高二数学概率习题(个人整理)
高中数学概率练习题及答案
高中数学概率练习题及答案一、选择题1. 给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x?0”是不可能事件③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件,其中正确命题的个数是A.0 B. 1C. D.2. 某人在比赛中赢的概率为0.6,那么他输的概率是 A.0.4B. 0. C. 0.3 D. 0.163. 下列说法一定正确的是A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关4.某个班级内有40名学生,抽10名同学去参加某项活动,每个同学被抽到的概率是其中解释正确的是A.4个人中必有一个被抽到B. 每个人被抽到的可能性是C.由于抽到与不被抽到有两种情况,不被抽到的概率为1,411D.以上说话都不正确5.投掷两粒均匀的骰子,则出现两个5点的概率为A.1115B. C.D. 18612363211 B.C.D. 5486.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是 A.7.若A与B是互斥事件,其发生的概率分别为p1,p2,则A、B同时发生的概率为A.p1?p B. p1?pC. 1?p1?pD. 08.在等腰直角三角形ABC中,在斜边AB上任取一点D,则AD的长小于AC的长的概率为A.12 B. 1? C.D.222二、填空题9.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是方片的概率是1,取到41,则取到黑色牌的概率是_____________10.同时抛掷3枚硬币,恰好有两枚正面向上的概率为_______________11.10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________12.已知集合A?{|x2?y2?1},集合B?{|x?y?a?0},若A?B??的概率为1,则a的取值范围是______________三、解答题13.由数据1,2,3组成可重复数字的三位数,试求三位数中至多出现两个不同数字的概率.14.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知P=0.7,P=0.1,P=0.05,求下列事件的概率事件D=“抽到的是一等品或二等品”事件E=“抽到的是二等品或三等品”15.从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率 .每次取出不放回;每次取出后放回.16.在某次数学考试中,甲、乙、丙三人及格的概率0.4、0.2、0.5,考试结束后,最容易出现几个人及格?17.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:“两球相同”,事件B:“两球异色”,试比较P与P的大小.高一数学概率测试题及参考答案1.选2.选3.选4.选5.选6.选7.选8.选1310.答案:1711.答案:59.答案:12:答案:a?[?2,2]13.“三位数中至多出现两个不同数字”事件包含三位数中“恰好出现两个不同的数字”与“三个数全相同”两个互斥事件,故所求概率为2?3?337??727914.由题知A、B、C彼此互斥,且D=A+B,E=B+C P=P=P+P=0.7+0.1=0.8P=P=P+P=0.1+0.05=0.1515. 每次取出不放回的所有结果有每次取出后放回的所有结果:三人都及格的概率p1?0.4?0.2?0.5?0.04 三个人都不及格的概率p2?0.6?0.8?0.5?0.24恰有两人及格的概率p3?0.4?0.2?0.5?0.4?0.8?0.5?0.6?0.2?0.5?0.26 恰有1人及格的概率p4?1?0.04?0.24?0.26?0.46由此可知,最容易出现的是恰有1人及格的情况17.基本事件总数为2,“两球同色”可分为“两球皆白”或“两球皆黑”则P?mnmn2mn,“两球异色”可分为“一白一黑”或“一黑??222m2一白”则P?2?n2m2?n22?2,显然P≤P,当且仅当“m=n”时取等号第三章检测题班级学号一、选择题:1.下列说法正确的是.A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为.A.5个 B.8个 C.10个 D.15个.下列事件为确定事件的有.在一标准大气压下,20℃的纯水结冰平时的百分制考试中,小白的考试成绩为105分抛一枚硬币,落下后正面朝上边长为a,b的长方形面积为abA.1个B.2个 C.3个 D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是.A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是.A.2/5B、2/3C.2/7D.3/.从一副扑克牌中抽取一张牌,抽到牌“K”的概率是. A.1/5 B.1/C.1/1 D.2/27.同时掷两枚骰子,所得点数之和为5的概率为.A.1/B.1/C.1/D.1/128.在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是.A.5/B.4/C.2/D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为.A.60%B.30% C.10%D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为.A.0.6B.0.5 C.0.35D.0.75二、填空题:11.对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为。
高二数学 概率章节综合复习题
高二数学概率章节综合复习题一、典型例题:(一)填空题:1、已知线段AB与它的中点M,在AB上随机取一点C,这点到M比到A的距离较接近的概率是。
2、将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为。
3、在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是。
4、一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的是偶数的概率是。
5、在地上画一正方形线框,其边长等于一枚硬币直径的2 倍,向方框中投硬币。
硬币完全落在正方形外的不计,则硬币完全落在正方形内的概率是。
6、如果每组3X牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一X牌,两X牌的牌面数字和为的概率最大;两X牌的牌面数字和等于4的概率是。
(二)解答题:例1、袋中有1个白球,2个黄球,问(1)从中一次性地随机摸出2个球,都是黄球的概率是多少?(2)先从中摸出一球,再从剩下的球中摸出一球,两次都是黄球的概率是多少?(3)先从中摸出一球,将它放回口袋中后,再摸一次,两次都是黄球的概率是多少?例2、从1,2,3,4,5,6这六个数字中任取3个,组成一个没有重复数字的三位数,求这三位数是4的倍数的概率。
例3、有3个人每人都以相同的概率被分配到3个房间中的一间,试求至少有2人分配到同一房间的概率。
例4、如图,设有一个正三角形网格,其中每个最小三角形的边长都等于a,现有一直径等于3a的硬币投到此网格上,求硬币落下后与网格线有公共点的概率。
例5、从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B 。
高二数学概率单元练习.doc
高二概率单元练习(一)一、精心选一选1.以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K ,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是0.62.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有””08”和”北京”的字块,如果婴儿能够排成”北京”或者”北京”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( )A .16B .14 C.13 D.123.两道单选题都含有A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有( ) A .14 B .12 C .18 D .116 4.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,45,6这六个数字,指针停在每个扇形的可能性相等。
四位同学各自发表了下述见解: 甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形; 乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个5.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
参加这个游戏的观众有三次翻牌的机会。
某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是A .41B .61C .51D .203 6.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A 、61 B 、31 C 、21 D 、32 7.函数2()2,[5,5]f x x x x =--∈-,那么任意0[5,5]x ∈-使0()0f x ≤的概率为 ( )A .0.1 B.23C .0.3D .0.4二、细心填一填8.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 。
高二数学概率练习题
高二年级数学试卷(理)一.填空题(本题共14小题,每题5分,共70分.把答案填写在答题纸相应位置上.........) 1.某班委会由4名男生与3名女生组成,现从中选出2人担任班长,其中至少有1名女生当选的概率是 ▲ .2.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ▲ .3.在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是 ▲ .4.若血色素化验的准确率是p ,则在10次化验中,最多一次不准确的概率是 ▲ .5.若26)1(1ax x -+)(的展开式中含3x 项的系数是20,则a 的值为 ▲ .6.若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值 ▲ .7.n)(123+的展开式中有且仅有5个有理项,则最小自然数n 等于 ▲ . 8.设随机变量ξ的分布列为(),1,2,3,2i P i i aξ===则(2)P ξ== ▲ .9.一盒中有9个正品和3个废品,每次取一个产品,取出后不再放回.在取得正品前已取出的废品数ξ的期望)(ξE = ▲ .10.设离散型随机变量ξ可能取的值为1,2,3,4.()P k ak b ξ==+(=k 1,2,3,4).又ξ的数学期望3E ξ=,则a b += ▲ .11.从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为 ▲ . 12.线性回归方程a bx y +=过定点 ▲ .13.设随机变量ξ的概率密度函数,01()2,120,x x f x x x ≤<=-≤≤⎧⎪⎨⎪⎩其他,=≤)23(ξP ▲ .14.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支. A 、B 两组中有一组恰有两支弱队的概率 ▲ .二.解答题:(本大题共6小题,共90分. 解答应写出文字说明、证明过程或演算步骤)15(本小题满分14分)已知n y x )(32+展开式中,第二项、第三项、第四项的二项式系数成等差数列,求: ①展开式中的有理项? ②展开式中系数最大的项?16.(本小题满分14分)NBA 总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA 有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2000万美元. (Ⅰ).求所需比赛场数的分布列;(Ⅱ)求组织者收益的均值.17.(本小题满分15分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为1p ,寿命为2年以上的概率为2p ,从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(1)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (2)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (3)当8.01=p ,3.02=p 时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字).18.(本小题满分15分)甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为p ,若他们独立的射击两次,设乙命中10环的次数为X ,则34)(=X E ,Y 为甲与乙命中10环的差的绝对值. 求p 的值及Y 的分布列及数学期望.19.(本小题满分16分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动. (1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系.20.(本题满分16分)10个实习小组在显微镜下实测一块矩形蕊片,测得其长为29μm,30μm,31μm 的小组分别有3个,5个,2个,测得其宽为19μm,20μm,21μm 的小组分别有3个,4个,3个,设测量中矩形蕊片的长与宽分别为随机变量ζ和η,周长为μ.(1)分别在上表中,填写随机变量ζ和η的分布列; (2)求周长μ的分布列,并列表表示; (3)求周长μ的期望值.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;.76711=-5.设随机变量ξ的分布列为(),1,2,3,2iP i i a ξ===则(2)P ξ==137.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为120n)(123+的展开式中有且仅有5个有理项,则最小自然数n 等于 (.12 )13.若血色素化验的准确率是p ,则在10次化验中,最多一次不准的概率是 10p 9-9p 10 .14.若26)1(1ax x -+)(的展开式中含3x 项的系数是20,则a 的值为 0或5.15.一盒中有9个正品和3个废品,每次取一个产品,取出后不再放回.在取得正品前已取出的废品数的期E ξ= 0.3 .17.(本小题满分12分)已知(32y x +)n 展开式中,第二项、第三项、第四项的二项式系数成等差数列,求: ①展开式中的有理项? ②展开式中系数最大的项?依题23n 1n 2n C C C +=得n=7.①设T r+1=r7C 327r r y x-·2r =2r3214r r r y x+-7C 为有理项,则r 是3的倍数的奇数,又0≤r ≤7,∴r=3,∴有理项为T 4=2337C x 2y=280x 2y.②设T r+1=2rr 7C 327r r y x-是系数最大的项,则31631322221111≤≤⎪⎩⎪⎨⎧≥≥++--r r r r r r r r r 解得7777C C C C ,又r ∈N ,∴r=5, 故系数最大的项是T 6=67235xy .19. (本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2,从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. (1)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(2)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (3)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字).解:(1)在第一次更换灯泡工作中,不需要更换灯泡的概率为51P ,需要更换2只灯泡的概率为3125P C (1-P 1)2;(2)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-P 1)2,在第一次未更换灯泡灯 泡而在第二次需要更换灯泡的概率为P 1(1-P 2), 故所求的概率为P=(1-P 1)2+P 1(1-P 2).(3)当P 1=0.8,P 2=0.3时,由(2)知第二次灯泡更换工作中,某盏灯更换的概率P=(1-P 1)2+P 1(1-P 2)=0.6,故至少换4只灯泡的概率为P 3=P 5+45C P 4(1-P),∴P 3=0.65+5×0.64×0.4≈0.3422. (本小题满分14分)10个实习小组在显微镜下实测一块矩形蕊片,测得其长为29μm,30μm,31μm 的小组分别有3个,5个,2个,测得其宽为19μm,20μm,21μm 的小组分别有3个,4个,3个,设测量中矩形蕊片的长与宽分别为随机变量ζ和η,周长为μ.(1 (2)求周长μ的分布列,并列表表示; (3)求周长μ的期望值. .(1)(2)P(μ=96)=0.3×0.3=0.09;P(μ=98)=0.3×0.4+0.5×0.3=0.27;P(μ=100)=0.5×0.4+0.2×0.3+0.3×0.3=0.35;P(μ=102)=0.2×0.4+0.5×0.3=0.23;P(μ=104)=0.2×0.3=0.06. 周长分布列如下表所示(3)解法一:(利用周长的分布计算)E μ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8.解法二:(利用矩形长与宽的期望计算)由长和宽的分布列可以算得E ζ=29×P(ζ=29)+30×P(ζ=30)+31×P(ζ=31)=29×0.3+30×0.5+31×0.2=29.9, E η=19×P(η=19)+20×P(η=20)+21×P(η=21)=19×0.3+20×0.4+21×0.3=20. 由期望的性质可得E μ=2(E ζ+E η)=2×(29.9+20)=99.8.10、设离散型随机变量ξ可能取的值为1,2,3,4.()P k ak b ξ==+(k =1,2,3,4).又ξ的数学期望3E ξ=,则a b +=101; 11、在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是______31_.12、从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为8.518、(本题满分14分)NBA 总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA 有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2000万美元.(Ⅰ).求所需比赛场数的分布列; (Ⅱ)求组织者收益的均值.19、(本题满分14分)甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s ,若他们独立的射击两次,设乙命中10环的次数为X ,则EX=34,Y 为甲与乙命中10环的差的绝对值. 求s 的值及Y 的分布列及数学期望.20、(本题满分14分)现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为16、12、13;已知乙项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是(01)p p <<,设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为ξ,对乙项目每投资十万元, ξ取0、1、2时, 一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量1ξ、2ξ分别表示对甲、乙两项目各投资十万元一年后的利润.(I) 求1ξ、2ξ的概率分布和数学期望1E ξ、2E ξ;(II) 当12E E ξξ<时,求p 的取值范围. 18、(本题满分14分)解:所需比赛场数ξ是随机变量,其取值为4,5,6,7,}{k =ξ,k=4,5,6,7,表示比赛最终获胜队在第k 场获胜后结束比赛,显然在前面k-1场中获胜3场,从而)(k p =ξ=131)21(--k k C , k=4,5,6,7,(Ⅰ)(Ⅱ) 所需比赛场数的数学期望是16931657165641584)(=⨯+⨯+⨯+⨯=ξE ,∴ 组织者收益的均值为⨯16932000=11625万美元.19、(本题满分14分)解:由已知可得),2(~s B X ,故32,342===s s EX 所以.有Y 的取值可以是0,1,2.甲、乙两人命中10环的次数都是0次的概率是361)31()21(22=⨯,甲、乙两人命中10环的次数都是1次的概率是92)32313132)(21212121(=⨯+⨯⨯+⨯, 甲、乙两人命中10环的次数都是2次的概率是91)3232)(2121(=⨯⨯所以36139192361)0(=++==Y P ; 甲命中10环的次数是2且乙命中10环的次数是0次的概率是361)31()21(22=⨯, 甲命中10环的次数是0且乙命中10环的次数是2次的概率是91)3232)(2121(=⨯⨯ 所以36591361)2(=+==Y P ,故21)2()0(1)1(==-=-==Y P Y P Y P 所以 Y 的数学期望是EY=9.20、(本题满分14分)解:(I) 【解法1】: 1ξ的概率分布为:E 1ξ=1.216⨯+1.1812⨯+1.173⨯=1.18.由题设得~(2,)B p ξ,则ξ的概率分布为:故2ξ的概率分布为:所以2ξ的数学期望为:E 2ξ=21.3(1)p ⨯-+1.252(1)p p ⨯-+20.2p ⨯=20.1 1.3p p --+. 【解法2】1ξ的概率分布为:E 1ξ=1.216⨯+1.1812⨯+1.173⨯=1.18.设i A 表示事件”第i 次调整,价格下降”(i=1,2),则: P(ξ=0)= 212()()(1)P A P A p =-;P(ξ=1)=1212()()()()2(1)P A P A P A P A p p +=-; P(ξ=2)=212()()P A P A p =故2ξ的概率分布为:所以2ξ的数学期望为:E 2ξ=21.3(1)p ⨯-+1.252(1)p p ⨯-+20.2p ⨯=20.1 1.3p p --+. (II) 由12E E ξξ<,得:20.1 1.3 1.18(0.4)(0.3)00.40.3p p p p p --+>⇒+-<⇒-<< 因0<p<1,所以12E E ξξ<时,p 的取值范围是0<p<0.3.、某班委会由4名男生与3名女生组成,现从中选出2人担任班长,其中至少有1名女生当选的概率是( *75 )若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值 是( *2 )。
高二数学概率综合试题
高二数学概率综合试题1.先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是 ()A.“至少一枚硬币正面向上”;B.“只有一枚硬币正面向上”;C.“两枚硬币都是正面向上”;D.“两枚硬币一枚正面向上,另一枚反面向上”.【答案】A【解析】先后抛掷2枚均匀的一分、二分的硬币的基本事件有{正,正}、{正,反}、{反,正}、{反,反},故“至少一枚硬币正面向上”的目标事件有{正,正}、{正,反}、{反,正},故选A.【考点】做一次试验的基本事件个数.2.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:为了检验“喜欢玩电脑游戏与认为作业多”是否有关系,根据表中数据,得到=4.84值,对照临界值表,有的把握认为“喜欢玩电脑游戏与认为作业多”之间有相关关系.【答案】95%【解析】根据列联表所给的数据,代入求观测值的公式得到=4.84值,因为4.84>3.841,∴喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为95%.【考点】本题考查了独立性检验的运用点评:本题是一个基础题,在计算观测值时,数字比较大,需要认真完成,查表即可.3.为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人。
(1)根据以上数据建立列联表;(2)能否在犯错误不超过0.05的前提下认为该药物有效?参考0.500.400.250.150.100.050.0250.0100.0050.001()【答案】(1)(1)列联表(2)在犯错误不超过0.05的前提下认为该药物有效【解析】解:(1)列联表患流感未患流感总计………6分(2)根据列联表,计算:所以在犯错误不超过0.05的前提下认为该药物有效 12分【考点】独立性检验点评:主要是考查了独立性检验的思想的运用,属于基础题。
4.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX的值为 .【答案】4.5【解析】解:从中任取3支共有10种不同的取法,由题意可得:X可能取得数值为:3,4,5,当X=3时表示取出竹签的最大号码为3,其包含的事件有1个,所以P(X=3)=,当X=4时表示取出竹签的最大号码为4,其包含的事件有3个,所以P(X=4)=,当X=5时表示取出竹签的最大号码为5,其包含的事件有6个,所以P(X=5)=,所以EX=3×+4×5×=4.5.故答案为4.5【考点】离散型随机变量点评:本题主要考查离散型随机变量的期望,以及古典概率模型.5.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.【答案】(1)(2)0123【解析】(1)记事件=”只有甲破译出密码”,可解得 3分(2) 的可能取值为0、1,、2、3;分8分10分【考点】独立事件的概率点评:主要是考查了独立事件的概率的公式以及分布列的求解,属于基础题。
高二数学概率试题
高二数学概率试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.2.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(Ⅰ)求选手甲回答一个问题的正确率;(Ⅱ)求选手甲可以进入决赛的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式. 试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,则故选手甲回答一个问题的正确率(Ⅱ)选手甲答了4道题进入决赛的概率为;(Ⅲ)选手甲答了5道题进入决赛的概率为;选手甲答了6道题进入决赛的概率为;故选手甲可进入决赛的概率.【考点】1.互斥事件与对立事件;2.二项分布.3.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率等于()A.B.C.D.【答案】A【解析】由条件概率计算公式:,,要求点数至少含有6且点数不同,含有6有11中,而其中相同的就一种,故,【考点】条件概率的计算.4.为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取1人,抽到关注NBA 的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA 与性别有关?⑵现从女生中抽取2人进一步调查,设其中关注NBA 的女生人数为X ,求X 的分布列与数学期望. 附:,其中【答案】(1)关注NBA 与性别有关;(2)分布列(略),E (X )=1.【解析】(1)本小题独立性检测的应用,本小题的关键是计算出的观测值,和对应的临界值,根据关注NBA 的学生的概率为,可知关注NBA 的学生为32(估计值).根据条件填满表格,然后计算出,并判断其与的大小关系,得出结论.(2)对于分布列问题:首先应弄清随机变量是谁以及随机变量的取值范围,然后就是每个随机变量下概率的取值,最后列表计算期望. 试题解析:(1)将列联表补充完整有:由,计算可得4分因此,在犯错的概率不超过0.05的前提下认为学生关注NBA 与性别有关,即有把握认为关注NBA 与性别有关 6分 (2)由题意可知,X 的取值为0,1,2,,,9分所以X 的分布列为)=1. 12分【考点】(1)独立性检测应用;(2)随机变量的分布列与期望.5.实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.参考公式:(其中)没有关联90%95%99%【答案】(1)见解析;(2)性别与喜爱运动没有关联;(3).【解析】(1)独立性检验关键是计算出,并同概率表作对比,选择适合的临界值,得出是否具有相关性结论;(2)古典概型概率的计算,间接法:“1”减去既没有甲乙的概率.试题解析:(1)由已知得:喜爱运动不喜爱运动总计(2)由已知得:,则:(选择第一个).则:性别与喜爱运动没有关联. 8分(3)记不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取为事件A,由已知得:从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各抽取1人共有种方法,其中不喜爱运动的女生甲及喜爱运动的女生乙没有一人被选取的共有种方法,则:12分【考点】(1)独立性检测;(2)古典概型.6.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.【答案】(1),(2)的分布列为:.【解析】(1)本小题为古典概型,基本事件的种数为:,事件:从口袋中随机地摸出个球,有一个是黄色球的方法数为:,即可构建关于的方程;(2)易知取值为,利用古典概型概率公式,易求的每个取值对应的概率,从而可列出分布列,并求出数学期望.试题解析:⑴由题意有,即,解得;⑵取值为.则,,,,的分布列为:故.【考点】古典概型概率公式,分布列,数学期望公式.7.设随机变量服从,则的值是()A.B.C.D.【答案】A【解析】因为随机变量服从,所以,故选A.【考点】二项分布.8.某学校从4名男生和2名女生中任选3人作为参加上海世博会的志愿者,设随机变量X表示所选3人中女生的人数,则P(X≥1)=________.【答案】【解析】P(X≥1)=P(X=1)+P(X=2)=+=9.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【答案】(1)76.4 (2)0.7【解析】解:(Ⅰ).(Ⅱ)(i)这100天的平均利润为(ii) 销量为16枝时,利润为75元,故当天的利润不少于75元的概率为【考点】函数与概率点评:主要是考查了分段函数与均值以及概率的求解,属于中档题。
高二数学概率综合试题答案及解析
高二数学概率综合试题答案及解析1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为_________ .【答案】.【解析】由于第一次抽到A,则第二次抽牌时,还有3张A,共51张牌,而每张牌被抽到的概率是相等的,故第二次也抽到A的概率为.【考点】相互独立事件的概率乘法公式.3.抛掷一个骰子,若掷出5点或6点就说试验成功,则在3次试验中恰有2次成功的概率为__________。
【答案】【解析】抛掷一个骰子,若掷出5点或6点就说试验成功,则成功的概率为,则在3次试验中恰有2次成功的概率为。
【考点】等可能事件的概率4.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球不喜爱打篮球合计已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:(参考公式:,其中)【答案】(1)详见解析;(2)在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.【解析】(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为,可得喜爱打篮球的学生,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.试题解析:列联表补充如下: 3分喜爱打篮球不喜爱打篮球合计(2)∵∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关. 12分【考点】独立性检验..5.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。
高二数学概率试题
高二数学概率试题1.如图,用三类不同的元件连成一个系统.当正常工作且至少有一个正常工作时,系统正常工作.已知正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960B.0.864C.0.720D.0.576【答案】B【解析】系统正常工作当①正常工作,不能正常工作,②正常工作,不能正常工作,③正常工作,因此概率.【考点】独立事件的概率.2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.3.设服从二项分布X~B(n,p)的随机变量X的均值与方差分别是15和,则n、p的值分别是()A.50,B.60,C.50,D.60,【答案】B【解析】由二项分布X~B(n,p)的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以答案为B.【考点】二项分布X~B(n,p)的均值与方差4.投两枚均匀的骰子,已知点数不同,则至少有一个是6点的概率为______.【答案】.【解析】设“投两枚均匀的骰子,点数不同”为事件A,“至少有一个是6点”为事件B,则;,.【考点】条件概率.5.中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率【答案】(1)0.398;(2)0.994.【解析】解题思路:(1)利用相互独立事件同时发生的概率公式求解即可;(2)正面情况较多,考虑反面情况即可.规律总结:若A,B相互独立,则也相互独立;对事件包含的情况分类要不重不漏,对于“至少”、“至多”,可以考虑事件的对立事件.试题解析:用、、分别表示这三列火车正点到达的事件.则所以(1)恰好有两列正点到达的概率为(2)三列火车至少有一列正点到达的概率为.【考点】相互独立事件同时发生的概率.6.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为,乙击中敌机的概率为,敌机被击中的概率为( )A.B.C.D.【答案】C【解析】设甲击中敌机为事件,乙击中敌机为事件.方法一(直接法):击中敌机分3种:甲中乙中,甲中乙不中,甲不中乙中,即;方法二(间接法):.【考点】独立事件概率的计算.7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望【答案】(1);(2);(3)分布列(略),.【解析】(1)4个球均为黑球,即从甲、乙中取出的2个球均为黑球,由于甲、乙相互独立,因此概率为甲中取出黑球的概率与乙中取出黑球概率的乘积;(2)取出4球中恰有1个红球,分两类计算:一类红球来至于甲,二类红球来至于乙;(3)红球个数可能取值为0,1,2,3,注意分别对应概率的计算.试题解析:(1)设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,. 2分故取出的4个球均为黑球的概率为. 4分(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.则,. 6分由于事件互斥,故取出的4个球中恰有1个红球的概率为. 8分(3)可能的取值为.由(1),(2)得,,.从而.的分布列为的数学期望. 12分【考点】组合与概率综合应用.8.高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.【答案】(1);(2).【解析】(1)由题设条件知,种下5粒种子至少有3次成功的概率相当于5次独立重复试验中恰好发三次、四次、五次的概率.至少有3次成功的概率等于3次、4次、5次发芽成功的概率之和.(2)ξ的所有可能值为0,1,2,3,4,5分别求其概率,列出分布列,再求期望即可.解:(1)至少有3次发芽成功,即有3次、4次、5次发芽成功,所以所求概率(2)的概率分布列为X12345所以.【考点】1. n次独立重复试验;2. 离散型随机变量的分布列、期望.9.在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.【答案】该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率为0.69;及格的概率为0.93.【解析】射击的成绩是互斥事件,根据互斥事件的概率加法公式即可求得结果.试题解析:分别记该战士的打靶成绩在9分以上、在8~9分、在7~8分、在6~7分分别为事件B、C、D、E,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,该战士的打靶成绩在8分以上的概率是P(B C)=P(B)+P(C)=0.18+0.51=0.69. 5分该战士打靶及格的概率,即成绩在6分以上的概率,由公式得P(B C D E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93. 8分【考点】互斥与对立事件、概率问题.10.甲乙丙三位同学独立的解决同一个问题,已知三位同学能够正确解决这个问题的概率分别为、、,则有人能够解决这个问题的概率为A.B.C.D.【答案】B【解析】此题没有被解答的概率为,故能够将此题解答出的概率为。
高二统计概率练习题
高二统计概率练习题统计学和概率论是数学中的重要分支,也是我们生活中不可或缺的一部分。
在高中阶段,学生们开始接触并学习统计学和概率论的基础知识,这为他们打下了日后深入学习这一领域的基础。
本文将为高二学生提供一些统计学和概率论的练习题,帮助他们巩固知识并提升解题能力。
1. 某班级共有40名学生,其中18人擅长数学,25人擅长英语。
已知擅长数学和英语的学生共有12人,求以下情况的概率:a) 从该班级随机选取一名学生,他既不擅长数学也不擅长英语;b) 从该班级随机选取一名学生,他擅长数学或擅长英语;c) 从该班级随机选取一名学生,他擅长数学但不擅长英语。
解答:a) 由于既不擅长数学也不擅长英语的学生共有40-12=28人,所以该概率为28/40=0.7;b) 由于擅长数学或擅长英语的学生共有18+25-12=31人,所以该概率为31/40=0.775;c) 由于既擅长数学又不擅长英语的学生共有18-12=6人,所以该概率为6/40=0.15。
2. 在一次抽奖活动中,参与者共购买了500张彩票,其中5张中奖。
求以下情况的概率:a) 从这500张彩票中随机选取1张,它是中奖彩票;b) 从这500张彩票中随机选取2张,它们都是中奖彩票;c) 从这500张彩票中随机选取1张,它是非中奖彩票。
解答:a) 由于中奖彩票共有5张,所以该概率为5/500=0.01;b) 第一次选中中奖彩票的概率为5/500=0.01,第二次选中中奖彩票的概率为4/499≈0.0080,所以两次都选中中奖彩票的概率为0.01×0.0080≈0.00008;c) 由于非中奖彩票共有500-5=495张,所以该概率为495/500=0.99。
3. 甲、乙、丙三个学生参加一次数学竞赛,已知他们获奖的概率分别为0.4、0.3和0.2。
求以下情况的概率:a) 至少有一个学生获奖;b) 恰好有两个学生获奖;c) 最多有一个学生获奖。
解答:a) 至少有一个学生获奖的概率等于1减去没有学生获奖的概率,即1-(1-0.4)×(1-0.3)×(1-0.2)≈0.624;b) 恰好有两个学生获奖的概率等于甲、乙获奖,丙不获奖的概率加上甲、丙获奖,乙不获奖的概率,再加上乙、丙获奖,甲不获奖的概率,即0.4×0.7×0.8+0.3×0.6×0.8+0.6×0.7×0.8≈0.528;c) 最多有一个学生获奖的概率等于没有学生获奖加上只有一个学生获奖的概率,即(1-0.4)×(1-0.3)×(1-0.2)+0.4×(1-0.3)×(1-0.2)+(1-0.4)×0.3×(1-0.2)≈0.648。
高二数学概率综合试题
高二数学概率综合试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由分层抽样的含义即可得总共有54个工厂,所以抽取的6个工厂占总数的,所以每个区域的工厂的个数即可求出.(Ⅱ)因为6个被抽到的工厂中,A区有3个工厂,B区有2个,C区有1个.从中抽取两个工厂共有15种情况,一一列举出来.通过数2个工厂中都没来自区的共有3种情况,所以符合2个工厂中至少有1个来自区的共有12种,即可求得结论.试题解析:解:(Ⅰ)由题可知,每个个体被抽取到得概率为;设三个区被抽到的工厂个数为,则所以,故三个区被抽到的工厂个数分别为(Ⅱ)设区抽到的工厂为,区抽到的工厂为,区抽到的工厂为则从6间工厂抽取2个工厂,基本事件有:,,,,,,,,,,,,,共15种情况;2个都没来自区的基本事件有,,共3种情况设事件“至少一个工厂来自区”为事件,则事件为“2个都没来自区”所以所以,至少有一个工厂来自区的概率为【考点】1.分层抽样的思想.2.概率的计算中含至少通常考虑从对立面出发.3.甲乙两名学生通过某种听力测试的概率分别为,两人同时参加测试,其中有且只有一人通过的概率为()A.B.C.D.【答案】C【解析】依题意求其中有且只有一人通过的概率分为两种情况①甲通过乙没通过的概率为.②甲没通过乙通过的概率为.故有且只有一人通过的概率为.故选C.计算概率把握两个基本定理.【考点】1.概率的含义.2.分类的思想.4.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。
高二数学概率统计测试题学生版.doc
高二数学《概率统计》测试题时间: 90 分钟满分: 100 分姓名:学号:高二 ( )班一、选择题: (每小题 2 分,共 36 分)1、从 12 件同类产品中,有 10 件是正品, 2 件是次品,任意抽出 3 个的必然事件是 ( )。
A 、3 件都是正品 B 、至少有 1 件是次品 C 、3 件都是次品 D 、至少有 1 件是正品 2、从标有 1、2、3、 、9 的 9 张纸片中任取 2 张,那么这 2 张纸片数字之积为偶数的概率是 ( C )A 、1B 、7C 、13D 、1121818183、有 20 个零件,其中 16 个一等品, 4 个二等品,若从 20 零件中任取 3 个, 那么至少有 1 个是一等品的概率是 ( )。
A 、 C 161C 42B 、C162C 42C 、C161C 42 C 163D 、以上都不对C 203C 203C 2034、假设在 200 件产品中有 3 件次品,从中任意抽取5 件,其中至少有 2 件次品的概率是 ( )A 、 C 32 C 1973C 33C 1972B 、C 32 C 1973C 、C 2005C 31C 1974D 、C 2005C 1975C 2005C 2005C 2005C 20055、某厂大量生产某种小零件,经抽样检验知道其次品率是 1%,现把这种小零件每 6 件装成 1 盒,那么每盒中恰好含有 1 件次品的概率是 ( )。
A 、(99)6B 、0.01C 、C 611(1 1 )5D 、C 62(1)2(1 1 ) 4 100100 100100 1006、在 100 个产品中有 4 件次品,从中抽取 2 个,则 2 个都是次品的概率是 ( )。
A 、1B 、1C 、1D 、1502582549507、打靶时, A 每打 10 次可中靶 8 次, B 每打 10 次可中靶 7 次,若 2 人同时射击一个目标,则它们都中靶的概率是 ( )。
高二数学概率单元测试试题
高二数学概率单元测试制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题:〔每一小题5分,一共60分〕1.对某电视机厂消费的电视机进展抽样检测,数据如下:那么该厂消费的电视机优等品的概率为A .0.92B .0.94C .D .2.坛子里放有2个白球,3个黑球,从中进展不放回摸球. A 1表示第一次摸得白球,A 2表示第二次摸得白球,那么A 1与A 2是A .互斥事件B .HY 事件C .对立事件D .不HY 事件3.一个学生宿舍里有6名学生,那么6人的生日都在星期天的概率与6个人生日都不在星期天的概率分别为A .716与766 B .766与(76)6 C .776与(76)6 D .716与(76)64.抛两个各面上分别标有1,2,3,4,5,6的均匀的正方体玩具,“向上的两个数之和为3”的概率是A .31 B .61 C .181 D .3615.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两数,那么所取的两数和为偶数的概率为 A .12 B .12n C .121n n -- D .1221n nn C ++ 6.二人HY 地破译一个密码,它们能译出的概率分别为 0.6,,那么可以将此密码译出的概率为A .0.12B .0.42C .0.46D .7.某人投篮的命中率为32,连续投篮5次,那么“至少投中4次〞的概率为 A .243211 B .243112 C .24380 D .243328.射手甲击中靶心的概率为31,射手乙击中靶心的概率为21,甲乙两人各射击一次,那么65等于 A .甲、乙都击中靶心的概率 B .甲、乙恰有一人击中靶心的概率 C .甲、乙至少有一人击中靶心的概率D .甲、乙不全击中靶心的概率9.将一枚硬币连掷5次,假如出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值是 A .0 B .1 C .2 D .310.HY 器摇出的一组中奖号码为8,2,5,3,7,1。
高二数学第三章概率单元测试题-精选文档
2019—2019高二数学第三章概率单元测试题概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。
小编准备了高二数学第三章概率单元测试题,具体请看以下内容。
一、填空题(每小题2分,共48分)
1、在抛掷一枚普通正体骰子的过程中,出现点数为2的概率是 .
2、不透明的口袋中有质地、大小、重量相同的白色球和红色球数个,已知从袋中随机摸出一个红球的概率为13,则从袋中随机摸出一个白球的概率是________。
3、小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是
_______. 4、在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 . 5、小红和小明在操场上做游戏,他们先在地上画了半径为2m和3m的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .
6、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中
任意摸出一个白球的概率是16,则口袋里有蓝球___个.
7、飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学第三章概率单元测试题,希望大家喜欢。
高二数学概率试题
高二数学概率试题1.设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
【答案】(Ⅰ)0.5;(Ⅱ)0.8;(Ⅲ)分布列为,期望为2.4【解析】(Ⅰ)进入商场的1位顾客购买甲、乙两种商品中的一种这一事件指的是买甲商品不买乙商品或买乙商品不买甲商品,概率为;(Ⅱ)进入商场的1位顾客至少购买甲、乙两种商品中的一种这一事件的对立事件是一种也不买,因此概率为;(Ⅲ)由(Ⅱ)可知服从二项分布即,所以,期望为.试题解析:记表示事件:进入商场的1位顾客购买甲种商品,记表示事件:进入商场的1位顾客购买乙种商品,记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,(Ⅰ)(Ⅱ)(Ⅲ),故的分布列的分布列为:0123P所以【考点】概率分布列2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.3.将三颗骰子各掷一次,设事件A为“三个点数都不相同”,事件B为“至少出现一个6点”,则概率P(A|B)的值为A. B. C. D.【答案】A【解析】,由于,,因此【考点】条件概率的应用.4.有二种产品,合格率分别为0.90,0.95,各取一件进行检验,恰有一件不合格的概率为()A.0.45B.0.14C.0.014D.0.045【答案】B【解析】恰有一件不合格包含两种情况,第一种产品合格且第二种产品不合格或第一种产品不合格且第二种产品合格,所以概率为0.90×(1-0.95)+(1-0.90)×0.95=0.14,答案为B.【考点】事件的概率的计算5.设服从二项分布X~B(n,p)的随机变量X的均值与方差分别是15和,则n、p的值分别是()A.50,B.60,C.50,D.60,【答案】B【解析】由二项分布X~B(n,p)的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以答案为B.【考点】二项分布X~B(n,p)的均值与方差6.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为_________ .【答案】【解析】所有的不同填法有钟,填入A方格的数字大于B方格的数字的不同填法有种,因此所求概率为,答案为.【考点】计数原理与古典概型的概率计算7.已知随机变量服从正态分布N(2,σ2),且P(<4)=0.8,则P(0<<2)=( ) A.0.6B.0.4C.0.3D.0.2【解析】由P(<4)=0.8得P(>4)=1-0.8=0.2,则P(<0)=0.2, P(0<<2)=(0.8-0.2)/2=0.3,答案选C.【考点】正态分布8.春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动。
高二数学概率综合试题
高二数学概率综合试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.设随机变量,则的值为_____.【答案】【解析】随机变量,则【考点】二项分布点评:在二项分布,n表示试验的次数,P表示试验成功的概率,。
3.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.【答案】(1)(2)0123【解析】(1)记事件=”只有甲破译出密码”,可解得 3分(2) 的可能取值为0、1,、2、3;分8分10分【考点】独立事件的概率点评:主要是考查了独立事件的概率的公式以及分布列的求解,属于基础题。
4.从含有5张假钞的20张百元钞票中任意抽取2张,在其中1张是假钞的条件下,2张都是假钞的概率是()A.B.C.D.【答案】A【解析】设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即 P(A︱B).又P(AB)=P(A)=,P(B)=,由公式P(A︱B)==,故选A.【考点】本题考查了条件概率的求法,考查等可能事件的概率点评:此类问题体现了转化的数学思想.注意准确理解题意,看是在什么条件下发生的事件,本题是求条件概率,而非古典概率,属于中档题.5.(本小题满分10分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列,并求其数学期望E().【答案】略.【解析】(1)本小题主要考查互斥事件、相互独立事件等概率的基础知识,取出的4个球均为黑球表示从甲盒内各任取2个黑球,同时从乙盒中也取两个黑球,记出事件得到概率用相互独立事件同时发生的概率公式计算.(2)看清楚取出的4个球中恰有1个红球包含的情况,从甲盒内取出的2个球中,1个是红球,1个是黑球同时从乙盒内取出的2个红球为黑球,从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球.根据这两种情况计算结果即可.(3)先搞清可能取值有0,1,2,3,然后算出每个值对应的概率,列出分布列,再利用期望公式求解即可.6. .设随机变量—,且当二次方程无实根时,的取值概率为,则()A.1B.0.5C.0D.2【答案】A【解析】解:∵x2-2x+ξ=0无实根,∴得△<0.(-2)2-4ξ<0,∴ξ>1,结合正态分布的图象,它在x>μ时的概率为,故μ=1.故选A.7.(文科做)设集合,,且满足, 若.(Ⅰ) 求b = c的概率;(Ⅱ)求方程有实根的概率【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ) ∵, 当时,;当时,.基本事件总数为14.其中,b = c的事件数为7种.所以b=c的概率为.(Ⅱ)记“方程有实根”为事件A,若使方程有实根,则,即,共6种.∴8.如图所示,直线AB的方程为,向边长为2的正方形内随机地投飞镖,飞镖都能投入正方形内,且投到每个点的可能性相等,则飞镖落在阴影部分(三角形ABC的内部)的概率是()A.B.C.D.【答案】C【解析】略9.(本题满分12分)已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中。
高二数学概率试题
高二数学概率试题1.为弘扬民族古典文化,巿电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正分,否则记负分,根据以往统计,某参赛选手能答对每一个问题的概率为;现记“该选手在回答完个问题后的总得分为”.(1)求且的概率;(2)记,求的分布列,并计算数学期望.【答案】(1);(2)故的分布列为:.【解析】本题属于独立重复试验问题,求概率的关键是发生的次数,(1) ,说明回答个问题后,正确个,错误个.要满足,则第一题回答正确,第2题如果正确,则后面4题2对2错,第2题如果错误,则第3题正确,后面3题2对1错,由此可计算出概率;(2)由可知的取值为.按概率公式计算概率可得分布列,可计算出数学期望.试题解析:(1)当时,即回答个问题后,正确个,错误个. 若回答正确个和第个问题,则其余个问题可任意回答正确个问题;若第一个问题回答正确,第个问题回答错误,第三个问题回答正确,则其余三个问题可任意回答正确个.故所求概率为:.(2)由可知的取值为.,.故的分布列为:.【考点】次独立重复试验恰好发生次的概率,随机变量的分布列,数学期望.2.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.【答案】C【解析】5点中任选2点的选法有,距离不小于该正方形边长的选法有【考点】古典概型概率3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率【答案】【解析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|6<x<7,6<y<7}做出集合对应的面积是边长为1的正方形的面积,写出满足条件的事件对应的集合和面积,根据面积之比得到概率试题解析:设甲到达时间为x,乙到达的时间为y则全部结果构成的区域:设“甲乙能会面”的事件记为A则事件A的结果构成的区域:∴P(A)=【考点】几何概型概率4.已知关于的二次函数.(1)设集合和,分别从集合中随机取一个数作为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点, 求函数在区间上是增函数的概率.【答案】(1);(2).【解析】(1)本题是一个等可能事件的概率,试验发生包含的事件是,满足条件的事件是函数在区间上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率;(2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果.试题解析:要使函数在区间上是增函数, 需,且,即.(1)所有的取法总数为个, 满足条件的有共个, 所以所求概率.(2)如图求得区域的面积为,由,求得,所以区域内满足且的面积为,所以所求概率.【考点】古典概型;几何概型.【方法点晴】古典概型:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能相等.本题中的第一问属于古典概型,对于古典概型,任何事件的概率为:,所以做这类题,的主要方法就是计数;几何概型:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到所述区间内的某个特定区域中的点,这里的区域可以是线段,平面图形,立体图形等,本题就是利用面积比做的.5.下列叙述错误的是()A.若事件发生的概率为,则B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D.某事件发生的概率是随着试验次数的变化而变化的【答案】D【解析】对于A.若事件发生的概率为,则,那么显然成立。
高二数学条件概率试题答案及解析
高二数学条件概率试题答案及解析1.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(A|B)等于()A. B. C. D.【答案】A【解析】方法一:在事件B发生的条件下研究事件A,总共有5种结果,而事件A只含其中的2种,所以P(A|B)=;方法二:条件概率的计算公式,答案选A.【考点】条件概率2.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则等于()A.B.C.D.【答案】A【解析】.【考点】条件概率.3.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为________.【答案】【解析】设第一次摸出红球为事件A,第二次摸出红球为事件B,则P(A)=,P(AB)==.∴P(B|A)==.4.已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________.【答案】19%【解析】A=“产品为合格品”,B=“产品为一级品”,P(B)=P(AB)=P(B|A)P(A)=0.2×0.95=0.19.所以这种产品的一级品率为19%.5.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是__________(写出所有正确结论的序号).①;②;③事件与事件相互独立;④,,是两两互斥的事件;⑤的值不能确定,因为它与,,中究竟哪一个发生有关.【答案】②④⑤【解析】若从甲罐取出红球放入乙罐,则,,若从甲罐取出的不是红球放入乙罐,则,故①错误,②正确。
显然事件受事件的影响,故③错误。
由于事件,,不会同时出现,所以,,是两两互斥的事件,故④正确。
高二数学概率试题.doc
高二下同步测试一摆列合概率元一第I卷(共76分)注意:答完第I 卷,将答案填到第II 卷相的地点。
一、(本大共15 小,每小 4 分,共 60 分)1.若m, n N *且 m n 8, 则平面上的点(m, n)共有()A.21B..28D.302.将数字1,2, 3,4 填入号1,2, 3, 4 的四个方格里,每格填上一个数字,所填数字与四个方格的号均不一样的填法有()A.6 种B.9 种C.11 种D.23 种1 )8的睁开式中,x的一次的系数是()3.(3xxA.28B. -28C. 56D.-564. 若n N *, 2n C n1 2n 1C n2 2 n 2⋯ 1 n 1C n n 1 2 1 n的是()A. 2 nB.2nC.-1D.15.某班支部届行差,从已生的甲、乙、丙、丁四名候人中出三人分担当、副和委,而且定:上届任的甲、乙、丙三人不可以任原,不一样的任果有()A.15 种B.11种C.14 种D.23 种83836.8 +6被 49除所得的余数是()A . 1B. 14C. -14D.357.用 0, 1, 2, 3,4 五个数字可成不允数字重复的三位偶数的个数是()A.12B. 18C.30D.488.一条路原有m 个站,适客运需要新增添n 个站 (n>1) ,客运票增添了58 种(注:从甲站到乙站和从乙站到甲站需要两种不一样票),那么原有站()A.12B.13 个C.14 个D.15 个9.在接正八形的三个点构成的三角形中,与正八形没有公共的三角形有()A.24 个B.48 个C.16 个D.8 个10. 3 位男生, 3 位女生均匀分红三,恰巧每都有一位男生一位女生的概率是()211D .1A .B.C.305615262412, a0+a2+a4+a6的() 11.已知 (2x +4x+3) =a0+a1 (x+1)+a2(x+1)+⋯ +a6(x+1)361B.361C.362362A.22D.2212.某班 30 名同学,一年按 365 天算,起码有两人诞辰在同一天的概率是()A .1A36530A36530C.11D.136530B.36530 365303653013.假如 ab<0, a+b=1,且二式( a+b)3按 a 的降睁开后,第二不大于第三, a 的取范是()A. (-∞, - 1 ]B.[6,+∞)C.( -∞, + 4 ]D.( 1,+∞)25514. 奥运会足球洲区决(俗称九),中国和国是此中的两支球,要将9支球随机均匀分红 3 行比,中国与国分在同一的概率是()A.1/4B.1/6C.1/9D.1/1215.从一副 52 扑克牌(去掉正、副王牌)中取5 ,恰巧 3 同点,另 2 也是同点的概率是A. C133C122 B.C41C135 C.C131C132 D.A132C42C43()C525C525C525C525二、填空(本大共 4 小,每小 4 分,共 16 分)16.有一个被两订交弦分红四,在用 5 种色四涂色,要求每只涂一色,拥有共.17.甲、乙、丙、丁、戊 5 人随机站成一排,甲、乙相,甲、丙不相的概率是. 18.( 1+x)(2+x)(3+ x)⋯⋯ ()的睁开式中x18的系数是.19.已知会合A={1,2,3,4,⋯⋯ ,n} , A 的全部含有 3 个元素的子集的元素和.内江二中高二下同步测试一摆列组合概率单元测试姓名:班级:学号:总分:第 I 卷一、选择题:( 4× 15)题号总分答案二、填空题:( 4× 4)16171819第 II 卷(共 74 分)三、解答题(本大题共 6 题,共 74 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
答案:42105= 9.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。
121()242P A ==。
10.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色; (2)三次颜色全相同;(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。
答案:(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)(1)34 (2)14 (3)1211.已知集合{0,1,2,3,4}A =,,a A b A ∈∈;(1)求21y ax bx =++为一次函数的概率; (2)求21y ax bx =++为二次函数的概率。
答案:(1)425(2)45 12.连续掷两次骰子,以先后得到的点数,m n 为点(,)P m n 的坐标,设圆Q 的方程为2217x y +=;(1)求点P 在圆Q 上的概率; (2)求点P 在圆Q 外的概率。
答案:(1)118 (2)131813.设有一批产品共100件,现从中依次随机取2件进行检验,得出这两件产品均为次品的概率不超过1%,问这批产品中次品最多有多少件?答案:10件5.设随机变量的分布列为,则( ) A. B. C. D.6.设随机变量,且,则( ) X 3,2,1,2)(===i ai i X P ==)2(X P 91613141),(~2σμN X )()(C X P C X P >=≤=≤)(C X PA. 0B. 1C.D. 与和的取值有关 7.甲、乙两人在相同条件下进行射击,甲射中目标的概率为,乙射中目标的概率为,两人各射击1次,那么至少1人射中目标的概率为( )A. B. C. D.8.对同一目标独立地进行四次射击,已知至少命中一次的概率为,则此射手的命中率为( )A. B. C. D. 9.一个家庭中有两个小孩,已知其中有一个是女孩,问这时另一个小孩也是女孩的概率为( )(假定一个小孩是男孩还是女孩是等可能的)A. B. C. D. 10. 某种灯泡的耐用时间超过1000小时的概率为0.2,有3个相互独立的灯泡在使用1000小时以后,最多只有1个损坏的概率是( )A. 0.008B. 0.488C. 0.096D. 0.104CDBBD2. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为( )(A) (B) (C) (D)3. 15名新生,其中有3名优秀生,现随机将他们分到三个班级中去,每班5人,则每班都分到优秀生的概率是 .5. 甲、乙、丙3人一起参加公务员选拔考试,根据3 人的初试情况,预计他们被录用的概率依次为0.7、0.8、0.8. 求:(Ⅰ)甲、乙2人中恰有1 人被录用的概率;(Ⅱ)3人中至少的2 人被录用的概率.6. 对5副不同的手套进行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.(Ⅰ)求下列事件的概率:①A :甲正好取得两只配对手套; ②B :乙正好取得两只配对手套;(Ⅱ)A 与B 是否独立?并证明你的结论.7. 从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 21μσ1P 2P 21P P +21P P ⋅211P P -)1)(1(121P P ---81803132415141312132203103201101(A ) (B ) (C ) (D ) ( ) 10. 连续掷两次骰子,以先后得到的点数m 、n 为点P (m ,n )的坐标,那么点P 在圆x 2+y2=17外部的概率应为( )(A ) (B ) (C ) (D ) 16.甲、乙、丙三人分别独立解一道题,已知甲做对这道题的概率是,甲、丙两人都做错的概率是,乙、丙两人都做对的概率是. (Ⅰ)求乙、丙两人各自做对这道题的概率;(Ⅱ)求甲、乙、丙三人中至少有两人做对这道题的概率.2. A3. 5. (Ⅰ) ; (Ⅱ)0.416+0.448=0.864. 6.(Ⅰ)①,②; (Ⅱ),,故A 与B 是不独立的.7. C 10. D 16. (Ⅰ),(Ⅱ) 5、有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( A )A 、2880B 、3080C 、3200D 、3600 6.若,则的值为 ( B )A .0B .15C .16D .177.从3名男生和2名女生中选出3名代表去参加辩论比赛,则所选出的3名代表中至少有1名女生的选法共有 ( A )A .种B .种C .种D .种8.三张卡片的正反面上分别写有数字0与2,3与4,5与6,把这三张卡片拼在一起表示一个三位数,则三位数的个数为 ( B)A . 36B .40C .44D .48 9、展开式中含的正整数次幂的项共有 ( C )95942111211031321811181343121415105154841233C C C C A 38.0()91=A P ()91=B P ()63=AB P ()()()AB P B P A P ≠83323221()4234012341+=++++x a a x a x a x a x 1234+++a a a a 910122012x(A )1项 (B )2项 (C )3项 (D )4项10、从6人中选4人分别去北京,上海,广州,重庆四个城市游览,每人只去一个城市游览,但甲,乙两人都不去北京,则不同的选择方案有 ( B )A 、300种B 、240种C 、144种D 、96种二、填空题(每小题4分,共20分)11、在的展开式中,的系数是15,则实数= -0.5 ;12、的展开式中, 的系数是 207 ;(用数字作答)13、3名老师带领6名学生平均分成三个小组到三个工厂进行社会调查,每小组有1名老师和2名学生组成,不同的分配方法有 540 种。
(用数字作答) 14、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有____10____种。
15、一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于8分的取法有__66__种 (用数字作答).条件概率练习题2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.81 4.设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是 .5.一个口袋内装有2个白球,3个黑球,则(1)先摸出1个白球后放回,再摸出1个白球的概率?(2)先摸出1个白球后不放回,再摸出1个白球的概率?6.某种元件用满6000小时未坏的概率是43,用满10000小时未坏的概率是21,现有一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率7.某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。
如果要在班内任选一人当学生代表(1)求这个代表恰好在第一小组内的概率 (2)求这个代表恰好是团员代表的概率 10)(a x -7x a 310(1)(1)x x -+5x(3)求这个代表恰好是第一小组内团员的概率(4)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率8.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品合格率是95%,乙厂合格率是80%,则(1)市场上灯泡的合格率是多少?(2)市场上合格品中甲厂占百分之几?(保留两位有效数字)9.一个家庭中有两个小孩,已知其中一个是女孩,问这时另一个小孩也是女孩的概率?(每个小孩是男孩和女孩的概率相等)10.在一批电子元件中任取一件检查,是不合格品的概率为0.1,是废品的概率为0.01,已知取到了一件不合格品,它不是废品的概率是多少?例1 设50件产品中有3件次品,从中任意抽取2件,若已知取到的2件产品中至少有1件次品,求2件都是次品的概率。
例2 市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%;甲厂产品的合格率是95%,乙厂产品的合格率是80%。
买到一个产品是甲厂的,问它是合格品的概率?P B A(|)95%【实例1】3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是多少?若第一个同学没有抽到中奖奖券,则最后一名同学抽到中奖奖券的概率是多少?【实例2】有5道快速抢答题,其中3道理科题,2道文科题,从中无放回地抽取两次,每次抽取1道题,两次都抽到理科题的概率是多少?若第一次抽到理科题,则第二次抽到理科题的概率是多少?⒈已知5%的男人和2.5%的女人是色盲,现随机地挑选一人⑴此人是色盲患者的概率是多少?⑵若此人是色盲患者,则此人是男人的概率是多少?⒉盒子里有7个白球,3个红球,白球中有4个木球,3个塑料球;红球中有2个木球,1个塑料球.现从袋子中摸出1个球,假设每个球被摸到的可能性相等,若已知摸到的是一个木球,问它是白球的概率是多少?⒊(选做题)对以往数据分析结果表明,当机器调整良好时,产品的合格率为95%,而当机器发生某种故障时,其合格率为55%,每天早上机器开动时,机器调整良好的概率为98%,试求:(Ⅰ)某日早上第一个产品合格的概率是多少?(Ⅱ)当某日早上第一个产品合格时,机器调整良好的概率是多少?。