、选择题 1—8小题.每小题4分,共32分.1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( )(A )1 (B )2 (C )3 (D )4【答案】(C )【详解】当0x →时,331tan ()3x x x o x =++,所以331tan ()3x x x o x -=-+,所以3k =. 2.曲线3sin 2cos ()22y x x x x ππ=+-<<的拐点是( )(A )(0,2) (B )(,2)π- (C )(,)22ππ- (D )33(,)22ππ-【答案】(D )【详解】sin 2cos y x x x =+,cos sin y x x x '=-,sin y x x ''=-,sin cos y x x x '''=--; 令sin 0y x x ''=-=得120,x x π==,且()0f π'''≠,所以(,2)π-是曲线的拐点; 而对于点(0,0),由于(0)0f '''=,而(4)(0)0f≠,所以不是曲线的拐点.3.下列反常积分发散的是 ( )(A )x xe dx +∞-⎰(B )2x xe dx +∞-⎰(C )20arctan 1x dx x +∞+⎰(D )201xdx x+∞+⎰【答案】(D )【详解】(1)当x →+∞时,2()1x f x x =+是关于1x的一阶无穷小,当然201x dx x +∞+⎰发散; (2)用定义:20201ln(1)|12x dx x x +∞+∞=+=+∞+⎰,当然201x dx x+∞+⎰发散. 4.已知微分方程xy ay by ce '''++=的通解为12()xx y C C x ee -=++,则,,a b c 依次为( )(A )1,0,1 (B )1,0,2 (C )2,1,3 (D )2,1,4 【答案】(D )【详解】(1)由非齐次线性方程的通解可看出121r r ==-是特征方程20r ar b ++=的实根,从而确定2,1a b ==;(2)显然,*xy e =是非齐次方程的特解,代入原方程确定4c =.5.已知平面区域{(,)|}2D x y x y π=+≤,记1DI =,2DI =⎰⎰,3(1DI dxdy =-⎰⎰ ,则 ( )(A )321I I I << (B )213I I I << (C )123I I I << (D )231I I I << 【答案】(A )【详解】(1)显然在区域D 22202x y π⎛⎫≤+≤ ⎪⎝⎭,此时由结论当0x >时sin x x >知道≤12I I >;(2)当0x >时,令()1cos sin f x x x =--,则()sin cos f x x x '=-,()sin cos f x x x ''=+; 令()0f x '=得到在(0,)2π唯一驻点4x π=,且04f π⎛⎫''>⎪⎝⎭,也就是()1cos sin f x x x =--在4x π=取得极小值04f π⎛⎫<⎪⎝⎭,在0,2x x π==同时取得在[0,]2π上的最大值(0)()02f f π==,也就有了结论,当(0,)2x π∈时,1cos sin x x -<,也就得到了32I I <;由(1)、(2)可得到321I I I <<.6.设函数(),()f x g x 的二阶导函数在x a =处连续,则2()()lim0()x af xg x x a →-=-是两条曲线()y f x =,()y g x =在x a =对应的点处相切及曲率相等的 ( )(A )充分不必要条件 (B )充分必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】(A ) 【详解】充分性:(1)当2()()lim0()x af xg x x a →-=-进,由洛必达法则,2()()1()()10limlim (()())()()()22x ax a f x g x f x g x f a g a f a g a x a x a →→''--''''===-⇒=-- 也就是两条曲线在x a =对应的点处相切; (2)2()()1()()10limlim (()())()()()22x ax a f x g x f x g x f a g a f a g a x a x a →→''--''''''''===-⇒=--由曲率公式k =x a =对应的点处曲率相等.必要性不正确的原因在于,虽然相切能得到()()f a g a ''=,但在相切前提下,曲率相等,只能得到()()f a g a ''''=,不能确定()()f a g a ''''=,当然得不到2()()lim0()x af xg x x a →-=-.7. 设A 是四阶矩阵,*A 为其伴随矩阵,若线性方程组0Ax =的基础解系中只有两个向量,则(*)r A =( )(A )0 (B )1 (C )2 (D )3【答案】(A )【详解】线性方程组0Ax =基础解系中只有两个向量,也就是4()2()213r A r A n -=⇒=<-=, 所以(*)0r A =.8.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若22A A E +=,且4A =,则二次型T x Ax 的规范形是 ( )(A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222123y y y ---【答案】(C )【详解】假设λ是矩阵A 的特征值,由条件22A A E +=可得220λλ+-=,也就是矩阵A 特征值只可能是1和2-.而1234A λλλ==,所以三个特征值只能是1231,2λλλ===-,根据惯性定理,二次型的规范型为222123y y y --.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.()20lim 2xxx x →+= .【答案】24e解: ()()02(21)22lim2(1ln 2)20lim 2lim 1214x x x x x x xxx x x x ee e →+-+→→+=++-===10.曲线sin 1cos x t t y t =-⎧⎨=-⎩在32t π=对应点处的切线在y 的截距为 .【答案】322π+ 【详解】32sin ,|11cos t dy t dy dx t dx π===--,所以切线方程为331(1)222y x x ππ=---=-++,在y 的截距为322π+. 11.设函数()f u 可导,2y z yf x ⎛⎫= ⎪⎝⎭,则2z zx y x y ∂∂+=∂∂ . 【答案】22z zy x y yf x y x ⎛⎫∂∂+= ⎪∂∂⎝⎭【详解】3222222,z y y z y y y f f f x x x y x x x ⎛⎫⎛⎫⎛⎫∂∂''=-=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭,22z z y x y yf x y x ⎛⎫∂∂+= ⎪∂∂⎝⎭.12.曲线ln cos (0)6y x x π=≤≤的弧长为 .【答案】1ln 32【详解】sec ds xdx ===66001sec ln(sec tan )|ln 3.2s xdx x x ππ==+=⎰13.已知函数21sin ()xt f x x dt t=⎰,则10()f x dx =⎰ .【答案】1(cos11)4-. 【详解】(1)用定积分的分部积分:2111112000102112201021121220100210sin ()()|()()sin 1sin ()sin 21sin 11|sin sin 22211cos |(cos11)44xx x t f x dx xf x xf x dx x dt dx x x dxtt dt dx x x dxt t x dt x x dx x x dx t x '=-=--=--=--=-==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(2)转换为二重积分:22211111120010000sin sin sin 11()sin (cos11)24x t x t t t f x dx x dt dx xdx dt dt xdx t t dt t t t ⎛⎫==-=-=-=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰14.已知矩阵1100211132210034A -⎛⎫⎪-- ⎪= ⎪-- ⎪⎝⎭,ij A 表示元素ij a 的代数余子式,则1112A A -= . 【答案】4-【详解】111211121314110021110043221034A A A A A A ----=-++==---.三、解答题15.(本题满分10分)已知函数2,0()1,0xx xx f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求函数()f x 的极值.【详解】当0x >时,22ln ()xx x f x xe ==,2()2(ln 1)xf x x x '=+;当0x <时,()1xf x xe =+,()(1)xf x x e '=+;在0x =处,22000()(0)12(ln 1)(0)lim lim lim 1x x x x x f x f x x x f x x ++++→→→---'====-∞,所以()f x 在0x =处不可导.综合上述:22(ln 1),0()(1),0x xx x x f x x e x ⎧+>⎪'=⎨+<⎪⎩; 令()0f x '=得到1211,x x e=-=. 当1x <-时,()0f x '<,当10x -<<时,()0f x '>,当10x e <<时,()0f x '<,当1x e>时,()0f x '>; 故11x =-是函数的极小值点,极小值为1(1)1f e --=-;0x =是函数的极大值点,极大值为(0)1f =;21x e=是函数的极小值点,极小值为21()e f e e -=.16.(本题满分10分)求不定积分2236(1)(1)x dx x x x +-++⎰.【详解】22222223623213(1)2ln 1(1)(1)1(1)11132ln 1ln(1)1x x d x x dx dx x x x x x x x x x x x x x x C x ⎛⎫++++=-++=---+ ⎪-++--++-++⎝⎭=---++++-⎰⎰⎰17.(本题满分10分)设函数()y x是微分方程22x y xy e '-=满足条件(1)y =(1)求()y x 的表达式;(2)设平面区域{(,)|12,0()}D x y x y y x =≤≤≤≤,求D 绕x 轴旋转一周所形成的旋转体的体积. 【详解】(1)这是一个一阶线性非齐次微分方程.先求解对应的线性齐次方程0y xy '-=的通解:22x y Ce =,其中C 为任意常数; 再用常数变易法求22x y xy e'-=通解,设22()x y C x e=为其解,代入方程,得2222(),()x x C x e e C x ''==,1()C x C ==,也就是通解为:221)x y C e =+把初始条件(1)y =10C =,从而得到22().x y x xe =(2)旋转体的体积为2222411()()2x x V y x dx xe dx e e πππ===-⎰⎰.18.(本题满分10分)设平面区域2234{(,)|,()}D x y x y x y y =≤+≤,计算二重积分D.【详解】显然积分区域2234{(,)|,()}D x y x y x y y =≤+≤关于y 轴对称,由对称性,显然0D=;233sin 5440441sin sin 2120DDd r dr d ππθππθθθθ====⎰⎰⎰ 19.(本题满分10分)设n 是正整数,记n S 为曲线求曲线sin (0)xy ex x n π-=≤≤与x 轴所形成图形的面积,求n S ,并求lim .n n S →∞【详解】先求曲线与x 轴的交点:令sin 0x e x -=得,0,1,2,x k k n π==L 当2(21)k x k ππ<<+时,sin 0xy e x -=>;当2(22)k x k πππ+<<+时,sin 0x y e x -=<.由不定积分1sin (sin cos )2x xe xdx e x x C --=-++⎰可得 2221sin (1)2k xk k e xdx e e πππππ+---=+⎰,22221sin (1)2k x k k e xdx e e πππππππ+----+=-+⎰所求面积为0sin n x n S e xdx π-=⎰.当n 为奇数时,(21)22221022022002(1)2222(1)20sin sin sin 11(1)(1)2211111(1)(1)(1)22121nnn k k xxx n k k k k nnk k k k n n k n k S exdx e xdx e xdxe e e e e e e e e e e e πππππππππππππππππππππ+++---++==-----==-+-----+--===-=+++-+=+=+=---∑∑⎰⎰⎰∑∑∑同理:(2)22011sin (1)21n xn n e S exdx e eππππ----+==--⎰显然,有21211lim lim 21n n n n e S S e ππ+-→∞→∞+==-.所以11lim 21n n e S e ππ-→∞+=-.20.(本题满分11分)已知函数(,)u x y 满足关系式22222230u u ux y y ∂∂∂-+=∂∂∂.求,a b 的值,使得在变换(,)(,)ax by u x y v x y e +=之下,上述等式可化为函数(,)v x y 的不含一阶偏导数的等式.【详解】在变换(,)(,)ax byu x y v x y e+=之下(,)ax byax by u v e av x y e x x++∂∂=+∂∂,(,),ax by ax by u v e bv x y e y y ++∂∂=+∂∂ 222222(,)ax by ax byax by u v v e a e a v x y e x x x+++∂∂∂=++∂∂∂, 222222(,)ax by ax byax by u v v e b e b v x y e y y y +++∂∂∂=++∂∂∂; 把上述式子代入关系式22222230u u ux y y∂∂∂-+=∂∂∂,得到222222224(34)(223)(,)0v v v va b a b b v x y x y x y∂∂∂∂-++-+-+=∂∂∂∂ 根据要求,显然当30,4a b ==时,可化为函数(,)v x y 的不含一阶偏导数的等式. 21.(本题满分11分)已知函数()f x 在[]0,1上具有二阶导数,且(0)0,(1)1f f ==,1()1f x dx =⎰,证明:(1)至少存在一点(0,1)ξ∈,使得()0f ξ'=; (2)至少存在一点(0,1)η∈,使得()2f η''<-. 证明 (1)令0()()xx f t dt Φ=⎰,则1(0)0,(1)()1f x dx Φ=Φ==⎰,则由于()f x 在[]0,1连续,则()x Φ在[]0,1上可导,且()()x f x 'Φ=,则由拉格朗日中值定理,至少存在一点1(0,1)ξ∈,使得()(1)(0)ξ'Φ=Φ-Φ,也就是1101()()(1)f x dx f f ξ===⎰;对()f x 在()1,1ξ上用罗尔定理 ,则至少存在一点1(,1)(0,1)ξξ∈⊂,使得()0f ξ'=;(2)令2()()F x f x x =+,则显然,()F x 在[]0,1具有二阶导数,且211(0)0,(1)2,()1F F F ξξ===+.对()F x 分别在[][]110,,,1ξξ上用拉格朗日中值定理,至少存在一点11(0,)ηξ∈,使得211111()(0)1()0F F F ξξηξξ-+'==-; 至少存在一点21(,1)ηξ∈,使得1211()(1)()11F F F ξηξξ-'==+-;对()()2F x f x x ''=-在[]12,ηη上用拉格朗日中值定理,则至少存在一点12(,)(0,1)ηηη∈⊂,使得211212111()()()0F F F ηηξηηηηη-''-''==<--,也就是()2f η''<-.22.(本题满分11分)已知向量组Ⅰ:12321111,0,2443a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭;向量组Ⅱ:12321011,2,3313a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭.若向量组Ⅰ和向量组Ⅱ等价,求常数a 的值,并将3β用123,,ααα线性表示.【详解】向量组Ⅰ和向量组Ⅱ等价的充分必要条件是123123123123(,,)(,,)(,,;,,)r r r αααβββαααβββ==1231232222111101111101(,,;,,)102123011022443313001111a a a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪++-+----⎝⎭⎝⎭(1)当1a =时,显然, 123123123123(,,)(,,)(,,;,,)2r r r αααβββαααβββ===,两个向量组等价.此时,123311111023(,,;)0112011200000000αααβ⎛⎫⎛⎫ ⎪ ⎪→-→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 方程组112233x x x αααβ++=的通解为123231210x x x k x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,也就是3123(23)(2)k k k βααα=-++-+,其中k 为任意常数;(2)当1a ≠时,继续进行初等行变换如下:12312322111101111101(,,;,,)011022011022001111001111a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪----+-+⎝⎭⎝⎭显然,当1a ≠-且1a ≠时,123123123(,,)(,,;,,)3r r ααααααβββ==,同时()123101101101,,02202201111101001a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭,123(,,)3r βββ=,也就是 123123123123(,,)(,,)(,,;,,)2r r r αααβββαααβββ===,两个向量组等价.这时,3β可由123,,ααα线性表示,表示法唯一:3123βααα=-+.23.(本题满分11分)已知矩阵22122002A x -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与21001000B y ⎛⎫ ⎪=- ⎪ ⎪⎝⎭相似.(1)求,x y 之值;(2)求可逆矩阵P ,使得1P AP B -=.【详解】(1)由矩阵相似的必要条件可知:A B trA trB⎧=⎪⎨=⎪⎩,即2(24)241x y x y --+=-⎧⎨-+=+⎩,解得32x y =⎧⎨=-⎩.(2)解方程组221232(2)(2)(1)0002E A λλλλλλλ+--=--=+-+=+得矩阵A 的三个特征值1232,1,2λλλ==-=-;分别求解线性方程组()0(1,2,3)i E A x i λ-==得到分属三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231112,1,2004ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()1123111,,212004P ξξξ-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭,则1P 可逆,且11212P AP -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭;同样的方法,可求得属于矩阵B 的三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231100,3,00014ηηη-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()2123110,,030001P ηηη-⎛⎫ ⎪== ⎪ ⎪⎝⎭,则2P 可逆,且12212P BP -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭;由前面111122P AP P BP --=,可知令112111212004P PP --⎛⎫ ⎪==-- ⎪ ⎪⎝⎭,就满足1P AP B -=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档