微积分常用公式及运算法则下

合集下载

dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。

当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。

这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。

扩展资料:注意微分的几何意义:设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。

f(x0)在表示曲线y=f(x)在切点m(x0,f(x0))处切线的斜率。

(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + ccos x dx = sin x + ctan x dx = ln |sec x | + ccot x dx = ln |sin x | + csec x dx = ln |sec x + tan x | + c csc x dx = ln |csc x - cot x | + c sin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xdx sin-1 ()=cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++ccos-1 x dx = x cos-1 x-+ctan-1 x dx = x tan-1 x- ln (1+x2)+c cot-1 x dx = x cot-1 x+ ln (1+x2)+c sec-1 x dx = x sec-1 x- ln |x+|+c csc-1 x dx = x csc-1 x+ ln |x+|+c sinh-1 ()= ln (x+) xrcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| 0dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + ccosh x dx = sinh x + ctanh x dx = ln | cosh x |+ c coth x dx = ln | sinh x | + c sech x dx = -2tan-1 (e-x) + c csch x dx = 2 ln || + cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θdx sinh-1()=cosh-1()=tanh-1()=coth-1()=sech-1()=csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ ccosh-1 x dx = x cosh-1 x-+ ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ c coth-1 x dx = x coth-1 x- ln | 1-x2|+ c sech-1 x dx = x sech-1 x- sin-1 x + c csch-1 x dx = x csch-1 x+ sinh-1 x + c sin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x =sinh x = cosh x =正弦定理:= ==2r余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ln (1+x) = x-+-+++tan-1 x = x-+-+++(1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx转换为 f (ω ) = 解f (t ) = ± jω0t f ( t ) e ? jωt dt f ( t ) e ? j(ω ?ω0 ) t dt = f (ω ? ω0 ) 。

常用微积分公式范文

常用微积分公式范文

常用微积分公式范文微积分(Calculus)是数学中的一个重要分支,是研究函数的极限、导数、积分与级数的工具与理论体系。

下面是一些常用的微积分公式,以及它们的应用。

一、极限(Limits)1.极限的定义:如果对于任意给定的正实数ε,存在正实数δ,使得当0<,x-a,<δ时,有,f(x)-L,<ε成立,那么就称函数f在点x=a处的极限值为L。

2.常见极限:(1)基本极限公式:- lim(x→0) sin(x)/x = 1- lim(x→0) (1+1/x)^x = e- lim(x→∞) (1+1/x)^x = e(2)三角函数的极限:- lim(x→0) sin(x)/x = 1- lim(x→0) tan(x)/x = 1- lim(x→0) (1-cos(x))/x^2 = 1/2(3)对数与指数函数的极限:- lim(x→0) (1+nx)^(1/x) = e^n- lim(x→0) (1+x/n)^n = e^x- lim(x→∞) (1+1/n)^{nx} = e^x二、导数(Derivatives)1.导数的定义:f(x)在x=a处可导,如果极限lim(h→0)[f(a+h)-f(a)]/h存在,则称该极限为f(x)在x=a处的导数,记作f'(a)或df(a)/dx。

2.常见导数公式:(1)基本导数公式:- (x^n)' = nx^(n-1)- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)(2)导数的四则运算:-(k)'=0(常数导数)-(f(x)±g(x))'=f'(x)±g'(x)(和差法则)-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(乘积法则)-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/[g(x)]^2(商法则)(3)链式法则:-若y=f(g(x)),则y'=f'(g(x))*g'(x)三、积分(Integrals)1.积分的定义:对于函数f(x)在区间[a, b]上的一个划分,以及任意选取的区间上的点ξi,利用和式∑f(ξi)Δx,使得该和在划分的细化下存在唯一极限,即对于任意的选取划分和点的方法,当∥∥P∥∥→0时,和式∑f(ξi)Δx的极限存在,则该极限称为函数f(x)在区间[a, b]上的定积分,记作∫[a,b]f(x)dx。

微积分下册主要知识点汇总

微积分下册主要知识点汇总

vduuvudv (3.1)
vdxuuvdxvu (3.2)
(或微分)的逆运算. 一般地, 下列类型的被
(其中m, n都是正整数).
arctanarccosarcsin)(lncossincossin等mxxmxxmxxxxexmxemxemxxmxxnnnnmxnnxnxnn
:
已知曲面上的点所满足的几何条件,建立曲面的方程;
已知曲面方程,研究曲面的几何形状.
. 可以证明空间中任一平面都可以用三元一次
DCzByAx
(1.3)
. 其中A、B、C、D是不全为零常数. 方程(1.3)称为平面的一般方程.
2 平行于某定直线并沿定曲线C移动的直线L所形成的轨迹称为柱面. 这条定曲
定积分的概念
定积分的性质
(a) 当ba时, ;0)(b
dxxf (b) 当ba时, abbadxxfdxxf)()(.
1
)()()]()([b
babadxxgdxxfdxxgxf
2 ,)()(b
badxxfkdxxkf (k为常数).
3 b
cabadxxfdxxfdxxf)()()(.
1 设函数)(xf在闭区间],[ba上连续,函数)(tx满足条件:
1),)(,)(ba 且bta)(;
2))(t在],[(或],[)上具有连续导数,则有
ttfdxxfb
)()]([)(. (4.1)
(4.1)称为定积分的换元公式.
. 但是,在应用定积分的换元公式时应
1)用)(tx把变量x换成新变量t时, 积分限也要换成相应于新变量t的积分限,且
),(),(lim00000,
).,(,,

微积分常用公式及运算法则

微积分常用公式及运算法则

微积分常用公式及运算法则1.调和级数:调和级数为H(n)=1+1/2+1/3+...+1/n,其中n为正整数。

它是发散级数,在计算机科学和数学中都有重要应用。

2.多项式级数:多项式级数为f(x)=a0+a1x+a2x^2+a3x^3+...。

其中a0、a1、a2是常数系数,x是变量。

多项式级数可以直接求和,也可以使用其他方法进行求和。

3.幂级数:幂级数为f(x)=c0+c1(x-a)+c2(x-a)^2+c3(x-a)^3+...。

其中c0、c1、c2是常数系数,a是常数。

幂级数可以表示为基于常数系数和常数a的级数。

4.泰勒级数:在微积分中,泰勒级数是一种用函数的高阶导数来逼近函数的方法。

泰勒级数可以将函数表示为一个无限级数。

5.泰勒公式:泰勒公式是泰勒级数的具体表达形式。

泰勒公式可以将函数在其中一点的值表示为该点的函数值和函数的各阶导数值的线性组合。

6.均值定理:均值定理是微积分中的重要定理,它指出在其中一区间上,连续函数的平均变化率等于该区间内其中一点的瞬时变化率。

7.拉格朗日中值定理:拉格朗日中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。

8.柯西中值定理:柯西中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。

9.极值点:极值点是函数在其中一区间内的最大值点或最小值点。

极值点可以使用导数的符号和戴布尔不等式来判断。

10.弧长:弧长是曲线上的一段长度。

计算曲线的弧长可以使用微积分的方法,如积分的方法。

11.曲率:曲率是表示曲线弯曲程度的一个数值。

曲率可以使用导数和二阶导数计算。

12.方向角:方向角是表示曲线在其中一点的切线方向的角度。

方向角可以使用导数计算。

微积分常用公式及运算法则(下册).

微积分常用公式及运算法则(下册).

或ϕ([β ,α ]) ⊆ [a,b];
(2)ϕ′ ∈C[α, β ](或ϕ′∈ C[β ,α ])
那么:∫b f (x) d x = ∫ β f [ϕ (t)]ϕ′(t) d t
a
α
1
若f ∈C[−a, a],并且为偶函数,则
∫ a f (x) d x = 2∫ a f (x) d x;
−a
0
若f ∈C[−a, a],并且为奇函数,则
平面的方程
1.点法式方程
过点M 0 (x0 , y0 , z0 )且以n = ( A, B, C)为法向量 的平面Π的方程为 A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0
2.一般方程
三元一次方程 Ax + By + Cz + D = 0 ( A, B,C不同时为零)的图形是平面,其中 x, y, z的系数A, B,C是平面的法向量的坐标, 即n = ( A, B,C)是平面的法向量. 特殊的平面: A = 0,平行于x轴的平面; B = 0,平行于y轴的平面; C = 0,平行于z轴的平面; D = 0,过原点的平面; A = B = 0,垂直于z轴的平面; B = C = 0,垂直于x轴的平面; C = A = 0,垂直于y轴的平面.
第五章 向量代数与空间解析几何
向量的运算
1.向量的加法
a+b = b+a
(a +b)+c = a +(b +c)
2.向量与数的乘法(数乘)
λ(µ a) = (λµ )a (λ + µ)a = λa + µa λ(a + b) = λa + λb

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。

下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。

导数微积分公式大全

导数微积分公式大全

导数微积分公式大全导数是微积分中非常重要的概念,它表示函数在其中一点的变化率。

为了计算导数,我们需要使用一系列的微积分公式。

下面是一份包含最常用的导数公式的清单:1.基本导数公式:-常数函数:如果f(x)=c,则f'(x)=0,其中c是一个常数。

- 幂函数:如果f(x) = x^n,则f'(x) = nx^(n-1),其中n是一个实数。

-指数函数:如果f(x)=e^x,则f'(x)=e^x。

- 对数函数:如果f(x) = ln(x),则f'(x) = 1/x。

- 正弦函数:如果f(x) = sin(x),则f'(x) = cos(x)。

- 余弦函数:如果f(x) = cos(x),则f'(x) = -sin(x)。

- 正切函数:如果f(x) = tan(x),则f'(x) = sec^2(x)。

2.基本运算规则:- 常数乘法规则:如果f(x)和g(x)都是可导函数,且c是常数,则(cf(x))' = c(f'(x))。

-加法规则:如果f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)。

-乘法规则:如果f(x)和g(x)都是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

-除法规则:如果f(x)和g(x)都是可导函数,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^23.链式法则:-如果h(x)=f(g(x)),其中f和g都是可导函数,则h'(x)=f'(g(x))g'(x)。

4.反函数法则:- 如果y = f(x)是可导函数,且在x处有非零的导数,则它的反函数x = f^(-1)(y)的导数为(dx/dy) = 1/(dy/dx)。

5.高阶导数:-如果f(x)的导数f'(x)存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x),依此类推。

16个微积分公式

16个微积分公式

16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。

在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。

下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。

2.基本导数公式:a.(k)'=0,其中k是常数。

b. (x^n)' = nx^(n-1),其中n是实数。

c. (sin x)' = cos x。

d. (cos x)' = -sin x。

e.(e^x)'=e^x。

f. (ln x)' = 1/x。

3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。

b.(f(x)-g(x))'=f'(x)-g'(x)。

c.(k*f(x))'=k*f'(x),其中k是常数。

d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。

4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。

5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。

6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全微积分是数学的一个重要分支,它研究了函数的导数、积分以及它们之间的关系。

微积分公式是求导和积分的基本工具,以下是一些常用的微积分公式:1.基本导数法则:-导数和差法则:(f+g)'=f'+g'-常数倍法则:(c*f)'=c*f'-乘积法则:(f*g)'=f'*g+f*g'-商法则:(f/g)'=(f'*g-f*g')/g^22.基本函数的导数:-非常数次幂:(x^n)'=n*x^(n-1)- 幂函数:(a^x)' = ln(a) * a^x-自然指数函数:(e^x)'=e^x- 对数函数:(log_a x)' = 1 / (x ln(a))3. 链式法则:如果 y = f(u) 和 u = g(x) 是可导函数,那么复合函数 y = f(g(x)) 的导数为 dy/dx = (dy/du) * (du/dx)4.高阶导数:如果f'(x)存在,则f''(x)表示f'(x)的导数,称为f(x)的二阶导数。

同理,f''(x)的导数称为f(x)的三阶导数,以此类推。

5.基本积分法则:- 恒等积分:∫(c dx) = c*x + C- 幂函数积分:∫(x^n dx) = (1/(n+1)) * x^(n+1) + C- 自然指数函数积分:∫(e^x dx) = e^x + C- 对数函数积分:∫(1/x dx) = ln,x, + C6. 替换法则:如果∫(f(g(x)) g'(x) dx) 可以被积分,则∫(f(u) du) = ∫(f(g(x)) g'(x) dx)7. 定积分:∫[a,b] f(x) dx 表示函数 f(x) 在区间 [a,b] 上的定积分,表示曲线围成的面积。

8.收敛性和发散性:如果一个定积分存在有限的数值,那么它是收敛的;如果一个定积分没有有限的数值,那么它是发散的。

常用微积分式导数公式

常用微积分式导数公式

常用微积分式导数公式微积分是数学中重要的分支,它涉及到诸多的概念和公式。

其中导数是微积分的基本概念之一,它描述了函数的变化率。

在实际应用中,导数常常用于求解最优化问题、解微分方程、描述曲线的性质等等。

下面将介绍一些常用的微积分导数公式。

一、基本函数的导数公式:1.常数函数导数公式:如果c是一个常数,那么对于常数函数f(x)=c,它的导数为f'(x)=0。

2. 幂函数导数公式:对于幂函数f(x) = x^n,其中n是任意实数,它的导数为f'(x) = nx^(n-1)。

3. 指数函数导数公式:对于指数函数f(x) = a^x,其中a是一个正实数且a≠1,它的导数为f'(x) = a^x * ln(a)。

4. 对数函数导数公式:对于自然对数函数f(x) = ln(x),其中x>0,它的导数为f'(x) = 1/x。

5.三角函数导数公式:- 正弦函数的导数公式:f'(x) = cos(x)- 余弦函数的导数公式:f'(x) = -sin(x)- 正切函数的导数公式:f'(x) = sec^2(x)- 余切函数的导数公式:f'(x) = -csc^2(x)-反正弦函数的导数公式:f'(x)=1/√(1-x^2)-反余弦函数的导数公式:f'(x)=-1/√(1-x^2)-反正切函数的导数公式:f'(x)=1/(1+x^2)-反余切函数的导数公式:f'(x)=-1/(1+x^2)二、基本运算法则:1. 变量替换法则:如果y=f(u),且u=g(x)是可导函数,那么由链式法则可得dy/dx = (dy/du)*(du/dx)。

2.和、差、积法则:-和差法则:[f(x)±g(x)]'=f'(x)±g'(x)-积法则:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)3.乘幂法则:[f(x)^n]'=n*f'(x)*f(x)^(n-1)。

微积分的公式

微积分的公式

微积分的公式引言微积分是数学中的一个重要分支,研究函数的变化规律和求解与变化相关的问题。

在微积分的学习中,有一些经典的公式是我们必须掌握和熟练运用的。

本文将介绍微积分中常见的几个重要公式,并通过例子进行说明。

导数的定义和运算法则定义函数f(x)在点x=a处的导数定义为:f'(a) = lim┬(Δx→0)⁡(f(a+Δx)−f(a))/Δx导数的运算法则•常数法则d/dx (c) = 0其中c为常数。

•幂法则d/dx(x^n) = n * x^(n-1)其中n为自然数。

•乘法法则d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)常用微积分公式极限公式•极限的四则运算法则lim┬(x→a)⁡(f(x)±g(x)) = lim┬(x→a)⁡f(x) ± lim┬(x→a)⁡g(x)lim┬(x→a)⁡(f(x)g(x)) = lim┬(x→a)⁡f(x) * lim┬(x→a)⁡g(x)•无穷小与无穷大的关系lim┬(x→∞)⁡(f(x)) = ∞,当且仅当lim┬(x→∞)⁡(1/f (x)) = 0lim┬(x→∞)⁡(f(x)) = a,当且仅当lim┬(x→∞)⁡(1/f(x)) = 1/a求和公式•等差数列求和公式∑┬(k=1)⁡(n)⁡k = n(n+1)/2积分公式•基本积分公式∫⁡(f(x) + g(x))dx = ∫⁡(f(x))dx + ∫⁡(g(x))dx ∫⁡(k * f(x))dx = k * ∫⁡(f(x))dx其中k为常数。

•微元法∫⁡(f(x))dx = F(x) + C其中F(x)为函数f(x)的一个原函数,C为常数。

应用示例示例1:求函数的导数已知函数f(x) = 2x^2 + 3x - 1,求f'(x)。

解: 根据幂法则,对于函数f(x) = 2x^2 + 3x - 1,我们可以先对每一项求导,再相加得到f'(x)。

微积分下册主要知识点汇总

微积分下册主要知识点汇总

一、第一换元积分法(凑微分法)C x F C u F du u g dx x x g +=+=='⎰⎰)]([)()()()]([ϕϕϕ.二、常用凑微分公式三、第二换元法C x F C t F dt t t f dx x f +=+='=⎰⎰)]([)()()]([)(ψϕϕ,注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下:当被积函数中含有a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c),22a x - 可令 .sec t a x =当有理分式函数中分母的阶较高时, 常采用倒代换tx 1=.四、积分表续 4.3分部积分法xu x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx xx f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx xx f x d x f dx x x f a b ax d b axf a dx b ax f xx xx x x xx x x arcsin arctan cot tan cos sin ln )(arcsin )(arcsin 11)(arcsin .11)(arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1)(ln .3)0()()(1)(.2)0()()(1)(.1法分积元换一第换元公式积分类型22221==========+=-=-=+-==-=⋅=⋅=⋅=⋅=⋅≠=≠++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-μμμμμμμ分部积分公式: ⎰⎰-=vdu uv udv (3.1)⎰⎰'-='vdx u uv dx v u (3.2)分部积分法实质上就是求两函数乘积的导数(或微分)的逆运算. 一般地, 下列类型的被积函数常考虑应用分部积分法(其中m , n 都是正整数)..arctan arccos arcsin )(ln cos sin cos sin 等mx x mxx mxx x x e x mx e mx e mx x mx x n n n n mx n nx nx n n5.1定积分的概念 5.2定积分的性质两点补充规定:(a) 当b a =时, ;0)(=⎰badx x f (b) 当b a >时,⎰⎰-=abbadx x f dx x f )()(.性质1 .)()()]()([⎰⎰⎰±=±bababadx x g dx x f dx x g x f性质2 ,)()(⎰⎰=baba dx x f k dx x kf (k 为常数).性质3⎰⎰⎰+=bccab a dx x f dx x f dx x f )()()(.性质4 .1a b dx dx baba-==⋅⎰⎰性质5 若在区间],[b a 上有),()(x g x f ≤ 则,)()(⎰⎰≤babadx x g dx x f ).(b a <推论1 若在区间],[b a 上,0)(≥x f 则 ,0)(≥⎰badx x f ).(b a <推论2).(|)(|)(b a dxx f dx x f baba<≤⎰⎰性质6 (估值定理)设M 及m 分别是函数)(x f 在区间],[b a 上的最大值及最小值,则).()()(a b M dx x f a b m ba-≤≤-⎰性质7 (定积分中值定理) 如果函数)(x f 在闭区间],[b a 上连续,则在],[b a 上至少存在一个点ξ, 使).(),)(()(b a a b f dx x f ba≤≤-=⎰ξξ5.3微积分的基本公式 一、引例二、积分上限的函数及其导数:⎰=Φxadt t f x )()(定理2 若函数)(x f 在区间],[b a 上连续,则函数⎰=Φxadt t f x )()(就是)(x f 在],[b a 上的一个原函数.三、牛顿—莱布尼兹公式定理3 若函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()()(a F b F dx x f ba-=⎰. (3.6)公式(3.4)称为牛顿—莱布尼茨公式.5.4定积分的换元法积分法和分部积分法 一、定积分换元积分法定理1 设函数)(x f 在闭区间],[b a 上连续,函数)(t x ϕ=满足条件: (1),)(,)(b a ==βϕαϕ 且b t a ≤≤)(ϕ; (2))(t ϕ在],[βα(或],[αβ)上具有连续导数,则有⎰⎰'=βαϕϕdt t t f dx x f ba)()]([)(. (4.1)公式(4.1)称为定积分的换元公式.定积分的换元公式与不定积分的换元公式很类似. 但是,在应用定积分的换元公式时应注意以下两点:(1)用)(t x ϕ=把变量x 换成新变量t 时, 积分限也要换成相应于新变量t 的积分限,且上限对应于上限,下限对应于下限;(2) 求出)()]([t t f ϕϕ'的一个原函数)(t Φ后,不必象计算不定积分那样再把)(t Φ变换成原变量x 的函数,而只要把新变量t 的上、下限分别代入)(t Φ然后相减就行了. 二、定积分的分部积分法⎰baudv ⎰-=ba b a vdu uv ][ 或⎰'badx v u ⎰'-=ba b a dx u v uv ][5.5广义积分一、无穷限的广义积分)()(|)()(a F F x F dx x f a a-+∞==∞++∞⎰)()(|)()(-∞-==∞-∞-⎰F b F x F dx x f b b)()(|)()(-∞-+∞==∞+∞-+∞∞-⎰F F x F dx x f二、无界函数的广义积分⎰⎰++→=ba ba dx x f dx x f εε)(lim )(0.)(lim)(0⎰⎰-+→=εεb aba dx x f dx x f5.6定积分的几何应用一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量U (总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元 根据具体问题,选取一个积分变量,例如x 为积分变量,并确定它的变化区间],[b a ,任取],[b a 的一个区间微元],[dx x x +,求出相应于这个区间微元上部分量U ∆的近似值,即求出所求总量U 的微元 dx x f dU )(=;(2) 由微元写出积分 根据dx x f dU )(=写出表示总量U 的定积分⎰⎰==bab adx x f dU U )(微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量U 关于区间],[b a 应具有可加性,即如果把区间],[b a 分成许多部分区间, 则U 相应地分成许多部分量, 而U 等于所有部分量U ∆之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量U ∆的近似表达式dx x f )(,即使得U dU dx x f ∆≈=)(. 在通常情况下,要检验dx x f U )(-∆是否为dx 的高阶无穷小并非易事,因此,在实际应用要注意dx x f dU )(=的合理性. 二、平面图形的面积(1)直角坐标系下平面图形的面积 (2)极坐标系下平面图形的面积曲边扇形的面积微元 θθd r dA 2)]([21=所求曲边扇形的面积 .)]([212θθϕβαd A ⎰=三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 ,)]([2dx x f dV π= 所求旋转体的体积 .)]([2⎰=badx x f V π四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 ,)(dx x A dV = 所求立体的体积 .)(⎰=badx x A V5.7积分在经济分析的应用6.1空间解析几何简介一、空间直角坐标系在平面解析几何中,我们建立了平面直角坐标系,并通过平面直角坐标系,把平面上的点与有序数组(即点的坐标),(y x )对应起来. 同样,为了把空间的任一点与有序数组对应起来,我们来建立空间直角坐标系.过空间一定点O , 作三条相互垂直的数轴, 依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴. 它们构成一个空间直角坐标系Oxyz (图6-1-1). 空间直角坐标系有右手系和左手系两种. 我们通常采用右手系.二、空间两点间的距离.)()()(||21221221221z z y y x x M M -+-+-=三曲面及其方程定义1在空间直角坐标系中,如果曲面S 上任一点坐标都满足方程0),,(=z y x F ,而不在曲面S 上的任何点的坐标都不满足该方程,则方程0),,(=z y x F 称为曲面S 的方程, 而曲面S 就称为方程0),,(=z y x F 的图形空间曲面研究的两个基本问题是:(1) 已知曲面上的点所满足的几何条件,建立曲面的方程; (2) 已知曲面方程,研究曲面的几何形状. 平面平面是空间中最简单而且最重要的曲面. 可以证明空间中任一平面都可以用三元一次方程0=+++D Cz By Ax (1.3)来表示,反之亦然. 其中A 、B 、C 、D 是不全为零常数. 方程(1.3)称为平面的一般方程.柱面定义2 平行于某定直线并沿定曲线C 移动的直线L 所形成的轨迹称为柱面. 这条定曲线C 称为柱面的准线, 动直线L 称为柱面的母线.二次曲面在空间直角坐标系中,我们采用一系列平行于坐标面的平面去截割曲面,从而得到平面与曲面一系列的交线(即截痕),通过综合分析这些截痕的形状和性质来认识曲面形状的全貌. 这种研究曲面的方法称为平面截割法,简称为截痕法.椭球面 1222222=++c z b y a x )0,0,0(>>>c b a (1.4)椭圆抛物面 q y p x z 2222+=(同号与q p ) 双曲抛物面 z qy p x =+-2222 ( p 与q 同号)单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=+-cz b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x )0,0,0(>>>c b a6.2多元函数的基本概念一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域 二、二元函数的概念定义1 设D 是平面上的一个非空点集,如果对于D 内的任一点),(y x ,按照某种法则f ,都有唯一确定的实数z 与之对应,则称f 是D 上的二元函数,它在),(y x 处的函数值记为),(y x f ,即),(y x f z =,其中x ,y 称为自变量, z 称为因变量. 点集D 称为该函数的定义域,数集}),(),,(|{D y x y x f z z ∈=称为该函数的值域.类似地,可定义三元及三元以上函数. 当2≥n 时, n 元函数统称为多元函数. 二元函数的几何意义三、二元函数的极限定义2 设函数),(y x f z =在点),(000y x P 的某一去心邻域内有定义,如果当点),(y x P 无限趋于点),(000y x P 时,函数),(y x f 无限趋于一个常数A ,则称A 为函数),(y x f z =当),(y x ),(00y x →时的极限. 记为A y x f y y x x =→→),(lim 00.或 A y x f →),( (),(),(00y x y x →) 也记作A P f P P =→)(lim 0或 A P f →)( )(0P P →二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述. 为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性定义3 设二元函数),(y x f z =在点),(00y x 的某一邻域内有定义,如果),(),(lim 0000y x f y x f y y x x =→→,则称),(y x f z =在点),(00y x 处连续. 如果函数),(y x f z =在点),(00y x 处不连续,则称函数),(y x f z =在),(00y x 处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数. 一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域或闭区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D 上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理. 下面我们不加证明地列出这些定理.定理1(最大值和最小值定理) 在有界闭区域D 上的二元连续函数, 在D 上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D 上的二元连续函数在D 上一定有界. 定理3(介值定理)在有界闭区域D 上的二元连续函数, 若在D 上取得两个不同的函数值, 则它在D 上取得介于这两值之间的任何值至少一次. 6.3偏导数一、偏导数的定义及其计算法定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 当y 固定在0y 而x 在0x 处有增量x ∆时, 相应地函数有增量),,(),(0000y x f y x x f -∆+如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数, 记为).,(,,00000000y x f z xf xz x y y x x xy y x x y y x x 或======∂∂∂∂例如,有),(00y x f x xy x f y x x f x ∆-∆+=→∆),(),(lim00000.类似地,函数),(y x f z =在点),(00y x 处对y 的偏导数为yy x f y y x f y ∆-∆+→∆),(),(lim00000,记为).,(,,00000000y x f z yfy z y y y x x yy y x x y y x x 或======∂∂∂∂上述定义表明,在求多元函数对某个自变量的偏导数时, 只需把其余自变量看作常数,然后直接利用一元函数的求导公式及复合函数求导法则来计算之. 二、关于多元函数的偏导数,补充以下几点说明:(1)对一元函数而言,导数dxdy可看作函数的微分dy 与自变量的微分dx 的商. 但偏导数的记号xu∂∂是一个整体. (2)与一元函数类似,对于分段函数在分段点的偏导数要利用偏导数的定义来求.(3)在一元函数微分学中,我们知道,如果函数在某点存在导数,则它在该点必定连续. 但对多元函数而言,即使函数的各个偏导数存在,也不能保证函数在该点连续.例如,二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x yx xyy x f 在点)0,0(的偏导数为,00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆xx f x f f x x x .00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆y yf y f f x y y 但从上节例5已经知道这函数在点)0,0(处不连续.三、偏导数的几何意义设曲面的方程为),(y x f z =,)),(,,(00000y x f y x M 是该曲面上一点,过点0M 作平面0y y =,截此曲面得一条曲线,其方程为⎩⎨⎧==00),(y y y x f z 则偏导数),(00y x f x 表示上述曲线在点0M 处的切线x T M 0对x 轴正向的斜率(图6-3-1). 同理,偏导数),(00y x f y 就是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴正向的斜率.四、偏导数的经济意义设某产品的需求量),,(y p Q Q = 其中p 为该产品的价格, y 为消费者收入. 记需求量Q 对于价格p 、消费者收入y 的偏改变量分别为),,(),(y p Q y p p Q Q p -∆+=∆和 ).,(),(y p Q y y p Q Q y -∆+=∆易见,pQ p ∆∆表示Q 对价格p 由p 变到p p ∆+的平均变化率. 而pQ p Qp p ∆∆=∂∂→∆0lim 表示当价格为p 、消费者收入为y 时, Q 对于p 的变化率. 称Qp p Q pp Q Q E p p p ⋅∂∂-=∆∆=→∆//lim为需求Q 对价格p 的偏弹性. 同理,yQ y ∆∆表示Q 对收入y 由y 变到y y ∆+的平均变化率. 而yQ y Q y y ∆∆=∂∂→∆0lim 表示当价格p 、消费者收入为y 时, Q 对于y 的变化率. 称 Qy y Q yy Q Q E y y y ⋅∂∂-=∆∆=→∆//lim为需求Q 对收入y 的偏弹性.五、科布-道格拉斯生产函数在商业与经济中经常考虑的一个生产模型是科布-道格拉斯生产函数100,),(1<<>=-a c ycx y x p aa且,其中p 是由x 个人力单位和y 个资本单位生产处的产品数量(资本是机器、场地、生产工具和其它用品的成本)。

常用的求导和定积分公式

常用的求导和定积分公式

常用的求导和定积分公式在微积分中,求导和定积分是两个最基本的运算。

求导用于确定一个函数的导数,而定积分则用于计算一个函数在给定区间上的面积。

下面是一些常用的求导和定积分公式:求导公式:1. 常数法则:若c为常数,则导数为0,即:d/dx (c) = 0。

2. 幂法则:若f(x) = x^n,则导数为n*x^(n-1),即:d/dx (x^n)= n*x^(n-1)。

3. 对数函数法则:若f(x) = ln(x),则导数为1/x,即:d/dx(ln(x)) = 1/x。

4. 指数函数法则:若f(x) = e^x,则导数为e^x,即:d/dx (e^x)= e^x。

5. 乘法法则:若f(x) = u(x) * v(x),则导数为u'(x) * v(x) +u(x) * v'(x),即:d/dx (u(x) * v(x)) = u'(x) * v(x) + u(x) *v'(x)。

6. 除法法则:若f(x) = u(x) / v(x),则导数为(u'(x) * v(x) -u(x) * v'(x)) / (v(x))^2,即:d/dx (u(x) / v(x)) = (u'(x) * v(x) - u(x) * v'(x)) / (v(x))^27. 链式法则:若f(x) = g(h(x)),则导数为g'(h(x)) * h'(x),即:d/dx (g(h(x))) = g'(h(x)) * h'(x)。

8. 反函数法则:若f(x) = g^(-1)(x),其中g为一个可逆函数,则导数为1 / g'(g^(-1)(x)),即:d/dx (g^(-1)(x)) = 1 / g'(g^(-1)(x))。

定积分公式:1. 基本定积分:∫1 dx = x + C。

2. 幂函数定积分:∫x^n dx = x^(n+1) / (n+1) + C,其中n不等于-13. 指数函数定积分:∫e^x dx = e^x + C。

高数微积分公式大全(总结的比较好)

高数微积分公式大全(总结的比较好)

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫=⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =++九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos axe xdx ⎰令,sin ,cos ax u e x x =均可。

积分求导公式运算法则上下项

积分求导公式运算法则上下项

积分求导公式运算法则上下项积分求导是微积分中的重要概念之一、它是求导和积分两个运算的逆运算,也就是说,如果我们对一个函数进行求导操作,然后再对它进行积分操作,我们将恢复到原来的函数。

积分求导的公式运算法则有很多,下面将介绍其中一些常用的法则。

1. 常数法则:如果f(x)是一个常数函数,那么它的导数为0。

即d/dx(c) = 0。

2. 线性法则:如果f(x)和g(x)是可导函数,而a和b是常数,那么d/dx(a*f(x) + b*g(x)) = a*d/dx(f(x)) + b*d/dx(g(x))。

3. 幂法则:对于幂函数f(x) = x^n,其中n是任意实数,那么它的导数为d/dx(x^n) = n*x^(n-1)。

例如,d/dx(x^3) = 3*x^24. 和差法则:如果f(x)和g(x)是可导函数,那么d/dx(f(x) +g(x)) = d/dx(f(x)) + d/dx(g(x))。

类似地,d/dx(f(x) - g(x)) =d/dx(f(x)) - d/dx(g(x))。

这条法则说明了求导运算在函数的和与差上是可分配的。

5. 乘积法则:如果f(x)和g(x)是可导函数,那么d/dx(f(x)*g(x)) = f(x)*d/dx(g(x)) + g(x)*d/dx(f(x))。

这条法则告诉我们对于一个函数的乘积,可以首先对其中一个函数求导,然后再乘以另一个函数,并将相乘的结果相加。

6. 商法则:如果f(x)和g(x)是可导函数,那么d/dx(f(x)/g(x)) = (g(x)*d/dx(f(x)) - f(x)*d/dx(g(x)))/[g(x)]^2、这条法则指导我们在求导一个函数的商时如何进行运算。

7. 反函数法则:如果y = f(x)是一个可导函数,而x = g(y)是它的反函数,那么d/dx(g(y)) = 1/[d/dy(f(x))],(x = g(y))。

这条法则说明了如何对一个函数的反函数求导。

微积分常用公式及运算法则

微积分常用公式及运算法则

微积分常用公式及运算法则1.基本导函数:(1)常数函数导数公式:若f(x)=C,其中C是常数,则f'(x)=0。

(2) 幂函数导数公式:若f(x) = x^n,其中n是常数,则f'(x) = nx^(n-1)。

(3) 指数函数导数公式:若f(x) = a^x,其中a是正常数且a≠1,则f'(x) = a^x * ln(a)。

(4) 对数函数导数公式:若f(x) = log_a(x),其中a是正常数且a≠1,则f'(x) = 1 / (x * ln(a))。

(5)三角函数导数公式:- sin函数导数:(sinx)' = cosx。

- cos函数导数:(cosx)' = -sinx。

- tan函数导数:(tanx)' = sec^2(x)。

- cot函数导数:(cotx)' = -csc^2(x)。

- sec函数导数:(secx)' = secx * tanx。

- csc函数导数:(cscx)' = -cscx * cotx。

(6)反三角函数导数公式:- arcsin函数导数:(arcsinx)' = 1 / sqrt(1 - x^2)。

- arccos函数导数:(arccosx)' = -1 / sqrt(1 - x^2)。

- arctan函数导数:(arctanx)' = 1 / (1 + x^2)。

- arccot函数导数:(arccotx)' = -1 / (1 + x^2)。

- arcsec函数导数:(arcsecx)' = 1 / (x * sqrt(x^2 - 1)),其中,x, > 1- arccsc函数导数:(arccscx)' = -1 / (x * sqrt(x^2 - 1)),其中,x, > 1(1)常数乘法法则:若f(x)=C*g(x),其中C是常数,则f'(x)=C*g'(x)。

16个微积分公式

16个微积分公式

16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。

下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。

一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。

这是因为常数函数在任意点的斜率都是0。

2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。

3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。

4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。

5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。

二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。

计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。

2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。

计算不定积分可以使用导数和积分的基本公式。

三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。

2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。

3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。

4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。

5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。

6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。

7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。

8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。

求解微分方程可以通过积分的方法来得到解析解。

9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。

微积分定理和公式

微积分定理和公式

一、函数定义 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D 或记f D 与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.二函数的几何特性 1.单调性1定义 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增或单增;若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性定义 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.定义 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.定义 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇偶函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助. 4.周期性定义 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数考纲不要求,除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1a 和图1-1b 所示.三初等函数 1.基本初等函数1常数函数 C y =,定义域为-∞,+∞,图形为平行于x 轴的直线.在y 轴上的截距为c .2幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在1,+∞内有定义,且图形过点1,1.当α>0时,函数图形过原点图1-2a b图1-23指数函数 )1,0(≠=ααα xy ,其定义域为-∞,+∞.当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点0,1.微积分中经常用到以e 为底的指数函数,即xe y =图1-34对数函数 )1,0(log ≠=ααα x y ,其定义域为1,+∞,它与xy α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点1,0图1-4图1-3 图1-4 另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 1f ′)(x 在),(b a 内严格单调减少;2)(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明1、2均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在-∞,∞+上严格单调递减,但y ″=-122x ≤0,因此1,2均不充分,故选E.此题若把题干改成f ″)(x ≤0,则1,2均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数定义 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1.函数)(x f y =与反函数)(1x fy -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a xlog ==与互为反函.∈=x x y ,20,+∞的反函数为x y =,而∈=x x y ,2-∞,0的反函数为x y -=图1-2b.3.复合函数定义 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若ff R D 非空,则称函数为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.四隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =不论这个函数是否能表示成显函数,将其代入所设方程,使方程变为恒等式: 其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在0,1上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x exy因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .五分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如 都是定义在-∞,+∞上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限不在考试大纲内,只需了解即可极限是微积分的基础. 一数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义定义 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作否则称数列{}n a 发散或n n a ∞→lim 不存在. 2.数列极限性质1四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则2a x a x k n n n n =⇔=+∞→∞→lim lim k 为任意正整数.3若a x n n =∞→lim ,则数列{}n x 是有界数列.4夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤.若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim .利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 5单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1或n n x x ≥+1,则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 二函数的极限 1.∞→x 时的极限 定义 设函数)(x f 在)0(||>≥a ax 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作当+∞→x 或-∞→x 时的极限当x 沿数轴正负方向趋于无穷大,简记+∞→x -∞→x 时,)(x f 无限接近常数A ,则称)(x f 当+∞→x -∞→x 时以A 为极限,记作3.0x x →时的极限定义 设函数)(x f 在0x 附近可以不包括0x 点有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作4.左、右极限若当x 从0x 的左侧0x x <趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧0x x >趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0三函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 0则A=B . 2.局部有界性 若A x f x x =→)(lim 0.则在0x 的某邻域内点0x 可以除外,)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0或A <0=,则存在0x 的某邻域点0x 可以除外,在该邻域内有)(x f >0或)(x f <0=;若A x f x x =→)(lim 0;且在0x 的某邻域点0x 可以除外有)(x f >0或)(x f <0=,则必有A≥0或A ≤0;4.不等式性质若A x f x x =→)(lim 0,B x g x x =→)(lim 0,且A>B ,则存在0x 的某邻域点0x 可以除外,使)(x f >)(x g .若A x f x x =→)(lim 0,B x g x x =→)(lim 0.且在0x 的某邻域点0x 可以除外有)(x f <)(x g 或)(x f ≤)(x g ,则A ≤B ;5.四则运算 同数列四无穷小量与无穷大量 1.无穷小量的定义定义 若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量;若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量;2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量; 3.无穷小量的运算性质i 有限个无穷小量的代数和仍为无穷小量; ii 无穷小量乘有界变量仍为无穷小量; iii 有限个无穷小量的乘积仍为无穷小量; 4.无穷小量阶的比较设0)(lim,0)(lim 0==→→x x a x x x x β,5.等价无穷小常用的等价无穷小:0→x 是,)0(~1)1(,1~1,~)1(1,~1≠-+-+-ααααaxx n x x x n x e xx等价无穷小具有传递性,即)(~)(x x βα,又)(~)(x x γβ; 等价无穷小在乘除时可以替换,即)(~)(),(~)(**x x x x ββαα,则)()(lim )()(lim **)()(0x x x x x x x x x x βαβα∞→→∞→→=或或第二讲 函数的连续性、导数的概念与计算重点:闭区间上连续函数的性质、导数的定义、几何意义、基本初等函数的求导公式、复合函数求导公式、导数的四则运算;三、函数的连续性一函数连续的概念 1.两个定义定义 设函数)(x f y =的定义域为D x D ∈0,;若)()(lim 00x f x f x x =→,则称0)(x x f 在点连续;若D x f 在)(中每一点都连续,则称0)(x x f 在点右连续;定义 若)()(lim 00x f x f x x =+→,则称0)(x x f 在点右连续; 若)()(lim 00x f x f x x =-→,则称0)(x x f 在点左连续;0)(x x f 在点连续0)(x x f 在⇔点既左连续又右连续;2.连续函数的运算连续函数经过有限次四则运算或复合而得到的函数仍然连续,因而初等函数在其定义区间内处处连续;二间断点1.若)(lim )(lim 00x f x f x x x x -+→→与都存在,且不全等于)(0x f ,则称0x 为)(x f 的第一类间断点; 其中若)(lim 0x f x x →存在,但不等于)(0x f 或)(x f 在0x 无定义,则0x 为)(x f 的可去间断点;若)(lim )(lim 0x f x f x x x x -+→→与都存在,但不相等,则称0x 为)(x f 的跳跃间断点;2.若)(lim )(lim 0x f x f x x x x -+→→与中至少有一个不存在,则称0x 为)(x f 的第二类间断点;三闭区间上连续函数的性质若)(x f 在区间],[b a 内任一点都连续,又)()(lim ),()(lim b f x f f x f bx x ==-+→→αα,则称函数)(x f 在闭区间],[b a 上连续;1.最值定理设)(x f 在],[b a 上连续,则)(x f 在],[b a 上必有最大值M 和最小值m ,即存在],[,21b a x x ∈,使],[,)(,)(,)(11b a x M x f m m x f M x f ∈≤≤==且;2.价值定理设)(x f 在],[b a 上连续,且m,M 分别是)(x f 在],[b a 上最小值与最大值,则对任意的],[M m k ∈,总存在一点k c f b a c =∈)(],,[使;推论1 设)(x f 在],[b a 上连续,m,M 分别为最小值和最大值,且mM <0,则至少存在一点0)(],,[=∈c f b a c 使;推论1 设)(x f 在],[b a 连续,且0)()(<⋅b f a f ,则一定存在],,[b a c ∈使0)(=c f ; 推论1,推论2又称为零值定理;第二章 导数及其应用一、导数的概念1.导数定义定义 设y=fx 在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限存在,则称此极限值为函数y=fx 在x 0点的导数,此时称y=fx 在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导这时称fx 在D 内可导,则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=fx 的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数fx 在点x 0处可导,则)(0x f '就是曲线y=fx 在点x 0,y 0处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=fx 在点x 0,y 0处的切线平行于x 轴,切线方程为)(00x f y y ==. 若fx 在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=fx 在点x 0,y 0处的切线垂直于x 轴,切线方程为x=x 0.3.左、右导数定义 设fx 在点x 0点的左侧邻域内有定义,若极限 存在,则称此极限值为fx 在点x 0处的左导数,记为)(0x f -')(0x f -'=xx f x x f ∆-∆+-→∆)()(lim 000类似可以定义右导数.fx 在点x 0点处可导的充要条件是fx 在点x 0点处的左、右导数都存在且相等,即)()()(000x f x f x f +-'='⇔'存在存在.若fx 在a,b 内可导,且)(a f +'及)(b f -'都存在,则称fx 在a,b 上可导. 4.可导与连续的关系若函数0)(x x f y 在=点可导,则)(x f 在点0x 处一定连续. 此命题的逆命题不成立.邮导数定义,极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim0000存在可知,)(x f 在0x 点可导, 必有0→∆y ,故)(x f 在0x 点连续.但)(x f 在0x 点连续只说明当0→∆x 时,也有0→∆y ,而当y ∆的无穷小的阶低于x ∆时,极限即不存在,故)(x f 在0x 点不可导.只有y ∆与x ∆是同阶无穷小,或y ∆是比x ∆高阶的无穷小时,)(x f 在0x 点才可导. 例如,0||,31===x x y x y 在点连续,但不可导.二、导数的运算1.几个基本初等函数的导数 1.0='=y c y 2.,1-='=a aax y x y3x x x x e y e y na a y x y ='=='=,;1,4.1,1;11,log xy nx y na x y x y a ='=='=2.导数的四则运算 1)(])([x u c x u c '⋅='⋅; 2)()(])()([x v x u x v x u '+'='±;3)()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;4)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡; 3.复合函数的导数设函数)(x u ϕ=在x 处可导,而函数)(u f y =在相应的点)(x u ϕ=处可导,则复合函数)]([x u f y =在点x 处可导,且dxdudu dy dx dy x x f dxdy⋅='⋅'=或)()]([ϕϕ.4.高阶导数二阶导数若函数 区间a,b 内可导,一般说来,其导数)(x f y '='仍然是x 的函数,如果)(x f y '=' 也是可导的,则对其继续求导数,所得的导函数称为)(x f 的二阶导数,记为2222)(,),(,dxx f d dx d x f y y ''''. 注 更高阶的导数MBA 大纲不要求,二阶导数主要用来判定极值、函数凹凸区间及拐点.导数的计算要求非常熟练、准确第三讲 微分、导数的应用重点:微分的概念及运算、求曲线切线方程的方法、函数单调区间、极值、最值的求法 三、微分1.微分的概念定义 设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此由此可以看出,微分的计算完全可以借助导数的计算来完成.2微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则 一阶微分形式不变性:设)]([x f y ϕ=是由可微函数)(u f y =和)(x u ϕ=复合而成,则)]([x f y ϕ=关于x 可微,且由于du u f dy )('=,不管u 是自变量还是中间变量,都具有相同的形式,故称一阶微分形式不变.但导数就不同了:若u 是自变量,)(u f y '='.若u 是中间变量,x u u f y x u u '⋅'='=则),(.四、利用导数的几何意义求曲线的切线方程求切线方程大致有四种情况,最简单的一种是求过曲线)(x f y =上一点))(,(00x f x 的切线方程,此时只需求出)(0x f ',切线方程为))(()(000x x x f x f y -'=-.第二种情况是过曲线)(x f y =外一点a,b ,求曲线的切线方程,此时)(a f b ≠.设切点为))(,(00x f x ,切线方程为))(()(000x x x f x f y -'=-,将点a,b 代入方程中,有))(()(000x a x f x f b -'=-从中求出0x ,化成第一种情况的切线方程,若得到0x 惟一,则切线也不惟一.第三种情况是求两条曲线的公共切线,这两条曲线可能相离,也可能相交.设两曲线为)()(x g y x f y ==与解题方法是设在两条曲线上的切点分别为))(,()),(,(b g b a f a 这两点的切线斜率相等,从而有方程).()(b g a f '=' ①另外过点)(,a f a 的切线方程))(()(a x a f a f y -'=-也过点b,gb ,故有))(()()(a b a f a f b g -'=- ②由①、②求出a,b ,有了切点,切线方程也就可以写出来了. 第四种情况是求两条曲线在某公共点处的公切线.设曲线)()(x g y ax f y ==与在某点处相切,求a 的值与切线方程.则可设切点为))(,(0x g x ,从而有)())(()()(0000x g x x ax f x g ax f '=='=,由两方程联和可得a 的值及切点横坐标0x .即切点))(,(00x g x ,再由第一种情况,写出切线方程.五、函数的增减性、极值、最值1.函数的增减性的判定设函数)(x f 在闭区间],[b a 上连续,在a,b 内可导,若)0)((0)(<'>'x f x f 或,则)(x f 在a,b 上单调增加或单调减少.反之,若)(x f 在a,b 上单调增加或单调减少且可导,则)0)((0)(≤'≥'x f x f 或.二者的差异在于有没有等号.2.极值概念与判定定义 设)(x f 在0x 的某邻域内有定义,对该邻域内任意点x ,都有)(x f ≥)(0x f 或)(x f ≥)(0x f ,则称)(0x f 为极大值或极小值0x 为极大值点或极小值点.需要注意的是,极值点一定是内点,极值不可能在区间的端点取到.1极值存在的必要条件:若)(x f 在0x 点可导,且0x 为极值点,则)(0x f '=0.因此,极值点只需在)(x f '=0的点驻点或)(x f '不存在的点中去找,也就是说,极值点必定是)(x f '=0或)(x f '不存在的点,但这种点并不一定都是极值点,故应加以判别.2极值存在的充分条件,即极值的判别法,分为第一判别法和第二判别法.第一判别法用一阶导数判定.高)(x f 在0x 点连续,且)(0x f '=0或)(0x f '不存在.若存在0>δ,使得当),(00x x x δ-∈时,有)(x f >0或)(x f 不存在,当),(00δ+∈x x x 时,有)(x f '<0或)(x f '>0,此时0x 为极大极小值点.)(0x f 为极大极小值.若)(x f '在0x 的左右不变号,则0x 不是极值点.第二判别法需用二阶导数判定,只适用于二阶导数存在且不为零的点,因此有局限性. 当)(0x f '=0,若0)(0>''x f ,则0x 为极小值点,若0)(0<''x f ,0x 为极大值点,0)(0=''x f 判别法失效,仍需用第一判别法.3.函数在闭区间a,b 上的最大值与最小值.极值是函数的局部性质.最值是函数的整体性质.求最大值与最小值只需找出极值的可疑点驻点和不可导点,把这些点的函数值与区间的端点函数值比较,找出最大的与最小的即为最大值和最小值,相应的点为最大值点和最小值点.第四讲 函数图形的凹凸性、拐点、不定积分重点:函数图形凹凸区间及拐点求法、找原函数的换元积分法和分部积分法六、函数图形的凹凸性、拐点及其判定1.概念定义 若在某区间内,曲线弧上任一点处的切线位于曲线的下方,则称曲线在此区间内是上凹的,或称为凹弧简记为 ;反之,切线位于曲线上方,则称曲线是上凸的,亦称凸弧简记为,曲线凹、凸的分界点称为拐点.2.凹凸的判定设函数)(x f y =在区间a,b 内二阶可导,若在a,b 内恒有)(x f ''>0或)(x f ''<0,则曲线)(x f y =在a,b 内是凹弧或凸弧.3.拐点的求法与判定拐点存在的必要条件是)(0x f ''=0或)(0x f ''不存在请与极值比较其共性.设)(x f 在a,b 内二阶可导,)(0)(),,(000x f x f b a x ''=''∈或不存在,若)(x f ''在0x 点的左右变号,则点))(,(00x f x 是曲线)(x f y =的拐点,否则就不是拐点.由以上可以看出,要求函数的单调区间和极值点,只要找出其一阶导数等于零和一阶导不存在的点,设这种点一共有k 个,则这个k 个点把整个区间分成k+1个子区间,在每一个子区间内)(x f '不变号,由)(x f '>0或0)(<'x f 判定fx 在该子区间内单调递增或递减,同时也可以将极大值点和极小值点求出.求函数曲线的凹凸区间与拐点.只需求二阶导数等于零或二阶导数不存在的点,然后用上面的方法加以判定.第三章 定积分及其应用一、不定积分1.不定积分概念定义原函数 若对区间I 上的每一点x ,都有 则称Fx 是函数fx 在该区间上的一个原函数.原函数的特性 若函数fx 有一个原函数F x ,则它就有无穷多个原函数,且这无穷多个原函数可表示为Fx+C 的形式,其中C 是任意常数.定义不定积分 函数fx 的原函数的全体称为fx 的不定积分,记作⎰dx x f )(.若Fx 是fx的一个原函数,则定义原函数的存在性 在区间I 上连续的函数在该区间上存在原函数;且原函数在该区间上也必连续.2.不定积分的性质1积分运算与微分运算互为逆运算. 2⎰⎰≠=)0()()(k dx x f k dx x kf 常数3⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式4.求不定积分的基本方法和重要公式 1直接积分法所谓直接积分法就是用基本积分公式和不定积分的运算性质,或先将被积函数通过代数或三角恒等变形,再用基本积分公式和不定积分的运算性质可求出不定积分的结果.2换元积分法 I 第一换元积分法 公式 若⎰+=C u F du u f )()(,则=C u F +)( C x F +))((ϕ. 说明 1°运算较熟练后,可不设中间变量)(x u ϕ=,上式可写作2°第一换元积分法的实质正是复合函数求导公式的逆用.它相当于将基本积分公式中的积分变量x 用x 的可微函数)(x ϕ替换后公式仍然成立.用第一换元积分法的思路 不定积分⎰dx x f )(可用第一换元积分法,并用变量替换)(x u ϕ=,其关键是被积函数gx可视为两个因子的乘积且一个因子)())((x x f ϕϕ是的函数是积分变量x 的复合函数,另一个因子)(x ϕ'是)(x ϕ的导数可以相差常数因子.有些不定积分,初看起来,被积函数不具有上述第一换元积分法所要求的特征,在熟记基本积分公式的前提下,注意观察被积函数的特点,将其略加恒等变形:代数或三角变形,便可用第一换元积分法.II 第二换元积分法 公式⎰dx x f )( ⎰'dt t t f )())((ϕϕ C t F +)( 说明 第二换元积分法与第一换元积分法实际上正是一个公式从两个不同的方向运用用第二换元积分法的思路 若所给的积分⎰dx x f )(不易积出时,将原积分变量x 用新变量t 的某一函数)(t ϕ来替换,化成以t 为积分变量的不定积分⎰'dt t t f )())((ϕϕ,若该积分易于积出,便达到目的;被积函数是下述情况,一般要用第二换元积分法:1°被积函数含根式t b ax b a b ax n n =+≠+令时可以是,)0,0(,求其反函数;作替换)(1b t ax n -,可消去根式,化为代数有理式的积分; 变量替换令)(t x ϕ=变量替换令)(t x ϕ=第一换元法令令第一换元法ux x u ==)()(ϕϕ2°被积函数含根式a e x ±时,令t a e x =±,求其反函数,作替换)(12a t n x ±=可消去根式;被积函数含指数函数)(xxe a 或,有时也要作变量替换:令)(t e t a xx==或,设)1(111nt x nt nax ==或,以消去)(x x e a 或; 3分部积分法 公式⎰⎰'-='或dx x u x v x v x u dx x v x u )()()()()()(说明 分部积分法是两个函数乘积求导数公式的逆用; 用分部积分法的思路 I 公式的意义 欲求⎰'dx v u求⎰'.dx u vII 关于选取u 和v '用分部积分法的关键是,当被积函数看作是两个函数乘积时,选取哪一个因子为)(x u u =,哪一个因子为)(x v v '='.一般来说,选取u 和v '应遵循如下原则:1°选取作v '的函数,应易于计算它的原函数;2°所选取的u 和v ',要使积分⎰'dx u v 较积分⎰'dx v u 易于计算;3°有的不定积分需要连续两次或多于两次运用分部积分法,第一次选作v '或u 的函数,第二次不能选由v '或u 所得到的v 或v '.否则,经第二次运用,被积函数又将复原.Ⅲ分部积分法所适用的情况由于分部积分法公式是微分法中两个函数乘积的求导数公式的逆用,因此,被积函数是两个函数乘积时,往往用分部积分法易见效.5.求不定积分需要注意的问题1由于初等函数在其有定义的区间上是连续的,所以每个初等函数在其有定义的区间上都有原函数,但初等函数的原函数并不都是初等函数.例如nxe e e xx x 11,,,122-等的原函数就无法用初等函数表示.2对同一个不定积分,采用不同的计算方法,往往得到形式不同的结果.这些结果至多相差一个常数,这是由于不定积分的表达式中含有一个任意常数所致.第五讲重点:定积分的概念、性质、变限求导、牛顿-菜布尼兹公式、定积分的换元积方法和分部积分法二、定积分1.定积分的定义定义定积分 函数)(x f 在区间a,b 上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,其中||max 1i ni x x ∆=∆≤≤.由定积分的定义,可推出以下结论:1定积分只与被积函数和积分区间有关; 2定积分的值与积分变量无关,即⎰⎰=babadt t f dx x f )()(;3⎰⎰-=abbadx x f dx x f )()(,特别地,⎰=aadx x f 0)(.定积分的几何意义 设)(x f 在a,b 上边续,⎰badx x f )(在几何上表示介于i 轴、曲线y =)(x f 及直线b x a x ==,之间各部分面积的代数和,在x 轴上方取正号,在x 轴下方取负号.利用定积分的几何意义,可以计算平面图形的面积,也是考纲中要求的定义应用内容. 定理可积的必要条件 若函数)(x f 在区间a,b 上可积,则)(x f 在a,b 上有界. 定理可积的充分条件 若函数)(x f 在区间a,b 上连续,则)(x f 在a,b 上可积.定理可积的充分条件 在区间a,b 上只有有限个间断点的有界函数)(x f 在该区间上可积.2.定积分的性质设)(x f ,)(x g 在a,b 上可积 1⎰⎰=baba k dx x f k dx x kf ,)()(为常数;2⎰⎰⎰±=±bababa dx x g dx x f dx x g x f )()()]()([;3对积分区间的可加性 对任意三个数a,b,c,总有 4比较性质 设],[),()(b a x x g x f ∈≤,则⎰⎰≤babadx x g dx x f )()(.特别地1°若],[,0)(b a x x f ∈≥,则0)(≥⎰badx x f ;2°⎰⎰≤babadx x f dx x f |)(|)(5⎰-=baa b dx .定理估值定理 若)(x f 在a,b 上的最大值与最小值分别为M 与m ,则)()()(a b M dx x f a b m ba-≤≤-⎰.定理积分中值定理 若)(x f 在a,b 上连续,则在a,b 上至少存在一点ξ,使))(()(a b f dx x f ba-=⎰ξ.上式若写成⎰-=ba dx x f ab f )(1)(ξ,该式右端称为函数)(x f 在区间a,b 上的平均值. 3.微积分学基本定理定理原函数存在性定理 若函数)(x f 在区间a,b 上连续,则函数 是)(x f 在a,b 上的一个原函数,即)()()(x f dt t f dx d x xa =⎪⎭⎫ ⎝⎛=Φ'⎰.设)(),(x x ψϕ可导 推论1 设⎰=Φϕadt t f x )()(,则)())(()(x x f x ϕϕ'=Φ'.推论2 设⎰=Φ)()()()(x x dt t f x ϕψ,则)())(()())(()(x x f x x f x ψψϕϕ'-'=Φ'.推论3 ⎰=Φ)()()()(x adt x g t f x ϕ,则)())(()()()()()()()()(x x f x g dt t f x g dt t f x g x x a x a ϕϕϕϕ'+'='⎥⎦⎤⎢⎣⎡=Φ'⎰⎰. 定理牛顿-莱布尼茨公式 若函数)(x f 在区间a,b 上连续,)(x F 是)(x f 在a,b 上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式. 4.计算定积分的方法和重要公式 1直接用牛顿-莱布尼茨公式这时要注意被积函数)(x f 在积分区间a,b 上必须连续. 2换元积分法公式 设函数)(x f 在区间a,b 上连续,而函数)(t x ϕ=满足下列条件:1°)(t ϕ在区间],[βα上是单调连续函数; 2°b a ==)(,)(βϕαϕ; 3°],[)(βαϕ在t '上连续, 则⎰⎰'=βαϕϕdt t t f dx x f ba)())(()(.该公式从右端到左端相当于不定积分的第一换元积分法;从左端到右端相当于不定积分的第二换元积分法,即用定积分的换元积分法与不定积分的换元积分法思路是一致的.作变量替换是,要相应地变换积分上下限.3分部积分法公式 设函数)(),(x v x u 在区间a,b 上有连续的导数,则⎰⎰'-='babadx x u x v a b x v x u dx x v x u )()()()()()(. 用该公式时,其思路与不定积分法的分部积分法是相同的.除此此外,当被积函数为变上限的定积分时,一般要用分部积分法.例如,设⎰⎰=xcbadx x f dt t x f )(,)()(求ϕ,这时,应设dx dv x f u ==),(.4计算定积分常用的公式 1°202241a dx x a aπ=-⎰.2°奇偶函数积分 设],[)(a a x f -在上连续,则 3°⎰⎰⎰-+=-+=--a aaaadx x f x f dx x f x f dx x f 0)]()([)]()([21)(.计算定积分,当积分区间为-a,a 时,应考虑两种情况:其一是函数的奇偶性;其二是作变量替换u x -=,用上述公式3°,当公式右端的积分易于计算时,便达目的.4°周期函数积分 设)(x f 是以T 为周期的周期函数,则⎰⎰=+TTa adx x f dx x f 0)()(.5°若)(x f 以T 为周期且是奇函数,则第六讲重点:广义积分、利用定积分的性质还应平面图形面积直角坐标系下.5.广义积分 前面引进的定积分⎰badx x f )(有两个特点:积分区间为有限区间;被积函数)(x f 在a,b 上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a⋅b = b⋅a
3.不等式
|| a | − | b ||≤| a ± b |≤| a | + | b |
a ⋅ (b + c) = a ⋅b + a ⋅ c (λa) ⋅ (µb) = λµ(a ⋅b)
4.单位向量
ea = a |a|
空间两点间的距离公式 | P1P2 |= (x2 − x1)2 + ( y2 − y1)2 + (z2 − z1)2
( ) 旋转而成的曲面的方程f ± x2 + y2 , z = 0;
若在f ( y, z) = 0中y保持不变而将z改写成
± x2 + z2 , 就得到曲线C绕y轴旋转而成的
( ) 曲面的方程f y, ± x2 + z2 = 0.
二次曲面图形及方程
1.椭球面
4
x2 + y2 + z2 =1 a2 b2 c2
x − x0 = y − y0 = z − z0 .
m
n
p
直线与平面的夹角
直线L与平面Π法线的方向向量分别是
s = (m, n, p), n = ( A, B,C),则夹角公式为:
sinϕ = | n ⋅ s | =
| Am + Bn + Cp |
| n || s | A2 + B2 + C2 m2 + n2 + p2
相互垂直的充要条件是:
s1 = (m1, n1, p1), s2 = (m2 , n2 , p2 ),则夹角公式为:
A1A2 + B1B2 + C1C2 = 0 相互平行的充要条件是:
A1 = B1 = C1 A2 B2 C2
cosϕ = s1 ⋅ s2 =
| m1m2 + n1n2 + p1 p2 |
ax ay az bx by bz = 0
0×a = a×0 = 0
cx cy cz
a×a =0
(a + b)× c = a × c + b × c (λa)× (µb) = λµ(a × b)
a b的充要条件是a × b = 0
a×b
= (aybz − azby )i + (azbx − axbz ) j + (axby − aybx )k
∫ ax d x = ax + C(a > 0, a ≠ 1) ln a
∫ sinh x d x = cosh x + C
∫ cosh x d x = sinh x + C
不定积分线性运算法则
∫[αu(x) + β v(x)]d x = α ∫ u(x) d x + β ∫ v(x) d x
不定积分的换元法
向量的坐标表示
向量a与b的夹角满足公式
cosθ = a ⋅b (其中0 ≤ θ ≤ π ) | a || b |
若a = (ax , ay , az ),b = (bx , by , bz ),则
cosθ =
axbx + ayby + azbz
ax2
+
a
2 y
+
az2

bx2 + by2 + bz2
同济二版 微积分(下)
以点M1(x1, y1, z1)为起点, M 2 (x2 , y2 , z2 )为终点 的坐标
M1M 2 = (x2 − x1, y2 − y1, z2 − z1)
∫a f (x)d x = 0 −a
π
π
∫ 2 f (sin x) d x = ∫ 2 f (cos x) d x
| a |= ax2 + ay2 + az2
向量的数量积(点积、内积)
a ⋅b =| a || b | cosθ
a⋅0 = 0⋅a = 0
a ⋅ b =| a | Prja b =| b | Prjb a
即:Prja
b
=
a⋅b |a|
=
ea
⋅b
a ⋅ b = (ax , ay , az ) ⋅ (bx , by , bz ) = axbx + ayby + azbz a ⋅ a =| a |2
或ϕ([β ,α ]) ⊆ [a,b];
(2)ϕ′ ∈C[α, β ](或ϕ′∈ C[β ,α ])
那么:∫b f (x) d x = ∫ β f [ϕ (t)]ϕ′(t) d t
a
α
1
若f ∈C[−a, a],并且为偶函数,则
∫ a f (x) d x = 2∫ a f (x) d x;
−a
0
若f ∈C[−a, a],并且为奇函数,则
0
0
∫ ∫ π xf (sin x) d x = π
π
2 f (sin x) d x
0
0
π
π
∫ ∫ 2 sinn x d x = 2 cosn x d x
0
0
定积分的分部积分法
∫ ∫ b a
uv′
d
x
=
[uv]ba

b vu′ d x
a
∫ ∫ b a
u
d
v
=
[uv]ba

b
vdu
a
m = 1, 2, 3,⋯
基本积分表
∫ k d x = kx + C(k = 1时, ∫ d x = x + C)
∫ xµ d x = xµ+1 + C
µ +1
∫ 1 d x = ln | x | +C
x

1 1+ x2
d
x
=
arctan
x
+
C
∫ 1 d x = arcsin x + C
1− x2
∫ cos x d x = sin x + C
a2 − b2x2 b
a
∫ dx
x2 − a2
=
1 ln 2a
x−a x+a
+C
∫ sec x d x = ln | sec x + tan x | +C
∫ csc x d x = ln | csc x − cot x | +C
( ) ∫ d x = ln x + x2 + a2 + C(a > 0) x2 + a2
2
同济二版 微积分(下)
若a = (ax , ay , az ), b = (bx ,by ,bz ),则
(a ×b) ⋅c
a ⊥ b的充要条件是axbx + ayby + azbz = 0
向量的向量积 设a和b是两个向量, 规定a与b的向量积是一 个向量,记作a × b,它的模与方向分别是:
( ) (i) | a × b |=| a | × | b | sinθ 其中θ = (a ^ b)
直线L和平面Π 相互垂直的充要条件是:
A= B =C; mn p 相互平行的充要条件是: Am + Bn + Cp = 0.
3. 一般方程
直线L可以看作两个平面
Π1 : A1x + B1 y + C1z + D1 = 0与 Π2 : A2 x + B2 y + C2 z + D2 = 0的交线.空间一点 M (x, y, z)在直线L上,当且仅当它的坐标x, y, z
| s1 || s2 |
m12 + n12 + p12 m22 + n22 + p22
直线L1和L2
点到平面的距离 点P0 (x0, y0 , z0 )到平面Ax + By + Cz + D = 0 的距离为:d = | Ax0 + By0 + Cz0 + D |
A2 + B2 + C 2
相互垂直的充要条件是: m1m2 + n1n2 + p1 p2 = 0 相互平行的充要条件是:
|a|
|a|
|a|
其中| a |=
ax2
+
a
2 y
+
az2
.
方向余弦满足:cos2 α + cos2 β + cos2 γ = 1
ea = (cosα , cos β , cosγ )
向量的投影 向量a在b上的投影, 记为 Prj | a | cos(a ^ b)
b
向量的模 向量a = (ax , ay , az )的模为
∫ ∫ f [ϕ (x)]ϕ′(x) d x = f (u) d uu=ϕ(x) ∫ f (x) d x = [ f [φ (t)]φ ′(t) d t ]t=φ−1(x)
积分公式
∫ dx
a2 + x2
=
1 a
arctan
x a
+C
∫ d x = arcsin x + C
a2 − x2
a
∫ d x = 1 arcsin bx + C(a > 0,b > 0)
同时满足Π1与Π 2的方程,的下面的直线方程:
A1x
+
B1 y
+
C1z
+
D1
=
0,
A2 x + B2 y + C2 z + D2 = 0.
其中 A1 = B1 = C1 不成立. A2 B2 C2
两直线的夹角
相关文档
最新文档