用不动点法求数列通项

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义:方程的根称为函数的不动点.

利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.

定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.

证明:因为是的不动点

由得

所以是公比为的等比数列.

定理2:设,满足递推关系,初值条件

(1):若有两个相异的不动点,则(这里)

(2):若只有唯一不动点,则(这里)

证明:由得,所以

(1)因为是不动点,所以,所以

令,则

(2)因为是方程的唯一解,所以

所以,所以

所以

令,则

例1:设满足,求数列的通项公式

例2:数列满足下列关系:,求数列的通项公式

定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,

证明:是的两个不动点

于是,

方程组有唯一解

例3:已知数列中,,求数列的通项.

其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知且,求数列的通项.

解: 作函数为,解方程得的不动点为

.取,作如下代换:

逐次迭代后,得:

已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为(0)

n n k k >的切线n l ,切点为(,)n n n P x y .

(1)求数列{}{}n n x y 与的通项公式;

(2)证明:13521n n n

x x x x x y -⋅⋅⋅⋅<

22x p q =-,12n n n x px qx --=-(34n =,,

…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14

q =

,求{}n x 的前n 项和n S . 已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的

导数,设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,. (1)求αβ,的值;

(2)证明:对任意的正整数n ,都有n a α>;

(3)记ln (12)n n n a b n a βα

-==-L ,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足,

*11212,,2

n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。

山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N +

∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)

当b=2时,记

1

()

4

n

n

n

b n N

a

+

+

=∈求数列{}

n

b的前n项和

n

T

相关文档
最新文档