同济大学线性代数期末试卷全套试卷(1至4套)
(完整版)线性代数期末测试题及其答案.doc
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线性代数期末测试题及其答案
线性代数期末考试题一、填空题将正确答案填在题中横线上;每小题5分,共25分1. 若022150131=---x ,则=χ__________; 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 ;3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵;4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A ;5.n 阶方阵A 满足032=--E A A ,则=-1A ;二、选择题 每小题5分,共25分6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是 A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点0,2,4且与两平面2312=-=+z y z x 和的交线平行的直线方程为 A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为 A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 每小题10分,共50分11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X ;12.问a 取何值时,下列向量组线性相关 123112211,,221122a a a ααα⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭;13. λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解 当方程组有无穷多解时求其通解;14. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示;15.证明:若A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A ;其中I 为单位矩阵 线性代数期末考试题答案一、填空题 1. 5.解析:采用对角线法则,由002)5(03)2(51=----++-⨯⨯x x 有5=x . 考查知识点:行列式的计算. 难度系数:2.1≠λ.解析:由现行方程组有)1(22211111111-=-+==λλλλλD ,要使该现行方程组只有零解,则0≠D ,即1≠λ.考查知识点:线性方程组的求解 难度系数: 3.n n s s ⨯⨯, 解析;由题可知ns ij c C ⨯=)(,则设D CB AC ==,可知D 的行数与A 一致,列数与B 一致,且A 与B 均为方阵,所以A 为s s ⨯阶矩阵,B 为n n ⨯阶矩阵.考查知识点:n 阶矩阵的性质 难度系数:4. 24解析:由题可知,A 为3阶矩阵且3=A ,则24223==A A .考查知识点:矩阵的运算 难度系数:5. E A 3-解析:由032=--E A A 有E E A A =-)3(,此时E A A 31-=-.考查知识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛--5212111t t ,而0455212111,0111,1122>--=-->-=>t t t t t t t,可解得054<<-t ;此时,该二次型正定;考查知识点:二次型正定的判断 难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5; 考查知识点:n 阶矩阵特征值的性质 难度系数: 8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性无关; 考查知识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为)3,1,0(),2,0,1(21-==n n ,则所求直线的方向向量为k j i n n s ++-=⨯=3221;所以所求直线为14322-=-=-z y x ; 考查知识点:求空间平面交线平行的直线方程难度系数:10. C.解析:由08215132=--=⎪⎪⎭⎫ ⎝⎛---=-λλλλλE A ,可解得特征值为4,221=-=λλ 考查知识点:求解矩阵的特征值难度系数:三、解答题11. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=------121012100120001][1210012100120001][1234012300120001100021003210432111)()()(B C B C B C TT T E X B C ,, 考查知识点:矩阵方程的运算求解难度系数:12.解:)22()12(81212121212121||2321-+=------==a a a a aa a a A ,, 当||A =0时即21-=a 或1=a 时,向量组321a a a ,,线性相关;考查知识点:向量组的线性相关性 难度系数:13.解:①当1≠λ且2-≠λ时,方程组有唯一解;②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 考查知识点:线性方程组的求解难度系数:14.解:由题可知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==0000110020102001131300161600241031217130104302410312171307311100943121)(4321a a a a A ,,,则()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,且线性关系为 321422a a a a ++-=考查知识点:向量组的秩与 最大无关组 难度系数:15.证明:由题可知,()()A I TA I A I A AA A I A TT+-=+-=+=+=+∴()02=+A I ,即()0=+A I 考查知识点:n 阶方阵的性质 难度系数:。
同济线代期末试题及答案
同济线代期末试题及答案
1. 选择题(共10题,每题2分,共计20分)
(题目略)
答案:
1. B
2. C
3. A
4. D
5. A
6. B
7. D
8. C
9. B 10. A
2. 填空题(共5题,每题4分,共计20分)
(题目略)
答案:
1. (1, -4, 2)
2. 3
3. Rank(A) = 2
4. 6
5. -2
3. 证明题(共2题,每题15分,共计30分)
(题目略)
答案:
1. (证明过程略)
2. (证明过程略)
4. 计算题(共3题,每题15分,共计45分)
(题目略)
答案:
1. (计算过程略)
2. (计算过程略)
3. (计算过程略)
5. 应用题(共2题,每题20分,共计40分)
(题目略)
答案:
1. (解答过程略)
2. (解答过程略)
小结:
本文为同济线代期末试题及答案,共包括选择题、填空题、证明题、计算题和应用题五个部分。
试题分别按题型进行呈现,答案则包括了
各题的具体解答过程和结果。
本文格式整洁美观,语句通顺,希望能
满足您的需求。
线性代数期末试卷及详细答案
线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
同济大学2019-2020 学年第二学期数学专业《线性代数》期末考试及参考答案
⎪ 1 ⎪1⎪1同济大学2019-2020 学年第二学期数学专业《线性代数》期末考试卷及参考答案参考解答学院:专业班级:学号:姓名:一.填空题(每空 3 分,共 15 分)10 13 -111.行列式0 -17 1 中(3,2)元的代数余子式A32的值为 -10 ...-15 19 4⎛2 0 0 ⎫⎛0.5 0 0 ⎫2.设A, B 为3 阶方阵,若AB =0 2 0⎪,则B-1 A-1 =0 0.5 0⎪. ⎪ ⎪0 2 1 ⎪ 0 -1 1 ⎪⎝⎭⎝⎭3.设α1,α2,α3为3 维列向量,且| α1,α2 ,α3 | = 2 ,则| -α1,3α3 -2α2 ,α2 | = 6 ....4.若向量组α1⎛2 ⎫= λ⎪,α⎪⎝⎭⎛-1⎫= -2 ⎪,α⎪⎝⎭⎛2 ⎫= 3 ⎪的秩为2 ,则λ=3.⎪⎝⎭5.设λ是方阵A 的一个特征值,则A +aE 的一个特征值为λ+a .二.选择题(每小题 3 分,共 15 分)1.设方阵A, B, C (C 不是零矩阵)满足AC =BC ,则必有【 C 】. (A) A =O 或 B =O ; (B) A =B ;(C)| A -B | = 0 或| C | = 0 ; (D)以上等式没有正确的.2.设B =PAQ ,下列说法错误的是【 A 】.23⎪ ⎝ ⎭(A ) 若 B 为单位矩阵 E , P , A , Q 皆为方阵,则必有 P -1= QA ;(B ) 若 P , Q 可逆,则 A 可经过有限次初等变换化为 B ;(C ) 若 B 为单位矩阵 E , P , A , Q 皆为方阵,则必有QPA = E ;(D ) 若 P , Q 可逆,则 R ( A ) = R (B ) .⎛ 0 1 0 ⎫ 3. 设 A 为 3 阶可逆矩阵,B = 1 0 0 ⎪ A ,关于 A -1, B -1 的说法,正确的是【 B 】.0 0 1 ⎪(A ) 交换 A -1 的第 1,3 行得到 B -1 ;(B ) 交换 A -1 的第 1,2 列得到 B -1 ;(C ) 交换 A -1 的第 1,2 行得到 B -1 ;(D ) 交换 A -1 的第 1,3 列得到 B -1 . 4.若非齐次线性方程组 AX = B 所对应的导出方程组 AX = 0只有零解,则以下判断错误的是【 A 】.(A ) A 的列向量组线性相关; (B ) AX = B 可能无解; (C ) AX = B 不可能有无穷多解; (D ) AX = B 可能有唯一解.⎛ a ⎫ ⎛ 0 ⎫ ⎛ -1⎫ 5.若α = 2 ⎪ , β = b ⎪, γ = 0 ⎪ 是正交向量组,则a , b , c 分别为【 D 】.⎪ ⎪ ⎪ -1⎪ 1 ⎪ c ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ (A )0,0,0; (B )0,1,1/2;(C )0,-1/2,0; (D )0,1/2,0.三.解答下列各题(每小题 8 分,共 16 分)⎝⎭ 2 ⎭ ⎛5 0⎫⎝ ⎭ 0 1 0 1 0 1 0 1 0 1 0 1 ⎝ ⎭⎝ ⎭ ⎝ ⎭2 ⎭ 1 23 42 3 4 1 1. 计算行列式 D =.3 4 1 2 4 1 2 31 1 1 1 1 1 1 1解: D = 10 2 3 4 1 = 10 0 1 2 -1 (4)3 4 1 2 4 1 2 3 0 1 -2 -1 0 -3 -2 -1 ⎛ 1 2 -1⎫ = 101 -2 -1⎪6 分⎪ -3 -2 -1⎪ ⎝ ⎭ ⎛ 1 2 -1⎫ = 100 -4 0 ⎪ =160。
线性代数期末考试试卷+答案
×××大学线性代数期末考试题、填空题(将正确答案填在题中横线上。
每小题 2分,共10分)1 -3 1P X IX 2 X 3 =02 .若齐次线性方程组 J x 1+χx 2+x 3=0只有零解,则 扎应满足X 1亠 X 2亠 X 3= 05. n 阶方阵 A 满足 A 2-3A-E = 0 ,贝U A J = _____________________ 。
、判断正误(正确的在括号内填“√”,错误的在括号内填“X” 。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则D 0。
()2. 零向量一定可以表示成任意一组向量的线性组合。
()3. 向量组a 1, a 2,…,a m中,如果a 1与a m对应的分量成比例,则向量组 a 1, a 2,…,a s线性相关。
■为可逆矩阵A 的特征值,贝U A J 的特征值为’。
()若三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题1.设A 为n 阶矩阵,且A = 2 ,则I AA T =( )。
①2n②2n'③2n1④42. n 维向量组:∙1,:-2, , :■ S ( 3 < S < n )线性无关的充要条件是()。
-0 11 0 0 0 0 04. A =0 0 0 10 1 0①:'1, :'2 ,':'S 中任意两个向量都线性无关②>1,-::S 中存在一个向量不能用其余向量线性表示③:'1, -'2 ,-■ S中任一个向量都不能用其余向量线性表示1.若0 5 -12x =0,则= —23•已知矩阵A ,B ,C = (C ij )s n ,满足AC =CB ,则A 与B 分别是 _____________ 阶矩阵。
a124 .矩阵 A= a21a 22的行向量组线性31a32丿2分,共10分)11,贝U A A =A 。
高等数学同济版下册期末考四套试题及答案
高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。
2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。
3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。
4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。
5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。
6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。
7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。
8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。
同济大学 线性代数--期末试题重点解析题目
,选A.
0 A 逆矩 4.设A,B分别为m阶和n阶可逆矩阵,那么矩阵 B 0
阵等于
0 (A ) −1 B
[
0 A −1 , (B) −1 A 0 B −1 A −1 , (C) 0 0 B −1 0 , (D) 0 −1 B
A满足条件(2E-C-1B)AT=C,求 1. (2C-B)-1 ; 2. A .
1 2 3 1 0 0 1 2 3 1 − 2 1 解.1. (2C-B,E ) = 0 1 2 0 1 0~ 0 1 0 0 1 − 2 0 0 1 0 0 1 0 0 1 0 0 1
(D) 3.
1 − 3 4 1 − 3 4 2 −1 3 ~ 0 5 − 5 , 所以选C. −1 2 a 0 0 a + 3
2.设n阶矩阵A满足条件aij=Aij (i,j=1,2,…,n), 其中Aij是元素 aij的代数余子式,则矩阵A的伴随矩阵A*等于 (A) A, (B) -A, (C) AT, (D) -AT. [ C ].
所以:
1 − 2 1 (2C-B)-1 = 0 1 − 2 0 0 1
2. 由(2E-C-1B)AT=C , 得 AT= (2C-B)-1C2 , 即
1 − 2 1 1 T A = 0 1 − 20 0 0 1 0 1 − 2 1 1 = 0 1 − 20 0 0 1 0
02期末试题( 02期末试题(一)解析 期末试题
一、填空题(15分)
2 1 −1 0 , B = ,则A2(B-1A)-1=( 1.设矩阵 A = − 1 1 1 1
).
同济大学线性代数期末试卷全套试卷(1至4套)
《线性代数》期终试卷1( 2学时)本试卷共七大题一、填空题(本大题共7个小题,满分25分):1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是, 则的属于的两个线性无关的特征向量是();2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随矩阵, 则的行列式();3.(4分)设, , 则();4.(4分)已知维列向量组所生成的向量空间为,则的维数dim();5.(3分)二次型经过正交变换可化为标准型,则();6.(3分)行列式中的系数是();7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个解向量, 其中, , 则该方程组的通解是()。
二、计算行列式:(满分10分)三、设, , 求。
(满分10分)四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。
(满分15分)五、设向量组线性无关, 问: 常数满足什么条件时, 向量组, , 也线性无关。
(满分10分)六、已知二次型,(1)写出二次型的矩阵表达式;(2)求一个正交变换,把化为标准形, 并写该标准型;(3)是什么类型的二次曲面?(满分15分)七、证明题(本大题共2个小题,满分15分):1.(7分)设向量组线性无关, 向量能由线性表示, 向量不能由线性表示 . 证明: 向量组也线性无关。
2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组必有非零解。
《线性代数》期终试卷2( 2学时)本试卷共八大题一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分):1. 若阶方阵的秩,则其伴随阵。
()2.若矩阵和矩阵满足,则。
()3.实对称阵与对角阵相似:,这里必须是正交阵。
()4.初等矩阵都是可逆阵,并且其逆阵都是它们本身。
()5.若阶方阵满足,则对任意维列向量,均有。
()6.若矩阵和等价,则的行向量组与的行向量组等价。
()7.若向量线性无关,向量线性无关,则也线性无关。
2019-2020学年线性代数期末考试题(含答案)
线性代数2019-2020学年第二学期期末考试试卷一、填空题(本大题共5个小题,每小题3分,共15分。
)1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。
2. 设⎪⎪⎪⎭⎫ ⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫ ⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件.C 充分必要条件 .D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组;B. 321,,ααα的一个等秩向量组;C. 321221,,αααααα+++;D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
线性代数期末考试考核试卷
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
同济大学线性代数试卷题库(4)
同济大学线性代数试卷题库(4)同济大学课程考核试卷(A 卷) 2009—2010学年第一学期课名:线性代数B 考试考查:考试一、填空题(每空3分,共24分)1、设1α、2α、3α均为3维列向量,已知矩阵123(,,)A ααα=,()123123123927,248B ααααααααα=++++++,3,且1A =,那么B = -12 .解:由矩阵之间的关系,我们可以得到1321941278B A =??,对等式两边取行列式,有 1321941278B A ??=??。
所以得到-12B =2、设分块矩阵A O C O B ??=, ,A B 均为方阵,则下列命题中正确的个数为4 .(A).若,A B 均可逆, 则C 也可逆.(B).若,A B 均为对称阵, 则C 也为对称阵.(C).若,A B 均为正交阵, 则C 也为正交阵. (D).若,A B 均可对角化, 则C 也可对角化. 解:A. 若,A B 均可逆,说明,A B 的行列式都不为0,则我们可以根据拉普拉斯定理求出C 的行列式为A B ,所以可知C 的行列式也不为0,即C 可逆.B .若,A B 均为对称阵,则有,TTA AB B ==,对矩阵C 取转置,根据对角阵性质有T TT A O A O C C O B O B === ? ??,所以C 也是对称阵。
C .若,A B 均为正交阵, 则有,T TA A EB B E ==,固T T TT TA O A O A A O C C E OB O B O B B === ? ? ?。
所以C 也为正交阵. D .若,A B 均可对角化,则有-1-112,A P P B Q Q =Λ=Λ,则-1-111-1-122=O P O P P O P O C O O Q OQ Q O Q ΛΛ= ? ? ΛΛ??,令P O M O Q ??= ,则原式可看成-1-111-12P P O C M M OQ Q ??Λ==Λ ?Λ??固以上4个全对(考试里出现全对的情况还是第一次见)3、设2341345145617891D =,则D 的第一列上所有元素的代数余子式之和为 0 .解:直接利用代数余子式性质,求113411451015611891D ==4、设向量组(I):12,,,r αααL 可由向量组(II):12,,,s βββL 线性表示,则 D 成立.(注:此题单选)(A).当r s <时,向量组(II )必线性相关 (B).当r s >时,向量组(II )必线性相关(C).当r s <时,向量组(I )必线性相关 (D).当r s >时,向量组(I )必线性相关解:直接分析,举反例,A 反例1201,,,10200r r ααα==??L ,(),()12100,,,0103001s s βββ==??L ,;B 反例()12100,,,0103001s s βββ??==L ,,121000,,,010040011r r ααα==??L ,();C 反例1201,,,10200r r ααα??==L ,(),()12100,,,0103001s s βββ??==L ,;D.正确,这个很显然。
同济大学-线性代数-习题册+答案
所以 B A E
1
0 0 1 1 0 2 2 0 1 A E 0 1 0 0 3 0 0 3 0 1 0 0 2 0 1 1 0 2
2
13 设方阵 A 满足 A A 2E O 证明 A 及 A 2E 都可逆 并求 A 及 ( A 2 E )
解.
0 0 ; 1 d
a
1 4 D 10 0 2 1 5 1 0 2 2 1 2 1 2 4 0 7 0 0 15 7 0 1 0 2 1 2 2 4 0 1 2 20 0 15 1 7 0 7 0 2 1 2 0 2 1 7 0 1 1 7 0 2 20 0 0 17 85 2 4 0 0 9 45
D 2 x3 2 y3
解.
a D4b c
5 1 a 5 1 4 1 1 b 4 1 1 1 1 c 4 1
专业班级
姓名
学号
2
5 计算下列各行列式
4 1 (1) 10 0
解.
1 2 5 1
2 0 2 1
4 2 ; 0 7
a 1 0 1 b 1 (3) 0 1 c 0 0 1
所以 B AB 也是对称矩阵。
T
10.设 A 为 n 阶方阵,且 A
专业班级
姓名
学号
6
1 4 2 0 3 1 12 解矩阵方程 X . 1 2 1 1 0 1
解.
1 4 2 0
1 0 1 14 设 A 0 2 0 且 AB E A2 B 求 B 1 0 1
1 | B | _______ 9 ______.
* 1 ,则 2A* 2 A 2 11.设矩阵 A 、 B 、C 满足 AB AC ,则 B C 成立的一个充分条件是____C_____. (A) A 为方阵 (B) A 为非零矩阵 (C) A 为可逆方阵 (D) A 为对角阵
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。
同济大学线性代数期末考试试题(多套)
二、(12 分)
⎧
设有非齐次线性方程组
⎪ ⎨
x1 (1 − λ)x1
+ +
x2 (1 − λ)x2
+ +
(1 − λ)x3 x3
=1 =1 ,
⎪⎩(5 − 3λ)x1 + (1 − λ)x2 +
x3 = λ
问 λ 取何值时,该方程组有唯一解、无解或有无穷多解?当解不唯一时,求出所有的解.
R(A) =
.
⎛ 1 0 2⎞
6、
设矩阵
A
=
⎜ ⎜
k
3
3
⎟ ⎟
可对角化,则
k
=
.
⎜⎝ −1 0 4 ⎟⎠
7 、 设 向 量 组 α1 , α2 , α3 线 性 相 关 , 向 量 β = α1 + α2 + α3 , 则 下 面 说 法 正 确 的
是
.
(A) 向量组 β ,α2 ,α3 线性无关.
同济大学课程考核试卷(A 卷)
2009—2010 学年第二学期
一、(24 分) 填空与选择题,其中选择题均为单选题.
⎛6 y 5⎞
1、
设
A
=
⎜ ⎜⎜⎝
1 x
0 2
4 3
⎟ ⎟⎟⎠
,则
A
中元素
y
的代数余子式的值为
.
⎛1 0 0⎞
2、
设
3
阶方阵
A
与对角阵
⎜ ⎜
0
2
0
⎟ ⎟
相似,则
A
的伴随矩阵
A*
的秩
线性代数期末试题及答案
8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。
同济大学线性代数试卷题库 (4)
同济大学课程考核试卷(A 卷) 2009—2010学年第一学期课名:线性代数B 考试考查:考试一、填空题(每空3分,共24分)1、 设1α、2α、3α均为3维列向量,已知矩阵 123(,,)A ααα=,()123123123927,248B ααααααααα=++++++,3,且1A =,那么B = -12 .解:由矩阵之间的关系,我们可以得到1321941278B A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,对等式两边取行列式,有 1321941278B A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
所以得到-12B =2、 设分块矩阵A O C O B ⎛⎫=⎪⎝⎭, ,A B 均为方阵,则下列命题中正确的个数为4 .(A).若,A B 均可逆, 则C 也可逆.(B).若,A B 均为对称阵, 则C 也为对称阵.(C).若,A B 均为正交阵, 则C 也为正交阵. (D).若,A B 均可对角化, 则C 也可对角化. 解:A. 若,A B 均可逆,说明,A B 的行列式都不为0,则我们可以根据拉普拉斯定理求出C 的行列式为A B ,所以可知C 的行列式也不为0,即C 可逆.B .若,A B 均为对称阵,则有,TTA AB B ==,对矩阵C 取转置,根据对角阵性质有T TT A O A O C C O B O B ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,所以C 也是对称阵。
C .若,A B 均为正交阵, 则有,T TA A EB B E ==,固T T TT TA O A O A A O C C E OB O B O B B ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
所以C 也为正交阵. D .若,A B 均可对角化,则有-1-112,A P P B Q Q =Λ=Λ,则-1-111-1-122=O P O P P O P O C O O Q OQ Q O Q Λ⎛⎫⎛⎫Λ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎪ΛΛ⎝⎭⎝⎭⎝⎭⎝⎭,令P O M O Q ⎛⎫= ⎪⎝⎭,则原式可看成-1-111-12P P O C M M OQ Q ⎛⎫Λ==Λ ⎪Λ⎝⎭固以上4个全对(考试里出现全对的情况还是第一次见)3、 设2341345145617891D =,则D 的第一列上所有元素的代数余子式之和为 0 .解:直接利用代数余子式性质,求113411451015611891D ==4、 设向量组(I):12,,,r αααL 可由向量组(II):12,,,s βββL 线性表示,则 D 成立.(注:此题单选)(A).当r s <时,向量组(II )必线性相关 (B).当r s >时,向量组(II )必线性相关(C).当r s <时,向量组(I )必线性相关 (D).当r s >时,向量组(I )必线性相关解:直接分析,举反例,A 反例1201,,,10200r r ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦L ,(), ()12100,,,0103001s s βββ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦L ,;B 反例()12100,,,0103001s s βββ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦L ,,121000,,,010040011r r ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦L ,();C 反例1201,,,10200r r ααα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦L ,(),()12100,,,0103001s s βββ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦L ,;D.正确,这个很显然。
线性代数期末考试试卷合集(共十一套)
线性代数期末考试试卷合集(共十一套)目录线性代数期末试卷及参考答案(第一套) .............................................................................. 1 线性代数期末试卷及参考答案(第二套) .............................................................................. 9 南京工程学院期末试卷(第一套) ........................................................................................ 17 南京工程学院期末试卷(第二套) ........................................................................................ 24 南京工程学院期末试卷(第三套) ........................................................................................ 30 线性代数 期末试卷(A 卷) .................................................................................................. 36 线性代数 期末试卷(B 卷) .................................................................................................. 41 线性代数 期末试卷(C 卷) .................................................................................................. 46 线性代数 期末试卷(D 卷) .................................................................................................. 51 线性代数 期末试卷(E 卷) .................................................................................................. 57 线性代数 期末试卷(F 卷) (62)线性代数期末试卷及参考答案(第一套)一、单项选择题(本大题共5小题,每小题3分,共15分)1、设矩阵⎪⎪⎭⎫ ⎝⎛=3223A 满足B AB =,则矩阵=B ( )(A ) ⎪⎪⎭⎫⎝⎛21k k ; (B )⎪⎪⎭⎫ ⎝⎛11; (C ) ⎪⎪⎭⎫ ⎝⎛--2121k k k k ; (D ) ⎪⎪⎭⎫ ⎝⎛-2111k k .(21k k ,为任意常数) 2、设n 阶方阵A ,B 满足E AB =,则下列一定成立的是 ( ) (A )E B A == ; (B )E B A =+ ; (C )1=A 或1=B ; (D )1=⋅B A .3、设矩阵,⎪⎪⎪⎭⎫ ⎝⎛=001010100A 则 =-++)()(E A R E A R ( )(A ) 2; (B ) 3; (C ) 4; (D ) 5 .4、设向量组A :r a a a,,,21可由向量组B :s b b b ,,,21线性表示,则正确的是 ( )(A )当s r >时,向量组A 必线性相关; (B ) 当s r <时,向量组A 必线性相关; (C )当s r >时,向量组B 必线性相关; (D ) 当s r <时,向量组B 必线性相关.5、设A 为n m ⨯的矩阵,0=x A 是非齐次线性方程组b x A =所对应的齐次线性方程组,则下列结论正确的是( )(A ) 若0=x A 仅有零解,则b x A =有唯一解;(B ) 若b x A =有无穷多解,则0=x A 有非零解;(C ) 若n m =,则b x A=有唯一解;(D ) 若A 的秩m A R <)(,则b x A=有无穷多解.二、填空题(本大题共5小题,每小题3分,共15分)1、设方阵⎪⎪⎪⎭⎫⎝⎛=010002cb a A ,当c b a ,,满足 时,A 为可逆方阵.2、若可逆方阵A 的有一个特征值3,则13-)(A 必有一个特征值为 .3、设A 为54⨯的矩阵,且秩2=)(A R ,则齐次方程组0=x A 的基础解系所含向量个数是 .4、若三阶行列式222023z y x =1,则行列式1117110111------z y x = . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13232121,,x 线性相关,则常数x= .三、计算题(本题共6小题,共50分)1、(6分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=b a a A 140132121的秩2=)(A R , 求常数b a ,及一个最高阶非零子式.2、(8分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值和特征向量. 3、(8分)设3阶方阵A 与B 满足BA A BA A 22+=*, 其中,⎪⎪⎪⎭⎫⎝⎛=400030001A 求B .4、(10分)设向量组A :.,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 1301 3192 01414321αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式aa a a D ++++=4321432143214321,其中0≠a .6、(10分)设线性方程组⎪⎩⎪⎨⎧=+-=--=--532403321321321x x x b ax x x x x x , 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、判断题(本大题共5小题,每小题2分,共10分) 1、设矩阵B A ,为3阶方阵,且42==B A ,,则121=-AB.( )2、由3维向量构成的向量组4321a a a a,,,中必有一个可由其余向量线性表示. ( ) 3、对任意n 阶方阵C B A ,,,若AC AB =,且O A ≠,则一定有C B =.( )4、设向量21ηη ,是线性方程组b x A =的解,则212ηη -也是此方程组的一个解.( ) 5、正交向量组321a a a ,,线性无关.( )五、证明题(本题共2小题,每小题5分,共10分) 1、设n 阶对称矩阵A 满足关系式O E A A =++862,证明:(1)E A 3+是可逆矩阵,并写出逆矩阵; (2) E A 3+是正交矩阵.2、若3210a a a a,,,是n 元非齐次线性方程组b x A =的线性无关解,且,)(3-=n A R证明:030201a a a a a a---,,是其对应的齐次线性方程组0 =x A 的基础解系.参考答案一、选择题(本题5小题, 每小题3分, 共15分)1. C ;2. D ;3. B ;4. A ;5. B .二、填空题(本题5小题, 每小题3分, 共15分)1. c ab 2≠;2.91; 3. 3; 4. 23- ; 5. 5. 三、计算题(本题6小题, 共50分)1. 解: A →⎪⎪⎪⎭⎫ ⎝⎛------210022170121b a a a (2分), 由R (A ) = 2知,⎩⎨⎧=-=--0201b a , ⎩⎨⎧=-=∴21b a ,一个最高阶非零子式3221-. 2.解: 由λλλλ-----=-314020112E A (),)(0212=-+-=λλ 得A 的特征值为.,21321==-=λλλ当11-=λ时, 解 ().0=+x E A,⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛--=+000010101414030111r E A得基础解系:,⎪⎪⎪⎭⎫⎝⎛=1011p 对应11-=λ的全部特征向量为)(0111≠k p k当232==λλ时, 解().02=-x E A,⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎭⎫⎝⎛--=-000000414111140001142r E A 得基础解系:,⎪⎪⎪⎭⎫ ⎝⎛=401 2p ,⎪⎪⎪⎭⎫ ⎝⎛=041 3p对应232==λλ的特征向量为)0,(323322不全为k k p k p k+ 3. 解: B= 2(|A |E -2A ) -1 A |A |=12(|A |E -2A ) -1 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4100061000101, B=2⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛410061000101⎪⎪⎪⎭⎫⎝⎛400030001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛20001000514. 解: ),,,(4321αααα=A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------71307311100943121→⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000110024103121 → ⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110020102001 所以,秩3=A R , (1分)一个最大线性无关组为,,,321ααα(2分)且321422αααα++-=5. 解:aa a a D ++++=43214321432143214321c c c c +++aa a a a a a +++++++432104321043210432101r r i -aa a a 00000000043210+=)(103+a a 6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛-----==5312410131b ab A B ),( →⎪⎪⎪⎭⎫⎝⎛+---120011100131b a(1) 当12-≠=b a ,时, 32=<=)()(B R A R ,此时方程组无解. (2) 当b a ,2≠取任意数时, 3==)()(B R A R ,此时方程组有唯一解. (3) 当12-==b a ,时, 32<==)()(B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛--000011100131 →⎪⎪⎪⎭⎫ ⎝⎛000011103201即⎩⎨⎧+-=+-=1323231x x x x 原方程组的通解为)(R c c ∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--013112.四、判断题(本题5小题, 每小题2分, 共10分)1. ×;2. √;3. ×;4. √;5. √.五、证明题(本题2小题, 每小题5分, 共10分)1.证明: (1)由O E A A =++862得E E A A =++962,即E E A E A =++))((33 所以E A 3+可逆,且E A E A 331+=+-)(.(2)由A 为n 阶对称矩阵知,E A E A E A TT T 333+=+=+)()(,故()()()E E A E A E A E A T=++=++333)3(,所以E A 3+是正交矩阵.2. 证明: 3210a a a a,,,是n 元非齐次线性方程组b x A =的解,030201a a a a a a---∴,,是对应齐次方程组0 =x A 的解;又,)(3-=n A R 所以0 =x A 的基础解系中含向量个数为3)(=-A R n 个; 下证 030201a a a a a a---,,线性无关即可.设0033022011 =-+-+-)()()(a a k a a k a a k 即00321332211=++-++a k k k a k a k a k )(又 3210a a a a ,,,线性无关, 故⎪⎪⎩⎪⎪⎨⎧=++-===0000321321)(k k k k k k 有唯一解0321===k k k所以030201a a a a a a---,, 线性无关,从而030201a a a a a a---,,是其对应的齐次方程组0 =x A 的基础解系线性代数期末试卷及参考答案(第二套)一、填空题(本大题共7小题,每小题3分,共21分)1、设向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=123,321βα ,则当k = 时,.正交与βαα +k2、设方阵A 满足关系式O A A =+322,则1)(-+E A = .3、若三阶行列式930021-=x xxx ,则 =x . 4、设矩阵⎪⎪⎭⎫⎝⎛-=0211A ,多项式x x x f 2)(2+=,则=)(A f . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-13,032,101λ线性相关,则常数λ= .6、n 元非齐次线性方程组b x A=有无穷多解的充要条件是 .7、设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111,则 ._______________,______,===b a λ二、单项选择题(本大题共5小题,每小题3分,共15分)1、设A ,B 是任意n 阶方阵(2≥n ),则下列各式正确的是 ( )(A ) B A B A +=+; (B ) 22B A B A B A -=-⋅+; (C ) B A B A ⋅=; (D ) A B AB T⋅= .2、下列4个条件中,①A 可逆 ; ②A 为列满秩(即A 的秩等于A 的列数); ③A 的列向量组线性无关; ④ O A ≠ ;可使推理“ 若O AB =, 则O B = ”成立的条件个数是 ( )(A ) 1个 ; (B ) 2个; (C ) 3个; (D ) 4个.3、向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ ,,,21线性表示, 则下列结论中不成立的是( )(A ) 向量组s βββ,,,21线性无关;(B ) 对任一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性相关;(C ) 存在一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性无关;(D ) 向量组s ααα,,,21与向量组s βββ ,,,21等价. 4、设A ,B 均为3阶方阵, 3)(=A R ,2)(=B R , 则=)(AB R( )(A ) 1; (B ) 2; (C ) 3; (D ) 6 .5、设A 为n m ⨯的矩阵,r A R =)(,则非齐次线性方程组b x A=( )(A ) 当n r = 时有唯一解; (B ) 当n m r == 时有唯一解;(C ) 当n m = 时有唯一解; (D ) 当n r < 时有无穷多解. 三、计算题(本题共6小题,共54分)1、(7分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=61011152121λλA 的秩2)(=A R , 求常数λ及一个最高阶非零子式.2、(9分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230001A 的全部特征值和特征向量.3、(8分)设3阶方阵C B A ,,满足方程 A B A C =-)2(,试求矩阵A ,其中 ⎪⎪⎪⎭⎫ ⎝⎛=100010301B , ⎪⎪⎪⎭⎫ ⎝⎛=300020001C .4、(10分)设向量组A :.6721 ,11313 ,5652 ,21214321⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式cc b b a a x x x x D ---=000000, 其中x c b a ,,,全不为0.6、(12分)设线性方程组⎪⎩⎪⎨⎧=++=++=++bx x x x a x x x x x 3213213214231202, 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、证明题(本题共2小题,每小题5分,共10分)1、若向量321,,ααα线性无关, 求证 2132αα +,324αα +,135αα + 也线性无关.2、设矩阵T E A ηη -=, 其中E 是3阶单位矩阵,⎪⎪⎪⎭⎫⎝⎛=321x x x η 是单位向量,证明:(1) A A =2; (2) A 不可逆.参考答案一、填空题(本题7小题, 每小题3分, 共21分)1. 75-; 2. E A +2; 3. 3±; 4. ⎪⎪⎭⎫ ⎝⎛--2631 ; 5. 6 ; 6. n b A R A R <=),()(; 7. -1 ,-3 ,0 .二、选择题(本题5小题, 每小题3分, 共15分)1. D ;2. C ;3. C ;4. B ;5. B .三、计算题(本题6小题, 共54分)1. 解: A →⎪⎪⎪⎭⎫⎝⎛--+---3390022110121λλλλλ(3分), 由R (A ) = 2知,⎩⎨⎧=-=-03039λλ,3=∴λ (2分), 一个最高阶非零子式5221 .2.解: 由λλλλ---=-32230001E A (),01)5(2=--=λλ得A 的特征值为.1,5321===λλλ当51=λ时, 解 ().05=-x E A,0001100012202200045⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛---=-r E A得基础解系:,1101⎪⎪⎪⎭⎫⎝⎛=p 对应51=λ的全部特征向量为)(0111≠k p k当132==λλ时, 解().0=-x E A,000000110220220000⎪⎪⎪⎭⎫ ⎝⎛−→−⎪⎪⎪⎭⎫ ⎝⎛=-r E A 得基础解系:,001 2⎪⎪⎪⎭⎫ ⎝⎛=p ,110 3⎪⎪⎪⎭⎫ ⎝⎛-=p对应132==λλ的特征向量为)0,(323322不全为k k p k p k+.3. 解: CB A E C =-)2( ;⎪⎪⎪⎭⎫ ⎝⎛=-5000300012E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=--51000310001)2(1E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛=⋅-=-5300032030110001030130002000151000310001)2(1CB E C A . 4. 解: ),,,(4321αααα =A →⎪⎪⎪⎪⎪⎭⎫⎝⎛---00210045101321 → ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000021********001 (初等变换步骤不一,请酌情给分)所以,秩3=A R , (1分) 一个最大线性无关组为,,,321ααα(2分)且32142617αααα--=5. 解:)1,2,3(1=++i c c i i Dcb a xx x x---0000000234=xabc 4- .6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛==b a b A B 4231120211),( →⎪⎪⎪⎭⎫⎝⎛----120014100211b a a , (1) 当b a ,2≠取任意数时, 3)()(==B R A R , 此时方程组有唯一解; (2). 当1,2≠=b a 时, 3)(2)(=<=B R A R ,此时方程组无解;(3) 当1,2==b a 时, 32)()(<==B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛-000012100211 →⎪⎪⎪⎭⎫⎝⎛-000012101001 即⎩⎨⎧--==121321x x x原方程组的通解为)(011120R c c ∈⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-.四、证明题(本题2小题, 每小题5分, 共10分)1.证明: 由题意 ⎪⎪⎪⎭⎫⎝⎛=+++540013102),,()5,4,32(321133221ααααααααα , 记 AK B = .K K ∴≠=,022 可逆, 又321,,ααα线性无关,所以)5,4,32(133221αααααα +++R 3),,(321==αααR , 即 2132αα +,324αα +,135αα+ 也线性无关.2. 证明: (1) η为单位向量,1=∴ηηT ,A E E E E A T T T T T T T =-=+--=--=∴ηηηηηηηηηηηηηη)())((2.(2) 由(1)知,A A =2, 即 O E A A =-)(,3)()(≤-+∴E A R A R ,η为单位向量,O E A T ≠-=-∴ηη , 1)(≥-E A R ,从而32)(<≤A R , 所以0=A , 故A 不可逆.另一证法: 0)(=-=-=-=ηηηηηηηηηηT T E A ,的非零解,为线性方程组0=∴ηηA所以0=A , 故A 不可逆.南京工程学院期末试卷(第一套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院试卷共 6 页第 4 页南京工程学院期末试卷(第二套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院期末试卷(第三套)共6 页第1页课程所属部门:数理部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科线性代数 期末试卷(A 卷)一、(本大题共8小题,每题3分,共24分)1. 设B A ,均为n 阶方阵,则下面各式正确的是----------------------------------( C ) (A)TTTB A AB =)( (B) 222)(B A AB = (C) || ||AB BA = (D)AB BA = 2. 下列命题正确的是--------------------------------------------------------------------( C ) (A) 若02=A ,则0=A (B) 若A A =2,则0=A 或E A = (C) 若E A =,则E A n = (D) 若E A =2,则E A ±=3. 若行列式的所有元素都变号,则--------------------------------------------------( D ) (A) 行列式一定变号 (B) 行列式一定不变号 (C) 偶阶行列式变号 (D) 奇阶行列式变号4. 设k c c c b b b a a a =321321321,则112311231123232323a a a a b b b b c c c c ++=+-------------------------------( B ) (A) k 6 (B) k 3 (C) k 2 (D) k5. 若某线性方程组的系数行列式为零,则该方程组------------------------------( D ) (A) 有唯一解 (B) 有非零解 (C) 无解 (D) 有非零解或无解6.已知TT T t ),3,1(,)3,2,1(,)1,1,1(321===ααα线性相关的,则t =-----( B )(A) 4 (B) 5 (C) 6 (D) 77. 设方阵A 相似于(1,1,1)diag -,则10A =---------------------------------------- ( A )(A) E (B) 10E (C) E - (D) 10E - 8. 设A 为n 阶方阵,则下列说法中正确的是--------------------------------------( B ) (A) 若A 可对角化,则A 为实对称阵 (B) 若A 为实对称阵,则A 可对角化 (C) 若A 可对角化,则A 必可逆 (D) 若A 可逆,则A 可对角化二、填空题(本大题共4小题,每题4分,共16分)1.设2110A ⎛⎫=⎪-⎝⎭,则*A =0112-⎛⎫ ⎪⎝⎭,1A-=0112-⎛⎫ ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》期终试卷1
( 2学时)
本试卷共七大题
一、填空题(本大题共7个小题,满分25分):
1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是
, 则的属于的两个线性无关的特征向量是
();
2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随
矩阵, 则的行列式();
3.(4分)设, , 则
();
4.(4分)已知维列向量组所生成的向量空间为,则的维数dim();
5.(3分)二次型经过正交变换可化为
标准型,则();
6.(3分)行列式中的系数是();
7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个
解向量, 其中, , 则该方程组的通解是
()。
二、计算行列
式:
(满分10分)
三、设, , 求。
(满分10分)
四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。
(满分15分)
五、设向量组线性无关, 问: 常数满足什么条件时, 向量组
, , 也线性无关。
(满分10分)
六、已知二次型,
(1)写出二次型的矩阵表达式;
(2)求一个正交变换,把化为标准形, 并写该标准型;
(3)是什么类型的二次曲面?
(满分15分)
七、证明题(本大题共2个小题,满分15分):
1.(7分)设向量组线性无关, 向量能由线性表示, 向量
不能由线性表示 . 证明: 向量组也线性无关。
2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组
必有非零解。
《线性代数》期终试卷2
( 2学时)
本试卷共八大题
一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分):
1. 若阶方阵的秩,则其伴随阵。
()
2.若矩阵和矩阵满足,则。
()
3.实对称阵与对角阵相似:,这里必须是正交
阵。
()
4.初等矩阵都是可逆阵,并且其逆阵都是它们本
身。
()
5.若阶方阵满足,则对任意维列向量,均有。
()
6.若矩阵和等价,则的行向量组与的行向量组等
价。
()
7.若向量线性无关,向量线性无关,则也线性无关。
()
8.是矩阵,则。
()
9.非齐次线性方程组有唯一解,则。
()10.正交阵的特征值一定是实
数。
()
二、设阶行列
式:
试建立递推关系,并求。
(满分10分)
三、设,,并且,求
(满分10分)
四、设,矩阵满足,其中是的伴随
阵,求。
(满分10分)
五、讨论线性方程组的解的情况,在有解时求出通解。
(满分12分)
六、求一个正交变换,将二次型
化为标准形。
(满分14分)
七、已知,由它们生成的向量空间记为,为所有3维列向量构成的向量空间,问:
1.取何值时,但,为什么?
2.取何值时,,为什么?
( 满分 12 分 )
八、证明题(本大题共2个小题,满分12分):
1.若2阶方阵满足,证明可与对角阵相似。
2. 若是正定阵,则其伴随阵也是正定阵。
《线性代数》期终试卷3
( 3学时)
一、填空题(15’) :
1 .设向量组, 它的秩是( ) ,一个最大线性无关组是
( ).
2 .已知矩阵和相似 , 则x =
( ).
3 .设是秩为的矩阵 , 是矩阵 , 且, 则的秩的取值范围是
(
).
二、计算题:
1 .(7’) 计算行列式.
2 .(8’) 设, 求.
3 .(10’) 已知维向量空间的两个基分别为;
, 向量. 求由基到基
的过渡矩阵; 并求向量在这两个基下的坐标.
4 .(15’) 讨论下述线性方程组的解的情况;若有无穷多解,则必须求出通解 .
5.(15’)已知有一个特征值为, 求正交阵, 使得
为对角阵 .
6 .(10’) 在次数不超过3的实系数多项式所成的线性空间中定义
线性变换?为?= , 求线性变换?在基
下的矩阵.
三、证明题:
1.(10’) 已知矩阵与合同, 矩阵与合同, 证明: 分块对角矩阵
与也合同.
2 .(10’) 设是正交矩阵 , , 是的特征值 , 是相应于特征值, 的特征向量 , 问 : 与是否线性相关 , 为什么 ? 与是否正交 , 为什么 ?
《线性代数》期终试卷4
( 3学时)
本试卷共九大题
一、选择题(本大题共 4个小题,每小题2分,满分8分):
1.若阶方阵均可逆,,则
(A) (B) (C) (D)
答( )
2.设是元齐次线性方程组的解空间,其中,则的维数为
(A) (B) (C) (D)
答( )
3.设是维列向量,则=
(A) (B) (C) (D)
答( )
4.若向量组可由另一向量组线性表示,则
(A)
;
(B) ;
(C) 的秩的秩;(D) 的秩的秩. 答( )
二、填空题(本大题共 4个小题,每小题3分,满分12分):
1. 若,则。
2. 设,,,则
3. 设4 阶方阵的秩为2 ,则其伴随阵的秩为。
4. 设是方阵的一个特征值,则矩阵的一个特征值
是。
三、计算行列式
,()
(满分8分)
四、设,,,求,使得。
(满分12分)
五、在中有两组基:
和
写出到的变换公式以及到的变换公式。
(满分8分)
六、当取何值时,线性方程组
有唯一解、无解或有无穷多解?并在有无穷多解时求出通解。
(满分14分)
七、已知,为3阶单位矩阵,,求一个正交矩阵,使得
为对角阵,并写出该对角阵.
(满分16分)
八、设为已知的矩阵,集合
1.验证对通常矩阵的加法和数乘构成实数域下的线性空间;
2.当时,求该线性空间的一组基。
(满分10分)
九、证明题(本大题共 2个小题,每小题6分,满分12分):
1.设为一向量组,其中线性相关,线性无关,证明能由线性表示。
2.若为阶方阵,,证明:为可逆矩阵。