六年级下册圆柱和圆锥知识点

合集下载

北师大版六年级数学下册第1单元 圆柱与圆锥 知识点汇总

北师大版六年级数学下册第1单元 圆柱与圆锥 知识点汇总

一 圆柱与圆锥一、面的旋转 1.点动成线....,.线动成面....,.面动成体。

.....2.将一个长方形以长(宽)为轴,快速旋转后可以形成一个圆柱。

3.将一个直角三角形沿一条直角边快速旋转,会形成一个圆锥。

二、圆柱和圆锥的特征1.圆柱有两个面是大小相同的圆,有一个面是曲面;圆锥有一个面是圆,有一个面是曲面。

即:2.圆柱的上、下两个圆面叫作圆柱的底面,圆柱的曲面叫作圆柱的侧面;圆柱的两个底面之间的距离叫.............作圆柱的高.....。

即:3.圆锥的圆面叫作圆锥的底面,圆锥的曲面叫作圆锥的侧面;圆锥的顶点到底面圆心的距离叫作圆锥.................的高。

...4.测量圆锥的高的方法:把圆锥放在水平面上,在圆锥的顶点上放一个平面的东西,比如一块木板,并与底面平行,测量一下这两个平面间的距离,这两个平面间的距离就是圆锥的高。

即:5.测量圆柱的高的方法:把圆柱放在水平面上,选一把直尺和一个直角三角板,使圆柱的底面与直尺的..........0.刻线对齐....,使三角板与直尺垂直并靠紧圆柱的底面,此时圆柱的另一个底面对准的刻度值即是圆柱的高。

三、圆柱的表面积1.圆柱的侧面积。

圆柱的侧面如果沿高剪开得到一个长方形。

长方形的面积=长方形的长 × 长方形的宽面的形状不同,快速旋转后形成的立体图形也不同。

圆柱有无数条高,圆锥只有一条高。

圆柱或圆锥的高都是一条垂直于底面的线段。

易错点:剪开圆柱的侧面时一定要沿高剪开才可以得到一个长方形。

↓ ↓ ↓ 圆柱的侧面积=圆柱的底面周长×圆柱的高 用字母表示:S 侧=Ch 或S 侧=πdh 或S 侧=2πrh2.圆柱的表面积。

圆柱的表面积......=.侧面积...+.两个底面积.....不同的圆柱形实物,它们的表面积也不相同。

比如圆柱形烟囱的表面积等于烟囱的侧面积,圆柱形水桶的表面积就是水桶的侧面积加上一个底面积。

四、圆柱的体积1.意义:圆柱形物体所占空间的大小叫作圆柱的体积。

苏教版六年级数学下册第二单元知识点归纳

苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。

2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。

3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。

4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。

第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。

第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。

第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。

(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。

与求体积除以3相反。

培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。

2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。

六年级下册数学书知识点

六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

六年级下册圆柱与圆锥体公式

六年级下册圆柱与圆锥体公式

六年级下册圆柱与圆锥体公式圆柱体公式
圆柱体是一个底部为圆形的立体图形,其公式主要涉及底面积、侧面积和体积的计算。

- 底面积公式:圆柱体的底面积可以通过计算底面的半径r乘
以自身来获得,即:`底面积= π * r * r`,其中π取近似值3.。

- 侧面积公式:圆柱体的侧面积等于侧面高度h乘以底面周长
2πr,即:`侧面积= 2π * r * h`,其中π取近似值3.。

- 体积公式:圆柱体的体积可以通过计算底面积乘以高度h来
获得,即:`体积 = 底面积 * h`。

圆锥体公式
圆锥体是一个底面为圆形且收束于一个顶点的立体图形,其公
式涉及底面积、侧面积和体积的计算。

- 底面积公式:圆锥体的底面积可以通过计算底面的半径r乘以自身来获得,即:`底面积= π * r * r`,其中π取近似值3.。

- 侧面积公式:圆锥体的侧面积等于侧面高度l乘以底面周长2πr除以2,即:`侧面积= π * r * l`,其中π取近似值3.。

- 体积公式:圆锥体的体积可以通过计算底面积乘以高度h再除以3来获得,即:`体积 = (底面积 * h) / 3`。

希望以上公式对你在六年级下册学习圆柱与圆锥体有所帮助!如果有任何问题,请随时向我提问。

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。

【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。

2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。

长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。

3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。

3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。

考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。

六年级数学下册圆柱与圆锥知识点总结(全面)

六年级数学下册圆柱与圆锥知识点总结(全面)

圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

B、不沿着高展开,展开图形是平行四边形或不规则图形。

C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。

长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

人教版小学六年级数学下册第三单元《圆柱与圆锥》知识点梳理

人教版小学六年级数学下册第三单元《圆柱与圆锥》知识点梳理

第三单元《圆柱与圆锥》知识点梳理一、圆柱的认识1.圆柱的初步认识:像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。

2.圆柱各部分的名称及特征圆柱是由两个底面和一个侧面三部分组成的。

底面:圆柱的两个圆面,是完全相同的两个圆。

侧面:圆柱周围的面,是一个曲面。

高:圆柱两个底面之间的距离,一个圆柱有无数条高。

3.圆柱的侧面展开图①沿着高展开,展开图图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高;如果底面周长和高相等,展开图是一个正方形。

②不沿着高展开,展开图是一个平行四边形或不规则图形。

③无论怎么展开,都不可能得到梯形。

二、圆柱的表面积1.圆柱侧面积的计算方法圆柱的侧面积=底面周长×高。

S表示侧面积,C表示底面周长,h表示高,S=Ch2.圆柱侧面积计算公式的应用①已知圆柱的底面直径和高:S=πdh②已知圆柱的底面半径和高:S=2πrh3.圆柱表面积的意义和计算方法圆柱表面积=圆柱的侧面积+底面积×24.圆柱表面积计算公式的应用①已知圆柱的底面半径和高:S=2πrh+2πr2)2②已知圆柱的底面直径和高:S=πdh+2π(d2)2③已知圆柱的底面周长和高:S=Ch+2π(c2π5.进一法在取近似值时,根据实际情况把一个数某位后面的数字(不管这个数字比5大还是比5小)舍去并把保留部分最后一位数字加上1,这种取近似值的方法叫做“进一法”。

三、圆柱的体积1.圆柱体积的意义和计算公式①一个圆柱所占空间的大小,叫做这个圆柱的体积。

②圆柱的体积=底面积×高,用字母表示为:V =Sh 。

2.圆柱的体积计算公式的应用①已知圆柱的底面半径和高:V =πr 2h②已知圆柱的底面直径和高:V =π(d 2)2h③已知圆柱的底面周长和高:V =π(c 2π)2h四、圆锥的认识1.圆锥的初步认识:像沙堆、陀螺等物体的形状都是圆锥2.圆锥各部分的名称及特征圆锥是由一个底面和一个侧面两部分组成的。

(完整版)六年级数学下册圆柱与圆锥知识点

(完整版)六年级数学下册圆柱与圆锥知识点

六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。

圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆.3。

(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5。

把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

6。

圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。

温馨提示:圆柱的底面是圆形,面不是椭圆。

9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。

10。

从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。

如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。

如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。

12。

圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。

(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。

14。

圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。

16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。

人教六年级数学下册-3 圆柱与圆锥

人教六年级数学下册-3 圆柱与圆锥

提示:如果沿一条斜线将圆柱的侧面展开,它的侧面会是一个平行四边形,圆柱的底面周长是平行四边形的底,圆柱的高是平行四边形的高。

注意:圆柱的侧面展开不可能得到梯形。

提示:在实际中,不是所有的圆柱形物体都有两个底面,要具体问题具体分析。

例如:求一段排气筒的表面积就是求圆柱的侧面积,求一个水桶的表面积就是求圆柱的侧面积和一个底面积的和。

提示:把圆柱转化成长方体来求体积,运用的是转化的思想方法。

要点:圆柱的高不变,底面半径、直径或周长扩大到。

六年级数学下册知识点 单元归纳总结-冀教版 第4单元 圆柱与圆锥 归纳总结

六年级数学下册知识点 单元归纳总结-冀教版 第4单元 圆柱与圆锥 归纳总结
第4单元归纳总结
重要考点
考点解析
典型例题
圆柱的表
面积
1.圆柱的底面是两个完全相同的圆面。
2.圆柱的侧面是一个曲面,沿高展开后是一个长方形(或正方形),一边长等于圆柱底面周长,相邻的另一边长等于圆柱的高。
3.两个底面之间的距离是圆柱的高。圆柱有无数条高线。
4.圆柱的侧面积=底面周长×高,字母公式为S侧=Ch。
【解答】3.14×32×4=113.04(cm3)
圆柱的容积
1.容积和体积的计算方法一样。
2.容积计算时用物体内测量的数据,单位用升和毫升。
在一个底面直径为8厘米(从内量),高是15厘米的圆柱形保温杯内最多可以装多少毫升水?
【解答】3.14× ×15=753.6(立方厘米)=753.6(毫升)
答:这个保温杯内最多可以装753.6毫升水。
圆锥的体积
1.圆锥底面是一个圆面。
2.圆锥侧面是一个曲面,展开后是一个扇形。
3.从顶点到底面圆心的距离就是圆锥的高。圆锥只有一条高线。
4.圆锥的体积=底面积×高× ,字母公式为V= Sh= πr2h。
(易错题)一个圆锥的底面周长是25.12厘米,高是6厘米,求它的体积。
【解答】25.12÷3.14÷2=4(厘米)
3.14×42×6× =100.48(立方厘米)
答:这个圆锥的体积是100.48立方厘米。
体积的测量
1.运用“浸没法”测量物体的体积。
2.浸没在水中的物体的体积等于容器中升高的那部分水的体积。
将一个铁块浸没在底面直径是10厘米的圆柱形容器内,水面上升了2厘米,这个铁块的体积是多少?
【解答】3.14× ×2=157(立方厘米)
5.圆柱的表面积=底面积×πr2+2πrh。

六年级下册圆柱和圆锥知识点

六年级下册圆柱和圆锥知识点

六年级下册圆柱和圆锥知识点一、圆柱和圆锥的定义和特点圆柱和圆锥是初中数学中常见的几何图形,它们具有各自独特的定义和特点。

1. 圆柱的定义和特点圆柱是由一个底面和与底面平行的侧面构成的几何体。

底面是一个圆,侧面是平行于底面的曲面,底面与侧面的交线是直线。

圆柱具有以下特点:(1)底面圆的直径是圆柱的特征尺寸。

(2)底面圆的周长是底面圆的特征尺寸。

(3)侧面的高是圆柱的特征尺寸。

(4)体积:圆柱的体积等于底面圆的面积乘以高。

(5)侧面积:圆柱的侧面积等于侧面发展成的矩形的周长乘以高。

2. 圆锥的定义和特点圆锥是由一个底面和一个顶点连接底面到顶点的直线构成的几何体。

底面为一个圆,顶点离底面的距离是圆锥的高。

圆锥具有以下特点:(1)底面圆的直径是圆锥的特征尺寸。

(2)底面圆的周长是底面圆的特征尺寸。

(3)侧面的高是圆锥的特征尺寸。

(4)体积:圆锥的体积等于底面圆的面积乘以高再除以3。

(5)侧面积:圆锥的侧面积等于底面圆的周长乘以母线的长度再除以2。

二、圆柱和圆锥的计算公式和问题解答1. 圆柱的计算公式(1)圆柱的体积公式:V = πr²h,其中V为圆柱的体积,π取近似值3.14,r为底面圆的半径,h为圆柱的高。

(2)圆柱的侧面积公式:S = 2πrh,其中S为圆柱的侧面积,π取近似值3.14,r为底面圆的半径,h为圆柱的高。

举例:如果一个圆柱的底面半径为5cm,高为8cm,那么它的体积和侧面积分别是多少?解答:根据圆柱的体积公式,V = 3.14 × 5² × 8 = 628cm³。

根据圆柱的侧面积公式,S = 2 × 3.14 × 5 × 8 = 251.2cm²。

2. 圆锥的计算公式(1)圆锥的体积公式:V = (1/3)πr²h,其中V为圆锥的体积,π取近似值3.14,r为底面圆的半径,h为圆锥的高。

北师大版六年级数学下册知识点归纳总结

北师大版六年级数学下册知识点归纳总结

(北师大版)六年级数学下册知识点归纳总结第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh。

圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以:圆的面积=π×半径×半径=π×半径²。

人教版六年级数学下册第三单元知识点

人教版六年级数学下册第三单元知识点

人教版第三单元《圆柱与圆锥》(一)圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类(二)圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。

2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。

(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。

例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。

A圆柱的底面周长B底面直径和高C圆柱的高。

2、下面的材料中,()能做成圆柱。

12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。

冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案

冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案

四圆柱和圆锥一、认识圆柱、圆柱的组成部分1.圆柱的形成:圆柱是以长方形的一条边为轴旋转得到的;也可以由长方形卷起来得到。

2.生活中常见的圆柱:3.圆柱各部分的名称及其特征:(1)圆柱的上、下两个面都是圆形的,大小相同,叫做底面。

(2)圆柱周围的面是曲面,我们叫它侧面。

(3)圆柱两底之间的距离叫做高,一个圆柱有无数条高,它们都相等。

二、圆柱的侧面以及侧面积的求法1.圆柱的侧面展开图及其形状:(1)沿着高展开,展开图是长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高;当底面周长和高相等时(h=2πr),侧面展开图为正方形。

(2)如果不沿着高展开,展开图形是平行四边形或不规则图形。

(3)无论如何展开都得不到梯形。

2.圆柱的侧面展开后各个部分与圆柱的关系:展开后长方形的长等于圆柱的底面周长,宽等于圆柱的高。

3.圆柱的侧面积=底面的周长×高,即S侧=Ch=πd×h=2πr×h。

三、圆柱的表面积的计算1.圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

巧记小圆柱直挺挺,上、下底面都相同,可以看作是由长方形旋转而成的,还可以看作是由平面卷曲而成的。

易错点:1.圆柱的侧面是曲面,高有无数条,不是1条。

2.高指圆柱两底面之间的距离。

易错点:1.如果底面周长和高相等,展开图为正方形。

2.底面直径和高相等,侧面展开图不是正方形。

巧记规律沿高剪,圆柱侧面展开是长方形,侧面积是底面周长和高的积。

2.圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2πr2。

3.圆柱的切割引起表面积的变化:(1)横切:切面是圆,表面积增加2个底面积,即S增=2πr2。

(2)竖切(过直径):切面是长方形(如果h=2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh。

四、圆柱表面积的计算在实际生活中的应用在实际生活中,有时需要计算圆柱的表面积,如制作水桶时,不要上底面;制作圆柱形通风管时,不需要两个底面,这时需要计算圆柱的侧面积。

小学数学六年级圆柱、圆锥知识点总结复习

小学数学六年级圆柱、圆锥知识点总结复习

小学数学六年级圆柱、圆锥十大知识点总结复习知识点1、点线面的关系,以及常见的立体图形的认识点的运动形成线,线的运动形成面,面的旋转形成立体图形,常见的立体图形有长方体正方体圆柱圆锥棱柱球等1.用纸片和小棒做成下面的小旗,快速旋转小棒,想象纸片旋转所形成的图形,再连一连。

1.【解析】半圆旋转形成球,长方体(正方体)旋转形成圆柱,直角三角形旋转形成圆锥,三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。

知识点2、圆柱圆锥的行程,展开图以及各部分的名称圆柱是由长方形(或正方形)旋转而成(可以由长正方形绕一条边或者一条高旋转而成)圆锥是由直角三角形绕它的一条直角边旋转而成(还可以由等腰三角形绕它底边上的高旋转而成,)圆柱的展开图:侧面可能是长方形或正方形(沿着一条高线展开),也有可能是平行四边形(不是沿着高线展开)底面是两个完全一样的圆(要求会求圆柱的侧面积和表面积)圆锥的展开图:侧面是一个扇形,底面是一个圆(不要求会求圆锥的侧面积和表面积)2.下面()图形是圆柱的展开图。

(单位:cm)2.A【解析】圆柱的展开图,侧面是长方形(或正方形)底面是两个圆,并且底面圆的周长等于长方形的长,高是长方形的宽。

三个选项中底面圆的直径是3,底面周长是3.14×3=9.42,三个选项的高都是2,所以选择A。

3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。

3.246.49平方分米【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。

底面圆的周长等于3.14×5=15.7(分米),即正方形的边长是15.7分米,所以面积是15.7×15.7=146.49(平方分米)。

4.用一张长4.5分米, 宽2分米的长方形纸,围成一个圆柱形纸筒, 它的侧面积是。

4.9平方分米【解析】圆柱形纸筒的侧面积就是长方形的面积:4.5×2=9(平方分米)。

六年级数学下册第三单元(圆柱与圆锥)知识点

六年级数学下册第三单元(圆柱与圆锥)知识点

六年级数学下册第三单元(圆柱与圆锥)知识点六年级数学下册第三单元(圆柱与圆锥)知识点【圆柱】圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

一、圆柱:圆柱由3个面围成。

(1)底面:圆柱的上、下两个面;(2)侧面:圆柱周围的面(上下底面除外);(3)高度:圆柱体两个底面之间的距离。

二、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱体的侧面是曲面。

(3)高度的特性:一个圆柱体的高度有无数种。

圆柱的侧面展开图:沿着高展开,展开图形是长方形。

长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch h=S侧÷CC= S侧÷hS侧=∏dh=2∏rh注:(1)当底面周长和高相等时,沿高展开图是正方形;(2)不沿高度铺展,铺展图案为平行四边形或不规则图案。

(3)无论如何展开都得不到梯形.四、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。

即S表= S侧+ S底×2=2∏rh+∏r²×2【解题方法】一.圆柱的切割:1.横切:切面是圆,表面积增加2倍底面积,即S增=2πr22.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh二、常见的圆柱解决问题:侧面积+两个底面积:油桶、米桶、罐桶类侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池只求侧面积:烟囱、灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装底面周长:压路机压过路面长度五、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

将圆柱体切割成近似的长方体,分割的份数越多,图形越接近长方体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元圆柱和圆锥知识点
一、圆柱的特征:
有2个底面,1个侧面,无数条高。

大小相同
圆柱的侧面展开:长方形或正方形或平行四边形。

(说出与圆柱的关系)
当圆柱的底面周长和高相等的时候,它的侧面展开图就是一个正方形。

二、圆锥的特征
有1个是圆形的底面,1个是扇形的侧面,只有1条高。

圆锥的高:从圆锥的顶点到底面圆心的距离叫做高。

三、基本公式
求圆柱表面积、圆柱、圆锥的体积的时候,先复习下圆的半径求法:已知直径求半径~~r=d÷2 已知周长求半径~~r=c÷π÷2
字母公式S底=πr2
字母公式S侧=Ch=πdh=2πrh
字母公式V圆柱=Sh=πr2h
字母公式V圆锥=1/3Sh=1/3πr2h
四、单位换算:大单位化小单位用乘法(乘进率),小单位化大单
位用除法(除以进率)
长度单位换算:相邻两个长度单位之间的进率是10
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算:相邻两个面积单位之间的进率是100
1平方千米=100公顷1公顷=10000平方米
1平方米=100平方分米=10000平方厘米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算:相邻两个体积单位之间的进率是1000
1立方米=1000立方分米=1000000立方厘米
1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克 1千克=1000克。

相关文档
最新文档