高中物理选修3-1磁通量及安培力教案讲义有答案
【精品】高中物理(人教版)选修3-1 优秀教案--3.4《磁场对通电导线的作用力》
【精品】高中物理(人教版)选修3-1 优秀教案--3.4《磁场对通电导线的作用力》选修3-1第三章3.4 磁场对通电导线的作用力一、教材分析安培力的方向和大小是重点,弄清安培力、电流、磁感应强度三者方向的空间关系是难点。
安培力的方向一定与电流、磁感应强度方向垂直,但电流方向与磁感应强度的方向可以成任意角度;当电流方向与磁感应强度的方向垂直时,安培力最大。
对此学生常常混淆二、教学目标(一)知识与技能1、知道什么是安培力,会推导安培力公式F=BIL sinθ。
2、知道左手定则的内容,并会用它判断安培力的方向。
3、了解磁电式电流表的工作原理。
(二)过程与方法通过演示实验归纳、总结安培力的方向与电流、磁场方向的关系——左手定则。
(三)情感、态度与价值观1、通过推导一般情况下安培力的公式F=BIL sinθ,使学生形成认识事物规律要抓住一七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑(二)情景引入、展示目标通过第二节的学习,我们已经初步了解磁场对通电导线的作用力。
安培在这方面的研究做出了杰出的贡献,为了纪念他,人们把通电导线在磁场中所受的作用力叫做安培力。
这节课我们对安培力作进一步的讨论。
(三)合作探究、精讲点播1、安培力的方向教师:安培力的方向与什么因素有关呢?演示:如图所示,连接好电路。
演示实验:(1)改变电流的方向现象:导体向相反的方向运动。
(2)调换磁铁两极的位置来改变磁场方向现象:导体又向相反的方向运动。
教师引导学生分析得出结论(1)安培力的方向和磁场方向、电流方向有关系。
(2)安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面。
左手定则通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。
高中物理教科版选修3-1学案第3章2磁场对通电导线的作用——安培力
2磁场对通电导线的作用——安培力[学习目标]1.[科学探究]通过实验探究知道安培力大小的决定因素.2.[科学思维]会用F=ILB计算B与I垂直情况下的安培力.3.[物理观念]掌握左手定则,并会用它判定安培力的方向.4.[物理观念]知道电动机的工作原理.一、安培力1.探究磁场对通电导线的作用(1)实验原理:将通电导线置于磁场中,它将受到力的作用.取一蹄形磁铁,认为它的两极间的磁场均匀,将一通电线框置于蹄形磁铁的两极间:①电流的大小可以由滑动变阻器调节.②通电导线在磁场中的长度可由并用的磁铁数目改变.③安培力的大小可通过弹簧测力计的读数求出.(2)实验装置:如图所示.(3)实验器材:铁架台,蹄形磁体(2个),线框,弹簧测力计,电流表,电源、滑动变阻器,开关,导线若干.(4)实验过程①按如图所示装置安装、连接实验器材,并使线框下端与磁场方向垂直.②在接通电路前先观察并记录下弹簧测力计的读数F0.③接通电路,调节滑动变阻器使电流表读数为I1,记录弹簧测力计的读数F1.④继续调节滑动变阻器使电流表读数为I2,I3,…,I n,观察并记录弹簧测力计相应的读数F2,F3,…,F n.⑤分别计算出F1-F0,F2-F0,F3-F0,…,F n-F0,并填入表格中.⑥列出I i与F i-F0(i=1,2,3,…,n)的对应关系.⑦紧挨着蹄形磁体再并排放上一个相同的蹄形磁体(相同的极性在同一侧),仍保持线框的竖直边在磁场区外,重复③~⑥过程.(5)实验结论①当通电导线与磁场方向平行时,导线不受力.②当通电导线与磁场方向垂直时,磁场对通电导线有力的作用,力的大小与导线中的电流、导线长度和磁场强弱有关.精确实验表明:通电导线与磁场方向垂直时,磁场对通电导线作用力的大小与导线长度和电流大小都成正比,比例系数与导线所在位置的磁场强弱有关.2.安培力的大小和方向(1)定义:磁场对通电导线的作用力.(2)公式:当通电导线与磁场方向垂直时F=ILB.式中比例系数B称为磁感应强度,单位为特(T),下节将进一步介绍.(3)安培力方向的判定——左手定则内容:伸出左手,四指并拢,使大拇指和其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直穿过手心,四指指向电流方向,则大拇指所指方向就是通电导线所受安培力的方向,如图所示.二、电动机——安培力的重要应用1.直流电动机的工作原理(1)直流电动机的构造如图所示是一个直流电动机的工作模型,由磁场(磁体)、转动线圈、滑环(两个半圆环A和B)、电刷及电源组成.(2)工作原理当电流由半圆环A流入时,则从B流出;当电流由B流入时,则从A流出.因此,滑环在其中起了一个换向器的作用.当线圈通电后,由于受到安培力的作用,线圈在磁场中旋转起来.2.电动机的分类(1)直流电动机.(2)交流电动机.1.正误判断(正确的打“√”,错误的打“×”)(1)通电导线所受安培力的方向与磁场的方向相同.(×)(2)通电的导线在磁场中一定受安培力.(×)(3)用左手定则判断安培力方向时,磁感线只要从掌心进入即可,不一定垂直穿过掌心.(×)(4)当导体在磁场中放置时,导体所受作用力为F=IBL.(×)2.把一小段通电直导线放入磁场中,导线受到安培力的作用,关于安培力的方向,下列说法中正确的是()A.安培力的方向一定跟磁场的方向相同B.安培力的方向一定跟磁场的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁场方向垂直D.安培力的方向既跟磁场方向垂直,又跟电流方向垂直D[由左手定则知安培力的方向既垂直于磁场又垂直于电流,即安培力垂直于磁场和电流决定的平面,B与I不一定垂直.]3.如图所示,标出了磁场B的方向、通电直导线中电流I的方向,以及通电直导线所受磁场力F的方向,其中正确的是()C[由左手定则判断可知,C项正确.]安培力的大小和方向一、安培力的大小1.公式F=ILB中L指的是“有效长度”.当B与I垂直时,F最大;当B 与I平行时,F=0.2.弯曲导线的有效长度L,等于连接两端点直线的长度(如图所示);相应的电流沿L由始端流向末端.二、安培力的方向1.安培力方向的特点F⊥B,F⊥I,即F垂直于B、I决定的平面.2.当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流与磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过掌心.3.注意区别安培力的方向和电场力的方向与场的方向的关系:安培力的方向总是与磁场的方向垂直,而电场力的方向与电场的方向平行.【例1】如图所示,导线abc为垂直折线,其中电流为I,ab=bc=L,导线所在的平面与匀强磁场垂直,匀强磁场的强弱为B,求导线abc所受安培力的大小和方向.思路点拨:解析:法一:ab段所受的安培力大小F ab=ILB,方向向右,bc段所受的安培力大小F bc=ILB,方向向上,所以该导线所受安培力为这两个力的合力,如图所示,F=2ILB,方向沿∠abc的角平分线向上.法二:把导线abc等效成直导线ac,则等效长度ac=2L,故安培力F=BI·2 L=2ILB,方向垂直于ac,即沿∠abc的角平分线向上.答案:2ILB方向沿∠abc的角平分线向上[跟进训练]训练角度1安培力方向的判断1.(多选)下列图中,表示电流I的方向、磁场B的方向和磁场对电流作用力F的方向的关系正确的是()BCD[由左手定则可知,A图中磁场对电流作用力F的方向应竖直向上,所以A错误,而B、C、D都符合左手定则.]训练角度2安培力大小的计算2.如图所示,一段导线abcd位于磁感应强度为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为(2+1)ILBB.方向沿纸面向上,大小为(2-1)ILBC.方向沿纸面向下,大小为(2+1)ILBD.方向沿纸面向下,大小为(2-1)ILBA[将导线分为三段直导线,根据左手定则分别判断出各段所受安培力的方向,计算出安培力的大小,再求合力.导线所受合力F合=ILB+2BIL sin 45°=(2+1)ILB,方向沿纸面向上.]安培力作用下通电导体运动方向的判断(1)电流元法即把整段电流等效为多段直线电流元,运用左手定则判断出每小段电流元受安培力的方向,从而判断出整段电流所受合力的方向.(2)特殊位置法把电流或磁铁转到一个便于分析的特殊位置后再判断所受安培力方向,从而确定运动方向.(3)等效法环形电流和通电螺线管都可以等效成条形磁铁.条形磁铁也可以等效成环形电流或通电螺线管.通电螺线管也可以等效成很多匝的环形电流来分析.(4)利用结论法①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;②两电流不平行时,有转动到相互平行且电流方向相同的趋势.(5)转换研究对象法因为电流之间,电流与磁体之间的相互作用满足牛顿第三定律.定性分析磁体在电流产生的磁场中的受力和运动时,可先分析电流在磁体的磁场中受到的安培力,然后由牛顿第三定律,再确定磁体所受电流的作用力.【例2】如图所示,把轻质导电线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈平面,线圈内通入如图方向的电流后,线圈()A.向左运动B.向右运动C.静止不动D.无法确定思路点拨:①熟悉条形磁铁周围空间的磁场分布.②通电线圈可等效成条形磁铁.③通电线圈也可看成由许多电流元组成.A[解法一等效法.把通电线圈等效成条形磁铁.由安培定则可知,线圈等效成条形磁铁后,左端是S极,右端是N极,异名磁极相互吸引,线圈向左运动.解法二电流元法.如图所示,取其中的上、下两小段分析,根据其中心对称性可知,线圈所受安培力的合力水平向左,故线圈向左运动.]上例中若将条形磁铁换成通电环形电流,如图所示,其他条件不变,则右侧线圈________.A[两个环形电流等效成两个小磁针,由于电流方向相同,所以小磁针的N极、S极顺序应相同,如图所示:根据异名磁极相互吸引,右侧线圈仍然向左运动,A项正确.][跟进训练]如图所示,两根垂直纸面、平行且固定放置的直导线M和N,通有同向等值电流,沿纸面与直导线M、N等距放置另一根可自由移动的通电导线ab,则通电导线ab在安培力作用下运动的情况是()A.a端转向纸里,b端转向纸外B.在纸面内逆时针转动C.a端转向纸外,b端转向纸里D.在纸面内顺时针转动A[导线M和N的磁感线都是同心圆,因此对ab上半段,M导线的磁感线指向右下,可以用左手定则判断a端受到向里的力,N导线的磁感线指向右上,也使a端受向里的力;同理也可以分析出b端受向外的力,从而使得a端转向纸里,b端转向纸外,故A正确;B、C、D错误.]安培力作用下导体的平衡1.解题步骤(1)明确研究对象;(2)先把立体图改画成平面图,并将题中的角度、电流的方向、磁场的方向标注在图上;(3)正确受力分析(包括安培力),然后根据平衡条件:F合=0列方程求解.2.分析求解安培力时需要注意的问题(1)首先画出通电导体所在处的磁感线的方向,再根据左手定则判断安培力方向;(2)安培力大小与导体放置的角度有关,但一般情况下只要求导体与磁场垂直的情况.【例3】质量为m=0.02 kg的通电细杆ab置于倾角为θ=37°的平行放置的导轨上,导轨的宽度d=0.2 m,杆ab与导轨间的动摩擦因数μ=0.4,磁感应强度B=2 T的匀强磁场与导轨平面垂直且方向向下,如图所示.现调节滑动变阻器的触头,试求出为使杆ab静止不动,通过杆ab的电流范围为多少?(已知最大静摩擦力等于滑动摩擦力,取g=10 m/s2)思路点拨:解答该题应注意以下关键点:①将立体图转换为平面图进行受力分析;②静摩擦力可能有两个方向,从而可求电流的范围.解析:杆ab中的电流为a到b,所受的安培力方向平行于导轨向上.当电流较大时,导体有向上的运动趋势,所受静摩擦力向下;当静摩擦力达到最大时,安培力为最大值F1,此时通过ab的电流最大为I max;同理,当电流最小时,应该是导体受向上的静摩擦力,此时的安培力为F2,电流为I min.正确地画出两种情况下的受力图如图所示,由平衡条件列方程求解.图1图2根据图1列式如下:F1-mg sin θ-f1=0N-mg cos θ=0f1=μNF1=BI max d解上述方程得:I max=0.46 A根据图2列式如下:F2+f2-mg sin θ=0N-mg cos θ=0f2=μNF2=BI min d解上述方程得:I min=0.14 A故所求范围为0.14 A≤I≤0.46 A.答案:0.14 A≤I≤0.46 A[跟进训练](多选)质量为m的金属细杆置于倾角为θ的导轨上,导轨的宽度为d,杆与导轨间的动摩擦因数为μ,有电流通过杆,杆恰好静止于导轨上,在如图所示的A、B、C、D四个选项中,杆与导轨的摩擦力一定不为零的是()A B C DCD[选项A中,通电细杆可能受重力、安培力、导轨的弹力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力变大或变小时,细杆有上滑或下滑的趋势,于是有静摩擦力产生.选项B中,通电细杆可能受重力、安培力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力减小时,细杆受到导轨的弹力和沿导轨向上的静摩擦力,也可能处于静止状态.选项C和D中,通电细杆受重力、安培力、导轨弹力作用具有下滑趋势,故一定受到沿导轨向上的静摩擦力,如图所示,所以杆与导轨间的摩擦力一定不为零.]A B C D1.[物理观念]安培力的概念;安培力的大小:当通电导线与磁场垂直时,F =BIL;安培力的方向:左手定则.2.[科学探究]探究磁场对通电导线的作用.1.关于通电导线所受安培力F的方向、磁场B的方向和电流I的方向之间的关系,下列说法正确的是()A.F、B、I三者必须保持相互垂直B.F必须垂直B、I,但B、I可以不相互垂直C.B必须垂直F、I,但F、I可以不相互垂直D.I必须垂直F、B,但F、B可以不相互垂直B[安培力F总是与磁场B和电流I决定的平面垂直,但B与I(即导线)可以垂直,也可以不垂直;通电导线受安培力时,F与磁场及F与电流都是垂直的,故A、C、D错误,B正确.]2.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()A.不动B.顺时针转动C.逆时针转动D.向纸面内平动B[环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止,据此可得,从左向右看,线圈L1将顺时针转动.]3.如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可以自由转动.当导线中通有如图所示方向的电流I时,导线将(从上往下看)()A.顺时针转动,同时向下运动B.顺时针转动,同时向上运动C.逆时针转动,同时向下运动D.逆时针转动,同时向上运动C[将导线AB从N、S极的中间O分成两段,AO、BO段所在处的磁场方向如图甲所示.由左手定则可得AO段受安培力的方向垂直纸面向外,BO段受安培力的方向垂直纸面向里,从上向下看,导线AB将绕O点沿逆时针方向转动.再根据导线转过90°时的特殊位置判断其上下运动情况.如图乙所示,导线AB此时受安培力方向竖直向下,导线将向下运动. 由上述两个特殊位置的判断可知,当导线不在上述的特殊位置时,所受安培力使AB逆时针转动的同时还要向下运动.甲乙]4.如图所示,长为3l的直导线折成三段做成正三角形,并置于与其所在平面相垂直的匀强磁场中,磁场的强弱为B,当在该导线中通以电流强度为I的电流时,该通电导线受到的安培力大小为()A.2BIl B.32BIlC.2+32BIl D.0A[导线AB段和BC段的有效长度为2l sin 30°=l,所以该通电导线受到的安培力大小为F=BIl+BIl=2BIl,选项A正确.]5.如图所示,平行金属导轨PQ与MN都与水平面成θ角,相距为l.一根质量为m的金属棒ab在导轨上,并保持水平方向,ab棒内通有恒定电流,电流大小为I,方向从a到b.空间存在着方向与导轨平面垂直的匀强磁场,ab棒在磁场力的作用下保持静止,并且棒与导轨间没有摩擦力.重力加速度为g.求磁感应强度B 的大小和方向.解析:金属棒受力如图所示,根据力的平衡条件可知:F安=mg sin θ而F安=BIl可得B=mg sin θIl由左手定则可知,B的方向垂直导轨平面向下.答案:mg sin θIl方向垂直导轨平面向下。
高中物理选修3-1人教全国通用版讲义:第三章 微型专题 安培力的应用
微型专题安培力的应用[学习目标]1.会用左手定则判断安培力的方向和导体的运动方向.2.会分析导体在安培力作用下的平衡问题.3.会结合牛顿第二定律求导体棒的瞬时加速度.【知识总结】一、安培力作用下导体运动方向的判断方法1.电流元法即把整段电流等效为多段直线电流元,运用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力的方向.2.特殊位置法把电流或磁铁转到一个便于分析的特殊位置后再判断所受安培力方向,从而确定运动方向.3.等效法环形电流和通电螺线管都可以等效成条形磁铁.条形磁铁也可以等效成环形电流或通电螺线管.通电螺线管也可以等效成很多匝的环形电流来分析.4.利用结论法(1)两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;(2)两电流不平行时,有转动到相互平行且电流方向相同的趋势.5.转换研究对象法因为电流之间、电流与磁体之间的相互作用满足牛顿第三定律,定性分析磁体在电流产生的磁场中的受力和运动时,可先分析电流在磁体的磁场中受到的安培力,然后由牛顿第三定律,再确定磁体所受电流的作用力.例1如图1所示,把一重力不计的通电直导线AB水平放在蹄形磁铁磁极的正上方,导线可以在空间自由运动,当导线通以图示方向电流I时,导线的运动情况是(从上往下看)()图1A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升答案C解析如图所示,将导线AB分成左、中、右三部分.中间一段开始时电流方向与磁场方向一致,不受力;左端一段所在处的磁场方向斜向上,根据左手定则其受力方向向外;右端一段所在处的磁场方向斜向下,受力方向向里.当转过一定角度时,中间一段电流不再与磁场方向平行,由左手定则可知其受力方向向下,所以从上往下看导线将一边逆时针方向转动,一边向下运动,C选项正确.判断导体在磁场中运动情况的常规思路不管是电流还是磁体,对通电导体的作用都是通过磁场来实现的,因此,此类问题可按下面步骤进行分析:(1)确定导体所在位置的磁场分布情况.(2)结合左手定则判断导体所受安培力的方向.(3)由导体的受力情况判定导体的运动方向.针对训练1直导线AB与圆线圈的平面垂直且隔有一小段距离,直导线固定,线圈可以自由运动.当通过如图2所示的电流时(同时通电),从左向右看,线圈将()图2A.顺时针转动,同时靠近直导线ABB.顺时针转动,同时离开直导线ABC.逆时针转动,同时靠近直导线ABD.不动答案C解析由安培定则判断出AB导线右侧的磁场向里,因此环形电流内侧受力向下、外侧受力向上,从左向右看应逆时针方向转动,当转到与AB共面时,AB与环左侧吸引,与环右侧排斥,由于左侧离AB较近,则引力大于斥力,所以环靠近导线AB,故选项C正确.二、安培力作用下导体的平衡1.解题步骤(1)明确研究对象;(2)先把立体图改画成平面图,并将题中的角度、电流的方向、磁场的方向标注在图上;(3)正确受力分析(包括安培力),然后根据平衡条件:F合=0列方程求解.2.分析求解安培力时需要注意的问题(1)首先画出通电导体所在处的磁感线的方向,再根据左手定则判断安培力方向;(2)安培力大小与导体放置的角度有关,但一般情况下只要求导体与磁场垂直的情况,其中L 为导体垂直于磁场方向的长度,为有效长度.例2如图3所示,在与水平方向夹角为60°的光滑金属导轨间有一电源,在相距1 m的平行导轨上垂直导轨放一质量为0.3 kg的金属棒ab,ab中有由b→a、I=3 A的电流,磁场方向竖直向上,这时金属棒恰好静止.求:(g=10 m/s2)图3(1)匀强磁场磁感应强度的大小;(2)ab棒对导轨的压力.答案 (1) 3 T (2)6 N ,方向垂直导轨向下解析 (1)ab 棒静止,受力情况如图所示,沿导轨方向受力平衡,则mg sin 60°=F cos 60° 又F =BIL解得:B =mg tan 60°IL =0.3×10×33×1 T = 3 T.(2)根据牛顿第三定律得,ab 棒对导轨的压力为:F N ′=F N =mgcos 60°=0.3×1012N =6 N ,方向垂直导轨向下.针对训练2 如图4所示,金属棒MN 两端由等长的轻质绝缘细线水平悬挂,处于竖直向上的匀强磁场中,金属棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是( )图4A .金属棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小 答案 A解析 选金属棒MN 为研究对象,其受力情况如图所示.根据平衡条件及三角形知识可得tan θ=BILmg ,所以当金属棒中的电流I 、磁感应强度B 变大时,θ角变大,选项A 正确,选项D错误;当金属棒质量m 变大时,θ角变小,选项C 错误;θ角的大小与悬线长短无关,选项B 错误.例3如图5所示,条形磁铁放在桌面上,一根通电直导线由S极的上端平移到N极的上端的过程中,导线保持与磁铁垂直,导线的通电方向如图所示.则这个过程中磁铁受到的摩擦力(磁铁保持静止)()图5A.为零B.方向由向左变为向右C.方向保持不变D.方向由向右变为向左答案B解析首先磁铁上方的磁感线从N极出发回到S极,是曲线,直导线由S极的上端平移到N极的上端的过程中,电流的受力由左上方变为正上方再变为右上方,根据牛顿第三定律磁铁受到的力由右下方变为正下方再变为左下方,磁铁静止不动,所以所受摩擦力方向由向左变为向右,B正确.三、安培力和牛顿第二定律的综合例4如图6所示,光滑的平行金属导轨倾角为θ,间距为L,处在竖直向下的磁感应强度为B的匀强磁场中,导轨中接入电动势为E、内阻为r的直流电源.电路中有一阻值为R的电阻,其余电阻不计,将质量为m、长度为L的导体棒由静止释放,导体棒的两端与导轨接触良好,求导体棒在释放瞬间的加速度的大小.(重力加速度为g)图6答案 g sin θ-BEL cos θm (R +r )解析 对导体棒受力分析如图所示,导体棒受重力mg 、支持力F N 和安培力F ,由牛顿第二定律得:mg sin θ-F cos θ=ma ①F =BIL ② I =E R +r ③ 由①②③式可得 a =g sin θ-BEL cos θm (R +r ).【课堂检测】1.(安培力作用下导体的运动)两个相同的轻质铝环能在一个光滑的绝缘圆柱体上自由移动,设大小不同的电流按如图7所示的方向通入两铝环,则两环的运动情况是( )图7A .都绕圆柱体转动B .彼此相向运动,且具有大小相等的加速度C .彼此相向运动,电流大的加速度大D .彼此背向运动,电流大的加速度大 答案 B解析 同向环形电流间相互吸引,虽然两电流大小不等,但根据牛顿第三定律知两铝环间的相互作用力必大小相等,选项B 正确.2. (安培力作用下导体的运动)一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图8所示,如果直导线可以自由地运动且通以方向为由a 到b 的电流,则导线ab 受到安培力的作用后的运动情况为( )图8A.从上向下看顺时针转动并靠近螺线管B.从上向下看顺时针转动并远离螺线管C.从上向下看逆时针转动并远离螺线管D.从上向下看逆时针转动并靠近螺线管答案D解析先由安培定则判断通电螺线管的南、北两极,找出导线左、右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图甲所示.可以判断导线受到磁场力作用后从上向下看按逆时针方向转动,再分析导线转过90°时导线位置的磁场方向,再次用左手定则判断导线所受磁场力的方向,如图乙所示,可知导线还要靠近螺线管,所以D正确,A、B、C错误.3.(安培力作用下的平衡)(多选)如图9所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为F N1,现在磁铁左上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为F N2,则以下说法正确的是()图9A.弹簧长度将变长B.弹簧长度将变短C.F N1>F N2D.F N1<F N2答案BC4.(安培力作用下的平衡)如图10所示,用两根轻细金属丝将质量为m、长为l的金属棒ab 悬挂在c、d两处,置于匀强磁场内.当棒中通以从a到b的电流I后,两悬线偏离竖直方向θ角而处于平衡状态.为了使棒平衡在该位置上,所需的磁场的最小磁感应强度的大小、方向为( )图10A.mgIl tan θ,竖直向上B.mgIl tan θ,竖直向下 C.mgIl sin θ,平行于悬线向下 D.mgIl sin θ,平行于悬线向上 答案 D解析 要求所加磁场的磁感应强度最小,应使棒平衡时所受的安培力有最小值.由于棒的重力恒定,悬线拉力的方向不变,由画出的力的三角形可知,安培力与拉力方向垂直时有最小值F min =mg sin θ,即IlB min =mg sin θ,得B min =mgIlsin θ,方向应平行于悬线向上.故选D.。
物理教案安培力 磁感应强度
物理教案安培力磁感应强度一、教学内容本节课选自高中物理教材《物理》选修31第二章第五节“安培力与磁感应强度”。
具体内容包括:安培力的定义及其计算公式,磁感应强度的概念、物理意义及其测量方法。
二、教学目标1. 让学生掌握安培力的概念,理解安培力的大小与电流、磁场及导体长度之间的关系。
2. 让学生理解磁感应强度的物理意义,掌握磁感应强度的计算公式,并能运用其解决实际问题。
3. 培养学生运用物理知识进行实验设计和数据分析的能力。
三、教学难点与重点重点:安培力的定义和计算,磁感应强度的概念及其测量方法。
难点:安培力大小的计算,磁感应强度与安培力之间的关系。
四、教具与学具准备1. 教具:电流表、电压表、磁铁、导线、滑动变阻器、电流表架、电压表架、多媒体课件。
2. 学具:每组一套实验器材。
五、教学过程1. 情境引入利用多媒体展示磁悬浮列车、电磁起重机等实例,让学生思考这些设备是如何工作的,引出安培力的概念。
2. 理论讲解(1)安培力的定义:当电流通过导体时,在磁场中会受到一个力,这个力称为安培力。
(2)安培力的大小:安培力F = BILsinθ,其中B为磁感应强度,I为电流大小,L为导体长度,θ为导体与磁场的夹角。
(3)磁感应强度:磁感应强度B是描述磁场强弱的物理量,其单位为特斯拉(T),计算公式为B = F/IL。
3. 实践操作(1)实验一:测量安培力。
让学生分组进行实验,测量不同电流、磁场强度、导体长度下的安培力,并记录数据。
(2)实验二:测量磁感应强度。
利用实验一的数据,计算磁感应强度,并与标准值进行比较。
4. 例题讲解讲解一道关于安培力计算的例题,引导学生运用公式进行计算。
5. 随堂练习让学生独立完成一道关于磁感应强度的计算题,巩固所学知识。
六、板书设计1. 安培力的定义、计算公式。
2. 磁感应强度的概念、物理意义、计算公式。
3. 实验步骤、数据处理方法。
七、作业设计1. 作业题目:计算给定电流、磁场、导体长度下的安培力。
2024-2025学年高中物理第三章磁场2磁场对通电导线的作用——安培力教案教科版选修3-1
七、教学反思与改进
回顾本节课的教学,我认为在以下几个方面取得了较好的效果:
1. 通过实验演示,学生能够直观地观察到安培力的现象,增强了他们的感性认识。实验操作环节,学生积极参与,动手能力强,对安培力的理解更加深入。
2. 教学活动设计
为了促进学生的参与和互动,我设计了以下教学活动:
(1)实验演示:通过实验,让学生直观地观察安培力的现象,引发学生的兴趣和好奇心。在实验过程中,学生将亲自动手操作,观察不同电流、磁场条件下导线受到的安培力。
(2)角色扮演:学生分组扮演“磁场”、“电流”和“安培力”三个角色,通过角色扮演,让学生更好地理解三者之间的关系。
(2)视频:播放实验操作视频,帮助学生更好地理解实验过程和观察安培力的现象。
(3)在线工具:利用在线工具,如物理模拟软件,让学生模拟和观察安培力的产生和作用效果。
(4)实物模型:准备磁场、电流和安培力的实物模型,让学生更直观地理解三者之间的关系。
五、教学流程
(一)课前准备(预计用时:5分钟)
学生预习:
二、核心素养目标
本节课的核心素养目标主要包括物理观念、科学思维、实验探究和科学态度四个方面。首先,通过学习磁场对通电导线的作用,学生将建立正确的物理观念,理解安培力的产生原因和作用效果。其次,学生需要运用科学思维,分析安培力的方向和大小,以及与电流、磁场之间的关系。在此基础上,学生将进行实验探究,观察安培力的现象,验证理论知识,培养实验操作能力和问题解决能力。最后,通过学习本节课内容,学生将培养积极的科学态度,激发对物理学科的兴趣和好奇心,增强对科学知识的认同感和责任感。
2017-2018学年高中物理(SWSJ)粤教版选修3-1教学案:第三章第三节探究安培力含答案
第三节探究安培力1.磁场对通电导线的作用力称为安培力,安培力的方向由左手定则判定。
2.当磁感应强度与导线方向垂直时,安培力最大,为F=BIL。
当磁感应强度与导线方向平行时,安培力为零.3.磁感应强度是描述磁场强弱的物理量,其定义式为B=错误!。
4.磁通量表示垂直穿过某个面的磁感线的条数Φ=BS.一、安培力的方向1.安培力定义物理学上把磁场对电流的作用力叫安培力。
2.方向判定用左手定则判断安培力的方向:伸开左手,让拇指与其余四指垂直,并与手掌在一个平面内,让磁感线垂直穿入手心,四指指向电流方向,那么,拇指所指方向即为通电导线在磁场中的受力方向。
如图3.3。
1所示。
图33.1二、安培力的大小1.磁感应强度(1)定义:当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度。
(2)定义式:B=错误!。
(3)单位:特斯拉,符号T,1 T=1N A·m.(4)磁感应强度是矢量,既有大小,又有方向,当空间中同时存在几个不同强弱和方向的磁场时,合磁场的磁感应强度等于各个磁场在同一处产生的磁感应强度的矢量和。
(5)与磁感线的关系:①磁感线上每一点的切线方向都与该点磁感应强度的方向一致。
②磁感线的疏密程度表示磁感应强度的大小.2.匀强磁场(1)定义:在磁场的某一区域,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场.(2)产生:距离很近的两个异名磁极之间;通电螺线管内中间部分。
3.安培力的大小(1)当通电直导线与匀强磁场方向垂直时,安培力最大为F=BIL。
(2)当通电直导线与匀强磁场方向平行时,安培力等于零。
(3)当导线方向与磁场方向斜交时,所受安培力介于BIL和零之间.三、磁通量1.概念(1)定义:在匀强磁场中,磁感应强度B与一个垂直于磁场方向的面积S的乘积,叫做穿过这个面积的磁通量.(2)公式:Φ=BS.(3)单位:韦伯,简称韦,符号Wb,1 Wb=1 T·m2.(4)适用条件:①匀强磁场;②磁感线与平面垂直。
高中物理人教版选修3-1教学案:第三章 第4节 通电导线在磁场中受到的力 含答案
高中物理人教版选修3-1教学案:第三章第4节通电导线在磁场中受到的力含答案2.当磁感应强度B的方向与导线方向成θ角时,公式F=ILB sin_θ。
三、磁电式电流表图3-4-11.原理安培力与电流的关系。
2.构造磁铁、线圈、螺旋弹簧、指针、软铁、极靴。
如图3-4-1所示。
3.特点两极间的极靴和极靴中间的铁质圆柱,使极靴与圆柱间的磁场都沿半径方向,使线圈平面都与磁场方向平行,从而使表盘刻度均匀。
图3-4-24.工作原理如图3-4-2所示是线圈在磁场中受力的示意图。
当电流通过线圈时,导线受到安培力的作用,由左手定则知,线圈左右两边所受的安培力的方向相反,于是架在轴上的线圈就要转动,通过转轴收紧螺旋弹簧使其变形,反抗线圈的转动,电流越大,安培力就越大,螺旋弹簧的形变也就越大,所以,从线圈偏转的角度就能判断通过电流的大小。
线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变。
所以,根据指针的偏转方向,可以知道被测电流的方向。
5.优缺点优点是灵敏度高,可以测出很弱的电流;缺点是线圈的导线很细,允许通过的电流很弱。
1.自主思考——判一判(1)安培力的方向与磁感应强度的方向相同。
(×)(2)安培力的方向与磁感应强度的方向垂直。
(√)(3)应用左手定则时,四指指向电流方向,拇指指向安培力方向。
(√)(4)通电导线在磁场中不一定受安培力。
(√)(5)一通电导线放在磁场中某处不受安培力,该处的磁感应强度不一定是零。
(√)(6)若磁场一定,导线的长度和电流也一定的情况下,导线平行于磁场时,安培力最大,垂直于磁场时,安培力最小。
(×)2.合作探究——议一议图3-4-3(1)如图3-4-3所示,两条平行的通电直导线之间会通过磁场发生相互作用,在什么情况下两条直导线相互吸引,什么情况下两条直导线相互排斥?提示:每一条通电直导线均处在另一直导线电流产生的磁场中,根据安培定则可判断出直线电流产生的磁场的方向,再根据左手定则可判断出每一条通电直导线所受的安培力,由此可知,同向电流相互吸引,反向电流相互排斥。
高中物理人教版安培力教案
高中物理人教版安培力教案一、教学内容本节课选自人教版高中物理选修31第二章第4节,主要详细讲解安培力的计算及其应用。
内容包括:安培力的大小与方向,安培力作用下的电流表指针偏转,安培力在磁场中的应用。
二、教学目标1. 让学生掌握安培力的计算公式,理解安培力与电流、磁场的关系。
2. 培养学生运用安培力解决实际问题的能力。
3. 使学生了解安培力在科技发展中的应用,提高学生的学习兴趣。
三、教学难点与重点重点:安培力的计算公式及其应用。
难点:安培力方向的理解,安培力作用下的电流表指针偏转现象。
四、教具与学具准备1. 磁场模型、电流表、导线、电池等实验器材。
2. 安培力计算公式、电流表指针偏转原理的PPT。
五、教学过程1. 实践情景引入利用电流表指针偏转的实验现象,引发学生思考:电流在磁场中为什么会受到力的作用?2. 基本概念讲解详细讲解安培力的定义,引导学生学习安培力的计算公式。
3. 例题讲解通过例题,演示安培力的计算方法,并分析安培力方向与电流、磁场的关系。
4. 随堂练习让学生独立完成安培力计算的练习题,巩固所学知识。
5. 实验演示演示安培力作用下的电流表指针偏转现象,引导学生理解安培力的实际应用。
6. 知识拓展介绍安培力在科技发展中的应用,如电机、发电机等。
六、板书设计1. 安培力的定义、计算公式、方向判定方法。
2. 安培力作用下的电流表指针偏转原理。
七、作业设计1. 作业题目:(1)计算给定电流和磁场下的安培力大小和方向。
(2)分析安培力在电机中的应用。
2. 答案:(1)安培力大小:F = BIL,方向:右手定则判定。
(2)安培力在电机中的应用:通过安培力实现电能与机械能的转换。
八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,针对学生的掌握情况,调整教学方法。
2. 拓展延伸:引导学生学习电磁感应现象,了解安培力与其他电磁现象的联系。
重点和难点解析1. 安培力的计算公式及其应用2. 安培力方向的理解3. 安培力作用下的电流表指针偏转现象4. 实践情景引入和例题讲解5. 作业设计一、安培力的计算公式及其应用1. 电流元的概念:电流元是指电流在空间中的微小段,其长度为L,电流为I。
每日一面高中物理《安培力》教案
每日一面高中物理《安培力》教案一、教学内容本节课选自高中物理教材《物理》选修31第二章第4节,内容主要围绕安培力的概念、计算公式及其应用进行详细讲解。
具体内容包括安培力定义、安培力大小的计算、左手定则的应用以及安培力在日常生活和工业生产中的应用实例。
二、教学目标1. 理解安培力的概念,掌握安培力大小的计算公式。
2. 学会运用左手定则判断安培力的方向。
3. 能够运用安培力的知识解决实际问题,提高实践操作能力。
三、教学难点与重点教学难点:安培力大小的计算以及左手定则的应用。
教学重点:安培力的概念、计算公式及其实践应用。
四、教具与学具准备1. 教具:电磁铁、电流表、导线、磁铁、演示用安培力实验装置等。
2. 学具:学生分组实验所需电磁铁、电流表、导线、磁铁等。
五、教学过程1. 实践情景引入:通过展示电磁铁吸引铁钉的实验,引导学生思考电流与磁场之间的相互作用力,从而引出安培力的概念。
2. 知识讲解:(1)安培力的定义:电流在磁场中受到的力。
(2)安培力大小的计算公式:F = BILsinθ,其中B为磁感应强度,I为电流强度,L为导线长度,θ为导线与磁场方向的夹角。
(3)左手定则的应用:判断安培力的方向。
3. 例题讲解:选取典型例题,讲解安培力大小计算和左手定则的应用。
4. 随堂练习:让学生运用安培力的知识解决实际问题,巩固所学内容。
5. 分组实验:学生分组进行安培力实验,观察安培力的变化规律,培养实践操作能力。
六、板书设计1. 安培力的定义2. 安培力大小的计算公式:F = BILsinθ3. 左手定则的应用4. 例题讲解5. 随堂练习题目七、作业设计1. 作业题目:(1)计算题:给定磁感应强度、电流强度和导线长度,计算安培力的大小。
(2)应用题:根据左手定则判断安培力的方向。
2. 答案:见附录。
八、课后反思及拓展延伸1. 课后反思:本节课学生对安培力的概念和计算公式的掌握程度,以及对左手定则的应用能力。
高二物理 第三章磁场专题——安培力问题归纳(理)知识精讲 人教新课标版选修3-1
高二物理 第三章磁场专题——安培力问题归纳 人教新课标版选修3-1一、学习目标:1. 理解左手定则,会用左手定则处理相关问题。
2. 掌握安培力作用下的平衡问题的解题方法。
3. 理解磁感应强度的定义,知道其定义式,理解磁感应强度的矢量性。
二、重点、难点:重点:熟练运用左手定则进行相关的判断难点:磁感应强度的矢量性及安培力公式的理解。
三、考点分析:内容和要求 考点细目出题方式 磁感应强度磁感应强度的定义选择、填空题磁感应强度的物理意义及单位 矢量性特点磁通量 磁通量的定义及公式 选择、填空题 合磁通及磁通量变化量的计算 左手定则 左手定则的内容及理解要点 选择题 安培力 安培力的定义及大小选择、计算题安培力作用下的物体运动方向的判断 安培力作用下的物体的平衡或运动分析⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⋅==m A N 1T 1L I F ILFB N B ,单位:特斯拉,简称特是导线长度是电流,的磁场力,是通电导线所受垂直时),其中(通电导线与磁场方向大小:点的磁感应强度的方向极所指的方向规定为该方向:小磁针静止时表示物理量,用定义:描述磁场强弱的强度磁感应⎪⎪⎩⎪⎪⎨⎧Φ==Φ⊥⊥S B BS S B S B 磁感应强度:磁通量的计算:积的磁通量的乘积叫做穿过这个面与,我们把面,面积为与磁场方向垂直的平的匀强磁场中,有一个应强度为磁通量的概念:在磁感磁通量⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧=θ=θ=⊥⎪⎪⎩⎪⎪⎨⎧强磁场为有效长度,磁场为匀上述表达式中时,当角时,成与当时,当安培力的大小决定的平面和于推论:安培力总是垂直就是左手定则受安培力的方向,这是通电导线在磁场中所这时拇指所指的方向就四指指向电流的方向,感线从掌心进入,并使在同一个平面内,让磁垂直,并且都与手掌使拇指与其余四个手指判断方法:伸开左手,安培力的方向场中受的力安培力:通电导线在磁力用作的线导电通对场磁L 0F I //B sin BIL F I B BIL F I B I B知识点一:磁感应强度概念的理解:例1:关于磁感应强度,下列说法正确的是( )。
高中物理选修3-1第三章第4节通电导线在磁场中受到的力(教案)
通电导线在磁场中受到的力一、教学目标核心素养层面:教学目标:1.知识与技能(1)知道安培力,会计算安培力的大小(2)知道安培力的方向与电流、磁场方向都垂直,会用左手定则判断安培力的方向;(3)知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理.2.过程与方法(1)经历推导磁场中安培力的表达式,感受逻辑的力量;(2)通过学生分组实验,经历探究磁场对电流的作用力的方向和电流方向、磁场方向的关系这一过程,体验控制变量探究物理规律的方法.3.情感、态度与价值观(1)了解安培力在生产、生活中的作用,培养学生将科学技术服务于人类社会的意识;(2)经历磁场对电流的作用力的方向和电流方向、磁场方向的关系这一过程,培养学生的科学探究意识和正确的科学态度以及责任心.二、教学内容与学情分析1、教材分析:本节教材系人教版物理选修3-1第三章第4节的内容,磁场对电流的作用――安培力,在教材中起着承上启下的作用。
它不仅是与上节知识(磁场性质)的联系点,而且是学习电流表工作原理和推导洛伦兹力公式的基础。
安培力方向与电流、磁场方向关系的实验探究是采用控制变量法探究物理基本规律的一节课,涵盖了科学探究的基本因素,有助于培养学生物理学科的核心素养。
2、学情分析学生在学习本节课之前,已经学习了磁场,知道了磁体和电流周围磁场的性质及特点,了解到磁体间的相互作用、电流周围存在着磁场以及电与磁之间有联系。
学生通过高一物理“必修”课程的学习,经历了牛顿第二定律等实验探究过程,已经掌握了变量控制实验探究的一些科学研究方法,为本节的探究性学习做了铺垫。
三、任务分解四、教学活动教学过程设计教师教学活动设计活动设计复习一:(1)图中已知磁场方向,根据安培定则判断电流方向?教师教学活动设计活动设计复习一:(1)图中已知磁场方向,根据安培定则判断电流方向?(2)图中已知电流方向,请判断小磁针转动方向?提出问题:(1)在通电导线旁边的小磁针为什么会转动?(2)根据逆向思维,小磁针的磁场会不会对通电导线也有力的作用呢?引入新课:【活动一】创设情境,提出本节课的核心任务(1)创设情景(视频展示)央视国际频道的一则电磁轨道炮的新闻. (2)提出课题电磁轨道炮,是一种新式武器,既安全精准又威力巨大,各国正在争相研发,它与常规炮弹靠化学剂的推动不同,电磁轨道炮利用的是一种新型的推进方式,它的原理是怎样的呢?这节课,我们就来揭秘“电磁轨道炮”.【活动二】感受小型“电磁轨道炮”,经历理性分析实验现象过程(1)介绍实验装置如图1,这也是一个小型的电磁轨道炮.它是由竖直向下的匀强磁场,金属轨道和炮弹(金属棒)组成.(2)实验演示将导体棒放在磁场中,接通电源,导体棒就通上电,同学们观察到:电磁轨道炮被发射出去了.(3)解释现象提问:通电导体棒为什么会被发射出去?说明什么?实验验证①撤去磁场,其它不变,发现金属棒不动.说明金属棒受到的力的施力物体确实是磁场;②切开电源,其它不变,发现金属棒不动.说明这个力是磁场对通电导线(电流)的力.(4)提出概念为了纪念法国物理学家安培在电磁学中做出的卓越贡献,我们把磁场对通电导线(电流)的力叫做安培力.(5)提出从刚才的实验中我们看到,安培力就是电磁炮发射的动力,为了有效的发射电磁轨道炮我们必须知道这个力的方向是怎样的,受哪些因素影响,下面我们通过实验来探究.新课教学:【活动三】实验探究安培力的方向与磁场方向和电流方向的关系演示:按照右图所示进行实验:复习电流磁效应,为后面做铺垫以尖端科技(电磁轨道炮)引入新课,学生感觉很新奇,可以有效激发学生学习兴趣,将学生的注意力集中到课堂.通过演示实验,模拟电磁轨道炮的发射过程,学生获得感性认识,为本课题学习提供必要的感性材料.通过对问题的参与与自我尝试,培养独立思考的品质和探索精神(科学态度)(1)改变导线中电流的方向,观察受力方向是否改变?(2)上下交互磁场的位置以改变磁场的方向,观察受力方向是否变化?(3)提出猜测通过刚才的演示,你认为安培力的方向跟哪些因素有关系呢?接下来我们通过分组实验来探究安培力方向与磁场、电流方向之间有怎样的关系.有没有更简洁的方法表达这个关系呢?课堂练习:练习1、2、3练习4:两条靠近的平行导线在通电时会出现什么现象?(看视频)(引导学生先理论分析,得到同向电流相互吸引,反向电流相互排斥.)【活动四】理论探究安培力大小的表达式提出问题:根据左手定则,我们可以准确的设定电磁炮的发射方向了,我们还需要进一步研究怎样让电磁炮具有更强的杀伤力,这与它的动力系统有着密不可分的联系.制约安培力大小的因素有哪些呢?下面我们进一步探究.(1)回顾B的定义提问:磁感应强度是怎样定义的?追问2:对导线的放置有什么要求?追问3:如果导线平行磁场放置,安培力是多大?追问4:如果导线与磁场既不平行也不垂直,安培力是多大?(介于零和垂直放置之间)下面,请同学们推导安培力的表达式.(2)理论推导特殊情况问1:当通电导线垂直磁场放置时,安培力大小?当通电导线平行磁场放置时,安培力大小?(3)理论推导一般情况,如果磁场与电流成θ角时,安培力表达式怎样?请各小组先讨论,并给出结论?(学生思考后给出两种方法,一种是分解B,另一种分解L,得到相同的结果F=BILsinθ,并认识到垂直和平行是两种特殊情况.)【活动五】揭秘电磁轨道炮(1)设置情景电磁轨道炮原理如图所示,整个装置可以把质量为20 g弹体(包括金属杆的质量)发射出去.若轨道宽2m,金属杆上电流为10 A,磁感应强度为1 T,经过t=2 s的加速,问弹体获得速度是多大?思考讨论:如果要提高电磁炮的发射速度,你认为可以怎么办?学生讨论后得到三种方式:①增大电流、②增强磁场、③减轻质量.【活动六】规律应用,探究磁电式电表的工作原理(1)观察磁电式电表如图8,让学生观察磁铁、铝框、线圈、螺旋弹簧、极靴、指针、铁质圆柱等构件,了解它们之中哪些是固定的,哪些是可以动的.(2)看书93页磁电式电流表第1—3段,分组讨论(屏幕上显示如下问题)问1:线圈的转动是怎样产生的?问2:线圈为什么不能一直转动下去?问3:为什么指针偏转角度的大小可以说明被测电流的强弱?问4:如何根据指针偏转的方向来确定电路上电流的强弱?问5:使用时要注意什么?(引导)前面我们学过右手螺旋定则,来表达电流方向和磁场的关系,这个方法很简洁的,我们能不能也类似的用手来表达这种关系呢?学生分组实验探究,经历规律发现过程,尝试用“左手”归纳判断安培力方向的方法,可以让学生最大程度的参与课堂;②借助小工具立体展现三个量的方向关系,体验空间关系构建方法.在定义磁感应强度时,学生经历了实验探究的过程,所以此处只进行理论探究,推导出安培力大小的表达式学生经历安培力方向的探究、安培力大小的探究、解决电磁轨道炮的问题,学生意识到看似神秘的电磁炮,其实它的原理并不深奥!先让学生观察磁电式电表的结构,再分组讨论、自学其工作原理,最后让。
【粤教版】选修31物理:3.3探究安培力学案含答案
第三节探究安培力1.通过实验认识安培力,会用左手定则判断安培力的方向,会计算匀强磁场中安培力大小.2.理解磁感应强度的定义,会用磁感应强度的定义式进行有关计算.3.知道磁通量,能计算穿过某面积的磁通量.1.磁场对电流的作用力称为安培力.2.安培力方向:用左手定则判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指方向就是通电导线在磁场中所受的安培力的方向.3.磁感应强度:物理学规定,当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度.定义式:B=FIL.4.磁场方向:小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场方向.5.匀强磁场:在磁场的某个区域内,如果各点的磁感应强度大小和方向都相同,这个区域内的磁场叫匀强磁场.在匀强磁场中,磁感线是一组平行且等间距的直线.6.磁通量.(1)定义:磁感应强度B与垂直于磁场方向的面积S的乘积叫做穿过这个面的磁通量.(2)定义式:Φ=BS.安培力综合分析F=BLI sin α(α为B、L间的夹角),高中只要求掌握α=0(不受安培力)和α=90°两种情况.如图所示,一根长为0.2 m的金属棒放在倾角为θ=37°的光滑斜面上,并通以I =5 A电流,方向如图所示,整个装置放在磁感应强度为B=0.6 T,竖直向上的匀强磁场中,金属棒恰能静止在斜面上,则该棒的重力为多少?解析:金属棒受力如图所示,由平衡条件得:沿斜面方向有:F cos θ=G sin θ,①棒所受的磁场力为:F =BIL ,②由①②解得棒的重力为:G =BIL cos θsin θ=2.4 N.答案:2.4 N总结:安培力是通电导体受的磁场力,从力学角度分析,对通电导体仍可借助定律、功能关系等力学规律分析.一、单项选择题1.磁感应强度的单位是特斯拉(T),与它等价的是(A ) A.N A ·m B.N ·A m C.N ·A m 2 D.N A ·m22.如图所示,把一重力不计的通电直导线水平放在蹄形磁铁两极的正上方,导线可以自由转动,当导线通入图示方向电流I时,导线的运动情况是(从上往下看)(A) A.顺时针转动,同时下降B.顺时针转动,同时上升C.逆时针转动,同时下降D.逆时针转动,同时上升解析:画出蹄形磁铁的两条磁感线,在磁感线与电流相交处分别取一小段电流,如图中的BC、AD两段,由左手定则可知,AD段受安培力垂直纸面向外,BC段受垂直纸面向里的安培力,故导线将绕轴线OO′顺时针旋转(俯视).当导线转动90°时(特殊位置法),由左手定则可知,导线受向下的安培力作用,所以导线在顺时针转动的同时还向下运动.3.下图中磁感应强度B,电流I和安培力F之间的方向关系错误的是(D)解析:根据左手定则,F一定垂直于I和L,D项错误.4.一段长0.2 m,通过2.5 A电流的直导线,关于在磁感应强度为B的匀强磁场中所受安培力F的情况,正确的是(C)A.如果B=2 T,F一定是1 NB.如果F=0,B也一定为零C.如果B=4 T,F有可能是1 ND.如果F有最大值时,通电导线一定与B平行解析:当导线与磁场方向垂直放置时,F=BIL,力最大,当导线与磁场方向平行放置时,F=0,当导线与磁场方向成任意其他角度放置时,0<F<BIL,A、D两项不正确,C项正确;磁感应强度是磁场本身的性质,与受力F无关,B不正确.二、不定项选择题5.如图所示,两根间距为d的平行光滑金属导轨间接有电源E,导轨平面与水平面间的夹角θ=30°.金属杆ab垂直导轨放置,导轨与金属杆接触良好.整个装置处于磁感应强度为B的匀强磁场中.当磁场方向垂直导轨平面向上时,金属杆ab刚好处于静止状态.要使金属杆能沿导轨向上运动,可以采取的措施是(B)A.减小磁感应强度BB .调节滑动变阻器使电阻减小C .增大导轨平面与水平面间的夹角θD .将电源正负极对调使金属杆中的电流方向改变 解析:对金属杆受力分析,沿导轨方向:BEdR-mg sin θ=0,若想让金属杆向上运动,则BEd R 增大,A 项错误;电阻减小,BEdR增大,则B 项正确;若增大θ,则mg sin θ增大,C 项错误;若电流反向,则金属杆受到的安培力反向,D 项错误.6.质量为m 的通电细杆置于倾角为θ的导轨上,导轨的宽度为d ,杆与导轨间的动摩擦因数为μ,有垂直于纸面向里的电流通过杆,杆恰好静止于导轨上.在如下图所示的A 、B 、C 、D 四个图中,杆与导轨间的摩擦力一定不为零的是(CD )解析:对通电杆进行受力分析如下:根据平衡条件可以判断出C 和D 一定受到摩擦力的作用,正确选项为C 、D.此题要求考生能够对通电杆进行正确的受力分析,并根据平衡条件进行判断.7.首先对电磁作用力进行研究的是法国科学家安培.如图所示的装置,可以探究影响安培力大小的因素,实验中如果想增大导体棒AB 摆动的幅度,可能的操作是(BC )A .把磁铁的N 极和S 极换过来B .增大通过导体棒的电流强度IC .把接入电路的导线从②、③两条换成①、④两条D .更换磁性较小的磁铁解析:安培力的大小与磁场强弱成正比,与电流强度成正比,与导线的长度成正比,B 、C 正确.8.(2013·长春高三检测)关于电场线和磁感线的说法正确的是(ACD ) A .电场线和磁感线都是利用疏密表示场的强弱的 B .电场线是客观存在的,而磁感线是不存在的 C .静电场的电场线是不闭合的,而磁感线是闭合的曲线 D .电场线和磁感线都不可能相交三、非选择题(按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必须明确写出数值和单位)9.如图所示,在倾角为θ=30°的斜面上,固定一宽L =0.25 m 的平行金属导轨,在导轨上端接入电源和滑动变阻器R .电源电动势E =12 V ,内阻r =1 Ω,一质量m =20 g 的金属棒ab 与两导轨垂直并接触良好.整个装置处于磁感应强度B =0.80 T ,垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g =10 m/s 2,要保持金属棒在导轨上静止,求:(1)金属棒所受到的安培力; (2)通过金属棒的电流;(3)滑动变阻器R 接入电路中的阻值.解析:(1)金属棒静止在金属轨道上受力平衡,F 安=mg sin 30°,得出F 安=0.1 N. (2)由F 安=BIL ,得I =F 安BL,代入数据得I =0.5 A. (3)设滑动变阻器接入电路的阻值为R 0,根据闭合电路欧姆定律得:E =I (R 0+r ),解得R 0=EI-r =23 Ω.答案:(1)0.1 N (2)0.5 A (3)23 Ω10.如图所示,光滑的平行导轨倾角为θ,处在竖直向下匀强磁场中,导轨中接入电动势为E 、内电阻为r 的直流电源,电路中除电阻R 外其余电阻不计;将质量为m 、长度为L 的导体棒放在平行导轨上恰好能够处于静止状态,求磁感应强度B .解析:以导体棒为研究对象,对其受力分析如图所示,可得:BIL =mg tan θ,I =ER +r,解得:B =mg (R +r )tan θEL.答案:mg (R +r )tan θEL11.如图所示,PQ 和MN 为水平、平行放置的金属导轨,相距L =1 m ,导体棒ab 跨放在导轨上,棒的质量为m =0.2 kg ,棒的中点用细线经滑轮与物体相连,物体的质量M =0.3 kg ,棒与导轨的动摩擦因数μ=0.5,匀强磁场的磁感应强度B =0.2 T ,方向竖直向下,为使物体匀速上升,应在棒中通入多大的电流?方向如何?(g 取10 m/s 2)解析:对导体ab ,由平衡条件得:F N -mg =0,BIL -f -F =0,对物体,由平衡条件得:F -Mg =0,又f =μF N ,联立以上四式解得I =20 A ,由左手定则知电流方向应为由b 到a . 答案:20 A 从b 流向a12.如图所示,在与水平方向成60°的光滑金属导轨间连一电源,在相距1 m 的平行导轨上放一重力为3 N 的金属棒ab ,棒上通以3 A 的电流,磁场方向竖直向上,这时棒恰好静止.求:(1)匀强磁场的磁感应强度B ; (2)ab 棒对导轨的压力.解析:先将原图改画为侧视图,对导体棒受力分析,如图所示,导体棒恰好能静止,应有:N x =F 安;N y =G ;因为tan 60°=N xN y,所以F 安=tan 60°,N y =3G ;又F 安=BIL ;所以:(1)B =F 安IL =3G IL =333×1T = 3 T. (2)导体棒对轨道的压力与轨道对棒的支持力N 大小相等.N =N y cos 60°=Gcos 60°=2G =6 N.答案:见解析。
每日一面高中物理《安培力》教案
每日一面高中物理《安培力》教案一、教学内容本节课选自高中物理教材《物理》选修31第三章第一节《磁场对电流的作用力》,详细内容围绕安培力的定义、计算公式以及应用进行讲解。
二、教学目标1. 理解安培力的概念,掌握安培力的计算公式。
2. 学会运用安培力解决实际问题,提高学生的实践应用能力。
3. 培养学生的空间想象能力和团队合作意识。
三、教学难点与重点重点:安培力的计算公式及其应用。
难点:安培力方向的理解,以及安培力在实际问题中的应用。
四、教具与学具准备1. 教具:电流表、磁铁、导线、电源、实验器材等。
2. 学具:笔记本、教材、计算器等。
五、教学过程1. 实践情景引入:通过演示电流表受到磁铁作用的实验,引导学生思考磁场对电流的作用力。
2. 知识讲解:(1) 安培力的定义:电流在磁场中受到的力称为安培力。
(2) 安培力的计算公式:F = BILsinθ,其中B为磁感应强度,I为电流强度,L为电流元的长度,θ为电流方向与磁场方向的夹角。
3. 例题讲解:讲解安培力的计算方法和应用,通过实例分析,使学生更好地理解和掌握安培力的计算。
4. 随堂练习:设计具有针对性的练习题,让学生巩固所学知识,提高解题能力。
5. 小组讨论:针对实际问题,引导学生进行小组讨论,培养学生的团队合作意识和解决问题的能力。
六、板书设计1. 安培力的定义2. 安培力的计算公式:F = BILsinθ3. 安培力的应用实例4. 练习题解答过程七、作业设计1. 作业题目:(1) 计算给定电流和磁场条件下,安培力的方向和大小。
(2) 分析给定电路中,安培力对电路元件的影响。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对安培力的理解程度,以及对安培力计算公式的掌握情况。
2. 拓展延伸:引导学生了解安培力的应用领域,如电机、发电机等,激发学生的学习兴趣。
同时,布置一道综合性的思考题,让学生在课后进一步巩固所学知识。
通过本节课的学习,使学生掌握安培力的基本概念和计算方法,培养学生的实践应用能力,提高学生的物理素养。
人教版 高二物理 选修3-1 第三章 磁场 知识点学案(含答案)
磁场复习学案姓名班级主题内容要求考点磁场及描述1.电流的磁场Ⅰ2.磁感应强度,磁感线,地磁场Ⅱ3.磁性材料,分子电流假说Ⅰ磁场对电流的作用力4.磁场对通电直导线的作用,安培力,左手定则Ⅱ5.磁电式电表原理Ⅰ磁场对运动电荷的作用力6.磁场对运动电荷的作用,洛伦兹力,带电粒子在匀强磁场中的运动Ⅱ7.质谱仪,回旋加速器Ⅰ重点本章的重点是:描述磁场特性的基本物理量——磁感应强度,表达磁场对电流和运动电荷作用规律的基本公式和基本定则——安培力公式、洛伦兹力公式和左手定则.难点本章的难点是:磁感应强度的定义、洛伦兹力公式的导出、带电粒子在匀强磁场中的运动以及带电粒子在复合场中运动问题的分析方法等等,是教学中的难点,在教学中要十分注意讨论问题的逻辑和思想方法.热点纵观近几年高考,涉及本章知识点的题目年年都有,考查次数最多的是与洛伦兹力有关的带电粒子在匀强磁场或复合场中的运动,其次是与安培力有关的通电导体在磁场中的加速或平衡问题.一、磁现象天然磁石和人造磁铁都叫做永磁体,它们能吸引铁质物体的性质-叫磁性.如磁铁能吸引铁屑、铁钉等物质.磁体的各部分磁性强弱不同,磁性最强的区域叫磁极.能够自由转动的磁体,静止时指南的磁极叫做南极(S极),指北的磁极叫做北极(N极).自然界中的磁体总存在着两个磁极,同名磁极相互排斥,异名磁极相互吸引.二、电流的磁效应丹麦物理学家奥斯特的贡献是发现了电流的磁效应.著名的奥斯特实验是把导线沿南北方向放置在指南的磁针上方,通电时磁针转动.三、磁场磁体与磁体之间、磁体与通电导线之间,以及通电导体与通电导体之间的相互作用是通过磁场发生的.磁体的周围、电流的周围存在磁场.四、地球的磁场地球的地理两极与地磁两极并不重合,因此,磁针并非准确地指向南北,其间有一个夹角,这就是地磁偏角,简称磁偏角.一、磁感应强度的意义描述磁场强弱和方向的物理量,是矢量.二、磁感应强度的方向1.磁感应强度的定义:描述磁场强弱的物理量.2.磁感应强度的方向:小磁针静止时N 所指的方向规定为该点的磁感应强度方向,简称为磁场方向.3.磁感应强度是矢量.三、磁感应强度的大小1.电流元:在物理学中,把很短一段通电导线中的电流I与导线长度L的乘积IL叫做电流元.2.定义:在磁场中垂直于磁场方向的通电直导线所受的磁场力F跟电流I和导线长度L的乘积IL的比值叫做通电导线所在处的磁感应强度,用B来表示.3.定义式:B=F IL.单位:特斯拉,简称特,符号是T .1 T=1N A·m.一、磁感线1.在磁场中画出的一些曲线,曲线上每一点的切线都跟这点的磁感应强度的方向一致.2.在磁体的两极附近,磁场较强,磁感线较密.二、几种常见的磁场1.直线电流的磁场(1)磁感线是围绕电流的一圈圈的外疏内密的同心圆.(2)判断方法:磁感线的方向可以用安培定制(右手螺旋定则)确定.(3)安培定则:右手握住导线,让伸直的拇指所指的方向与电流的方向一致,弯曲四指所指的方向就是磁感线环绕的方向.2.环形电流和通电螺线管的磁场环形电流安培定则的用法:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向.三、安培分子电流假说1.内容:在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的 磁体,它的两侧相当于两个 磁极 .如图甲所示.2.对有关磁现象的解释(1)磁化:软铁棒未被磁化前,内部分子电流取向 杂乱无章 ,磁场相互抵消,对外界不显磁性,在外界磁铁的磁化下,内部各分子电流 取向一致 ,形成磁极.如图乙所示.(2)失磁:由于激烈的分子热运动或机械运动使分子电流取向变得 杂乱无章 的结果. 四、匀强磁场1.定义:磁感应强度的 大小 、 方向 处处相同的磁场. 2.磁感线特点:匀强磁场的磁感线是一些 间隔相同的平行 直线. 五、磁通量1.定义:设在磁感应强度为B 的匀强磁场中,有一个与磁场方向垂直的平面,面积为S ,则B 与S 的乘积叫做穿过这个面积的 磁通量 ,简称磁通.用字母Φ表示磁通量. 2.定义式: Φ=BS3.单位: 韦伯 ,简称韦 ,符号Wb ,1 Wb =1 T·m 2 .比较项目磁感线电场线相 似 点意义形象地描述磁场方向和相对强弱而假想的线 形象地描述电场方向和相对强弱而假想的线方向线上各点的切线方向即该点的磁场方向,是磁针N 极受力方向 线上各点的切线方向即该点的电场方向,是正电荷受电场力的方向疏密 表示磁场强弱表示电场强弱特点在空间不相交、不中断 在空间不相交不中断不同点 是闭合曲线静电场中,电场线始于正电荷或无穷远处,止于负电荷或无穷远处,是不闭合的曲线一、安培力的方向1.安培力:磁场对 通电导线 的作用力. 2.方向——遵守左手定则二、几种常见的磁场的分布特点及安培定则 1.常见永磁体的磁场(如图)3.安培力的方向特点:F⊥B,F⊥I,即F垂直于__B和I 决定的平面.安培力大小的计算1.当B与I垂直时,F=BIL.2.当B与I在同一直线上时,F=0.电场力安培力研究对象点电荷电流元受力特点正电荷受力方向与电场方向相同,负电荷相反安培力方向与磁场方向和电流方向都垂直判断方法结合电场线方向和电荷正、负判断用左手定则判断一、洛伦兹力1.概念:运动电荷在磁场中受到的力.2.洛伦兹力的方向(1)左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向正电荷运动的方向,这时拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向.(2)负电荷受力方向与正电荷受力方向相反.3.洛伦兹力的大小一般公式:F=qvB sinθ,其中θ是带电粒子的运动方向与磁场方向的夹角.①当θ=90°时,即v的方向与B的方向垂直时,F=qvB,洛伦兹力最大.②当θ=0°,即v的方向与B的方向平行时,F=0,洛伦兹力最小..洛伦兹力的作用效果特点由于洛伦兹力总是垂直于电荷运动方向,因此洛伦兹力总是不做功.它只能改变运动电荷的速度(即动量)的方向,不能改变运动电荷的速度(或动能)的大小电场力洛伦兹力作用对象静止或运动的电荷运动的电荷力的大小F电=qE,与v无关F洛=qvB sinα,与v有关,当B与v平行时,F洛=0力的方向平行于电场方向同时垂直于速度方向和磁场方向对运动电荷的作用效果改变速度大小、方向,对运动电荷做功(除非初、末状态位于同一等势面)只改变运动电荷的速度方向,对运动电荷不做功一、带电粒子在匀强磁场中的运动1.实验探究(1)不加磁场时,电子束的径迹是一条直线(1)洛伦兹力不改变带电粒子速度的大小,或者说洛伦兹力对带电粒子不做功.(2)沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做圆周运动.洛伦兹力方向总与速度方向垂直,正好起到了提供向心力的作用.一、速度选择器如图所示,粒子所受的电场力FE=qE,所受的洛伦兹力FB=qvB,则由匀速运动的条件FE=FB可得,v=E/B,即满足比值的粒子都沿直线通过,与粒子的正负无关.除此之外,还应注意以下两点:1.若v>EB或v<EB,粒子都将偏离直线运动.粒子若从右侧射入,则不可能匀速通过电磁场,这说明速度选择器不仅对粒子速度的大小有选择,而且对速度的方向也有选择.2.要想使F E与F B始终相反,应将v、B、E三者中任意两个量的方向同时改变,但不能同时改变三个或者任一个方向,否则将破坏速度选择功能.2.加速:带电粒子进入质谱仪的加速电场,由动能定理得:qU =12m v2.①二、质谱仪1.原理图:如图所示:3.偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:Bqv =mv2r.②4.半径与质量关系:由①②两式可以求出粒子的半径r、质量m、比荷qm等.其中由r=1B2mU质量变化.1.构造图:如图所示.回旋加速器的核心部件是两个 D 型盒 .2.周期:高频交流电的周期与带电粒子在D 形盒中的运动周期 相同.粒子每经过一次加速,其轨道半径就大一些,粒子绕圆周运动的周期 不变 . 3.最大动能:由qvB =mv 2r 和E K =12mv 2得E K =q 2B 2r 22m ,当r =R 时,有最大动能E km =q 2B 2R 22m (R 为D 形盒的半径),即粒子在回旋加速器中获得的最大动能与q 、m 、B 、R 有关,与加速电压无关.(1)磁场的作用带电粒子以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力作用下做匀速圆周运动,周期T =2πmqB ,由此看出其周期与速率、半径均无关,带电粒子每次进入金属盒都运动相等的时间(半个周期)后平行电场方向进入电场,(2)电场的作用回旋加速器两个半圆形金属盒之间的缝隙区域存在周期性变化的并且垂直于两金属盒正对截面的匀强电场,带电粒子经过该区域时被加速. (3)交变电压的周期为保证带电粒子每次经过缝隙时都被加速,使之能量不断提高,需在缝隙两侧加上跟带电粒子在半圆形金属盒中运动周期相同的交变电压. 三、磁流体发电机如图是磁流体发电机,其原理是:等离子体喷入磁场B ,正、负离子在洛伦兹力作用下发生上下偏转而聚集到A 、B 板上,产生电势差.设板间距离为l ,当等离子体以速度v 匀速通过A 、B 板间时,A 、B 板上聚集的电荷最多,板间电势差最大,即为电源电动势.此时离子受力平衡:E 场q =Bqv ,即E 场=Bv ,故电源电动势E =E 场l =Blv .三、电磁流量计如图所示,一圆形导管直径为d ,用非磁性材料制成,其中可以导电的液体向左流动,导电流体中的自由电荷(正负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,由Bqv =U d q ,可得v =U Bd ,流量Q =Sv =πd 24·U Bd =πdU4B.、霍尔效应如图所示,厚度为h ,宽度为d 的导体板放在垂直于它的磁感应强度为B 的匀强磁场中.当电流按如图方向通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象称为霍尔效应.实验表明,当磁场不太强时,电势差U 、电流I 和B 的关系为U =k IBd,式中的比例系数k 称为霍尔系数.一、带电粒子在匀强磁场中做圆周运动的分析1.带电粒子在磁场中做匀速圆周运动的半径和周期 (1)带电粒子做匀速圆周运动的受力特征: F 洛=F 向,即qvB =m v 2r ,所以轨迹半径r =mvqB .(2)运动的周期:T =2πr v =2πmqB2.带电粒子在匀强磁场中做圆周(或部分圆周)运动的圆心、半径及时间的确定 (1)圆心的确定.带电粒子进入有界磁场后,其轨迹是一段圆弧,确定圆弧的圆心是解决问题的关键.在解决实际问题中,确定圆心的位置通常有如下两种方法:①已知带电粒子的入射方向和出射方向时,通过入射点和出射点作入射方向和出射方向的垂线,两条垂线的交点即粒子轨迹的圆心,如左下图所示.②已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,再做入射点和出射点连线的中垂线,两条垂线的交点就是粒子运动轨迹的圆心.如右上图所示. (2)运动半径的确定.做入射点、出射点对应的半径(或圆周上的其他点),并作适当的辅助线建立直角三角形,利用直角三角形的边角关系结合r =mvqB 求解.(3)运动时间的确定.粒子在磁场中运动一周的时间为周期T =2πm /qB ,当粒子在有界磁场中运动的圆弧对的圆心角为α时,粒子在有界磁场中运动时间为t=α360°T或t=α2π公式t=α360°T中的α以“度”为单位,公式t=α2πT中的α以“弧度”为单位,两式中的T为粒子在无界磁场中运动的周期.由以上两式可知,带电粒子在有界磁场中运动的时间随转过的圆心角的增大而增大,与轨迹的长度无关.如图所示,带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫做粒子的偏向角.偏向角φ等于入射点与出射点间的圆弧所对应的圆心角α,即φ=α,如图所示.同时,入射点与出射点间的圆弧对应的圆心角α等于入射点与出射点间的弦与入射速度方向间夹角θ的2倍,即2θ=α.3.有界磁场的径迹问题.(1)磁场边界的类型如图所示.(2)与磁场边界的关系.①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.③当速率v变化时,圆周角越大的,运动的时间越长.(3)有界磁场中运动的对称性.①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.垂直电场线进入匀强电场(不计重力)垂直磁感线进入匀强磁场(不计重力)受力情况恒力F=Eq;大小、方向不变洛伦兹力F=Bqv;大小不变,方向随v的改变而改变运动类型类平抛运动匀速圆周运动或其一部分运动轨迹抛物线圆或圆的一部分垂直电场线进入匀强电场(不计重力)垂直磁感线进入匀强磁场(不计重力)轨迹图象求解方法处理横向偏移y 和偏转角φ要通过类平抛运动的规律求解 横向偏移y 和偏转角φ要结合圆的几何关系通过圆周运动的讨论求解 决电磁场问题把握三点:(1)明确电磁场偏转知识及磁场中做圆周运动的对称性知识; (2)画轨迹示意图,明确运动性质; (3)注意两个场中运动的联系.例一、在平面直角坐标xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求(1)M 、N 两点间的电势差UMN ;(2)粒子在磁场中运动的轨道半径r ; (3)粒子从M 点运动到P 点的总时间t .如图1所示,套在很长的绝缘直棒上带电的小球,其质量为m 、带电荷量为Q ,小球可在棒上滑动,现将此棒竖直放在匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒的动摩擦因数为μ,求小球由静止沿棒下滑的最大加速度和最大速度.【答案】(1)3m v 22q(2)2m v 0qB(3)(33+2π)m3qB答案:a max =g v max =mg +μQEμQB。
物理粤教版选修3-1学案:第3章第三节探究安培力含解析
第三节探究安培力一、安培力的方向1.安培力:磁场对______的作用力.安培力是矢量.2.当通电导线与磁场方向垂直时,安培力的方向用________来判定.3.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使______指向______的方向,这时,拇指所指的方向就是通电导线在磁场中所受________的方向.预习交流1如图所示,磁场方向垂直纸面向里,一根通电直导线垂直于磁场方向放置,试判断导线所受安培力的方向.二、磁感应强度1.定义:当通电导线与磁场方向______时,通电导线所受的安培力F跟______和__________的乘积IL的______叫做磁感应强度.2.定义式:B=________.3.单位:______,符号T,1 T=1错误!.4.磁感应强度是______,既有大小,又有方向.当空间中同时存在几个不同强弱和方向的磁场时,合磁场的磁感应强度等于各个磁场在同一处产生的磁感应强度的________.5.________可形象地表示磁感应强度的大小和方向;磁感线的疏密程度表示磁感应强度的______;磁感线上每一点的____________与该点磁感应强度的方向一致.6.匀强磁场:如果磁场的某一区域,磁感应强度的______和____处处相等.这个区域的磁场就叫______.三、安培力的大小1.当通电导线与磁感应强度B的方向______时,导线受力为零.2.当长为L的导线垂直于磁场B放置,通过的电流为I时,安培力F=______.预习交流2通电导线如果在磁场中不受安培力作用,能否说明该处磁感应强度为零?四、磁通量1.定义:设在匀强磁场中有一个与磁场垂直的平面,则磁场的________________和__________的乘积,叫做穿过这个面的磁通量.2.公式:______.3.单位:韦伯,简称韦,符号Wb.4.从Φ=BS可得B=错误!,因此磁感应强度又称________.答案:一、1.电流2.左手定则3.四指电流安培力预习交流1:答案:垂直导线向左.二、1.垂直电流I导线长度L比值2.错误!3.特斯拉4.矢量矢量和5.磁感线大小切线方向6.大小方向匀强磁场三、1.平行2.BIL预习交流2:答案:不能.因为当磁场方向与电流方向平行时,安培力为0,但磁感应强度不为0.四、1.磁感应强度B平面面积S2.Φ=BS4.磁通密度一、磁感应强度磁场的强弱和方向可以用磁感线定性地来描述.那么,如果我们想定量地研究某一区域磁场的方向和强弱,应怎样来描述呢?下列说法正确的是().A.磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到磁场力F与该导线的长度L、通过的电流I乘积的比值,即B=错误!B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=错误!只是定义式,它的大小取决于场源以及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.通电导线所受磁场力的方向就是磁场的方向1.磁感应强度B=FIL是用比值法定义的,B与F、I、L 无关,是由磁场本身决定的.2.安培力的方向与磁场方向垂直,这与电场力的方向和电场方向的关系是不一样的.3.磁感应强度B和电场强度E的比较.铁慢慢地接近发光的白炽灯泡可以看到灯丝颤抖起来,灯丝的“颤抖”说明什么道理呢?(2011·长春外国语学校高二检测)如图所示,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与纸面垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是().A.磁铁对桌面的压力减小B.磁铁对桌面的压力增大C.磁铁对桌面的压力不变D.以上说法都有可能1.安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面,但磁场方向与电流方向并不一定垂直.2.在具体判断安培力的方向时,由于受到电场力方向判断方法的影响,有时错误地认为安培力的方向沿着磁场方向.为避免这种错误,同学们应该把电场力和安培力进行比较,搞清力的方向与场的方向的关系及区别.它们都是性质力,且都属于场力,分析如下:根据磁场对电流会产生作用力的原理,人们研制出一种新型的发射炮弹的装置——电磁炮,其原理如图所示,把待发射的炮弹(导体)放置在强磁场中的两平行导轨上,给导轨通以大电流,使炮弹作为一个载流导体在磁场力的作用下沿导轨加速运动,并以某一速度发射出去.那么,要提高发射速度,就要增大炮弹的加速度.请思考:通电导体在磁场中受力与哪些因素有关呢?(2011·课标全国理综,18)电磁轨道炮工作原理如图所示.待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I 从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I 成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是( ).A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其他量不变1.公式F=BIL中L指的是“有效长度”.当B与I垂直时,F最大,F=BIL;当B与I平行时,F=0.2.弯曲导线的有效长度L,等于连接两端点直线的长度(如图);相应的电流沿L由始端流向末端.3.若磁场和电流成θ角时,如图所示.可以将磁感应强度B正交分解成B⊥=B sinθ和B∥=B cosθ,而B∥对电流是没有作用的.F=B⊥IL=BIL sinθ,即F=BIL sinθ.1.关于磁感应强度的下列说法中,正确的是().A.放在磁场中的通电导线,电流越大,受到的磁场力也越大,表示该处的磁感应强度越大B.磁感线的指向就是磁感应强度的方向C.垂直磁场方向放置的通电导线的受力方向就是磁感应强度的方向D.磁感应强度的大小、方向与放入磁场的通电导线的电流大小、导线长度、电流方向等均无关2.磁场中某区域的磁感线如图所示,则().A.a、b两处的磁感应强度的大小不相等,B a>B bB.a、b两处的磁感应强度的大小不相等,B a<B bC.同一根导线放在a处受力一定比放在b处受力大D.同一根导线放在a处受力一定比放在b处受力小3.(2011·全国理综,15)如图,两根相互平行的长直导线分别通有方向相反的电流I1和I2,且I1>I2;a、b、c、d为导线某一横截面所在平面内的四点,且a、b、c与两导线共面;b点在两导线之间,b、d的连线与导线所在平面垂直.磁感应强度可能为零的点是().A.a点B.b点C.c点D.d点4.把长L=0。
2020-2021学年教科版高中物理选修3-1教案3.3磁感应强度磁通量
3磁感应强度磁通量1.磁感应强度的方向物理学中把小磁针在磁场中静止时N极所指的方向规定为该点的磁感应强度的方向.2.磁感应强度的大小(1)电流元:在物理学中,把很短一段通电导线中的电流I与导线长度L的乘积IL叫作电流元.(2)磁感应强度的定义:将一个电流元垂直放入磁场中的某点,电流元受到的磁场力F跟该电流元IL的比值叫作该点的磁感应强度.(3)定义式:B=F IL.(4)磁感应强度的单位:在国际单位制中的单位是特斯拉,简称特,符号为T.由力F、电流I和长度L的单位决定,1 T=1NA·m,长度为1_m的导线通入1_A的电流,垂直放在磁场中,若受到的力为1_N,该磁场的磁感应强度就是1 T.物理学中引入“电流元”这一概念的作用是什么?它具有什么特点?提示:电流元的作用与试探电荷的作用类似,是检验某点磁场的强弱,其特点是:电流足够小,导线足够短.3.磁通量(1)定义:在磁感应强度为B的匀强磁场中,有一个与磁场方向垂直的平面,面积为S,我们把B与S的乘积叫作穿过这个面积的磁通量.(2)公式:Φ=BS,单位:韦伯,符号:WB.(3)磁通密度:磁感应强度又叫磁通密度,B=ΦS,等于垂直穿过单位面积的磁通量.磁通量是标量,但有正负,你是如何理解磁通量中的正负的?提示:磁通量有正负之分,其正负是这样规定的:任何一个面都有正、反两面,若规定磁感线从正面穿入为正磁通量,则磁感线从反面穿入时磁通量为负值.考点一对公式B=FIL的正确理解1.在定义式B=FIL中,通电导线必须垂直于磁场方向放置.因为磁场中某点通电导线受力的大小,除和磁场强弱有关以外,还与导线的方向有关.导线放入磁场中的方向不同,所受磁场力也不相同.通电导线受力为零的地方,磁感应强度B的大小不一定为零,这可能是电流方向与B的方向在一条直线上造成的.2.研究磁感应强度是分步进行的,其方向由磁场中小磁针N极所受磁场力方向确定,其大小根据电流元受力来计算.通电导线受力的方向不是磁场磁感应强度的方向.3.磁感应强度的定义式也适用于非匀强磁场,这时L应很短很短,IL称作“电流元”,相当于静电场中的“试探电荷”.4.我们要找的是磁场中某一点磁感应强度的大小,因此要把电流元放入磁场中某一点,这要求电流元要足够短.【例1】(多选)由磁感应强度的定义式B=FIL可知,下列说法正确的是()A.磁感应强度B与磁场力F成正比,方向与F方向相同B.同一段通电导线垂直于磁场放在不同磁场中,所受的磁场力F 与磁感应强度B成正比C.公式B=FIL只适用于匀强磁场D.只要满足L很短,I很小的条件,B=FIL对任何磁场都适用审题时应把握以下两点:(1)磁感应强度B由磁场本身决定.(2)B的定义式适用于任何磁场.【答案】BD【解析】某点的磁感应强度的大小和方向由磁场本身的性质决定,磁感应强度的大小与磁场中放不放通电导线、放什么样的通电导线及与通电导线所通入的电流大小、通电导线所受的磁场力的大小都没有关系,所以不能认为B与F成正比,且B的方向与F的方向不相同,故A错.由B=FIL得到F=ILB,在IL相同时,F与B成正比,故B正确.磁感应强度的定义式,对任何磁场都适用,故C错,D正确.总结提能磁感应强度由磁场本身决定,与磁场中是否放入通电导线、导线放入的位置无关.用垂直于磁场方向的通电导线所受力的大小来量度磁感应强度.下列有关磁感应强度的说法,正确的是(A)A.磁感应强度是用来表示磁场强弱的物理量B.若有一小段通电导体在磁场某点不受力的作用,则该点的磁感应强度一定为零C.若有一小段长为L、通以电流为I的导体,在磁场中某处受到的力为F,则该处磁感应强度的大小一定是F ILD.由定义式B=FIL可知,电流I越大,导线L越长,某点的磁感应强度就越小解析:磁感应强度的引入目的是用来描述磁场强弱的,因此选项A正确;通电导线若放置方向与磁场方向平行时,也不受磁场力的作用,故选项B错误;根据磁感应强度的定义,通电导线应为“在磁场中垂直于磁场方向的通电直导线”,选项C错误;在磁场场源稳定的情况下,磁场中各点的磁感应强度(包括大小和方向)都是确定的,与放入该点的检验电流、导线无关,故选项D错误.考点二电场强度和磁感应强度的对比电场强度磁感应强度定义的依据①电场对电荷q有作用力F ①磁场对电流元IL有作用力F②对电场中任一点,F∝q,Fq=恒量(由电场决定)②对磁场中任一点,F与磁场方向、电流方向有关,对于电流方向垂直于磁场方向的情况:F∝IL,FIL=恒量(由磁场决定)③对不同位置,一般说恒量的值不同③对不同位置,一般说恒量的值不同④比值Fq表示电场的强弱④比值FIL表示磁场的强弱定义E=Fq B=FIL物理意义描述电场的性质描述磁场的性质方向某点的电场强度方向:①就是通过该点的电场线的切线方向②也是放入该点正电荷的受力方向某点的磁感应强度方向:①就是通过该点的磁感线的切线方向②也是放入该点小磁针N极受力方向大小表示用电场线疏密程度形象地表示E的大小用磁感线疏密程度形象地表示B的大小单位 1 N/C=1 V/m 1 T=1NA·m磁感应强度的方向绝非通电导线受力方向,实际上通电导线受力方向永远垂直于磁感应强度B的方向.【例2】如图所示是实验室里用来测量磁场力的一种仪器——电流天平,某同学在实验室里,用电流天平测算通电螺线管中的磁感应强度,他测得的数据记录如下所示,请你算出通电螺线管中的磁感应强度B.已知:CD段导线长度:4×10-2 m天平平衡时钩码重力:4×10-5 N通过导线的电流:0.5 A解答本题时可按以下思路分析:【答案】 2.0×10-3 T【解析】由题意知,I=0.5 A,G=4×10-5 N,L=4×10-2 m.电流天平平衡时,导线所受磁场力的大小等于钩码的重力,即F=G.由磁感应强度的定义式B=FIL得:B=FIL=4.0×10-50.5×4.0×10-2T=2.0×10-3T.所以通电螺线管中的磁感应强度为2.0×10-3 T.总结提能在使用电流天平探究磁场力时,要保持磁感应强度的大小和方向都不变,并使电流方向与磁场方向垂直.在这种情况下得出的公式F=ILB,仅适用于匀强磁场中的通电导体.若导体中电流方向与磁场方向成θ角时,则F=ILB sinθ.(多选)下列说法中正确的是(AC)A.电荷在某处不受电场力的作用,则该处的电场强度为零B.一小段通电导线在磁场中某处不受力的作用,则该处磁感应强度一定为零C.把一个试探电荷放在电场中的某点,它受到的电场力与所带电荷量的比值表示该点电场的强弱D.把一小段通电导线放在磁场中某处,所受的磁场力与该小段通电导线的长度和电流的乘积的比值表示该处磁场的强弱解析:电荷在电场中一定受电场力作用,且电场中某点的电场的强弱可由电荷所受电场力与电荷量的比值来表示,这就是电场强度的定义.但通电导线在磁场中的受力情况不仅与磁场强弱、电流大小及导线长短有关,还与导线放置的方向有关.考点三对磁通量的理解1.物理意义:穿过某一平面的磁感线条数,且为穿过平面的磁感线的净条数.2.计算:Φ=BS(1)公式运用的条件:①匀强磁场;②磁感线与平面垂直.(2)匀强磁场中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向的投影面积.3.磁通量是标量,有正、负之分磁通量的正、负既不表示大小,也不表示方向,它表示磁通量从某一个面穿入还是穿出,若规定穿入为正,则穿出为负,反之亦然.4.与磁感应强度的关系(1)磁感应强度B主要描述磁场中某点的磁场情况,与位置对应;而磁通量用来描述磁场中某一个给定面上的磁场情况,它与给定面对应.(2)由Φ=BS得B=Φ/S,即为磁感应强度的另一定义式,表示穿过垂直于磁场方向的单位面积的磁感线条数,所以B又叫做磁通密度.5.与磁感线条数的关系:磁通量是指穿过线圈面积的磁感线的“净条数”,当有不同方向的磁场同时穿过同一面积时,磁通量指的是合磁场的磁感线穿过其面积的条数,即此时的磁通量为合磁通量.,1.磁通量是针对某个面来说的,与给定的线圈的匝数多少无关.2.当线圈转过180°时,磁通量的变化量ΔΦ=|Φ1-Φ2|=2BS.【例3】如图所示,线圈平面与水平方向夹角θ=60°,磁感线竖直向下,线圈平面面积S=0.4 m2,匀强磁场磁感应强度B=0.6 T,则穿过线圈的磁通量Φ为多少?把线圈以cd为轴顺时针转过120°角,则穿过线圈的磁通量的变化量为多少?解答本题时,可按以下思路分析:【答案】0.12 Wb0.36 Wb【解析】线圈在垂直磁场方向上的投影面积S⊥=S cos60°=0.4×12m2=0.2 m2,穿过线圈的磁通量Φ1=BS⊥=0.6×0.2 Wb=0.12 WB.线圈沿顺时针方向转过120°角后变为与磁场垂直,但由于此时磁感线从线圈平面穿入的方向与原来相反,故此时通过线圈的磁通量Φ2=-BS=-0.6×0.4 Wb=-0.24 WB.故磁通量的变化量ΔΦ=|Φ2-Φ1|=|-0.24-0.12| Wb=0.36 WB.总结提能(1)只有在匀强磁场中B⊥S时,Φ=BS才适用,若B 与S不垂直,应将S投影,也可以将B分解,即Φ=BS⊥=B⊥S.(2)磁通量的变化量ΔΦ=Φ2-Φ1,在具体的计算中,一定要注意Φ1及Φ2的正、负问题.关于磁通量,正确的说法有(C)A.磁通量不仅有大小而且有方向,是矢量B.在匀强磁场中,a线圈面积比b线圈面积大,则穿过a线圈的磁通量一定比穿过b线圈的大C.磁通量大,磁感应强度不一定大D.把某线圈放在磁场中的M、N两点,若放在M处的磁通量比在N处的大,则M处的磁感应强度一定比N处大解析:磁通量是标量,大小与B、S及放置角度均有关,只有C 项说法正确.1.下列关于磁场力、磁感应强度的说法中正确的是(D)A.通电导线不受磁场力的地方一定没有磁场B.将I、L相同的通电导线放在同一匀强磁场中的不同位置,所受磁场力一定相同C.通电导线所受磁场力的方向就是磁感应强度的方向D.以上说法都不正确解析:通电导线受到磁场力与B、I、L的大小有关,还与B与I 的夹角有关,故A、B选项错误;磁感应强度的方向是在该处放一小磁针,静止时小磁针N极所指的方向,不是通电导线受力的方向,故选项C错误,选项D正确.2.下列关于通电直导线在磁场中受到的磁场力的说法,正确的是(C)A.受力的大小只与磁场的强弱和电流的大小有关B.如果导线受到的磁场力为零,导线所在处的磁感应强度必为零C.如果导线受到的磁场力最大,导线必与磁场方向垂直D.所受磁场力的方向只与磁场的方向有关,与电流的方向无关解析:通电导线在磁场中受力,由F=BIL可知,安培力跟磁场、电流以及导线垂直磁场的长度等物理量都有关系,如果磁场、电流、导线长度一定时,只有导线与磁场垂直时,磁场力最大,故C选项正确.3.(多选)有关磁感应强度B的方向,下列说法正确的是(BD) A.B的方向就是小磁针N极所指的方向B.B的方向与小磁针在任何情况下N极受力方向一致C.B的方向就是通电导线的受力方向D.B的方向就是该处磁场的方向解析:磁场的方向就是磁感应强度的方向,规定为小磁针静止时N极所指方向或小磁针N极受力方向,它与通电导线所受力的方向是不一致的.- 1 -4.(多选)一段电流元放在同一匀强磁场中的四个位置,如图所示,已知电流元的电流I 、长度L 和受力F ,则可以用F IL 表示磁感应强度B的是( AC )解析:当通电导线垂直于磁场方向时,可用F IL 表示B .5.如图所示线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B ,线圈面积为S ,则穿过线圈的磁通量Φ=BS cos θ.解析:线圈平面abcd 与磁感应强度B 方向不垂直,不能直接用Φ=BS 计算,处理时可以用不同的方法.方法1:把S 投影到与B 垂直的方向,即水平方向,如图中a ′b ′cd ,S ⊥=S cos θ,故Φ=BS ⊥=BS cos θ.方法2:把B 分解为平行于线圈平面的分量B ∥和垂直于线圈平面的分量B ⊥,显然B ∥不穿过线圈,且B ⊥=B cos θ,故Φ=B ⊥S =BS cos θ.。
高中物理选修3-1通电导线在磁场中受到的力优秀教案
教学设计整体设计教学目标(一)知识与技能1.知道什么是安培力。
知道通电导线在磁场中所受安培力的方向与电流、磁场方向都垂直时,它的方向的判断——左手定则。
知道左手定则的内容,会用左手定则熟练地判定安培力的方向,并会用它解答有关问题。
2.会用安培力公式F=BIL解答有关问题.知道电流方向与磁场方向平行时,电流受的安培力最小,等于零;电流方向与磁场方向垂直时,电流受的安培力最大,等于BIL。
3.了解磁电式电流表的内部构造的原理。
(二)过程与方法通过演示、分析、归纳、运用使学生理解安培力的方向和大小的计算。
培养学生的空间想象能力。
(三)情感态度与价值观使学生学会由个别事物的个性来认识一般事物的共性的认识事物的一种重要的科学方法.并通过对磁电式电流表的内部构造的原理了解,感受物理知识之间的联系。
教学重点难点重点:安培力的方向确定和大小的计算。
难点:左手定则的运用(尤其是当电流和磁场不垂直时,左手定则如何变通使用)。
教学用具磁铁、电源、金属杆、导线、铁架台、滑动变阻器、多媒体。
教学过程导入新课让学生回忆在第二节中通电导线在磁场中受力大小与什么因素有关。
过渡:本节我们将对安培力作进一步的讨论。
推进新课安培力:磁场对电流的作用力。
安培力是以安培的名字命名的,因为他研究磁场对电流的作用力有突出的贡献。
1.安培力的方向【演示】按照P85图3.13所示进行演示。
(1)改变电流的方向,观察发生的现象。
[现象]导体向相反的方向运动。
(2)调换磁铁两极的位置来改变磁场方向,观察发生的现象。
[现象]导体又向相反的方向运动[教师引导学生分析得出结论](1)安培力的方向和磁场方向、电流方向有关系。
(2)安培力的方向既跟磁场方向垂直,又跟电流方向垂直。
也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面。
(图3.41)如何判断安培力的方向呢?人们通过大量的实验研究,总结出通电导线受安培力方向和电流方向、磁场方向存在着一个规律——左手定则。
2018-2019物理新学案同步精致讲义选修3-1粤教版:第三章 磁场 第三节 Word版含答案
第三节探究安培力[学习目标] 1.知道安培力的概念,会用左手定则判断安培力的方向,会用公式F=BIL计算安培力的大小.2.理解磁感应强度的定义,掌握磁感应强度的方向.3.知道匀强磁场以及匀强磁场的磁感线分布特点.4.知道磁通量的概念,会根据公式Φ=BS计算磁通量.一、安培力的方向[导学探究]按照如图1所示进行实验.图1(1)上下交换磁极的位置以改变磁场方向,导线受力的方向是否改变?(2)改变导线中电流的方向,导线受力的方向是否改变?仔细分析实验结果,说明安培力的方向与磁场方向、电流方向有怎样的关系?答案(1)受力的方向改变(2)受力的方向改变安培力的方向与磁场方向、电流方向的关系满足左手定则[知识梳理]1.安培力:磁场对电流的作用力.2.安培力的方向判定(1)左手定则:如图2所示,伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在同一平面内.把手放入磁场中让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向.图2(2)说明:①F⊥B,F⊥I,即F垂直于B、I决定的平面.②磁场方向和电流方向不一定(填“一定”或“不一定”)垂直.用左手定则判断安培力方向时,磁感线只要从手心进入即可,不一定垂直穿过手心.二、安培力的大小[导学探究]在如图3所示的实验装置中,由导线所摆动的角度大小可以比较导线所受安培力的大小.实验时,电路接通“2、3”或“1、4”来改变导线通电部分的长度,电流的大小由外部电路控制.图3(1)保持导线通电部分的长度不变,改变电流大小,导线受力情况如何变化?(2)保持电流不变,改变导线通电部分的长度,导线受力情况如何变化?(3)通电导线受力与哪些因素有关?答案(1)电流越大,导线受力越大.(2)通电导线越长,导线受力越大.(3)实验表明,通电导线在磁场中受到的磁场力的大小,既与导线的长度L成正比,又与导线中的电流I成正比,即与I和L的乘积成正比,用公式表示为F=BIL,式中B为比例系数.[知识梳理]1.磁感应强度(1)定义:当通电导线与磁场方向垂直时,通电导线所受安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度,公式B=FIL.(2)单位:特斯拉,简称特,符号是T.由力F、电流I和长度L的单位决定,1 T=1N A·m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、磁通量磁感线和电场线一样也是一种形象描述磁场强度大小和方向分布的假想的线,磁感线上各点的切线方向即该点的磁感应强度方向,磁感线的密疏,反映磁感应强度的大小。
为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。
这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。
(1)磁通量的定义穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。
物理意义:穿过某一面的磁感线条数。
(2)磁通量与磁感应强度的关系按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。
若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。
当平面S与磁场方向平行时,φ=0。
公式(1)公式:Φ=BS。
(2)公式运用的条件:a.匀强磁场;b.磁感线与平面垂直。
(3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。
此时,式中即为面积S在垂直于磁感线方向的投影,我们称为“有效面积”。
(3)磁通量的单位在国际单位中,磁通量的单位是韦伯(Wb),简称韦。
磁通量是标量,只有大小没有方向。
(4)磁通密度磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量——磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,B =Φ/S。
六、磁场对电流的作用1.安培分子电流假说的内容安培认为,在原子、分子等物质微粒的内部存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。
2.安培假说对有关磁现象的解释(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。
(2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。
磁现象的电本质磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。
说明:①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。
在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。
但是现在,“假设”已成为真理。
②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是由运动的电荷产生的。
安培力通电导线在磁场中受到的力称为安培力。
3.安培力的方向——左手定则(1)左手定则伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。
(2)安培力F、磁感应强度B、电流I三者的方向关系:①,,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂直。
②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。
③若已知B、I方向,则方向确定;但若已知B(或I)和方向,则I(或B)方向不确定。
4.电流间的作用规律同向电流相互吸引,异向电流相互排斥。
安培力大小的公式表述(1)当B与I垂直时,F=BIL。
(2)当B与I成角时,,是B与I的夹角。
推导过程:如图所示,将B分解为垂直电流的和沿电流方向的,B对I的作用可用B1、B2对电流的作用等效替代,。
5.几点说明(1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。
(2)B对放入的通电导线来说是外磁场的磁感应强度。
(3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式仅适用于很短的通电导线(我们可以把这样的直线电流称为直线电流元)。
(4)式中的L为导线垂直磁场方向的有效长度。
如图所示,半径为r的半圆形导线与磁场B垂直放置,当导线中通以电流I时,导线的等效长度为2 r,故安培力F=2BIr。
七、磁电式电流表1.电流表的构造磁电式电流表的构造如图所示。
在蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以转动的铝框,在铝框上绕有线圈。
铝框的转轴上装有两个螺旋弹簧和一个指针,线圈的两端分别接在这两个螺旋弹簧上,被测电流经过这两个弹簧流入线圈。
2.电流表的工作原理如图所示,设线圈所处位置的磁感应强度大小为B,线圈长度为L,宽为d,匝数为n,当线圈中通有电流I时,安培力对转轴产生力矩:,安培力的大小为:F=nBIL。
故安培力的力矩大小为M1=nBILd。
当线圈发生转动时,不论通过电线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变。
当线圈转过角时,这时指针偏角为角,两弹簧产生阻碍线圈转动的扭转力矩为M2,对线圈,根据力矩平衡有M1=M2。
设弹簧材料的扭转力矩与偏转角成正比,且为M2=k。
由nBILd=k得。
其中k、n、B、I、d是一定的,因此有。
由此可知:电流表的工作原理是指针的偏角的值可以反映I值的大小,且电流表刻度是均匀的,对应不同的在刻度盘上标出相应的电流值,这样就可以直接读取电流值了。
1斜角为θ=30°的光滑导轨AB,上端接入一电动势E=3V、内阻不计的电源,导轨间距为L=10cm,将一个质量为m=30g,电阻R=0.5Ω的金属棒水平放置在导轨上,若导轨周围存在着垂直于导轨平面的匀强磁场,当闭合开关S后,金属棒刚好静止在导轨上,如图所示,求导轨周围空间的磁场方向和磁感应强度的大小是多少?解:合上开关S后金属棒上有电流流过,由闭合电路欧姆定律I==6A金属棒静止在导轨上,它受到重力mg和支持力N的作用,因导轨光滑,仅此二力金属棒不可能平衡,它必需受到垂直于导轨平面的安培力作用才能平衡,根据题意和左手定则判断出,磁场方向垂直轨面斜向下,金属棒受到磁场的安培力沿斜面向上,如图所示。
由进一步受力分析得出,若金属棒平衡,则它受到的安培力F应与重力沿斜面向下的分量mgsinθ大小相等,方向相反。
F=mgsinθ又因为F=BIL,则可以解得B=0.25T3、如图4所示,环形金属轻弹簧线圈,套在条形磁铁中心位置,若将弹簧沿半径向外拉,使其面积增大,则穿过弹簧线圈所包围面积的磁通量将()A.增大B.减小C.不变D.无法确定变化情况答案:B解析:图5为条形磁铁的磁场分布,由于磁场的磁感线是闭合的曲线,在磁体内部是由S极指向N极,在磁体外部是由N极指向S极,且在磁体外的磁感线分布在磁体四周很大的空间。
穿过弹簧线圈的磁感线有磁体内部向上的,也有磁体外部向下的,实际穿过弹簧线圈的磁通量是合磁通量,即向上的磁通量与向下的磁通量之差,当弹簧线圈的面积增大后,穿过弹簧线圈向上的磁通量没有变化,而向下的磁通量增大,所以合磁通量减小,故选B。
4、如图6所示,矩形线圈abcd的面积S=1×10-2m2,其平面与磁场方向夹角θ=30°,此时穿过线圈的磁通量Φ1=1×10-3Wb,求:(1)该匀强磁场的磁感应强度;(2)线圈以ab边为轴,cd边向左上方由图示位置转过60°角,求这时穿过线圈磁通量Φ2,上述过程中磁通量变化了多少?(3)若按(2)中转动方向,线圈从图示位置转过180°角的过程中,磁通量变化了多少?解析:首先沿着由b到a方向画出侧视图,如图7所示:(1)设匀强磁场磁感应强度为B,由Φ=BSsin30°得:(2)线圈由图示位置转过60°角时,其线圈平面与磁场方向垂直,此时穿过线圈的磁通量为:Φ2=BS=0.2×1×10-2Wb=2×10-3Wb变化的磁通量为:ΔΦ=Φ2-Φ1=(2×10-3-1×10-3)Wb=1×10-3Wb(3)设线圈在初始位置时磁通量为正,为:Φ1=1×10-3Wb翻转180°后,穿过线圈的磁通量为负,为:Φ3=-1×10-3Wb翻转180°的过程中磁通量的变化量为:ΔΦ=|Φ3-Φ1|=2×10-3Wb3、有一面积为100cm2的金属环,电阻为0.1Ω,环中磁场变化规律如图8所示,且磁场方向垂直于环面向里,在t1到t2这段时间内,环中流过的电荷量是多少?解析:因为Φ=B·S,当S一定时,ΔΦ=ΔB·S,由感应电动势为由图象可知,在t1到t2这段时间内,ΔB=0.1T,根据闭合电路欧姆定律和电流的定义可得,流过环中的电荷量q为4、如图9所示,竖直放置的长直导线通以恒定电流,有一矩形线框与导线在同一平面内,在下列情况下线圈产生感应电流的是()A.导线中电流变大B.线框向右平动C.线框向下平动D.线框以ab边为轴转动E.线框以直导线为轴转动答案:ABD解析:讨论是否产生感应电流,需分析通电导线周围的磁场分布情况,通电导线周围的磁感线是一系列同心圆,且由内向外由密变疏,即越远离导线磁感线越疏。
对A选项,因I增大而引起导线周围的磁场磁感应强度增大,故A正确。
对B选项,因离开直导线方向越远,磁感线分布越疏(如图乙所示),因此线框向右平动时,穿过线框的磁通量变小,故B正确。
对C选项,由乙图可知线框向下平动时穿过线框的磁通量不变,故C错。
对D选项,可用一些特殊位置来分析,当线框在如图乙所示位置时,穿过线框的磁通量很大,当线框转过90°时,穿过线框的磁通量最小:Φ=0,因此可以判定线框以ab轴转动时磁通量一定变化,故D正确。
对E选项,先画出俯视图(如图丙),由图可看出线框绕直导线转动时,在任何一个位置穿过线框的磁感线条数不变,因此无感应电流,故E错。
5、在做奥斯特实验时,下列操作中现象最明显的是()A.沿电流方向放置磁针,使磁针在导线的延长线上B.沿电流方向放置磁针,使磁针在导线的正下方C.电流沿南北方向放置在磁针的正上方D.电流沿东西方向放置在磁针的正上方解析:将导线沿南北方向放置在地磁场中处于静止状态的磁针的正上方,通电时磁针发生明显的偏转,是由于南北方向放置的电流的正下方的磁场恰好是东西方向。
答案:C总结升华:做本实验时,首先要考虑到地磁场的影响。
若导线东西放置,小磁针有可能不偏转,导致实验失败。
6、家用照明电路中的火线和零线是相互平行的,当用电器工作火线和零线都有电流时,它们将()A.相互吸引B.一会儿吸引,一会儿排斥C.相互排斥D.彼此不发生相互作用解析:火线与零线虽然都连接用电器,且相互平行,但是当用电器正常工作时,流过它们的电流方向相反,并且时刻相反。