线性代数复习2(精选)

合集下载

《线性代数》知识点-归纳整理

《线性代数》知识点-归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。

线性代数复习二

线性代数复习二

在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题.一、加强计算能力训练,切实提高计算的准确性相当一部分同学在复习做题过程中会有这样的体会:对问题所涉及的概念、原理都很清楚,计算方法也知道,但就是无法算出正确答案来,或是计算有误,或是根本无法演算下去,造成不应有的丢分.例1 (2003年数学三)已知齐次线性方程组112233112233112233112233()0,()0,()0,()0.n n n n n n nn a b x a x a x a x a x a b x a x a x a x a x a b x a x a x a x a x a b x +++++=⎧⎪+++++=⎪⎪+++++=⎨⎪⎪+++++=⎪⎩其中10.ni i a =≠∑试讨论12,,,n a a a b 和满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.分析 本题思路方法比较直接:当系数矩阵的行列式不为零时,仅有零解;当系数矩阵的行列式等于零时,有非零解.但涉及到行列式的计算、初等变换化矩阵为阶梯形以及求基础解系等大量的计算问题,特别是含有多个参数,进一步增加了计算的难度.解 方程组的系数行列式123123123123||n n n n a b a a a a a b a a a a a b a a a a a b++=++A 231231231231nin i nini ni n i nin i ab a a a aba b a a a b a a b a aba a a b====+++=++++∑∑∑∑23232312311()11n n ni n i n a a a a b a a a b a a b a a a a b=+=+++∑231100()0000n ni i a a a b a b b b==+∑11().nn i i b a b -==+∑(1)当100||.0,ni i b a b =≠+≠≠∑且时,方程组仅有零解A ;(2)当b =0时,原方程组的同解方程组为11220.n n a x a x a x +++=由10ni i a =≠∑可知a i (i =1,2,…,n )不全为零,不妨设10a ≠.因为秩r (A )=1,取23,,,nx x x 为自由未知量,可得方程组基础解系为T121(,,0,,0),a a =- αT231(,0,,,0),a a =- α…,T11(,0,0,,).n n a a -=- α当1100nn i i i i b a a b ===-≠≠∑∑时,由知,系数矩阵可化为123000000n a b a a a b b bb b b +⎛⎫⎪-⎪ ⎪→- ⎪ ⎪⎪-⎝⎭A →12311100101011ni n i a a a a a =⎛⎫-⎪ ⎪ -⎪ ⎪- ⎪ ⎪⎪-⎝⎭∑110010001001000-⎛⎫ ⎪- ⎪ ⎪→ ⎪- ⎪ ⎪⎝⎭由于秩r (A )=n -1,易知Ax =0的基础解系为T(1,1,1,,1).= α 评注1 本题行列式的计算方法很多,例如,系数矩阵可表示为121212n nn a a a a a a b b a a a ⎛⎫ ⎪ ⎪=+=+ ⎪ ⎪⎝⎭A EB E , 而r (B )=1,可方便地求出B 的特征值为0,0,…,01ni i a =∑,于是b =+A B E 的特征值为1211,,,,,nn n ii b b b b a λλλλ-=====+∑从而根据特征值可求出行列式为 11||||().nn i i b ba b -===+∑ A B +E评注2 当1ni i b α==-∑时,注意到系数矩阵A 的秩为r (A )=n -1,而T (1,1,,1)=≠0 α显然为A X =0的一个解,即可作为基础解系.例2 (2003年数学一)设矩阵1*322010232,101,,223001-⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A PB P A P 2+求B E 的特征值与特征向量,其中A *为A 的伴随矩阵,E 为3阶单位矩阵.分析 本题是基础题型,思路非常明确:先求A *及1P -,然后计算B =P -1A *P 及B +2E ,最后求B +2E 的特征值、特征向量,但计算量大,稍有疏忽,将很难得到最终的正确结果.解 由*322522232252,223225--⎛⎫⎛⎫⎪ ⎪==-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭可得A A 又由010101001⎛⎫ ⎪= ⎪ ⎪⎝⎭P 可得111100,001--⎛⎫ ⎪= ⎪ ⎪⎝⎭P于是 1*700254,225-⎛⎫ ⎪==-- ⎪ ⎪--⎝⎭B P A P 9002274.225⎛⎫ ⎪+=-- ⎪ ⎪--⎝⎭B E 根据9|(2)|274225λλλλ-⎛⎫⎪-=- ⎪ ⎪-⎝⎭E B +E 2(9)(3),λλ=-- 可知B +2E 的特征值为1239, 3.λλλ===解 [9E -(B +2E )] x =0,得基础解系为12111,1,01-⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα因此属于129λλ==的所有特征向量为12121111,,01k k k k -⎛⎫⎛⎫ ⎪ ⎪-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭是不全为零的任意常数.解[3E -(B +2E )] x =0,得基础解系为3301.1λ⎛⎫⎪= ⎪ ⎪⎝⎭因此属于的所有特征向a =33301,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭量为 为非零的任意常数.评注 本题直接计算,工作量是相当大的.若由定义A α=λα,有*||λ=进而有A A ,αα11*11*1()()(),λ-----==|A |B P PA P P PA =P αααα11(2)()2.λ--⎛⎫=+ ⎪⎝⎭|A |B +E P P αα若求出A 的特征值λ及对应特征向量α, 则B +2E 的特征值为||2λ+A 及对应特征向量P -1α这样就不必求A *. 且根据222222222,222222222⎛⎫⎛⎫⎪ ⎪=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭知A E 的特征值为0,0,6,从而A 的特征值为1,1,7.二、扩展公式结论蕴涵,努力探索灵活解题途径线性代数概念多,公式、定理也多,巧妙地利用已有的公式与结论,往往可以达到简化计算的目的.例如有关A *的公式结论有:AA *= A *A =|A |E ,由此还可推出一系列相关的公式:*1(1)||||(2),n n -=≥A A **2()||(3),n n -=≥A A A *1*()(2).n k kn -=≥A A(2)若A 可逆,则A *=| A | A -1, (A *)-11.||=A A(3) *,(),()1,()1,(2).0,() 1.n r n r r n n r n =⎧⎪==-≥⎨⎪<-⎩A A A A(4) T **T 1**1()(),()().--==A A A A(5) 若A 可逆,且λ为A 的特征值,则A *有一个特征值为λ|A |.例3 (2000年数学一)设矩阵A 的伴随矩阵*100001001010038⎛⎫ ⎪⎪= ⎪ ⎪-⎝⎭A ,且ABA -1=BA -1+3E ,其中E 是4阶单位矩阵,求矩阵B .分析 本题相当于解矩阵方程.若先从A *求出A -1及A ,再代入已知关系式求B ,则计算量会相当大.考虑到题设与A *有关,若先用A *A =AA *=|A |E 化简,则方便得多.解 由ABA -1=BA -1+3E 先右乘A ,得 AB =B +3A , 再左乘A *,并利用A *A =|A |E ,得A *AB =A *B +3A *A ,即 |A |B = A *B +3| A |E . 再由|A *|=|A |4-1=|A |3,得 |A |3=8,即 |A |=2. 于是有2B =A *B +6E , (2E -A *)B =6E . 故11100001006(2)610100306--⎛⎫ ⎪ ⎪=-=⎪- ⎪-⎝⎭*B E A60000600.60600301⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭ 评注 题设与A *有关时,一般均可考虑利用AA *=A *A =|A |E 及其相关公式,结论先化简、再计算.例4 (2003年数学四)设矩阵21112111a ⎛⎫⎪= ⎪ ⎪⎝⎭A 可逆,向量11b ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是矩阵A *的一个特征向量,λ是a 对应的特征值,其中A *是A 的伴随矩阵,试求,a b λ和的值.分析 题设与A *有关,先用A A *= A * A =|A |E 化简. 解 已知A * α=λα,利用A A *=|A |E ,有 | A |α=λA α, 因为A 可逆,知||0,0,λ≠≠于是有A ||λ=A A ,αα 即21111||121,1111b b a λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ① 解此方程组得a =2, b =1或-2.又211||1214112==A ,由式①可知:当b =1时λ=1; 当b =-2时λ=4. 又如,有关特征值与相似矩阵的重要公式和结论有:(1)设λ1,λ2,…,λn 为n 阶方阵A 的n 个特征值,则f (λ1),…,f (λn )为f (A )的n 个特征值,其中f (A )为A 的多项式.且121122,n nn a a a λλλ+++=+++ 12||.n λλλ= A(2) 若r (A )=1,则A 的特征值为λ1=λ2=…=λn -1=0,λn =a 11+a 22+…+a nn .(3) 若A ~B ,则|A |=| B |,r (A )=r (B ),特征多项式相同:|λE - A |=|λE -B |,λ∀,从而特征值相同,进而有a 11+a 22+…+a nn =b 11+b 22+…+b nn .例5 (2000年数学三)若4阶方阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式|B -1-E |= .分析 利用相似矩阵有相同的特征值的结论及通过特征值求行列式的结论即可. 解 由A ~B ,知B 的特征值是1111,,,2345,于是B -1的特征值是2,3,4,5,从而B -1-E 的特征值是1,2,3,4,故行列式 |B -1-E |=1·2·3·4=24.例6 (2001年数学一、三)设1111400011110000,,11110000111100⎛⎫⎛⎫⎪⎪⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭A B 则A 与B(A) 合同且相似. (B) 合同但不相似.(C) 不合同但相似. (D) 不合同且不相似.分析 本题的关键知识点是:两个实对称矩阵若相似,则必合同.又r (A )=1,其特征值为12344,0.λλλλ====显然A 、B 为实对称矩阵,且A ~B ,于是A 与B 也合同.故应选(A ).评注 当A 、B 为实对称矩阵时,若A ~B ,则A 、B 有相同的特征值⇒x TAx 与x TBx 有相同的正负惯性指数⇒A 与B 合同.但若A 、B 为非对称矩阵,则A 与B 不合同(合同矩阵必为对称矩阵).例7(2007年数学一至四) 设矩阵⎪⎪⎪⎭⎫⎝⎛------=211121112A , ⎪⎪⎪⎭⎫⎝⎛=000010001B ,则A 与B (A)合同, 且相似. (B) 合同, 但不相似 .(C)不合同, 但相似. (D) 既不合同, 又不相似.解 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似. 又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同. 故选(A) .评注1)若A 与B 相似, 则| A |=| B |;r (A )= r (B );tr (A )= tr (B ); A 与B 有相同的特征值. 2)若A 、B 为实对称矩阵, 则 A 与B 合同⇔ r (A )= r (B ), 且A 、B 有相同的正惯性指数.三、注重前后知识联系,努力培养综合思维能力线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查.例如:①行列式|A |=0⇔矩阵A 不可逆⇔秩r (A )<n⇔A 的行(列)向量组线性相关 ⇔Ax =0有非零解⇔λ=0是矩阵A 的特征值②β可由α1,α2,…,αn 惟一线性表示β=x1a1+x2α2+…+x nαn⇔Ax=β有惟一解x=(x1,x2,…,x n)T,A=(α1,α2,…,αn)⇔r(A)=r(A β)=n⇔|A|≠0⇔Ax=0只有零解⇔λ=0不是A的特征值③AB=0⇔A(b1,b2,…, b s)=0, B=( b1, b2,…, b s)⇔Ab j=0, j=1,2,…,s⇔b1,b2,…,b s均为Ax=0的解(⇒r(A)+r(B)≤n)⇔若b j≠0且A为n阶方阵时,b j为对应特征值λj=0的特征向量④AB=C⇔A(b1, b2,…, b r)=(C1, C2,…, C r)⇔Ab j=C j,j=1,2,…,r⇔b j为Ax=C j的解.⇔C1, C2,…, C r可由A的列向量组α1, α2,…, αs线性表示.[⇒r(C)=r(AB)≤r(A)或r(B)].例8(2003年数学一)设向量组I: α1, α2,…, αr可由向量组II:β1,β2,…,βs线性表示,则(A) 当r<s时,向量组II必线性相关. (B) 当r>s时,向量组II必线性相关.(C) 当r<s时,向量组I必线性相关. (C) 当r>s时,向量组I必线性相关.分析本题可由定理“若α1, α2,…, αs可由β1, β2,…, βt线性表出,且s>t,则α1, α2,…, αs 线性相关”,直接得正确选项(D).若不熟悉上述定理,可由反例通过排除法找到正确选项.也可根据上述结论④用秩来判定:由题设,存在s×r矩阵P,使(α1, α2,…, αr)=( β1, β2,…, βs)P s×r,则r(α1, α2,…, αr)=r{( β1,…, βs)P}≤r(β1,…, βs)≤s.当r>s时,有r(α1, α2,…, αr)≤s<r,此时α1, α2,…, αr必线性相关.例9(2002年数学一、二)已知4阶方阵A=α1, α2, α3, α4), α1, α2, α3, α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.分析本题可将A=(α1, α2, α3, α4),β=α1+α2+α3+α4及x=1234xxxx⎛⎫⎪⎪⎪⎪⎪⎝⎭代入Ax=β,找出具体的方程,再按通常方法求解.也可由β=α1+α2+α3+α4即β可由α1, α2, α3, α4线性表示,相当于已知1111⎛⎫⎪⎪⎪⎪⎝⎭为Ax=β的特解,及α1-2α2+α3+0·α4=0与α2, α3, α4线性无关知1210⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭为Ax =0的基础解系.再根据解的结构理论知Ax =β的通解为1111x k ⎛⎫ ⎪ ⎪=+ ⎪ ⎪⎝⎭1210⎛⎫⎪-⎪ ⎪ ⎪⎝⎭,k 为任意常数. 评注 Ax =β的解与β可由A 的列向量组线性表示之间可相互转换.例10 已知3阶矩阵A 与三维向量x ,使得向量组x , Ax , A 2x 线性无关,且满足A 3x =3Ax -2A 2x .(1) 记P =(x , Ax , A 2x ),求3阶矩阵B ,使A =PBP -1; (2) 计算行列式|A +E |.分析 A =PBP -1⇔AP =PB ⇔P -1AP =B .本题(1) 有多种方法求解:设法求出A 的特征值、特征向量;将B 的每个元素作为未知量直接代入等式求解等等.但根据结论④,由已知一组关系式:Ax =Ax ,A 2x =A 2x ,及A 3x =3Ax -2A 2x 合并起来有(Ax ,A 2x ,A 3x )=( A x ,A 2x ,3 A x -2A 2x ),即 A (x , Ax , A 2x )=(x , A x ,A 2x )000103012⎛⎫⎪ ⎪ ⎪-⎝⎭, 也即AP =P 000103012⎛⎫⎪⎪ ⎪-⎝⎭,可方便地求得B =000103012⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 至于行列式的计算可用特征值(A 、B 有相同特征值)或相似矩阵计算即可(A ~B ⇒A +E ~B +E ).评注 从本题可见,矩阵运算AB =C 与关系式Ab j =C j 之间的转换可化为线性方程组的解、矩阵的相似与对角化,进而还可利用特征值、相似矩阵求行列式等等.四、加强综合题型训练,全面系统地掌握好知识计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习,下面介绍几个综合性较强的例题.例11 设A 、B 为三阶相似非零实矩阵,矩阵A =(a ij )3×3满足a ij =A ij (i ,j =1,2,3),A ij 为a ij的代数余子式,矩阵B 满足|E +2B |=|E +3B |=0,计算行列式|A *B -A *+B -E |.分析 由 |A *B -A *+B -E |= |A *(B -E )+(B -E )|= |(A *+E )(B -E )|= |A *+E |·|B -E |, 知,只需计算|A *+E |及|B -E |. 若能求出A 或B 的所有特征值,则问题即可解决.解 由a ij =A ij 知,A T =A *,于是 AA T =AA *=|A |E ,从而|A |2=|AA T |=||A |E |=|A |3, 即 |A |2(1-|A |)=0. 于是|A |=0或|A |=1.又A ≠0,不妨设a 11≠0,由 |A |=a 11A 11+a 12A 12+a 13A 13=2221112130a a a ++≠, 知 |A |=1.由 |E +2B |=|E +3B |=0, 知 1211,23λλ=-=-为B 的两个特征值.因为A ~B ,所以1211,23λλ=-=-也为A 的两个特征值. 设3λ为A 、B 的另一特征值,根据1=|A|=123316λλλλ=,得 36λ=.又 |A *B -A *+B -E |=|(A *+E )(B -E )|=|A *+E |·|B -E |=|A T+E |·|B -E |. 因为 |A T +E |=|(A +E )T |=|A +E | =(1λ+1)(2λ+1) (3λ+1) =1277233= ,|B -E |=(1λ-1)(2λ-1) (3λ-1)=34 5=1023⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 故 |A *B -A *+B -E |=770 1033=.评注 本题综合考查了矩阵运算、行列式按行(列)展开定理、特征值的概念及利用特征值求行列式等多个知识点.例12 设A 、B 为m ×n 矩阵,则Ax =0与Bx =0同解的充要条件是(A) A 、B 为等价矩阵. (B) A T x =0与B Tx =0同解. (C) A 、B 的行向量组等价. (D) A 、B 的列向量组等价.分析 可用反例通过排除法得到正确选项. 对于(A),相当于r (A )=r (B ),显然只是必要而非充分条件;对于(B),例如A =100 200⎛⎫⎪⎝⎭,B =200 100⎛⎫⎪⎝⎭,显然Ax =0与Bx =0同解,但A Tx =0与B Tx =0并不同解,排除(B);对于(C)、(D),考虑A =110 101⎛⎫⎪⎝⎭,B =010 001⎛⎫⎪⎝⎭,显然A 、B 的列向量组等价,但Ax =0与Bx =0不同解,排除(D),故应选(C).评注 本题综合考查了矩阵等价、向量组等价与齐次方程组同解等多个知识点.对于(C)成立,也可这样证明: 若Ax =0与Bx =0同解,考虑(I) Ax =0, (II)=⎧⎨=⎩0A x B x , (III)Bx =0.则易知(I)、(II)、(III)同解,从而有r (A )=r ⎛⎫⎪⎝⎭A B =r (B ),由此可推导出A 、B 的行向量组等价. 反过来,若A 、B 的行向量组等价,令A =12m ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ ααα, B =12mβββ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭, 即列向量组T T T 12,,,m ααα与T T T 12,,,m βββ等价,于是存在矩阵P 、Q ,使(T T T12,,,m ααα)=(T T T 12,,,m βββ)P , (T T T 12,,,m βββ)=(T T T 12,,,m ααα)Q ,即A =P T B , B =Q TA .从而由Ax =0有Bx =Q T Ax =0;反过来,由Bx =0,有Ax =P T Bx =0,即Ax =0与Bx =0同解.例13 设A 为三阶矩阵,123,,λλλ是A 的三个不同特征值,对应特征向量为123,,ααα,令123=++βααα.(1)证明2β,Aβ,A β线性无关;(2)若3=A βA β,求秩r (A -E )及行列式|A +2E |.分析 证明一组向量线性无关一般用定义法,而求秩r (A -E )及行列式|A +2E |,由于不知道A 的具体形式,无法直接计算,可考虑先求出A 的相似矩阵,再根据相似矩阵有相同的秩及行列式求解即可.解 (1)设123k k k 2++=βA βA β0, ①由题设(1,2,3)i i i ιλ==Aαα,于是123123λλλ=++=++AβAαAαAαααα,22112233λλλ22=++A βααα,代入①整理得222121311122322123333()()(++)k k k k k k k k k λλλλλλ++++++=0ααα.因为123,,ααα是三个不同特征值对应的特征向量,必线性无关,于是有2121312122322123330,0,0.k k k k k k k k k λλλλλλ⎧++=⎪++=⎨⎪++=⎩其系数行列式2112222331101λλλλλλ≠,必有1230k k k ===,故2β,Aβ,A β线性无关.(2)由3=A βA β有=232()()=()2A β,Aβ,A βAβ,A β,A βAβ,A β,Aβ=2000⎛⎫ ⎪()101 ⎪ ⎪010⎝⎭β,A β,A β, 令P =2()β,Aβ,A β,则P 可逆,且P -1AP =000101010⎛⎫⎪⎪ ⎪⎝⎭=B . 即A ~B ,于是A -E ~B -E ,A +2E ~B +2E . 从而有r (A -E )=r (B -E )=r 100111011-⎛⎫⎪- ⎪ ⎪-⎝⎭=2, |A +2E |=|B +2E |=200121012=6. 评注 本题综合考查了行列式、矩阵的秩、线性无关、特征值与特征向量以及相似矩阵的性质等多个重要知识点.例14 设随机变量X 的概率密度为1c o s , 0()22x x f x ⎧≤≤π⎪=⎨⎪0,⎩其他, 对X 独立地重复观察6次,用Y 表示观察值大于π3的次数,又已知A =11142335Y-⎛⎫⎪- ⎪ ⎪--⎝⎭具有重特征值.(1)求A 可对角化的概率;(2)当A 可对角化时,求可逆矩阵P ,使P -1AP 为对角形矩阵.分析 Y 服从二项分布B (6,p ),其中p =P X π⎧⎫>⎨⎬3⎩⎭,而判定A 可对角化,应先求出A 的特征值,再根据特征值i λ的重数i k 与其线性无关特征向量的个数相等:n -r (i λE -A )=i k ,将可对角化问题转化为特征矩阵i λE -A 的秩:r (i λE -A )=n -i k ,由此确定Y 的取值及其相应概率.解 (1)由于P 11cosd 222x X x ππ3π⎧⎫>==⎨⎬3⎩⎭⎰,于是Y ~B 16,2⎛⎫⎪⎝⎭.111||42335E A Y λλλλ---=---11042332Y λλλλ-=---- 11(2)41331Yλλλ-=---110(2)370331Y λλλ-=---- 2(2)(810).Y λλλ=--++①若=2λ为重根,则22-8×2+10+Y =0,即Y =2. 此时A =111242335-⎛⎫ ⎪- ⎪ ⎪--⎝⎭,|λE -A |=(λ-2)2(λ-6).特征值为123==2=6λλλ,.因为r (2E -A )=r 111222333-⎛⎫⎪-- ⎪ ⎪-⎝⎭=1,属于特征值12==2λλ的线性无关特征向量个数为3-r (2E -A )=2,表明A 可对角化. ②若=2λ为非重根,则2-810=0Y λλ++有重根,则有82-4(10+Y )=0,得Y =6.此时 A 2111=642||=(6)(2)335λλλ-⎛⎫⎪---- ⎪ ⎪--⎝⎭,,E A 特征值为123==6=2.λλλ,因为r (6E -A )=r 511622=21331-⎛⎫⎪-≠ ⎪ ⎪⎝⎭,表明A 不可对角化. 故A 可对角化的概率为24261115(2)C 1.2265p P Y ⎛⎫⎛⎫===-= ⎪ ⎪⎝⎭⎝⎭ (2) 由(1)知,A =111242335-⎛⎫⎪- ⎪ ⎪--⎝⎭,1232, 6.λλλ=== 解(2·E -A )x =0得特征向量12111,0.01⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα解(6E -A )x =0得特征向量为312.3⎛⎫ ⎪=- ⎪ ⎪⎝⎭α令 P =123111102013⎛⎫⎪(,,)=-- ⎪ ⎪⎝⎭ααα, 则有1200020.006-⎛⎫⎪= ⎪ ⎪⎝⎭P A P 评注 本题综合性较强,不仅涉及到线性代数的多个知识点,还要求利用概率统计中的相关知识.例15 设A 为三阶实对称矩阵,已知|A |=-12,A 的三个特征值之和为1.又102⎛⎫⎪= ⎪ ⎪-⎝⎭α是齐次线性方程组(A *-4E )x =0的一个解向量,(1)求A ;(2)求(A *+6E )x =0的通解;(3)求正交变换矩阵Q ,化二次型x T Ax 为标准形.分析 (1)设法求出A 的所有特征值、特征向量,即可确定A ;(2)(A *+6E )x =0的基础解系,即为A *的特征值λ=-6所对应的线性无关的特征向量,而A *与A 对应特征值的特征向量相同;(3)先将相同特征值的特征向量正交化,然后再单位化,以此为列所构成的矩阵Q 即为所求正交变换矩阵.解 由α为(A *-4E )x =0的解,知(A *-4E ) α=0,即 A *α=4α,于是AA *α=4A α,即 |A |α=4A α,A α=||4A α=-3α, 可见3λ3=-为A 的特征值,对应特征向量为31==02⎛⎫⎪⎪ ⎪⎝⎭αα-.设2,λλ1为A 的另两个特征值,由题设 21λλλ13++=,2||12λλλ13==-A . 利用3λ3=-及上两式可解是22λλ1==.设22λλ1==的特征向量为123x x x ⎛⎫⎪= ⎪ ⎪⎝⎭X ,由A 为实对称矩阵知:X T ·3α=0,即x 1-2x 3=0,解得021,00112⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα.由 12311223(,,)(,,,)λλλ=A αααααα,知1112233123(,,,)(,,)λλλ-=A αααααα1043021=200100026012--⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪ ⎪-⎝⎭⎝⎭102=020.202⎛⎫⎪ ⎪ ⎪-⎝⎭(2) 由2,1,2i i i ==A αα,知 **i i =2A A A αα,即 *62i i i ==-|A |A ααα,也即(A *+6E )i α=0,i =1,2, 可见12,αα即为(A *+6E )x =0的基础解系,故(A *+6E )x =0的通解为1122k k +αα,其中12,k k 为任意常数.(3) 由于12,αα已正交,故只需将123,,ααα单位化,有11101,||0⎛⎫ ⎪== ⎪ ⎪⎝⎭αηα222210,||1⎛⎫⎪==⎪⎪⎭αηα333110.||2⎛⎫⎪==⎪⎪-⎭αηα令Q =123,,)(ηηη=01000⎛⎫ ⎪⎪ ⎪ ⎪ - ⎝,则Q 为正交矩阵,令x =Qy ,则二次型f =x TAx 可化为标准形222123223f y y y =+-.评注 本题综合考查了线性方程组、实对称矩阵特征值与特征向量性质以及化二次型为标准形等多个重要知识点.。

自考复习专题:线性代数第2章

自考复习专题:线性代数第2章

第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。

主要讨论矩阵的各种运算的概念和性质。

在自学考试中,所占比例是各章之最。

按考试大纲的规定,第二章占26分左右。

而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。

以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。

2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。

称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。

事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。

例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。

注意:矩阵和行列式的区别。

二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。

例如都是零矩阵。

2.若A的行数m=1,则称为行矩阵,也称为n维行向量。

若A的列数n=1,则称为列矩阵,也称为m维列向量。

3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。

如n个未知数,n个方程的线性方程组的系数矩阵。

4.称n阶方阵为n阶对角阵。

特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。

5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。

线性代数重点复习(16页)

线性代数重点复习(16页)

齐次线性方程组给出系数矩阵,
1
非齐次线性方程组给出增广矩阵 。
对矩阵进行初等行变换得到行最
2
简形。
3
把行最简形矩阵写回线性方程 组的形式。
4
给出方程组的通解。
若线性方程组的系数带有未知数,需分各种情况讨论,灵活处理。
相似矩阵与二次型 05 Guidance for Final Exams at XXX University in 2025 2025
交向量组,由此便可得到相应的正交变换矩阵和相似对
角矩阵。
2025
马到成功!
XXX大学2025年期末考试指导
2025
公众号:安全生产管理
线性代数复习重点
第一章 行列式 01 Guidance for Final Exams at XXX University in 2025 2025
容易出选择填空题的内容:
(1)求逆序数; (2)含某个因子的项(注意正负号); (3)与余子式或代数余子式相关的内容; (4)已知 |A| 求某个与A相关的行列式。。
第三章 向量空间 03 Guidance for Final Exams at XXX University in 2025 2025
向量空间
本章提到的的性质和定理较多,需要灵活运用。
容易出选择填空题的内容: 二 (1)向量的加法、数乘和内积运算; (2)线性相关和线性无关的定义,以及它们与向量组秩的关系(线性无关意
容易出大题的内容:行列式的计算。 其中,若已知行列式的阶数和每个元素的数值, 则问题很简单,但要注意,对于2阶和3阶行列式, 可用划斜线的方式(对角线法则)来计算。而对于4 阶或更高阶的行列式,不能采用对角线法则计算, 此时必须利用行列式的性质将其化为上三角行列式 从而得出结果,或者当某一行(列)非零元很少时, 运用展开定理将该行(列)展开从而得到经过降阶 的行列式计算。 对于n阶行列式的情形或者行列式元素中出现未 知数,求解的难度较大,需要灵活的结合运用行列 式的性质和展开定理。一般来说,考试中都会出课 本中已有的例题、习题,或者非常相似的题目。

线性代数复习题带参考答案(2)

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-0100002000010 n n .7.行列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 210001200000210001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

线代(2)期末复习题集1706

线代(2)期末复习题集1706

σ 是正交变换当且仅当 AT GA = G ; σ 是自伴变换(对称变换)当且仅当 AT G = GA 。
关于镜面反射,课本上已经有一到较为完善的比较灵活的习题,这里给出。 【习题 21】*(镜面反射,正交变换的第一类与第二类) (课本习题 10.7)
= 若 η 是 n 维欧式空间 V 中的一个单位向量, 定义 σ (α )
G (α1 , , α n ) =
( α1 , α1 ) ( α1 , α 2 ) ( α 2 , α1 ) ( α 2 , α 2 ) ( α n , α1 ) ( α n , α 2 )


( α1 , α n ) (α 2 , α n ) (α n , α n )

上学期的一道作业已经证明了向量组的 Gram 矩阵正定当且仅当向量组线性无关 (线性 相关时为半正定,这是 10 年期末考题) 。我们这里看一些别 Gram 矩阵的性质。 【习题 19】*(Gram 矩阵与基变换) (姚慕生高代习题书) 设 {e1 , en } 及 { f1 , f n } 为 n 维欧式空间 V 的两个基底,并设 {e1 , en } 到 { f1 , f n } 的过渡矩阵为 C 。证明 G ( f1 , f n ) = C T G (e1 , en )C 。 利用习题 18,可以很方便地解出下面的题目(其中包括了 12 年期末考题) 。 【习题 20】*(线性变换的矩阵和 Gram 矩阵的关系) 设 n 维欧式空间 V 的基底 {α1 , , α n } 的 Gram 矩阵为 G , V 上的线性变换 σ 在该基下 的矩阵为 A ,证明下面的两条结论。 (1) (2)
【习题 13】 (Jordan 标准型的计算) (15 年期末考题)
1 2 1 的 Jordan 标准型 J 。 求矩阵 A = 2 1 1 5 1

线性代数期末复习要点

线性代数期末复习要点

注:一般而言, 1o ( AB)k Ak Bk , 正确: ( AB)k (AB)(A B)( AB) ;
k个
2o ( A B)(A B) A2 B2, 正确: ( A B)(A B) A2 AB BA B2 ;
3o ( A B)2 A2 2AB B2 , 正确: ( A B)2 A2 AB BA B2 。
A22
An
2
A2n
Ann
称为
A
的伴随矩阵。
2、n 阶方阵可逆的充要条件:
A
0
A 可逆,且 A1
1 A
A 。
3、逆矩阵的性质: 1o ( A1 )1 A ; 3o ( AT )1 ( A1 )T ;
4、伴随矩阵的性质:
2o ( AB)1 B1 A1 ;
4o
(kA)1
1 k
A1
(k
1、 Ax 0的基础解系:解向量组的一个极大无关组。
2、 Ax 0解的定理:只有当 R( A) r n 时,才存在基础解 系,且 n r 个线性无关的解向量组成的向量组 v1、v2、、vnr 是 Ax 0的基础解系,其线性组合
v c1v1 c2v2 cnrvnr 是 Ax 0的全部解。 3、基础解系的求法:
组有且仅有唯一解,且
xj
Dj D
( j 1,2,, n )
注:齐次线性方程组有非零解 D 0。 (逆否命题:齐次线性方程组仅有零解 D 0。)
第二章 矩阵
一、矩阵的定义:矩形数表。
二、矩阵的运算
1、矩阵的加法、减法:只有同型矩阵才可以进行加减运算。
2、数与矩阵的乘法:数与矩阵的乘法是数与矩阵每一个元 素相乘;而数与行列式的乘积是数与行列式中某一行(列) 的每一个元素相乘。

线性代数复习题部分参考答案

线性代数复习题部分参考答案

线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。

线性代数2

线性代数2

L a1n L a2n O M L ann
a11 a21 a12 a22 T D = M a1n a2n
L an1 L an2 O M L ann
行列式D 称为行列式D的转置行列式. 行列式 T称为行列式 的转置行列式 性质1: 行列式与它的转置行列式相等, 性质1: 行列式与它的转置行列式相等 即DT = D. 说明: 行列式中行与列具有同等的地位, 说明 行列式中行与列具有同等的地位 因此行列 式的性质凡是对行成立的结论, 对列也同样成立. 式的性质凡是对行成立的结论 对列也同样成立
0 0 L 0 1 0 0 0 L 2 0 0 L L L L Dn = L n−1 0 L 0 0 0 0 0 L 0 0 n
由于行列式D 每行每列中仅有一个非零元素, 解: 由于行列式 n每行每列中仅有一个非零元素 所以 Dn =(–1)t a1 n-1 a2 n-2 ···an-1 1 an n
利用性质 行列式的第 乘以数k, 性质 列 乘以数 利用性质3行列式的第 i 行(列)乘以数 记作 ri × k ( ci × k ); 利用性质 性质6把行列式的第 利用性质 把行列式的第 j 行(列)的各元素乘以同 列 的各元素乘以同 对应的元素上去, 一数 k 然后加到第 i 行(列)对应的元素上去 记作 列 对应的元素上去 ri + rj × k ( ci + cj × k );
引入记号: 引入记号 用 ri 表示第 i 行, ci 表示第 i 列. 在计算行列式时, 我们经常利用性质 性质2,3,6对行列 在计算行列式时 我们经常利用性质 对行列 式进行变换. 式进行变换 性质2交换行列式的第 两行(列 利用性质 利用性质 交换行列式的第 i, j 两行 列), 记作 ri ↔ rj ( ci ↔ cj );

线性代数复习题-2

线性代数复习题-2

2. 若 n 阶方阵 A 可逆,则下列结论恒成立的是( A. (2 A ) − 1 = 2 A − 1 C. (( A T ) T ) − 1 = (( A − 1 ) − 1 ) T
B. (2 A − 1 ) T = 2( A T ) − 1 D. (( A − 1 ) − 1 ) T = ( A T ) − 1
x
⎛ −1 1 0⎞ ⎟ ⎜ 四、(11 分) 设矩阵 X 满足关系 AX = A − 2 X ,其中 A = ⎜ 0 − 3 1 ⎟ ,求 X . ⎜1 0 2⎟ ⎠ ⎝
⎧ x1 + 2 x2 + 3x3 − x4 = 1 ⎪ x + x + 2 x + 3x = 1 ⎪ 1 2 3 4 五、(14 分) 设线性方程组为 ⎨ , (1)问 a 为何值时,方程组无 ⎪ 3 x1 − x2 − x3 − 2 x4 = a ⎪ ⎩2 x1 + 3 x2 − x3 − 52 x4 = −6
β3 = 5α 3 + α1 是否仍然线性无关?试说明理由.
6
一、填空(本题共 6 小题,每小题 3 分,共 18 分)
⎡1 2 1 ⎤ ⎢ ⎥ 1. 矩阵 A = ⎢ 2 2 0 ⎥ 所对应的二次型的正定性是________ ⎢1 0 3⎥ ⎦ ⎣
−1 2.设 A 为 n 阶矩阵,满足 A 2 − 2 A − 4 E = O ,则 ( A + E) =
).
C. | kA |= k n | A |
D.| kA |=| k |n | A |
B. A,B 有相同的特征向量
7
C. λ E − A = λ E − B
D. A, B 都和同一对角矩阵相似
5.二次型 f = xT Ax ( A 为实对称阵)正定的充要条件是( ) A. A 可逆; B. A > 0 ; C. A−1 为正定矩阵; D. A 的所有特征值非负.

线性代数复习要点

线性代数复习要点

线性代数复习要点第一篇:线性代数复习要点“线性代数”主要题型(以第三版的编号为准)(注意:本复习要点所涉及的题目与考试无关)一、具体内容第一章、行列式:1.1、四阶或者五阶行列式的计算。

比如第1.3节例3、例4,第四节的例3等。

1.2、n阶含字母或数字的行列式的计算。

比如第1.3节例8,第四节的例4。

1.3、一些特殊的齐次线性方程组有非零解的判断。

比如第1.5节例3。

第二章、矩阵。

2.1、矩阵的线性运算、乘法运算、转置运算、行列式运算、逆运算以及它们的运算性质。

2.2、矩阵方程的求解。

比如第2.3节的例6,第2.5节的例7等等。

2.3、矩阵秩的计算。

比如第2.6节例6等等2.4、矩阵运算的简单证明题目。

比如第2.2节的例12、例13,第2.3节例8等等。

第三章、线性方程组3.1、向量的线性运算。

比如第3.2节的例1等等。

3.2、抽象的或n维向量线性相关性的证明。

比如第3.3节的例2、例3、例4等等。

3.3、极大线性无关组的求解或证明。

比如第3.4节的例2、例3等等。

3.4、向量空间的基的计算或证明。

比如第3.5节的例9等等。

3.5、线性方程的解的数量与结构的讨论。

比如第3.1节的例4,第3.6节的例1等等。

第四章、矩阵的特征值4.1、矩阵特征值、特征向量的计算。

4.2、矩阵特征值的性质及简单应用。

比如第4.2节例6等等。

4.3、矩阵相似对角化的判断。

比如第4.3节的例4等等。

4.4、实对称矩阵的相似对角化。

比如第4.4节的例1、例2等等。

第五章、二次型5.1、用正交相似变换化二次型为标准型。

比如第5.2节的例5等等。

5.2、正定矩阵的判别。

比如第5.3的例4等等。

二、专业要求1、非经管类专业的同学,最好掌握上述所有的内容。

2、经管类专业的同学的要求,相对要低一些:若是计算题目,计算量减少;若是证明题,证明难度降低;一般只有一道题目里面的参数需要讨论。

比如“1.1”里面最多要求计算四阶行列式,“3.2”里面只要求n维向量线性相关性的证明,“5.2”不要等等。

线性代数知识点总结(2)

线性代数知识点总结(2)

大学线性代数知识点总结第一章行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列得n 个元素得乘积得与(奇偶)排列、逆序数、对换行列式得性质:①行列式行列互换,其值不变。

(转置行列式)② 行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③ 常数k 乘以行列式得某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零;推论:行列式中某一行(列)元素全为零,行列式为零。

④ 行列式具有分行(列)可加性⑤ 将行列式某一行(列)得k 倍加到另一行(列)上,值不变行列式依行(列)展开:余子式、代数余子式定理:行列式中某一行得元素与另一行元素对应余子式乘积之与为零。

克莱姆法则:D,非齐次线性方程组:当系数行列式时,有唯一解= 土(丿・=1、2……a )齐次线性方程组:当系数行列式时,则只有零解逆否:若方程组存在非零解,则D 等于零痔殊行列式: n il 牡 a iia n a 212)转置行列式: a 2i ci 22 a 口 —> ci l2 a 22a 31 6/32 °335 a 23 ②对称行列式:a tj = ciji③反对称行列式:a tj = -a jf 奇数阶得反对称行列式值为零⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多得)化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、④三线性行列式:a 21a 22 5 °方法:用把化为零,。

化为三角形行列式第二章矩阵矩阵得概念:4”血(零矩阵、负矩阵、行矩阵、列矩阵、n阶方阵、相等矩阵)矩阵得运算:加法(同型矩阵)交换、结合律数乘kA = (ka ij)^l分配、结合律A*〃 =(讥"*如旳=(工畋如)龄乘法V 注意什么时候有意义一般AB^=BA,不满足消去律;由AE=O,不能得A=0或B=0转置(A T)r = A(4 + By =A T+B T(kA)7 = kA T(AB)T=B T A T(反序定理)方幕:泸八=A kl+kz几种特殊得矩阵:对角矩|阵:若AB都就是N阶対角阵左就是数,则kA、A+B、AB都就是n阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……)对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列得卜方都就是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来得小块矩阵瞧成就是元素逆矩阵:设A就是N阶方阵,若存在N阶矩阵B得AB=BA=I则称A就是可逆得,= 奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2、、非零k乘某一行(列)3、将某行(列)得K 倍加到另一行(列)初等变换不改变矩阵得可逆性初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到得(对换阵倍乘阵倍加阵)等价标准形矩阵矩阵得秩[(A):满秩矩阵降秩矩阵若A可逆,则满秩若A就是非奇异矩阵,则r(AB)=r(B)初等变换不改变矩阵得秩求法:1定义2转化为标准式或阶梯形矩阵与行列式得联系与区别:都就是数表;行列式行数列数一样,矩阵不一样;行列式最终就是一个数,只要值相等, 就相等,矩阵就是一个数表,对应元素相等才相等;矩阵伙® )” = R (州)“,行列式5 广K a ijn逆矩阵注:®AB=BA=I则A与B —定就是方阵②EA=AB=I则A与B —定互逆;③不就是所有得方阵都存在逆矩阵;④若A可逆,则其逆矩阵就是唯一得。

(完整版)线性代数第二章矩阵试题及答案

(完整版)线性代数第二章矩阵试题及答案

第二章矩阵一、知识点复习1、矩阵的定义由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵。

例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 是一个4⨯5矩阵.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。

元素全为0的矩阵称为零矩阵,通常就记作0。

两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。

2、n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。

n阶矩阵的从左上角到右下角的对角线称为主对角线。

下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。

(1)A是正交矩阵⇔A T=A-1 (2)A是正交矩阵⇔2A=1阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。

②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。

把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。

每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。

《线性代数》复习笔记习题答案

《线性代数》复习笔记习题答案

题 3:计算 D 5 2
1 0
3 4 1 1
1 5 3 3
1 3 1 2
1 3 1 2
1 3 1 2
解: D c1 c2 1 5 3 4 r2 r1 0 8 4 6 r2 r3 0 2 1 1
0 2 1 1 r4 5r1 0 2 1 1
0 8 4 6
5 1 3 3
0 16 2 7
0 16 2 7
2
3
1
2
22
3
2
2
4
6
1 1 1 12 12 12 2 2 2
矩阵的数乘 每个元素均要乘以 k
111 1 1 1 111 2 A 2 1 2 3 12 22 32 2 4 6
111 1 1 1 111
行列式的数乘 某行或者某列乘以 k
1 3

2.
A
2 1
1 1
0 3

B
10
0 3
0 2 1 2
1 1 3 1
01 1 1 11 3 1
00 10
1 3
3 3
1 1
1 4
93
AB BA ( A B)2 A2 2 AB B2 A2 B2 A B A B
2.转置矩阵、伴随矩阵、单位矩阵、逆矩阵
1)转置矩阵 A 。(行变列,列变行。)
解:按第一行展开
123
D 2 1 1 1 (1)11 1 1 2 (1)12 2 1 3 (1)13 2 1 1 6 15 8
32
12
13
132
123
若按第二列展开: D 2
1
1
2 A12
A22
3A32
2

线性代数概念复习

线性代数概念复习

线性代数复习一. 行列式1. 全排列1)由n 个自然数1,2,,n 组成的有序数组12,,,n i i i 成为一个n 级全排列,简称排列。

2)一个对排列中某两数互换位置,其余的数保持位置不变,得到一个新的排列的变换成为一个对换。

3)逆序数:在一个排列中,12,,,n i i i 对某一个指定的()1s i s n ≤≤,若t s i i >,且t i 在s i 的前面(不一定相邻),即这两个元素的前后位置与大小顺序正好相反,则称s i 与t i 构成一个逆序。

一个排列12,,,n i i i 中逆序的总数成为这个排列的逆序数,记为()12,,,n i i i τ 。

4) 逆序数为偶的排列称为偶排列,逆序数为奇的排列称为奇排列。

5)任何一个排列进行一次对换,排列的奇偶性改变。

6)n 个自然数1,2,,n 共组成!n 个n 级排列,其中奇偶排列各为!2n 个。

2 行列式1)行列式定义2n 个数ij a ()()121212111,,12,,11n n nnj j j j j nj j j j n nna a A a a a a a τ ==-∑其中12,,,n j j j 是一个n 级排列,12,nj j j ∑表示对所有的n 级排列求和。

2)余子式和代数余子式(见书) 3)行列式按行(列)展开(见书) 4)行列式的性质(见书) 5) 行列式计算(常用的结论) i) 上(下)三角形行列式1112111222212211221200000n n nn nnn n nn a a a a a a a a a a a a a a a==ii)()()1111111212121221211110001000n n n n n n n n n n n n n nna a a a a a a a a a a a a a-----==-iii)A ,B 同阶方阵,AB A B =iv) ()12111112111n n ijj i nn n n nx x x V x x xxx≤<≤---==-∏(Vandenmonde 行列式)v )设n n A R ⨯∈,m m B R ⨯∈0A C A B B =,0m n R ⨯∈,n m C R ⨯∈0A A B C B =,0n m R ⨯∈,m n C R ⨯∈()10m nC A A B B ⨯=-,0m n R ⨯∈,n m C R ⨯∈()1m nAA B B C⨯=-,0n m R ⨯∈,m n C R ⨯∈6)克拉默(Cramer )法则(见书)二、矩阵 1. 矩阵()1111n m nij m nm mn a a A a a a ⨯⨯⎛⎫ ⎪== ⎪ ⎪⎝⎭m n ⨯个元素排列成的数表。

线性代数总复习及典型例题

线性代数总复习及典型例题
二线性相关与线性无关条件是线性相关的充分必要向量组的秩小于矩阵条件是它所构成的向量个数必要向量组线性无关的充分于是判断某向量组的线性相关性可归结为齐次线性方程组是否有非零解从而取决于方程组系数矩阵的秩所以该问题最终可利用初等行变换化系数矩阵为阶梯形矩阵来解决
线性代数总复习
第一章
行列式
第一节 n阶行列式的定义
当m = n 时,n元非齐次线性方程组 Ann x b 有惟一解的充分必要条件是系数矩阵A的行列式
A0
齐次线性方程组 Ax 0 一定有解: (1) R(A) = n (2) R(A) < n
Ax 0 只有零解
Ax 0 有非零解
并且通解中有n-r个自由未知量.
齐次线性方程组 Ax 0 的具体解法: (1)对系数矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A与n之间的大小关系,从而判断方程组解 的情况:唯一解(零解),无穷解(非零解)。
第三章 线性方程组
其中 B A b
非齐次线性方程组 Ax b
(1) R A R B (2) R(A) = R(B ) R(A ) < n R(A ) = n
无解 有解:
Ax b有唯一解 ;
Ax = b 有无穷多解.
并且通解中有n-r个自由未知量.
非齐次线性方程组 Ax b 的具体解法: (1)对增广矩阵施行初等行变换化为行阶梯形矩阵, 比较 R A 、 R B 以及n之间的大小关系,从而判断 方程组解的情况:无解,唯一解,无穷解。 (2)在判断有解的情况下,继续对行阶梯形矩阵施 行初等行变换,将其化为行最简形,并写出最简形 对应的线性方程组进行求解。如果方程组有无穷多 个解,需写出通解形式。
Er O O O m n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档