高一数学必修一《集合》专题复习

合集下载

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们到这些东 西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集称为集。

3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例: 世界上最高的山、中国古代四大美女、⋯⋯ (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{⋯}如:{我校},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A ={我校},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来{a,b,c ⋯⋯} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②V e :画出一条封闭的曲线,曲线里面表示集合。

4、集合: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:aA 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。

高一数学(必修一)集合经典复习

高一数学(必修一)集合经典复习

高一数学(必修一)集合1.1.1集合的含义与表示(一)集合的含义1.我们在初中接触过“正数的集合”、“负数的集合”等,集合的含义又是什么呢?•①解不等式2x-1>3得x>2,所有大于2的实数集在一起称为这个不等式的解集.•②平面几何中,圆是到定点的距离等于定长的点的集合.•③自然数的集合0,1,2,3,……•④高一(5)班全体同学组成一个集合.•请想一想,集合这个概念应该怎样描述?•一般地,我们把所研究的对象如点、自然数、高一(5)班的同学统称为,把一些组成的总体叫做,通常用表示.•(二)集合中元素具的有几个性质特征(或称三要素)•⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.•⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只•能算一个,即集合中的元素是不重复出现的.•⑶无序性-即集合中的元素没有次序之分.•例题(1)给定的集合中的元素必须是确定的.•“我国的小河流”能不能组成一个集合,你能用集合的知识解释吗?•.•例题(2)集合中的元素必须是互不相同的,•由1,-1,1,3组成的集合为;若a∈{a2,1}则a=.•例题(3)若构成两集合的元素是一样的,则称两集合,若集合{1,2}与集合{a,1}相等,则a=. •例子 1 A={1,3},问3,5哪个是A的元素? 2 B={素质好的人}能否表示成为集合?•• 3 C={2,2,4}表示是否正确?• 4 D={太平洋,大西洋} E={大西洋,太平洋} 集合D ,E是不是表示相同的集合?••(三)常用的数集及其记法•我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,…表示集合中的元素.•全体非负整数组成的集合称为自然数集,记为N•所有正整数组成的集合称为正整数集,记为N+•全体整数组成的集合称为整数集,记为Z•全体有理数组成的集合称为有理数集,记为Q•全体实数组成的集合称为实数集,记为R•常见的数集符号:自然数集:;正整数集:;整数集:;有理数集:;实数集:. •(四)集合的表示方法•1.把集合中的元素一一列举出来.•并用括起来表示集合的方法叫做,如大于-1且小于10的偶数构成的集合可表示为•练习题:用列举法表示下列集合:•(1)方程(x2-1)(x2+2x-8)=0的解集为.•(2)方程|x-1|=3的解集为.(3)绝对值小于3的整数的集合为.•2.用集合所含元素的表示集合的方法,称作描述法.•具体方法是:在花括号内先写上表示这个集合元素的,再画一条竖线,在这条竖线后面写出这个集合中元素所具有的.它的一般形式是{x∈A|p(x)}或{x|p(x)}.“”为代表元素,“”为元素x必须具有的共同特征,当且仅当“x”适合条件“p(x)”时,x才是该集合中的元素,此法具有抽象概括、普遍性的特点,当元素个数较多时,一般选用此法.•练习题1°试用描述法表示下列集合:•(1)方程x2-3x+2=0的解集为.(2)不等式3x+2>0的解集为.•(3)大于1小于5的整数组成的集合为.•练习题2°用列举法表示下列集合:•(1)6的正约数组成的集合.________(2)不等式2x-1<5的自然数解组成的集合.________ •(3)古代我国的四大发明组成的集合.________•本节重点:集合的概念,集合中元素的三个特性及集合的表示方法.•本节难点:集合中元素的性质的理解.•正确理解概念,准确使用符号,熟练进行集合不同表示方法的转换是学好本节的关键.•1.要辩证理解集合和元素这两个概念:•(1)符号∈和∉是表示元素和集合之间关系的,不能用来表示集合之间的关系.元素与集合之间是个体与整体的关系,不存在大小与相等关系.•(2)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.•2.深刻认识集合中元素的四种属性•(1)任意性:集合中的元素可以是任意的对象,无论是数、式、点、线、人,还是其它的某种事或物,只要它们具有某种共同属性,集中在一起就能组成一个集合,我们把集合的这一性质称为元素的任意性;在中学,我们主要研究对象是一系列的数的集合或点的集合.•(2)确定性:判断一些对象是否可以组成一个集合,主要方法是,在观察任意一个对象时,应该可以确定这一对象要么属于这一集合,要么它不属于这一集合.例如:给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其它对象都不属于这个集合.如果说“由接近3的数组成的集合”这里“接近3的数”是没有严格标准、比较模糊的概念.它不能构成集合.如“好人”、“较大的树”等都不能成为集合.••(3)无序性:在表示一个集合时,我们只需将某些指定的对象集在一起,虽然习惯上会将元素按一定顺序来写出,但却不强调它们的顺序,当两个集合中的元素相同,即便放置顺序完全不同时,它们也表示同一集合.•例如:{a,b}和{b,a}表示同一个集合.•(4)互异性:对于任意一个集合而言,在这一集合中的元素都是互不相同的个体.如:给出集合{1,a 2},我们根据集合中元素的互异性,就已经得到了关于这个集合的几点信息,即这一集合中有两个不同的元素,其中的一个是实数1,而另一个一定不是1,所以a ≠1,且a ≠-1. • 3.正确理解列举法• (1)元素间用分隔号“,”隔开;(2)元素不重复;• (3)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后才能用省略号.• 4.合理选用集合的表示方法• 列举法与描述法各有优点,列举法可以看清集合的元素,描述法可以看清集合元素的特征,一般含有较多或无数多个元素时不宜采用列举法,因为不能将集合中的元素一一列举出来,而没有列举出来的元素往往难以确定.• 5.要正确理解描述法• 用描述法表示集合时注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)等.(2)元素具有怎样的属性?• 用描述法表示集合时,若需要多层次描述属性时,可选用联结词“且”与“或”等联结;若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.• 6.特别注意以下几种集合,这是我们研究集合时的主要研究对象.• (1)一般数集.(2)特殊数集:如方程的解集;不等式的解集等.(3)平面点集.(4)图形集. • 7.集合语言• 集合语言是现代数学的基本语言,也就是用集合的有关概念和符号来叙述问题的语言.包括文字语言、符号语言、图形语言.• 要熟练地将集合的三种语言进行相互转化.• 8.解集合问题的关键• 解决集合问题的关键是弄清集合由哪些元素所构成.如何弄清呢?关键在于把抽象问题具体化、形象化.也就是把用描述法表示的集合用列举法来表示,或用图示法来表示抽象的集合,或用图形来表示集合.• 例如,在判断集合A ={x |x =4k ±1,k ∈Z }与集合B ={y |y =2n -1,n ∈Z }是否为同一集合时,若从代表元素入手来分析它们之间的关系,则比较抽象,而用列举法来表示两个集合,则它们之间的关系就一目了然.即A ={…,-1,1,3,5,…},而B ={…,-1,1,3,5…}• ∴A 与B 是同一集合.基础练习1.已知A ={x|3-3x>0},则下列各式正确的是( )A .3∈AB .1∈AC .0∈AD .-1∉A2.下列四个集合中,不同于另外三个的是( )A .{y|y =2}B .{x =2}C .{2}D .{x|x 2-4x +4=0}3.下列关系中,正确的个数为________.①12∈R ;②2∉Q ;③|-3|∉N *;④|-3|∈Q .4.已知集合A ={1,x ,x 2-x},B ={1,2,x},若集合A 与集合B 相等,求x 的值.巩固练习一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1} C.{x=1} D.{x2-2x+1=0} 3.已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈A B.0∈A C.3∈A D.1∈A4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.。

高一数学必修一集合复习练习题及单元测试含及解析

高一数学必修一集合复习练习题及单元测试含及解析

集合练习题1.设集合 A = {x|2≤x<4},B={x|3x-7≥8-2x},那么A∪B等于()A. {x|x≥3}B. {x|x ≥ 2}C.{x|2≤x<3}D.{x|x≥4}2.集合A= {1,3,5,7,9},B={0,3,6,9,12},那么A∩ B=()A. {3,5}B.{3,6}C.{3,7}D.{3,9}3. 集合A= {x|x>0},B={x|-1≤x≤2},那么A∪B=()A. {x|x≥-1}B.{x|x≤2 }C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足 M?{,,,} ,且 M∩{,,} = {,} 的集合M 的个数是 () A. 1B .2C .3D.45.集合A= {0,2 , a} , B = {1 ,} .假设 A∪ B= {0,1,2,4,16},那么a的值为() A. 0B.1C.2D.46.设S= {x|2x + 1>0} , T= {x|3x - 5<0} ,那么 S∩ T= ()A. ?B.{x|x<-1/2}C. {x|x>5/3}D.{x|-1/2<x<5/3}7. 50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,那么仅参加了一项活动的学生人数为________ .8.满足 {1,3}∪A={1,3,5}的所有集合 A 的个数是 ________ .9.集合A= {x|x ≤1} , B= {x|x ≥a} ,且 A∪B =R,那么实数 a 的取值范围是________ .10. 集合A= { - 4,2a - 1,} , B= {a - 5,1 - a,9} ,假设 A ∩B= {9} ,求 a 的值...11 .集合A= {1,3,5},B={1,2,-1},假设A∪ B={1,2,3,5},求x 及A∩B.12 . A = {x|2a ≤ x≤a+ 3} , B={x|x<-1或x>5},假设A∩ B=?,求a的取值范围.13 . (10 分 ) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有 6 人,同时参加物理和化学小组的有 4 人,那么同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10 小题,每题 5 分,共 50 分。

高中必修一集合复习讲义[1]

高中必修一集合复习讲义[1]

集合专题复习【例题解析】题型1. 正确理解和运用集合概念理解集合的概念,正确应用集合的性质是解此类题目的关键.例1.已知集合M={y|y=x 2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}例2.若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道集 合定 义 特 征 一组对象的全体形成一个集合 确定性、互异性、无序性 表示法 分 类 列举法{1,2,3,…}、描述法{x|P} 有限集、无限集 数 集 关 系 自然数集N 、正整数集+*N 或N 、整数集Z 、有理数集Q 、实数集R 、空集φ 元素和集合的关系是”或“∉∈如N 3M 2∉∈或 集合与集合之间的关系是",,,,, ,"A C u =⊄⊆⊂ 运 算 性 质交集 A ∩B ={x|x ∈A 且x ∈B}; 并集 A ∪B ={x|x ∈A 或x ∈B}; 补集 A C U ={x|x ∉A 且x ∈U},U 为全集 A ⊆A ; φ⊆A ; 若A ⊆B ,B ⊆C ,则A ⊆C ; A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ;A ∩B =A ⇔A ∪B =B ⇔A ⊆B ; A ∩C U A =φ; A ∪C U A =I ;C U ( C U A)=A 方 法 韦恩示意图 数轴分析 注意:① 区别∈与⊂、⊂与⊆、a 与{a}、φ与{φ}、{(1,2)}与{1,2};② A ⊆B 时,A 有两种情况:A =φ与A ≠φ4.③ 对于任意集合B A ,,则 =B C A C U U )(B A C U ;B C A C U U )(B A C U =; ④ 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是12-n ,所有非空子集的个数是12-n ,所有非空真子集的个数是22-n 。

高一数学集合知识点归纳及典型例题

高一数学集合知识点归纳及典型例题

集合一、知识点: 1、元素:(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集交集 并集 补集4、集合的性质:(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ (2) ;,A B B A A A ⋃=⋃=⋃φ (3) );()(B A B A ⋃⊆⋂(4);B B A A B A B A =⋃⇔=⋂⇔⊆(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。

例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。

例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。

\例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b ,c 的值。

例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,(1)若Φ=B A , 求m 的范围;(2)若A B A = , 求m 的范围。

例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。

三、练习题1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ∉ C. a = M D. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( ) A.}21,2,3{- B. {-3}C. }21,3{-D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a 6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x yy x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( ) A. Φ B. M C. N D. R8. 已知 A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。

高一数学系列总复习之《集合》

高一数学系列总复习之《集合》

高一数学复习——第一节会合一、内容提示:1.会合中元素的表示和性质:(1)元素与会合:“∈”或“” .(2)会合与会合之间的关系:包括关系、相等关系 .2.会合间的运算关系:(1)交集:由全部属于会合 A 且属于会合 B 的元素所构成的会合,叫做会合 A与 B 的交集,记为 A∩B,即 A∩ B={x|x ∈A 且 x∈ B}.(2)并集:由全部属于会合 A 或属于会合 B 的元素所构成的会合,叫做会合 A 与会合 B 的并集,记为 A∪ B,即 A∪B={x|x ∈ A或 x∈B}.(3)补集:一般地,设 S 是一个会合, A 是 S 的一个子集(即 A S),由 S 中全部不属于 A 的元素构成的会合,叫做子集 A 在全集 S 中的补集(或余集),记为S A,即S A={x|x∈S且x A}.二、例题分析:【例 1】设会合 P={m|- 1< m≤ 0} ,Q={m∈R|mx2+4mx-4<0 对随意实数 x 恒成立 } ,则以下关系中建立的是()A.P QB.Q PC.P=Q32【例 2】已知 A={x|x +3x +2x>0} ,B={x|xD.P∩ Q=Q2<x≤ 2} ,A∪B={ x|x>- 2},求 a、b 的值 .三、典题精练:1. 会合A={(x,y)|x+y=0},B={(x,y)|x- y=2} ,则A∩B 是()A. (1,- 1)B.x1C.{(1,- 1)}D.{1 ,- 1} y12. 设 A、B、I 均为非空会合,且知足A B I ,则以下各式中错误的是..()A. (I A)∪B=I B.(I A)∪(I B)=I C.A∩(I B)= D.(I A)∩(I B)=I B3. 已知集合 M={x|x 2< 4} , N={x|x 2- 2x - 3 < 0} ,则会合 M∩ N 等于()A. {x|x<-2}B. {x|x> 3}C. {x|- 1< x< 2}D. {x|2 <x<3}4. 已知会合A={x∈R|x <5- 2 },B={1,2,3,4},则(R A)∩B等于A. {1,2,3,4}B. {2,3,4}C. {3,4}5. 设 M、N 是两个非空会合,定义M与 N 的差集为 M-N={x|x-(M-N)()D. {4}∈M且 x N},则 M等于A. NB. M∩NC. M∪ND. M6. 设集合 A={5 , log 2( a+3 ) } ,会合 B={a , b}. 若 A∩ B={2} ,则 A∪B=______________.7.已知会合 A={ 0,1},B={ x|x∈A,x∈N*}, C={ x|x A},则 A、B、C之间的关系是8. 设A={x|1___________________.< x < 2} , B={x|x >a},若A B ,则a的取值范围是___________________.9. 已知会合A={x ∈ R|ax 2+2x+1=0,a ∈R}只有一个元素,则 a 的值为__________________.10. 记函数 f (x)=log2(2x-3)的定义域为会合M,函数 g(x)=(x3)(x1) 的定义域为会合 N. 求:(1)会合 M、N;(2)会合 M∩N、M∪N.11. 已知 A={x∈R|x 2+2x+p=0}且 A∩{x ∈R|x >0}=,务实数p的取值范围.12. 若 B={x|x 2- 3x+2<0} ,能否存在实数 a,使 A={x|x 2-( a+a2)x+a3<0} 且A ∩ B=A?请说明你的原因 .四、方法反应:1.对于会合问题,要第一确立属于哪种会合(数集、点集或某类图形),而后确定办理此类问题的方法 .2.对于会合的运算,一般应把各参加运算的会合化到最简,再进行运算.3.含参数的会合问题,多依据会合元素的互异性来办理 .4.会合问题多与函数、方程、不等式相关,要注意各种知识的举一反三 . 解决问题经常用数形联合、分类议论等数学思想 .5.加强数形联合、分类议论的数学思想 .标准答案例题分析【例 1】分析: Q={m∈R|mx2+4mx-4<0 对随意实数 x 恒建立 } ,对 m分类:① m=0时,- 4<0 恒建立;2②m<0 时,需=(4m)- 4× m×(- 4)< 0,解得 -1 < m< 0.答案: C评论:此题简单忽视对m=0的议论,应惹起大家足够的重视.【例 2】解: A={x| -2<x<- 1 或 x>0} ,设 B=[x1, x2],由 A∩B=(0,2]知 x2=2,且- 1≤x1≤ 0,①由 A∪ B=(- 2, +∞)知- 2≤ x1≤- 1.②由①②知 x1=- 1,x2= 2,∴ a=-( x1+x2)=- 1,b=x1x2=- 2.评论:会合的交与并的涵义,娴熟掌握在数轴上表示区间(会合)的交与并的方法 .典题精练1. 分析:xy0x1,答案: C x y2y 1.2.分析一:∵ A、B、I 知足 A B I ,先画出文氏图,依据文氏图可判断出 A、C、D都是正确的 .IBA分析二:设非空会合 A、B、I 分别为 A={1} ,B={1,2} ,I={1 ,2,3} 且知足 A B I.依据设出的三个特别的会合A、B、I 可判断出 A、 C、 D 都是正确的 .答案:B 3.分析:M={x|x 2<4}={x| -2<x<2} ,N={x|x 2-2x- 3< 0}={x| -1<x<3} ,联合数轴,-2-10123 x∴M∩N={x| -1< x< 2}.答案: C4. 分析:R A={x∈R|x ≥5-2},而5- 2 ∈(3,4),∴(R A)∩B={4}.答案: D5.分析: M- N={x|x ∈ M且 x N}是指图( 1)中的暗影部分 .M N M N(1)(2)相同 M -( M -N )是指图( 2)中的暗影部分 . 答案: B6. 分析:∵ A ∩B={2} ,∴ log 2(a+3) =2. ∴a=1. ∴b=2. ∴ A={5, 2} ,B={1,2}. ∴ A ∪ B={1, 2, 5}. 答案: {1 ,2,5}7. 分析:用列举法表示出 B ={1},C ={ ,{1},{ 0},A },易见其关系 . 这里A 、B 、C 是不一样层次的会合, C 以 A 的子集为元素,同一层次的会合可有包括关系,不一样层次的会合之间只好是附属关系 . 答案: B A ,A ∈C ,B ∈C 8. 分析: A B 说明 A 是 B 的真子集,利用数轴(以以下图)可知 a ≤1.a 12答案: a ≤19. 分析:若 a=0,则 x=- 12. 若 a ≠0, =4- 4a=0,得 a=1.答案: a=0 或 a=110. 解:( 1) M={x|2x -3>0}={x|x > 3};2N={x| ( x - 3)(x -1)≥ 0}={x|x ≥3 或 x ≤1}. (2)M ∩N={x|x ≥3} ; M ∪N={x|x ≤1 或 x >3}.211. 解:∵ A ∩{x ∈R|x >0}=, ∴( 1)若 A= ,则 =4-4p <0,得 p > 1;( 2)若 A ≠ ,则 A={x|x ≤ 0} ,即方程 x 2+2x+p=0的根都小于或等于 0. 设两根为 x 1 、x 2,则4 4 p 0, x 1 x 22 0,∴0≤p ≤1.x 1 x 2 p 0.综上所述, p ≥0.12. 解:∵ B={x|1 <x <2} ,若存在实数 a ,使 A ∩B=A ,则 A={x| ( x -a )(x -a 2)< 0}.(1)若 a=a 2,即 a=0 或 a=1 时,此时 A={x| (x -a )2< 0}= ,知足 A ∩B=A ,∴ a=0 或 a=1.(2)若 a 2>a ,即 a >1 或 a <0 时,A={x|0 <x <a 2} ,要使 A ∩B=A ,则a11a22≤a ≤ 2 ,∴ 1<a ≤ 2 .(3)若 a 2<a ,即 0<a <1 时,A={x|a < x < a 2} ,要使 A ∩B=A ,则a221a1≤ a ≤ 2,∴ a ∈ .综上所述,当 1≤a ≤2 或 a=0 时知足 A ∩B=A ,即存在实数 a ,使 A={x|x 2-(a+a 2)x+a3< 0} 且 A∩ B=A建立 .。

高一数学必修一集合知识点复习资料

高一数学必修一集合知识点复习资料

高一数学必修一集合知识点复习资料一.知识归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。

高一数学必修一知识+典型习题整理

高一数学必修一知识+典型习题整理

第一章集合一、集合有关概念1. 集合的中元素的三个特性:(1) 元素的确定性•如:世界上最高的山(2) 元素的互异性•如:由HAPPY的字母组成的集合H,A, P,丫⑶元素的无序性•如:a,b,c和a,c,b是表示同一个集合2. 常用数集的表示:非负整数集(自然数集):N ;正整数集N或N ;整数集:Z ;有理数集:Q 实数集:R3. 集合的分类:(1) 有限集:含有有限个元素的集合(2) 无限集:含有无限个元素的集合⑶空集:不含任何元素的集合,记作:.例:x|x25二、集合间的基本关系1. “包含”关系一一子集注意:A B有两种可能:① A是B的一部分;② A与B是同一集合.反之:集合A不包含于集合B ,或集合B不包含集合A,记作A B或B A2•“相等”关系:A B ( A B且B A)实例:设A x | x2 1 0 , B 1, 1 “兀素相同则两集合相等”3.集合的性质:①任何一个集合是它本身的子集即A A.C②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A芒B或(B A)③如果A B, B C ,那么A C .④如果A B同时B A那么A B .4.子集个数问题规定:空集是任何集合的子集,空集是任何非空集合的真子集1个真子集.有n个元素的集合,含有2n个子集,2n四、典型例题:1.下列四组对象,能构成集合的是( )A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2. 集合a,b,c的真子集共有_______ 个3. 若集合M y | y x2 2x 1, x R , N x| x 0 ,则M与N的关系是.4. 设集合A x|1 x 2,A x|x a,若A B,则a的取值范围是_—5. 已知集合A x | x22x 8 0 , B x | x25x 6 0 , C x | x2mx m219 0 ,若B C,求m的值.第二章函数、函数的相关概念1 函数的对应形式:一对一、多对一.2 •定义域:能使函数式—X的集合称为函数的定义域.常见定义域类型:①分母0;②偶次方根的被开方数0 ;对数式的真数N 0 ;④指数、对数式的底a 0且a 1 :⑤x0中x 0. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关) ;②定义域一致(两点必须同时具备)3. 值域:先考虑其定义域(1)观察法⑵配方法(3) 代换法4. 函数图象变换规律:①平移变换:左________ ;②翻折变换: f (x) _______ 去左留右、右翻左f(x)f (x)________ 去下留上、下翻上I f (x)二、函数的性质I. 函数的单调性(局部性质)I•增函数:x1, x2 D 且%x2,都有f(xj f (x2)减函数:x1, x2D且x x2,都有f(xj f (x2)II. 图象的特点增函数:图象从左到右是上升的;减函数:图象从左到右是下降的.III. 函数单调区间与单调性的判定方法A.定义法:(证明步骤:取值、作差、变形、定号、下结论)B .图象法:从图象上看升降C .复合函数的单调性规律:“同增异减”2•函数的奇偶性(整体性质)I. 用定义判断函数奇偶性的步骤:①首先确定函数的定义域,并判断其是否关于原点对称;0确定f (x)与f ( x)的关系;◎作出相应结论:若为奇函数,则有f( x) f (x)或f (x) f( x) 0 ;若为偶函数,则有f( x) f (x)或f (x) f( x) 0II. 函数图象的特征奇函数:图象关于原点对称;偶函数:图象关于y轴对称.3.函数解析式主要方法有:①凑配法;②待定系数法;③换元法;④消参法三、典型习题:1. 已知函数f(x)满足2f(x) f( x) 3x 4,贝U f (x) = ________ . _____2. 设函数f (x)的定义域为[0, 1],则函数f (x2)的定义域为_________________ ;若函数f(x 1)的定义域为[2, 3],则函数f(2x 1)的定义域是3. 设f(M是R上的奇函数,且当x [0,)时,f(x) x(1 3 x),则当x ( ,0)时f(x)= __________________ f(x)在R上的解析式为____________________________8. 求下列函数的单调区间: ⑴ y―2x~3( 2) y x 2 6 x 129. 设函数 仁口 匚二判断它的奇偶性并且求证:f(1) f (x ).1 x 2第三章基本初等函数「、指数函数(一)指数与指数幕的运算1 •根式的概念: 一般地,如果x n a ,那么x 叫做a 的n 次方根,其中n >1,且n € N • 负数没有偶次方根;0的任何次方根都是 0,记作n 0 0.na na (n 为奇数);na n|a|a (a0)(n 为偶数) a (a0)2 •分数指数幕正数的分数指数幕的意义,规定:ma n va m(a 0, m,n N *, n 1), am齐1n 1 *——(a 0,m,n N ,n 1) ma na0的正分数指数幕等于 0, 0的负分数指数幕没有意义 3•实数指数幕的运算性质rrr sr srsrr s① a r • a r a r s ;②(a )a ;③(ab ) a a(二)指数函数及其性质 1. 指数函数:形如 y a x (a 0,且a 1)叫做指数函数2. 指数函数的图象和性质x 2(x4.函数2f (x) x ( 1 x 2x(x 2)5.求下列函数的定义域: 1)2)-H-,若 f(x) 3,则 x =⑴ x 2 2x 15⑴y⑵ y 、1(x 1)26.求下列函数的值域: (1) y x 2 2x 34x 57.已知函数f (x 1)x 2 4x ,求函数f (x>, f (2x 1)的解析式.二、对数函数 (一)对数1 •对数的概念:一般地,如果 a x N (a 0,a 1),那么数x 叫做以a 为底N 的对数, 记作:x log a N ( a —底数,N —真数,log a N —对数式) 说明:①注意底数的限制a 0,且a 1 ;g a x N log a N x ;◎注意对数的书写格式. log a_N-i两个重要对数:............① 常用对数:以10为底的对数IgN ;② 自然对数:以无理数 e 2.71828 为底的对数的对数In N .指数式与对数式的互化幂值 真数=N log a N = b底数如果a 0,且a 1 , M 0, N 0,那么: ◎ Iog a (M • N) log a M + log a N ; ② lOg a M log a M - log a N ;N◎ log a M n n log a M (n R).注意:换底公式log c blog a b c( a 0 ,且 a 1 ; c 0,且 c 1 ; b 0). log c a利用换底公式推导下面的结论(1)log a m b n— log a b ; ( 2) log a b 1 m log b a(二)对数函数1.对数函数:形如 y log a x(a 0,且a 1)叫做对数函数,其中 x R . 注意:y 2log 2x , y lo ^x 都不是对数函数,而只能称其为对数型函数.552. 对数函数的图象和性质:指数2.对数的运算性质对数定点(1, 0)(三)幕函数1. 幕函数:形如y x (a R )的函数称为幕函数,其中 为常数.2. 幕函数性质归纳I. 所有的幕函数图象都不经过第四象限,但都过点( 1,1);II.0时,幕函数的图象通过原点,并且在区间 [0,)上是增函数;特别地:①当1时,幕函数的图象下凸,概括为“高高昂起”②当0 1时,幕函数的图象上凸,概括为“匍匐前进”;III.0时,幕函数的图象在区间 (0,)上是减函数.四、典型习题1.已知a 12.计算:① log32;② 24|og 23= ________ ; 253叭27 2log 52=;log 27 64③0.0643( 7)0[( 2)3]; 16 0.75 0.01;= ---------------83. 函数 f(x) a" 5x6 ___________________________ 2(a 0且a 1)过定点 ;函数f(x) = log a (2x + 1) - 2恒过定点 _______________ ; 函数 f(x) log a (x 2 2x 2)5(a0且a 1)过定点 ___________________ .4. 函数y log 1 (2x 2 3x 1)的递减区间为 _____________ .25. 若函数f(x) log a x(0 a 1)在区间[a 2a ]上的最大值是最小值的3倍,则a6. 已知 f(x) log a 1_ (a 0且a 1),求:1 x(1) f (x>的定义域;(2)判断f(x)的奇偶性;(3)求使f(x) 0的x 的取值范围. 7. 画出下列函数图象 (2) f(x) = |log 3x|(1, 0)(1) f(x) = ln|x|0且a 1,函数ya x 与y log a ( x )的图象只能(W ⑻(C)(D ]8. 已知函数f(x) = log a(x2 - 2x - 3) (a> 0且a工1),讨论f(x)的单调性9. 求函数f(x) ln( x2 4x 3)的值域.。

高一数学必修1第一章知识点归纳

高一数学必修1第一章知识点归纳

高一数学必修1第一章知识点总结一、集合 (一)集合有关概念1、集合的含义:练习1:下列四组对象,能构成集合的是( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2、元素与集合的关系(1)如果a 是集合A 的元素,则a 属于A ,记作a____A (2)如果a 不是集合A 的元素,则a 不属于A ,记作a_____A 3、常用数集自然数集______,正整数集______,整数集______,有理数集______,实数集______。

练习2:用适当的符号填空 (1)5______N , (2)Q Q ____,___21π-(3){}()(){}1|,____2,1,2|______3+=≤x y y x x x (4){}32|_______52+≤+x x ,4、集合的中元素的三个特性(1) 元素的______ (2) 元素的______ (3) 元素的 ______练习3:若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 练习4:下面有四个命题:(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5、集合常用的表示方法: 1) _______:{a,b,c ……}2) ________:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x>2} ,{x| x-3>2}3) __________:例:{不是直角三角形的三角形}; 4) Venn 图练习5:集合M={0,2,3,7},P={x|x=ab ,a 、b ∈M ,a ≠b},用列举法表示,则P=___________. 练习6: 集合 }0)(|{=x f x 0}f(x)|{x >f(x)}y |{x =f(x)}y |{y = )}(|,{x f y y x =)(含义练习7:已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,试用列举法表示集合A = ___ _ 练习8:方程组⎩⎨⎧=-=+42y x y x 的解集是( )(A ) {}13-=或x (B ){})1,3(- (C ){}1,3- (D ))1,3(- (二)集合间的基本关系1.“包含”关系:子集(B A ⊆): 注:有两种可能:① 任何一个集合是它本身的子集,即:________B (A )2.“相等”关系:________ ,如图所示:3.“真包含”关系:________,如图所示:练习10:能满足关系{a,b}⊆M⊆{a,b,c,d,e}的集合M的个数是A.8个B.6个C.4个D.3个4.不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的_______,空集是任何非空集合的_______。

高一数学必修1复习各章知识点总结(人教)集合

高一数学必修1复习各章知识点总结(人教)集合

高一数学必修1各章知识点总结第一章 集合概念一、集合有关概念 1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,如:世界上最高的山(2)元素的互异性,如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性, 如:{a ,b ,c }和{a ,c ,b }是表示同一个集合 3.集合的表示:{ … } 如:{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A ={1,2,3,4,5} (2)集合的表示方法:列举法与描述法 (3)元素与集合的关系:,a A b A ∈∉ ◆注意:常用数集及其记法: 非负整数集(即自然数集):N ;正整数集:N*或 N + ; 整数集:Z ;有理数集:Q ;实数集:R (1)列举法:{a ,b ,c ……},元素有限个(2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

如:{x ∈R| x -3>2},{x | x -3>2}(3)语言描述法,如:不是直角三角形的三角形组成的集合 (4)Venn 图:4.集合的分类:(1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合,记为Φ。

如:{x |x 2= -5} 二、集合间的基本关系 1.“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分;(2)A 与B 是同一集合。

反之: 集合A 不包含于集合B ,或集合B 不包含集合A ,记作A ⊆/B 或B ⊇/A 2.“相等”关系:A=B实例:设A={x |x 2-1=0},B={-1,1},“元素相同则两集合相等” 即:① 任何一个集合是它本身的子集,A ⊆A②真子集:如果A ⊆B ,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)或者说,如果A ⊆B ,且存在元素x B ∈,且x A ∉ ③如果A ⊆B ,B ⊆C ,那么A ⊆C ④如果A ⊆B 同时 B ⊆A 那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集, 空集是任何非空集合的真子集。

高一数学必修一复习资料

高一数学必修一复习资料

第一章§ 集合1.关于集合的元素的特征(1)确定性(组成元素不确定的如:我国的小河流)(2)互异性(3)无序性集合相等:构成两个集合的元素完全一样(1)若集合A中的元素与集合B中的元素完全相同则称集合A等于集合B,记(2)例:已知A={1,1+d,1+2d},B={1,q,q2},若A=B,求的,d,q的值。

解:d=-,q=-2.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈Aa不是集合A的元素,就说a不属于(not belong to)A,记作子集与真子集:B中的元素,那么集合A叫做集合B若集合P P不包含于Q,或Q不包含P.A B中至少有一个元素不属于A,那么集合A叫做集合B或.子集与真子集的性质:3.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R4.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;(2)描述法:把集合中的元素的公共属性描述出来,写在大括号 {}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;(3)自然语言描述法:小于10的所有正偶数组成的集合。

({2,4,6,8})2、用例举法表示练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )A 直角三角形B 锐角三角形C 钝角三角形D 等腰三角形5.集合间的基本运算并集(∪):一般的由所有属于集合A 或属于集合B 的元素组成的集合,成A∪B,即:,韦恩图如下:交集(∩):一般地,由属于集合A 且属于集合B 的所有元素组成的集韦恩图如下:全集(U):一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就成这个集合为全集,记为U。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结高中数学必修一集合知识点总结一、集合有关概念1.集合的含义:将一些指定的对象集合在一起形成一个集合,每个对象称为一个元素。

2、集合的中元素的三个特性:①.元素的确定性; ②.元素的互异性; ③.元素的无序性描述:(1)对于给定的集合,集合中的元素是确定的,任何对象要么是给定集合的元素,要么不是。

(2)在任何给定的集合中,任何两个元素都是不同的对象。

当同一对象包含在一个集合中时,它只是一个元素。

(3)集合中的元素相等,没有顺序。

所以判断两个集合是否相同,只需要比较它们的元素是否相同,而不需要考察排列顺序是否相同。

(4)集合元素的三个特征使得集合本身具有确定性和整体性。

3、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{xx2=-5}4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:枚举和描述。

注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N高考数学一轮复习知识点二轮专题性复习目前所有学校都已结束第一轮,进入第二轮。

第一轮一般以技能技巧逐点扫描梳理为主,综合运用为辅,第二轮以专题复习为主。

这个阶段涉及的问题大多是综合题,提高综合题是提高数学成绩的根本保证。

解决好综合题,对于那些想考一等,对数学成绩期望很高的学生来说,是一条救命稻草,而他们在小何那里往往是不及格的。

对于那些二流的人来说,这是一个尝试的好地方。

一、综合题在高考中的位置与作用数学综合往往是大卷中的重点和最后一道题。

它在高考中起着重要的作用,高考的分类等级和选拔任务主要依靠这类题型来完成预设的目标。

现在的高考综合题,已经从单纯的知识叠加,转变为知识、方法、能力,尤其是创新能力的综合。

综合题是NMET数学的精华,具有知识容量大、解题方法多、能力要求高等特点,突出数学思维方法的应用,要求考生具有一定的创新意识和创新能力。

专题1 集合中的含参问题-高一数学必修一专题复习训练含答案

专题1 集合中的含参问题-高一数学必修一专题复习训练含答案

专题1 集合中的含参问题-高一数学必修一专题复习训练含答案一、选择题 1.若集合,则实数的取值范围是 ( )A .B .C .D .【答案】D 【解析】2.已知集合{}0,5,10A =,集合{}22,1B a a =++,且{}5A B ⋂=,则满足条件的实数a 的个数有 ( )A . 0个B . 1 个C . 2 个D . 3 个【答案】B【解析】{}22,1B a a =++,且{}5A B ⋂=,则有25a +=或215a +=. 32a =,或-2. 当3a =时, {}5,10B =,此时{}510A B ⋂=,,不满足题意; 当2a =时, {}54B =,,满足题意;当2a =-时, {}0,5B =,此时{}50A B ⋂=,,不满足题意, 所以满足条件的实数a 只有1个. 故选B . 3.已知点)在平面直角坐标系的第二象限内,则的取值范围在数轴上可表示为(阴影部分)( )A .B .C .D .【答案】C 【解析】 因为在第二象限,所以, 所以,故选C.4.已知m ,,集合,集合,若,则A . 1B . 2C . 4D . 8 【答案】A 【解析】5.已知集合A ={x |x 2-2x -3≤0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是( )A . (-1,+∞)B . [-1,+∞)C . (3,+∞)D . [3,+∞)【答案】C【解析】[]13A =-,, (),B a =-∞;∵A B ⊆;∴3a >;∴a 的取值范围为3+∞(,),故选C . 点睛:研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.解指数或对数不等式要注意底数对单调性的影响.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍,熟练画数轴来解交集、并集和补集的题目. 6.已知集合,,若,则实数的取值范围为( )A .B .C .D .【答案】C 【解析】7.已知集合A ={-1,0,a },B ={ x |0<x <1},若A ∩B ≠Ø,则实数a 的取值范围是A . {1}B . (0,1)C . (1,+∞)D . (-∞,0)【答案】B 【解析】1,0,B B -∉∉ 若A B φ⋂≠ ,则a B ∈ ,则01a << ,选B .8.已知集合2{|280}P x x x =--≤, {|}Q x x a =≥, ()C P Q ⋃=R R ,则a 的取值范围是A . ()2,∞-+B . ()4,∞+C . (],2∞--D . (],4∞-【答案】C【解析】因为{|24}P x x =-≤≤, {|}Q x x a =≥,则{|24}C P x x x =-R 或,又因为()C P Q ⋃=R R ,所以2a ≤- 本题选择C 选项. 9.集合,,若,则的取值范围是( )A .B .C .D .【答案】B 【解析】 根据题意,可得,,要使,则,故选B.二、填空题 10.已知集合,.若,则实数__________.【答案】0 【解析】11.设全集 ,,,则的值为____________.【答案】2或8 【解析】 由题意,可知,依据补集可得, 则有,即,解得或,即实数的值为或.12.集合{}{}1,|A x x B x x a ==<,若R A C B ⊆,则实数a 的取值范围_________ 【答案】1a ≤【解析】∵集合{}{}1,|,{|},1R R A x x B x x a C B x x a A C B a ==<∴=⊆∴,,厔∴实数a 的取值范围是 1.a ≤ 13.已知,若,则的取值范围是___________.【答案】【解析】14.已知集合,且有4个子集,则实数的取值范围是________.【答案】【解析】由题意得.所以.因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以,所以,解得且.故实数a的取值范围是.故答案为.三、解答题15.已知,若,求实数的取值范围.【答案】【解析】①当时,即,有;②当,则,解得: ;综合①②,得的取值范围为.16.设全集,集合,集合,且,求的取值范围. 【答案】【解析】17.已知集合{}121A x a x a =-<<+, {}01B x x =<< (1)若12a =,求A B ⋂; (2)若A B ⋂=∅,求实数a 的取值范围. 【答案】(1){}01x x <<;(2)12a ≤-或2a ≥. 【解析】试题分析:(1)把a 的值代入A 求出解集,找出A 与B 的交集,求出A 与B 补集的并集即可; (2)根据A 与B 的交集为空集,确定出a 的范围即可. 试题解析: (1)当12a ={}12,012A x x B x x ⎧⎫=-<<=<<⎨⎬⎩⎭,∴A B ⋂= {}12012x x x x ⎧⎫-<<⋂<<⎨⎬⎩⎭{}01x x =<<(2)因为A B ⋂=∅,当A =∅时,则121a a ->+,即2a <- 当A ≠∅时,则11a -≥或210a +≤,解得: 12a ≤-或2a ≥. 综上: 12a ≤-或2a ≥. 18.设全集为R ,,,(1)求及(2)若集合,,求的取值范围. 【答案】(1);(2).【解析】19.已知的定义域为集合A,集合B=(1)求集合A;(2)若A B,求实数的取值范围.【答案】(1)(2)【解析】解:(1)由已知得即∴(2)∵∴解得∴20.已知集合A={x|x<-3或x≥2},B={x|x≤a-3}.(1)当a=2时,求(∁R A)∩B;(2)若A∩B=B,求实数a的取值范围.【答案】(1){}|31x x -≤≤-;(2)0a <.21.已知集合{}2|2940 A x x x =-+>,集合{}2|2, R B y y x x x C A ==-+∈,集合{}|12 1 C x m x m =+<≤-.(1)求集合B ;(2)若A C A ⋃=,求实数m 的取值范围. 【答案】(1)[]8,1-;(2)2m ≤或3m ≥.【解析】试题分析:(1)解出一元二次不等式得到集合A ,故而可求出R C A ,对一元二次函数通过配方法求出其在给定区间内的范围即可;(2)A C A ⋃=等价于C A ⊆,分为C =∅和C ≠∅两种情形,借助于数轴可得m 的取值范围.试题解析:(1)22940x x -+> , 12x ∴<或4x >,∴()1,4,2A ⎛⎫=-∞⋃+∞ ⎪⎝⎭, 1,42R A ⎡⎤=⎢⎥⎣⎦ð. 于是, ()221211,,42y x x x x ⎡⎤=-+=--+∈⎢⎥⎣⎦,解得[]8,1y ∈-, []8,1B ∴=-. (2)∵A C A ⋃=,∴C A ⊆. 若C =∅,则211m m -≤+,即2m ≤, 若C ≠∅,则2{1212m m >-<或2{14m m >+≥,解得3m ≥,综上,实数m 的取值范围是2m ≤或3m ≥.22.设集合()()222{|320},{|2150}A x x x B x x a x a =-+==+-+-=(1)若{}2A B ⋂=,求实数a 的值(2)若A B A ⋃=,求实数a 的取值范围 【答案】(1)5,1a a =-=.综上所述: 5,1a a =-=23.已知集合A ={x |x <-2或3<x ≤4},B ={x |x 2-2x -15≤0}. (1) 求A ∩B ;(2) 若C ={x |x ≥a },且B ∩C =B ,求实数a 的取值范围. 【答案】(1) A ∩B ={x |-3≤x <-2或3<x ≤4}.(2) a ≤-3.【解析】试题分析 :(1)对于集合的交并补运算,我们常画数轴来解决.(2)由B ∩C =B 得B C ⊆,也可以画数轴解决.试题解析:(1) B ={x |-3≤x ≤5},A ∩B ={x |-3≤x <-2或3<x ≤4}. (2) ∵ B ∩C =B ,∴ B ⊆C ,∴ a ≤-3. 24. 已知集合.(1)若,求实数的值; (2)若,求实数的取值范围.【答案】(1)2;(2).【解析】25.已知集合{}2|3 2 0A x R x x =∈-+=, {}|1 1 2B x Z x =∈-≤-≤, {}21,1,1C a a =++,其中a R ∈.(1)求A B ⋂, A B ⋃; (2)若A B A C ⋂=⋂,求C .【答案】(1) A ⋂ B ={1,2}, A ⋃ B ={0,1,2,3};(2) C ={0,1,2}.。

高一数学必修一集合知识点及例题讲解

高一数学必修一集合知识点及例题讲解

高一数学必修一集合知识点及例题讲解高一是数学学习的关键阶段,而集合作为数学基础中的基础,对于后续数学知识的学习具有重大意义。

本文将针对高一数学必修一中的集合知识点进行梳理,并通过例题讲解,帮助大家更好地理解和掌握这部分内容。

一、集合的基本概念1.集合的定义:集合是由一些确定的、互不相同的对象构成的整体。

2.集合的表示方法:列举法、描述法、图形法等。

3.集合的元素:集合中的每一个对象称为元素,用小写字母表示。

4.集合的基数:集合中元素的个数称为集合的基数。

5.集合间的关系:包含、相等、不相交。

6.集合的运算:并集、交集、补集。

二、集合的表示方法及例题1.列举法:将集合中的元素全部列举出来。

例题:用列举法表示集合A={x|x是小于10的自然数,且是3的倍数}。

解答:A={3, 6, 9}。

2.描述法:用性质、规律等描述集合。

例题:用描述法表示集合B={x|x是正整数,且x的平方根是整数}。

解答:B={x|x=n^2,n为正整数}。

3.图形法:用图形表示集合。

例题:用图形法表示集合C={(x,y)|x^2+y^2=1}。

解答:C表示单位圆上的所有点。

三、集合的运算及例题1.并集:两个集合A和B的并集,记作A∪B,表示A和B中所有元素组成的集合。

例题:设A={1, 2, 3},B={3, 4, 5},求A∪B。

解答:A∪B={1, 2, 3, 4, 5}。

2.交集:两个集合A和B的交集,记作A∩B,表示A和B中共有的元素组成的集合。

例题:设A={1, 2, 3},B={3, 4, 5},求A∩B。

解答:A∩B={3}。

3.补集:在全集U中,集合A的补集,记作A,表示不属于A的所有元素组成的集合。

例题:设U={1, 2, 3, 4, 5},A={1, 2, 3},求A。

解答:A={4, 5}。

通过以上集合知识点及例题讲解,相信大家对集合的概念、表示方法和运算有了更深入的理解。

高中数学必修1第一章集合重难点总结归纳(在校或培训老师备课必备)

高中数学必修1第一章集合重难点总结归纳(在校或培训老师备课必备)

1、指定的某些对象的全体称为集合,用大写字母ABCD表示,集合中每个对象叫元素,用小写字母abcd表示.从概念上说集合可以包括任何事物(山川、河流、高楼、车辆、数字、字母、名字等)。

但我们做题一般讲的是数集。

2、自然数集、正整数集、整数集、有理数集、实数集都要记住。

3、对于元素比较少的集合我们常用列举法表示,元素很多或是无穷的,我们一般用描述法表示,通常用不等式范围、方程、函数表达式来表示!4、用描述法表示奇数集、偶数集、第一、二、三、四像限内点集、X轴上、y轴上点的集合、x正半轴、y负半轴上等集合。

5、集合的三特性:①确定性、就是题目给的条件要确定,不能模棱两可(一般考的少)②无序性、就是元素间不讲顺序,{1、2、3}、{3、2、1}为同一集合③互异性、就是同一个集全中不能有重复的元素,这个考的最多,一般是算x或是a,算得和已知元素重复的话就舍去。

6、不含任何元素的叫空集∅、空集在高中数学里像幽灵般的存在!做题要时时小心,不要忘了它的存在。

7、对于属于、包含、包含于、真包含的符号要记清。

8、子集:可以包括本身和比本身小的集合,空集是任何集合的子集,子集个数公式=2n个、n为元素个数。

真子集:真子集不能包括本身的所有子集、空集是任何非空集合的真字集。

真子集个数公式=2n-1个、n为元素个数交集:两个集合相同的元素或是不等式集范围的重叠部分。

并集:所有元素加起来,重复的算一次,题中多见的是不等式集,则表示在数轴上所覆盖的所有区域。

全集:题中所给的最大的那个集合,一般用U表示。

补集:全集里把某集合除开,剩下的部分叫某集合在全集里的补集。

不等式集的话,注意=号,原集合有等号的,补集没有,原集合没有等号的,补集要有等号。

对于不等式集间的交并补,通常用画数轴来搞定。

经典题型:1、A={1、3、a2}、B={a+2、1}若B⊆A 求a的值。

2、2、U={1、2、3、4、5、6}、A={1、2、3}、 B={3、4、5}求:A∪B、CuA∩ B3、U=R、A={x│2≤x<8}、B={x│6<x≤10}求:A∩B、 CuB∪A4、 A={x│-2≤x<5},B={x│2m-2<x≤m+3}若A∩B=∅求m的取值范围。

苏教版数学高一【必修一】第一章《集合》复习学案

苏教版数学高一【必修一】第一章《集合》复习学案

A=,|{S x x ∈且u (u u (u (((D )与无理数π相差很小的全体实数3.已知集合P M ,满足M P M = ,则一定有( )(A )P M = (B )P M ⊇ (C ) M P M = (D )P M ⊆ 4.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 的元素个数为( )(A )10个 (B )8个 (C )18个 (D )15个5.设全集U=R ,M={x|x≥1}, N ={x|0≤x <5},则(U M )∪(U N )为( )(A ){x|x≥0} (B ){x|x <1 或x≥5} (C ){x|x≤1或x≥5} (D ){x| x <0或x≥5 }6.设集合{}x A ,4,1=,{}2,1x B =,且{}x B A ,4,1=⋃,则满足条件的实数x 的个数是( )(A )1个 (B )2个 (C )3个 (D )4个. 7.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) (A )3个 (B )4个 (C )5个 (D )6个8.已知集合{}}8,7,3{},9,6,3,1{,5,4,3,2,1,0===C B A ,则C B A )(等于( ) (A){0,1,2,6} (B){3,7,8,} (C){1,3,7,8} (D){1,3,6,7,8}9.满足条件{}{}1,01,0=A 的所有集合A 的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个 10.如右图,那么阴影部分所表示的集合是( )(A))]([C A C B U (B))()(C B B A(C))()(B C C A U (D)B C A C U )]([ 二、填空题 13.集合P=(){}0,=+y x y x ,Q=(){}2,=-y x y x ,则P∩Q=14.已知集合A=12,6x NN x ⎧⎫∈∈⎨⎬-⎩⎭用列举法表示集合A= 15.已知U={},8,7,6,5,4,3,2,1(){}1,8,U A B ⋂=(){}2,6,U A B ⋂=()(){}4,7,UU A B ⋂=则集合A=三、解答题16.已知集合A={}.,0232R a x ax R x ∈=+-∈1)若A 是空集,求a 的取值范围;2)若A 中只有一个元素,求a 的值,并把这个元素写出来; 3)若A 中至多只有一个元素,求a 的取值范围.17.已知全集U=R ,集合A={},022=++px x x {},052=+-=q x x x B{}2U A B ⋂=若,试用列举法表示集合A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、已知集合

数 的取值范围。
,且
,求实
7、设 A {x x2 4x 0}, B {x x2 2(a 1)x a2 1 0} ,其中 x R , 如果 A B B ,求实数 m 的取值范围。
8、已知集合 A { x | 2 a x 2 a}, B { x | x2 5x 4 0} . (1)当 a 3时,求 A B ;(2)若 a 0 ,且 A B ,求实数 a 的取值范围.
10.已知 集合 A x | 2 x 8, B x |1 x 6,C x | x a,U R .
(I)求 A B , CU A B ; (II)若 A C ,求实数 a 的取值范围.
1
二.集合基本运算之字母运算(学生极易出错:不等号方向,端点问题,数轴法看图)
1、设 A={x|1<x< 2},B={x|x<a },若 A B,则 a 的取值范围是( )
2
A. (,2] B.[1,)
C. (1,)
D.[-1,2]
4、已知 A y y x2 2x 2 , B y y 2x 1 ,则 A B _________。
5、已知集合 A {x | x 1或x 2 },函数 g(x) 9 x2 的定义域为集合 B 。(Ⅰ)求
A B 和 A B ; (Ⅱ)若 C x | 4x p 0,C A ,求实数 p 的取值范围.
高一数学必修一《集合》专题复习
一.集合基本概念及运算
1.集合1,2,3的真子集的个数为( )
A.5
B.6
C.7
D.8
2.已知 A 1, 2,3, B 2, 4 ,定义 A B x | x A且x B ,则 A B
A. 1, 2,3 B. 2, 4 C. 1,3 D. 2
3. 已 知 集 合 M {(x, y) | x y 2}, N {(x, y) | x y 4} , 那 么 集 合 M N 为
()
A. x 3, y 1 B. (x, y) | x 3或y 1 C. (3, 1) D. {(3, 1)}
4 . 已 知 集 合 M {y | y x2 2, x R} , 集 合 N y| y 2x , 0 x 2 , 则
( RM) N (

A. 1, 2
B. 2, 4
A、a≥2
B、a≤1
C、a≥1
D、a≤2
2、已知集合
A
y
|
y
log 2
x,
x
1,
B
y
|
y
1 2
x
,
x
1,

AB


A.
y
|
0
y
1
2
B.
y | 0 y 1 C .
y
|
1 2
y
1
D.
3、设集合 M {x | 1 x 2}, N {x | x k 0} ,若 M N ,则 k 的取值范围是( ▲ )
7. 已知 A x 2a x a 3, B (5, ) ,若 A B , 则实数 a 的取值范围为
▲.
8.已知集合

数 的取值范围。
,且
,求实
9.设U R ,集合 A x | x2 3x 2 0 , B x | x2 (m 1)x m 0 ;
若 B A,求 m 的值。
C. 1, 2
D.2, 4
5.已知 A y y x2 2x 2 , B y y 2x 1 ,则 A B _________。 6、已知 x R ,集合 A 3, x2 , x 1 , B x 3, 2x 1, x2 1
如果 3 ,求 x 的值和集合 .
相关文档
最新文档