北师大版八年级数学下册相似图形测试题及答案
北师大版八年级数学下相似图形复习周练习题(12)
第12周每周一练 相似图形复习班级:________ 姓名:_________________ 学号:________一、选择题:1.一个三角形三条高的比是6:4:3,那么三条高所在的边的长度之比为( ). A .6:4:3 B .3:4:6 C .2:3:4 D .1:2:3 2.如图,已知△ABC 中,DE ∥FG ∥BC ,且AD :DF :FB=1:1:1,则S △ADE :S 四边形DFGE :S 四边形FBCG 等于( ).A .1:2:3B .1:4:9C .1:3:5D .1:4:163.一个钢筋三脚架的三边长分别为20cm ,50cm ,60cm ,•现要做一个与其相似的钢筋三脚架,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为两边,•则不同的截法有( ).A .一种B .二种C .三种D .五种4.如图,已知M 是平行四边行ABCD 的AB 边的中点,•CM•交BD•于点E ,•则图中阴影部分面积与平行四边行ABCD 面积之比为( ).A .13B .14C .25D .512二、填空题:5.如图,△ABC 中,MN ∥BC ,若∠C=68°,AM :MB=1:2,则∠MNA=______度, AN :•NC=____________.6.已知D 、E 分别是△ABC 的边AB 、AC 上的点,且AD=2,AB=3,AE=2.4,AC=3.6,•则S △ADE :S 四边形BCED =______________.7.平行于△ABC 的边BC 的直线平分△ABC 的面积,且把BC 边上的高AD 分为AG•、•GD 两段,则AG :GD 的值是_______________.8.如图,在△ABC 中,AB>AC ,过AC 上一点D 作直线DE ,交AB 于E ,使△ADE•和△ABC 相似,这样的直线可作____________条. 三、解答题9.如图,E 、F 分别为矩形ABCD 的边AD 、BC 的中点,•若矩形ABCD•∽矩形EABF ,AB=1,求矩形ABCD 的面积.10.如图,已知点D 在BC 上,BD :DC=2:1,点E 在AD 上,AE :ED=2:3,BE•的延长线交AC 于点F ,求BE :EF 的值.11.如图,在△ABC 中,AB=AC ,BD ⊥AC .求证:BC 2=2CA ·CD .12.已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F ,求证:EF GF CF ⋅=2.A BCDF G E13.如图,等腰梯形ABCD 中,AD ∥BC ,AB=4cm ,BC=7cm ,∠B=60°,P•为下底BC 上一点(不与B 、C 重合),连结AP ,过P 点作PE 交DC 于E ,使得∠APE=∠B . (1)求证:△ABP ∽△PCE ;(2)在底边BC 上是否存在一点P ,使得AP :PE =4:3,如果存在,求BP 、EC 的长;•如果不存在,请说明理由.第四章相似图形单元复习题参考答案一、选择题:1.若两个相似三角形的面积比为4:9,那么它们的相似比是( A ).A.2:3 B.4:9 C.16:81 D.1:2.252.一个三角形三条高的比是6:4:3,那么三条高所在的边的长度之比为( C ).A.6:4:3 B.3:4:6 C.2:3:4 D.1:2:33.如图1,已知△ABC中,DE∥FG∥BC,且AD:DF:FB=1:1:1,则S△ADE:S四边形DFGE:S四边形FBCG等于(C ).A.1:2:3 B.1:4:9 C.1:3:5 D.1:4:16(1) (2)4.用放大镜看一个Rt△ABC,该三角形边长放大10倍后,下列结论正确的是( B ).A.∠B是原来的10倍 B.周长是原来的10倍C.∠A是原来的10倍 D.面积是原来的10倍5.一个钢筋三脚架的三边长分别为20cm,50cm,60cm,•现要做一个与其相似的钢筋三脚架,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为两边,•则不同的截法有( D ). A.一种 B.二种 C.三种 D.五种6.已知b c a c a ba b c+++===k(a+b+c≠0),那么y=kx+k的图象一定不经过( D ).A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图2,已知M是平行四边行ABCD的AB边的中点,•CM•交BD•于点E,•则图中阴影部分面积与平行四边行ABCD面积之比为( A ).A.13B.14C.25D.512二、填空题:8.已知两个三角形对应中线之比为2:5,则它们周长的比是__2:5_.9.如图3,△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_68_度,AN:•NC=_1:2_.10.若32,234a b c a b ca++==则=__8__.(3) (4)11.已知D 、E 分别是△ABC 的边AB 、AC 上的点,且AD=2,AB=3,AE=2.4,AC=3.6,•则S △ADE :S 四边形BCED =__4:5_.12.平行于△ABC 的边BC 的直线平分△ABC 的面积,且把BC 边上的高AD 分为AG•、•GD 两段,则AG :GD13.如果两个相似三角形最短边长为4:5,而且周长和为36cm ,那么这两个三角形的周长分别为_16cm ,20cm __.14.如图4,在△ABC 中,AB>AC ,过AC 上一点D 作直线DE ,交AB 于E ,使△ADE•和△ABC 相似,这样的直线可作_2 条.15.雨后初晴,一学生在运动场上玩耍,在他前面2m 处一块小积水块,他看到了旗杆顶端的倒影.如果旗杆底端到积水处的距离为40m ,该生的眼部高度是1.5m ,那么旗杆的高度是__30_m . 三、解答题16.试作四边形,使它和已知的四边形位似比等于1:2,位似中心为O(1)使两个图形在点O 同侧(2)使两个图形在点O 两侧如图两四边形为所求17.如图,E 、F 分别为矩形ABCD 的边AD 、BC 的中点,•若矩形ABCD•∽矩形EABF ,AB=1,求矩形ABCD的面积.解:∵ 矩形ABCD•∽矩形EABF∴ABADEA AB =又E 为AD 的中点,AB=1 ∴AB ADAD AB =21 即2221AB AD = ∴2=ADO∴矩形ABCD 的面积=2=∙AD AB18.如图,梯形ABCD 中,AD ∥BC ,E 是AB•上的一点,•EF•∥BC ,•并且将梯形ABCD 分成两个相似梯形AEFD 、EBCF ,若AD=4,BC=9,求AE :EB 的值.解: ∵梯形AEFD ∽梯形EBCF, AD=4,BC=9∴EB AE BC EF EF AD == 即94EFEF =∴6=EF∴3264==EF AD∴AE :EB=AD:EF=2:319.如图,已知点D 在BC 上,BD :DC=2:1,点E 在AD 上,AE :ED=2:3,BE•的延长线交AC 于点F ,求BE :EF 的值.提示:过D 作DM ∥AC 交BF 于M易证△AEF ∽△DEM ∴EF :EM= AE :ED=2:3同理可证△BDM ∽△BCF ∴BM :BF=BD :BC=2:3由EF :EM =2:3 得EF :MF=2:5 由BM :BF =2:3 得MF :BF=1:3∴EF :BF=2:15 ∴BE :EF=13:220.ΔABC 为正三角形,D.B.C.E 在一条直线上,若∠DAE =1200,找出图中的相似三角形(写出证明过程)并探讨DB 、BC 、CE 之间的关系。
初中数学北师大版八年级下册第六章 平行四边形3.三角形的中位线-章节测试习题(3)
章节测试题1.【答题】如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A. 2B. 3C. 4D. 5【答案】B【分析】本题考查三角形的中位线.【解答】∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE BC=7,∵∠AFB=90°,AB=8,∴DF AB=4,∴EF=DE﹣DF=7﹣4=3,选B.2.【答题】如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A. 50°B. 40°C. 30°D. 20°【答案】D【分析】本题考查三角形的中位线.【解答】∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE AD,同理,PF BC,∵AD=BC,∴PE=PF,∴∠EFP(180°﹣∠EPF)(180°﹣140°)=20°,选D.3.【答题】如图,在△ABF中,点C在中位线DE上,且CE CD,连接AC,BC,∠ACB=90°,若BF=20,则AB的长为()A. 10B. 12C. 14D. 16【答案】D【分析】本题考查三角形的中位线.【解答】∵DE是△ABC的中位线,BF=20,∴DE BF=10,∵CE CD,∴CD DE=8,∵∠ACB=90°,∴AB=2CD=16,选D.4.【答题】如图,△ABC中,N是BC边上的中点,AM平分∠BAC,BM⊥AM于点M,若AB=8,MN=2.则AC的长为()A. 10B. 11C. 12D. 13【答案】C【分析】本题考查三角形的中位线.【解答】延长BM交AC于D,如图所示:∵BM⊥AM于点M,∴∠AMB=∠AMD=90°,∵AM平分∠BAC,∴∠BAM=∠DAM,在△BAM和△DAM中,,∴△BAM≌△DAM(ASA).∴AD=AB=8,BM=MD,∵N是BC边上的中点,∴MN为△BCD的中位线,∴DC=2MN=4,∴AC=AD+DC=8+4=12.选C.5.【答题】如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A. 2B. 5C. 4D. 10【答案】A【分析】本题考查三角形的中位线.【解答】如图,过A作AH⊥BC于H.∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC.选A.6.【答题】如图,∠MAN=90°,点C在边AM上,AC=2,点B为边AN上一动点,连接BC,△A'BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A'B于点F,连接A'E.当△A'EF为直角三角形时,AB的长为______.【答案】或2【分析】本题考查三角形的中位线.【解答】当△A'EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图,∵△A'BC与△ABC关于BC所在直线对称,∴A'C=AC=2,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=2,在Rt△A'CB中,E是斜边BC的中点,∴BC=2AE'=4,由勾股定理可得AB2=BC2﹣AC2,∴AB;②当∠A'FE=90°时,如图,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A'BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC为等腰直角三角形,∴AB=AC=2.综上,AB的长为或2.故答案为或2.7.【答题】如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为______.【答案】2【分析】本题考查三角形的中位线.【解答】∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,∴△MNE≌△DCE(AAS),∴CD=MN=2.故答案为2.8.【答题】如图,△ABC的周长为16,D,E,F分别为AB,BC,AC的中点,M,N,P分别为DE,EF,DF的中点,则△MNP的周长为______.如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是______.【答案】4;【分析】本题考查三角形的中位线.【解答】∵△ABC的周长为16,D、F、E分别为AB、AC、BC的中点,∴EF、DF、DE为三角形中位线,∴EF AB,DE AC,DF BC,∴EF+DE+DF(AB+AC+BC),即△DEF的周长是△ABC周长的一半,同理,△MNP的周长是△DEF的周长的一半,即△MNP的周长=△ABC的周长的16=4,以此类推,第n个小三角形的周长是第一个三角形周长的16=,故答案为4;.9.【题文】如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.【答案】(1)见解答;(2)当∠A=90°时,FG⊥FH.理由见解答. 【分析】本题考查三角形的中位线.【解答】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG BD,FH CE,∴FG=FH;(2)解:如图,延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.10.【题文】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.【答案】(1)见解答;(2)2.【分析】本题考查三角形的中位线.【解答】(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA),∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF CD(AC﹣AD)(AC﹣AB);(2)解:如图,分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AED(ASA),∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF CH(AH﹣AC)=2.11.【答题】如图,在中,,分别是,的中点,,是上一点,连接,,.若,则的长度为()A. B. C. D.【答案】B【分析】本题考查的是三角形中位线定理和直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.根据直角三角形的性质求出FE,根据三角形中位线定理计算即可.【解答】,,,;,分别是,的中点,为的中位线,,选B.12.【答题】如图,的周长为,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,若,则的长为()A. B. C. D.【答案】C【分析】本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32,及BC=12,可得DE=8,利用中位线定理可求出PQ.【解答】平分,,.,,,,同理,点是的中点,点是中点(三线合一),是的中位线,,,.选C.13.【答题】如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A. 50°B. 25°C. 15°D. 20°【答案】B【分析】本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.【解答】在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM AB,PN DC,PM∥AB,PN∥DC.∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN25°.选B.14.【答题】已知,四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()A. 1<MN<5B. 1<MN≤5C. <MN<D. <MN≤【答案】D【分析】本题考查了三角形的中位线,解答此题的关键是根据题意作出辅助线,利用三角形的中位线定理和三角形的三边关系求解.当AB∥CD时,MN最短,利用中位线定理可得MN的最长值,作出辅助线,利用三角形中位线及三边关系可得MN的其他取值范围.【解答】连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=2,MG∥AB,∴MG是△ABD的中位线,BG=GD,MG=AB=×2=1;∵N是BC的中点,BG=GD,CD=3,∴NG是△BCD的中位线,NG=CD=×3=,在△MNG中,由三角形三边关系可知MG-NG<MN<MG+NG,即-1<MN<+1,∴<MN<,当MN=MG+NG,即MN=时,四边形ABCD是梯形,故线段MN长的取值范围是<MN≤.选D.15.【答题】如图,点、、分别是的边、、的中点,连接、、得,如果的周长是,那么的周长是()A. B. C. D.【答案】B【分析】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.由于D、E分别是AB、BC中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.【解答】、分别是的边、的中点,,同理,,.选B.16.【答题】如图,中,是的中点,平分,于点,若,,则等于()A. B. C. D.【答案】C【分析】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=12,BD=DH,求出HC,根据三角形中位线定理计算即可.【解答】延长交于,平分,,,,,是中点,,,选C.17.【答题】如图,在四边形中,,,,分别是,,的中点,若,,则等于()A. B. C. D.【答案】A【分析】本题考查了三角形中位线定理和等腰三角形的判定与性质.中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.根据三角形中位线定理和等腰三角形等边对等角的性质求解即可.【解答】,,,分别是,,中点,是的中位线,是的中位线,,,,.又,,,,,,.选A.18.【答题】已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形的中点构成第三个三角形,以此类推,则第2012个三角形的周长为()A. B. C. D.【答案】C【分析】本题考查相似三角形的性质.【解答】∵连接△ABC三边中点构成第二个三角形,∴新三角形的三边与原三角形的三边的比值为1:2,∴它们相似,且相似比为1:2,同理:第三个三角形与第二个三角形的相似比为1:2,即第三个三角形与第一个三角形的相似比为1:22,以此类推:第2012个三角形与原三角形的相似比为1:22011,∵周长为1,∴第2012个三角形的周长为1:22011.选C.19.【答题】如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A. 3cmB. 6cmC. 9cmD. 12cm【答案】B【分析】本题考查三角形的中位线.【解答】∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm),选B.20.【答题】如图,在中,,分别是,的中点,是线段上一点,连接,,若,,,则的长为______.【答案】18【分析】本题考查是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【解答】,点是的中点,,,,、分别是,的中点,,故答案为.。
初中数学北师大版八年级下册第六章 平行四边形4.多边形的内角和与外角和-章节测试习题(11)
章节测试题1.【答题】一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5B. 5或6C. 5或7D. 5或6或7【答案】D【分析】【解答】2.【答题】(济宁中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC,∠BCD,则∠P=()A. 50°B. 55°C. 60°D. 65°【答案】C【分析】【解答】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°.又∵DP,CP分别平分∠EDC,∠BCD,∴∠PDC十∠PCD=120°∴在△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.选C.3.【答题】如图,在△ABC中,∠C=60°,按图中虚线将∠C剪去后,∠1+∠2=______.【答案】240°【分析】【解答】4.【答题】如图,平面上两个正方形与正五边形都有一条公共边,则∠α=______度.【答案】72【分析】【解答】5.【答题】如图,∠1+∠2+∠3+∠4+∠5=______°.【答案】540【分析】【解答】6.【答题】(聊城中考)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是______.【答案】540°或360°或180°【分析】【解答】剪掉一个多边形的一个角后,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个.7.【答题】(陕西中考)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为______.【答案】72°【分析】【解答】∵五边形ABCDE是正五边形,∴∵BA=BC,∴∠BAC=∠BCA=36°同理∠ABE=36°.∴∠AFE=∠ABF+∠BAF=36°+36°=72°.故答案为72°8.【答题】将一条宽相等的足够长的纸条打一个结,如图1,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE,其中∠BAC=______.【答案】36°【分析】【解答】易求得正五边形的内角为108°∵AB=BC,∴∠BAC=∠BCA∴9.【题文】一个多边形除一个内角外其余内角的和为1510°,试计算这个多边形对角线的条数.【答案】解:∴这个多边形的边数是8+2+1=11∴这个十一边形的对角线的条数为(条).【分析】【解答】10.【题文】小明同学在做老师布置的作业时遇到下面一道题:有一张多边形的纸片,若剪掉一个角(不过顶点)后,形成的多边形的内角和为2700°,试问原来的纸片是几边形?对于这道题,小明是这样解答的:设纸片剪掉一个角后的多边形的边数为n,则根据题意,得(n-2)·180°=2700°.解得n=17.∴原来的纸片是十七边形.第二天,老师看了小明的作业后说:“小明,你做错了.”你能说出小明错误的地方吗?请帮他改正过来.【答案】解:小明的错误在于一个多边形剪掉一个角(不过顶点)后,多边形的边数增加了一条,而不是不变.设原多边形边数为n,则依据题意可得(n+1-2)×180°=2700°解得n=16.故原多边形边数为16【分析】【解答】11.【题文】如图,求∠A,∠B,∠C,∠D,∠E,∠F,∠G的度数和.【答案】解:如图,连接FC.∵∠D+∠E+∠DIE=∠ICF+∠IFC+∠FIC=180°又∵∠DIE=∠FIC,∴∠D+∠E=∠ICF+∠IFC.∵∠A+∠B+∠BCF+∠CFG+∠G=540°,∴∠A+∠B+∠BCD+∠D+∠E+∠EFG+∠G=540°【分析】【解答】12.【题文】(河北中考)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是______;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是______.【答案】解:图2中的图案外轮廓周长是8-2+2+8-2=14.设∠BPC=2x.∴以∠BPC为内角的正多边形的边数为,以∠APB为内角的正多边形的边数为.∴图案外轮廓周长是.根据题意可知2x的值为正多边形的内角的度数,且x的取值使为正整数.由此可得2x的值只能为60°,90°,120°,144°.当x越小时,周长越大∴当x=30°时,周长最大,此时图案定为会标.则会标的外轮廓周长是.故分别填14;21..【分析】【解答】13.【答题】正十边形的每个外角等于()A. 18°B. 36°C. 45°D. 60°【答案】B【分析】【解答】14.【答题】(铜仁中考)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A. 8B. 9C. 10D. 11【答案】A【分析】【解答】多边形的外角和是360°.根据题意,得180°·(n-2)=3×360°.解得n=8.选A.15.【答题】如果一个多边形的内角和与外角和相等,那么这个多边形的边数为()A. 4B. 5C. 6D. 7【答案】A【分析】【解答】16.【答题】若一个多边形的每一个外角都等于40°,则这个多边形的边数是()A. 7B. 8C. 9D. 10【答案】C【分析】【解答】17.【答题】如果一个多边形的每个内角都相等,且内角和为1800°,那么这个多边形的一个外角是()A. 30°B. 36°C. 60°D. 72°【答案】A【分析】【解答】18.【答题】若多边形的每一个内角均为150°,则这个多边形的边数为______.【答案】12【分析】【解答】19.【答题】(山西中考)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.【答案】360【分析】【解答】由多边形的外角和等于360°,可知∠1+∠2+∠3+∠4+∠5=360°20.【题文】一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【答案】解:设这个多边形有n条边.由题意,得(n-2)×180°=360°×4解得n=10故这个多边形的边数是10.【分析】【解答】。
新北师大版八年级数学下测试题及答案
新北师大版八年级数学下测试题及答案Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】第一章检测题一 选择题 1已知等腰三角形的两条边长是7和3,那么第三条边长是 ( )A 8B 7C 4D 32、如图,由∠1=∠2,BC=DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A 、SASB 、ASAC 、AASD 、SSS3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( )A 、4B 、10C 、4或10D 、以上答案都不对4、如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( ) A 、2 B 、3 C 、4 D 、5(第2题图)5.如图1,AB =AC ,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,则图中全等三角形的对数为( )A .1 B .2 C .3 D .46.在△ABC 和△DEF 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )A .AB =ED B .AB =FDC .AC =FD D .∠A =∠F7.一个三角形的三边长分别为a ,b ,c ,且()()()0a b b c c a ---=,则该三角形必为( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形8.如图2所示, △ABC 为直角三角形,BC 为斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合.如果AP =3,那么PP ′的长等于( )A .3B .23C .32D .49、如图,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .075(第9题图) (第10题图)10、如图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处 二、填空题1.如图3,等腰三角形ABC 的顶角为120°,腰长为10,则底边上的高AD = .2.已知等腰三角形的一个内角是100°,则其余两个角的度数分别为 .3.如图5,△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A 等于 .4.如图,D,E 分别为AB,AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=50°,则∠BDF= .5.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其腰上的高是 .6.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为三.解答题1.已知:如图8,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =FE . 求证:AE =CE .2.如图12,ABCD 是一张长方形的纸片,折叠它的一边AD ,使点D 落在BC 边上的F 点处,AB =8cm ,BC =10cm ,那么EC 等于多少3.已知:如图,∠A=∠D=90°,AC=BD. 求证:OB=OC4.如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点。
八年级数学第二学期《相似图形》单元测试卷(含答案)北师大版
八年级数学第二学期《相似图形》单元测试卷(含答案)北师大版单元测试卷班级 姓名 学号 得分一、选择题(每题3分;共36分)1、在比例尺为1∶500000的平面地图上;A 、B 两地的距离是6㎝;那么A 、B 两地的实际距离是( )A 、60kmB 、1.2kmC 、30kmD 、20km 2、如图;线段AB ∶BC = 1∶2;那么AC ∶BC 等于( ) A 、1∶3 B 、2∶3 C 、3∶1 D 、3∶23、已知xy = mn ;则把它改写成比例式后;错误的是 ( ) A 、n x =y m B 、m y =x n C 、m x =n y D 、m x =yn 4、如果y y x + = 47;那么y x 的值是( ) A 、43 B 、32 C 、34 D 、23 5、若3x -4y = 0;则yyx +的值是( ) A 、73 B 、37 C 、47 D 、74 6、已知△ABC 的三边长分别为2、 6、 2, '''A B C ∆的两边长分别是1和3,如果△ABC 与'''A B C ∆相似, 那么'''A B C ∆的第三边长应该是( )A 、2B 、22 C 、26 D 、337、如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m,梯上点D 距墙1.4m,BD 长0.55m,则梯子的长为( )A 、3.85mB 、4.00mC 、4.40mD 、4.50m 8、如图,∠ACB=∠ADC=90°,BC=a, AC=b, AB=c, 要使△ABC ∽△CAD, 只要CD 等于( )A 、c b 2B 、a b 2C 、cab D 、c a 29、如图;矩形ABCD 中;DE ⊥AC ;E 为垂足;图中相似三角形共有(全等除外) A 、3对 B 、4对 C 、5对 D 、6对 10、如图;D 为△ABC 的边BC 上的一点;连结AD ;要使△ABD ∽△CBA ;应具备下列条件中的( )A 、BCABCD AC =B 、BD AB =2·BC C 、ADBD CD AB =D 、CD AC =2·BC 11、如图;L 1∥L 2∥L 3 , 下列比例式中错误的是 ( )A 、B AC A AB AC ''''= B 、AB BCB AC B ='''' C 、C A A B AC BC ''''= D 、''AB AC A B AC=''12、两个相似三角形的对应边上的中线之比为1:4;它们的面积比为( ) A 、1: 4 B 、1:2 C 、1:16 D 、1:8二、填空题(每空2分;共36分)1、已知线段a 、b 、c 、d 是成比例线段;且a = 2㎝;b = 0.6㎝;c=4㎝;那么d= ㎝.2、点C 是线段AB 的黄金分割点;AC >BC ;那么ABAC的值是 . 3、若两个三角形的面积之比为1:3,则这两个三角形对应高比为_____,对应角平分线之比为_______,对应中线之比为___________. 4、把一个多边形的面积扩大原来的3倍,且与原来的多边形相似,则其周长扩大为原来的____倍. 5、两个相似多边形面积之比为25:16,则它们的相似比________,若其中的一个相似多边形的周长为36cm,则这两个多边形的周长分别是________或__________.6、两个相似多边形的最长的边分别为10cm 和14cm,它们的周长之差为20cm,则两个多边形的周长分别为_________.7、已知,32===f e d c b a 则fb e a ++=___________. 8、已知(a -b )∶(a +b )= 3∶7;那么a ∶b 的值是 .9、电视节目主持人在主持节目时;站在舞台的黄金分割点处最自然得体;若舞台AB 长为20m ;试计算主持人应走到离A 点至少 m 处?;如果他向B 点再走 m ;也处在比较得体的位置?(结果精确到0.1m )10、两个相似三角形三边的高分别是3, 4, 5和6, 8, 10.则这小个三角形与大三角形的相似比为_______.11、正三角形的高与边长的比是_________. 12、2、3、6的第四比例项是;2、22的比例中项是 .三、解答题(共48分)1、(5分)已知3a =5b =7c ;求(1)b c b a ++ (2) ca cb a +-+32的值.2、(5分)已知线段MN = 1;在MN 上有一点A ;如果AN = 253-;求证:点A 是MN 的黄金分割点.3、(5分)已知三个数1、2、3;请你再添上一个数;使它们构成一个比例式;则这个数是多少?(只要求出一个得6分;如果还有其他数;每求出一个加1分)4、(7分)在△ABC 中,AB=14,点E 在AC 上,点D 在AB 上,若AE=3,EC=4,且ECAEDB AD =. (1)求AD 的长; (2)试问,ACECAB DB =能成立吗?请说明理由.A B C14DE 345、(6分)在Rt △ABC 中,斜边AB=26,AC:BC=5:12,试求AC,BC 的值.ABC D6、(6分)如图菱形ABCD的边长为2,延长AB到E,EB=2AB,连接EC延长交AD线于F.试求AF的长.FA B CDE7、(7分)如图在梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,试问:(1)△ABD与△DCB相似吗?请说明理由.(2)如果AD=3, BC=5, 你能求出BD的长吗?8、(7分)如图已知△ADE∽△ABC;AD=3 cm;DB=3 cm;BC=10 cm;∠A=70°、∠B=50°.求:(1)∠ADE的度数;(2)∠AED的度数;(3)DE的长.2009—2010年度撒拉溪中学第二学期八年级数学《相似图形》单元测试卷答案一、选择题1、C2、D3、C4、A5、B6、A7、C8、A9、C 10、B 11、C12、C二、填空题1、1..225133334、35、5:4;28.8cm和36cm或36cm和45cm6、70cm和50cm7、2 38、5:29、7.3 ; 5.010、1:211、3 212、3 ; 2 三、解答题1、解:设357a b ck ===;则3a k =;5b k =;7c k = (1)3575a b c k k k b k++++== 3(2)233253737a b c k k ka c k k+-+⨯-⨯=++ =45-2、如图∵352AN -=AM MN AN =- =351- =512∴5121AMMN-= 51- ∵352512ANAM -=- =512∴AM ANMN AM= 即;A 是MN 的黄金分割点A BC14D E 343、解:若这个数是a ;且a 、1、2成比例. 则:a :1 = 2:解之得a=若这个数是a ;且1、2、a. 则:1:2 = a解之得a= 2等4、解:(1)∵AD AEDB EC=∵DB AB AD =-3;4;14AE EC AB ===即3144AD AD =-∴6AD =(2)DB EC AB AC =成立 ∵AD AE DB EC= ∴AD DB AE EC DB EC ++=即AB AC DB EC = ∴DB EC AB AC= 5、解:∵:5:12AC BC = ∴设5:12:AC BC k ==即5;12AC k BC k == 在Rt △ABC 中222AC BC AB+=∴2k=10;24AC BC==6、解:在菱形ABCD中BC∥AD;BC = AB = 2 ∴∠CBE = ∠A∵∠E = ∠E∴△EBC∽△EAF∴BE BC AE AF=∵EB = 2AB=4∴AE = EB+AB= 3AB= 6∴426AF=∴AF = 37、解:(1)△ABD∽△DCB理由:∵AD∥BC∴∠ADB =∠DBC∵BD⊥DC∴∠BDC = 90°∵∠A = 90°∴∠BDC = ∠A∴△ABD∽△DCB(2) 由(1)可知△ABD∽△DCB∴AD BD BD BC=∵AD =3 ;BC=5∴BD=8、解:(1)∵△ADE ∽△ABC ∴∠ADE =∠B =50°(2)在△ADE中∠AED +∠ADE +∠A = 180°∵∠A = 70°;∠ADE = 50°∴∠AED = 60°(3)∵△ADE ∽△ABC∴AD DEAB BC =即AD DE AD BD BC =+ 即33310DE =+ ∴5DE cm =。
北师大版八年级数学下册几何综合复习练习题(有答案)
几何练习题一.选择题1.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC 的长等于()A.12B.10C.8D.62.下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形3.已知A(a,1)与B(5,b)关于原点对称,则a b的值为()A.B.C.﹣5D.54.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.46.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4B.5C.6D.8二.填空题7.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)8.如图,等腰△ABC中,AB=AC=10,∠B=15°,则S△ABC=.9.如图,已知动点P可在射线OB上运动,∠AOB=40°,当∠A=°时,△AOP为直角三角形.10.如图,AB=AC,AC的垂直平分线MN交AB于点D交AC于点E,若AE=5,△BCD的周长为17,则△ABC的周长为.11.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.12.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.13.如图,▱ABCD中,EF过对角线的交点O如果AB=4cm,AD=3cm,OF=1cm,则四边形BCEF的周长为.14.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EF A.其中正确结论的序号是.15.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.16.如图,已知在等边△ABC中,沿图中虚线剪去∠C,则∠1+∠2=.三.解答题17.已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EH∥BC,分别交AC、CF于点G、H.求证:GE=GH.18.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.19.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.20.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=度;(2)如图(2),若∠A=70°,则∠NMB=度;(3)如图(3),若∠A=120,则∠NMB=度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.23.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.24.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.25.如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF的中点,求证:GH⊥EF.26.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.27.已知:如图是某城市部分街道示意图,AF∥BC,且AF⊥CE,AB=DC,AB∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站?说明理由.28.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,BE=CF.(1)求证:四边形DEFC是平行四边形;(2)若∠ABC=60°,BD=4,求四边形DEFC的面积.29.如图,已知在等边△ABC中,AD,CF分别为边CB,BA上的中线,以AD为边作等边△ADE.求证:(1)四边形CDEF是平行四边形;(2)EF平分∠AED.30.如图,在△ABC中,D,E,F分别为边BC,AB,AC上的点,ED∥AF且ED=AF,延长FD到点G,使DG=FD,求证:ED,AG互相平分.答案一.选择题1.B.2.A.3.B.4.C.5.C.6.B.二.填空题7.①②③.8.25.9.50°或90°.10.27.11.32.12.等边三角形.13.9cm.14.①②③④.15.6.16.240°.三.解答题7.解:∵EH∥BC,∴∠BCE=∠GEC,∠GHC=∠DCH,∵∠GCE=∠BCE,∠GCH=∠DCH,∴∠GEC=∠GCE,∠GCH=∠GHC,∴EG=GC=GH,∴GE=GH.18.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.19.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=6cm,∴AD=2cm.20.解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(4)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.21.解:如图,点P为所作.22.证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.23.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.24.解:设每个内角度数为x度,则与它相邻的外角度数为180°﹣x°,根据题意可得x﹣(180﹣x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.25.证明:∵E,F,G分别是AB,CD,AC的中点,∴FG=AD,EG=BC,∵AD=BC,∴FG=GE,∵H是EF的中点,∴GH⊥EF.26.证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.27.解:同时到达,理由如下:连接AC,如图,∵AF∥BC,AB=CD,∴四边形ABCD为等腰梯形,∴AC=BD,∵AB∥DE,BD∥AE,∴四边形ABDE为平行四边形,∴AE=BD=AC,AB=DE,∵AF⊥CE,∴AF为线段CE的垂直平分线,∴CF=EF,∴甲乘1路车,路程=BA+AE+EF=CD+BD+CF,乙乘2路车,路程=BD+DC+CF,∴两人同时到达.28.解:(1)∵ED∥BC,∴∠BDE=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠BDE=∠ABD,∴BE=DE.∵BE=CF,∴DE=CF.又∵ED∥BC,∴四边形DEFC是平行四边形;(2)如图所示:过点B作BG⊥DE,垂足为G.由(1)可知∠EDB=∠ABC.∵∠ABC=60°.∴∠EDB=30°.又∵∠G=90°.∴BG=BD=2.∵ED∥FC,∴∠AED=∠ABC=60°.∴∠GEB=60°.∴ED=BE=BG÷=.∴平行四边形EDCF的面积=ED•BG=.29.证明:(1)∵△ABC是等边三角形,AD,CF分别为边CB,BA上的中线,∴AD=CF,AD⊥BC,∠BCF=30°,∵△ADE是等边三角形,∴DE=AD,∠ADE=60°,∴∠BDE=90°﹣60°=30°=∠BCF,∴DE=CF,DE∥CF,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形,∴EF∥CD,∴∠FED=∠BCF=30°,∵△ADE是等边三角形,∴∠AED=60°,∴∠AEF=30°=∠DEF,∴EF平分∠AED.30.证明:连接EG、AD,如图所示:∵ED∥AF,且ED=AF,∴四边形AEDF是平行四边形,∴AE=DF,又DG=DF,∴AE=DG,∴四边形AEGD是平行四边形,∴ED,AG互相平分.。
北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)
一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。
北师大版八年级下册数学《相似多边形》相似图形说课教学课件复习提升
E
F 注意:要把表示对应角顶点
的字母写在对应的位置上!
议一议 书P127
1.两个全等三角形一定相似吗? 为什么? 2.两个直角三角形一定相似吗? 两个等腰直角三角形呢?为什么? 3.两个等腰三角形一定相似吗? 两个等边三角形呢?为什么?
巩固新知1
1、两个全等三角形一定相 似吗?为什么? A D
2答、:两相个似直.因角为三对角应形角一相定等,B CE F 对相应似边吗成?比为例什. 么?两个等
C G
直观有时是不可靠的
课堂训练 1.判断,并说明理由: (1) 对 应 角 相 等 的 两 个 四 边 形 是 相 似 多 边 形 ; (× ) (2)两个正五边形是相似多边形;(√ ) (3)两个全等三角形是相似多边形;( √ ) (4)两菱形是相似多边形;( × )
1.5cm
课堂训练
2.如图,三个矩形中相似的是( A和C )
14mm 1200 1400
11mm
E1 10mm D1
(2)
在上图中,六边形ABCDEF和六边形A1B1C1D1E1F1是形状相
同的图形.其中∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与 ∠D1,∠E与∠E1,∠F与∠F1分别对应相等;称为对应角, AB与A1B1,BC与B1C1,CD与C1D1,DE与D1E1,FE与 E1F1,FA与F1A1的比都相等.称为对应边,
那么哪些角是对应角?哪些
B
C
边是对应边?对应角有什么关 系?对应边呢?
D
∠A = ∠D,
∠B = ∠E,
∠C = ∠F
E
F AB AC BC
DE DF EF
构建新知2
A
B
C
D
北师大版八年级数学下册第一章测试题及答案
北师大版八年级数学下册第一章测试题及答案第一章达标测试卷一、选择题(每题3分,共30分)1.若等腰三角形的底角为40°,则它的顶角度数为() A.40° B.50° C.60° D.100°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是() A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a与b相交D.a⊥b4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,4 5.如图,直线a∥b,直线l与a,b分别相交于A,B两点,过点A 作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为() A.58° B.42° C.32° D.28°(第5题) (第6题) (第7题) 6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.107.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E ,则下列说法错误的是( )A .∠CAD =30°B .AD =BDC .BE =2CD D .CD =ED8.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD(第8题) (第9题)9.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )A .7B .14C .17D .2010.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,则下列四个结论:(第10题)①∠DEF =∠DFE ;②AE =AF ;③DA 平分∠EDF ;④EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD =________.(第11题) (第12题) (第14题) 12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是________.(第15题) (第16题) (第17题) 16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC=________.17.如图,已知∠ABD=∠BDA=∠ADC=∠DCA=75°.请你写出由已知条件能够推出的三个有关线段关系的正确结论(注意:不添加任何字母和辅助线):①______________;②______________;③______________.18.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE=________.(第18题) (第19题) (第20题) 19.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为________.20.如图,等边△ABC的边长为12,AD是BC边上的中线,M是AD 上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.已知:如图,∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)(第21题)22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE 和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.(第22题)23.如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.(第23题)24.如图,在4×4的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画图.(1)在图①中画出一个面积为4的等腰三角形ABC(点C在格点上),使A,B,C中任意两点都不在同一条网格线上;(2)在图②中画出一个面积为5的直角三角形ABD(点D在格点上),使A,B,D中任意两点都不在同一条网格线上.(第24题)25.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C 时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.(第25题)26.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.答案一、1.D2.D3.C4.B5.C6.C7.C8.D9.C 10.C点拨:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠AFD =90°,DE=DF.∴∠DEF=∠DFE.∵AD=AD,∴Rt△ADE≌Rt△ADF.∴AE=AF,∠ADE=∠ADF.∴AD垂直平分EF.∴①②③正确,④不正确.二、11.110°12.313.如果两个三角形的面积相等,那么这两个三角形全等;假14.20°15.416.70°17.(答案不唯一)①BD=CD②AB=AD=AC③AD⊥BC18.2点拨:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠DAC +∠DCA=90°.∵∠ACB=90°,∴∠ECB+∠DCA=90°.∴∠DAC=∠ECB.又∵AC=CB,∴△ACD≌△CBE.∴AD=CE=3,CD=BE=1.∴DE=CE-CD=3-1=2.19.3320.47点拨:如图,在AB上截取AE′=4,易知E′与E关于AD对称,则ME′=ME.连接CE′,当点M为CE′与AD的交点时,EM+CM的值最小,即为线段CE的长度.过点C作CF⊥AB,垂足为F.(第20题)∵△ABC 是等边三角形,∴AF =12AB =6,CF =AC 2-AF 2=6 3.∴E ′F =AF -AE ′=2. ∴CE ′=CF 2+E ′F 2=47.三、21.解:如图,△PBD 为所求作的三角形.(第21题)22.(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE .∵∠A =∠B ,∴∠BEO =∠2.又∵∠1=∠2,∴∠1=∠BEO .∴∠AEC =∠BED .在△AEC 和△BED 中,⎩⎪⎨⎪⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED (ASA ).(2)解:∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°.∴∠BDE=∠C=69°.23.(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE,CD是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC≌△CEB(AAS).∴∠DBC=∠ECB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的平分线上.理由:如图,连接AO.(第23题)∵△BDC≌△CEB,∴DC=EB.∵OB=OC,∴OD=OE.又∵∠BDC=∠CEB=90°,∴点O在∠BAC的平分线上.24.解:(1)如图①所示.(第24题)(2)如图②所示.25.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由:∵AB =AC =BC =6 c m ,∴当点Q 到达点C 时,BP =3 c m.∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.26.解:(1)若∠A 为顶角,则∠B =(180°-80°)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B =180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B =80°.故∠B =50°或20°或80°.(2)分两种情况:①当90≤x <180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x <90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°; 若∠A 为底角,∠B 为顶角,则∠B =(180-2x )°;若∠A 为底角,∠B 为底角,则∠B =x °.当180-x 2≠180-2x 且180-2x ≠x 且180-x 2≠x ,即x ≠60时,∠B 有三个不同的度数.综上所述,当0<x <90且x ≠60时,∠B 有三个不同的度数.。
北师大版数学八年级下册各单元测试题-含答案(共六套)
8.如果a2+ma+121是一个完全平方式,那么m=________或_______.
三、用心算一算(共36分)
1.(20分)因式分解:
(1)4x2-16y2;(2)
(3)x2-10x+25;(4)
2.(5分)利用因式分解进行计算:
解得 .
8.A
提示:不等式组 的解集为 .
由题意,得 解得 .
则 .
9.B
10.C
三、解答题
1.解:(1)去分母,得 .
去括号,得
移项,合并同类项,得 .
两边都除以-1,得 .
(2)
解不等式①,得 .
解不等式②,得 .
所以,原不等式组的解集是 .
2.解:解方程组 得 .
由题意,得 解得 .
因为m为整数,所以m只能为7,8,9,10.
9.7
10.22
提示:设得5分的有x人,若最低得3分的有1人,得4分的有3人,则 ,且 ,解得 .应取最小整数解,得x=22.
二、选择题
1.C
2.B
3.B
提示:设三个连续奇数中间的一个为x,则 .
解得 .所以 .所以 只能取1,3,5,7.
4.C
5.B
6.C
7.B
提示:不等式组 的解集为 .
因为不等式组 有四个整数解,所以 .
4.如果 ,那么[ ].
A. B. C. D.
5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是[ ].
A. B. C. D.
6.不等式组 的正整数解的个数是[ ].
A.1B.2 C.3D.4
7.关于x的不等式组 有四个整数解,则a的取值范围是[ ].
2021年北师大版八年级下册第四章相似图形测试题及答案
命题人单位:十里铺中学姓名:马晓梅评价等级:优良达标待达标(时间:90分钟;满分:100分)题号一二三总分得分一.精心选一选:(每小题3分,共30分).1.如图1,已知直角三角形的两条直角边长的比为a∶b= 1∶2,其斜边长为45cm,那么这个三角形的面积是( )cm2.A.32B.16C.8D.4图1 图22.如图2,等腰梯形ABCD的周长是104 cm,AD∥BC,且AD∶AB∶BC=2∶3∶5,则这个梯形的中位线的长是( )cm.A.72.8B.51C.36.4D.283.已知P是线段AB上一点,且AP:PB=2:5,则AB:PB等于( ). A.7:5 B.5:2 C.2:7 D.5:74.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,•以PB、AB为边的矩形面积为S2,则S1与S2的关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.S1≥S25.△ABC ∽△A ′B ′C ′,如果∠A = 55°,∠B = 100°,则∠C ′的度数等于( ).A.55°B.100°C.25°D.30°6.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,如果△ABC ∽△A ′B ′C ′,那么△A ′B ′C ′的第三边的长应等于( ) . A.22 B.2 C.2 D.227.下列各组图形中有可能不相似的是( ).A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形8.一个地图上标准比例尺是1∶300000,图上有一条形区域,其面积约为24 cm 2,则这块区域的实际面积约为( )平方千米.A.2160B.216C.72D.10.729.如图3,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( ) A.21 B.41 C.31 D.32图3 图410.如图4,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为( )A.2∶1B.3∶1C.2∶1D.4∶1 二.耐心填一填:(每空3分,共30分).1.在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m,那么这张地图的比例尺为________.2.等边△ABC中,AD⊥BC,AB=4,则高AD与边长AB的比是______.3.相同时刻的物高与影长成比例,如果有一根电线杆在地面上的影长是50米,同时高为1.5米的标竿的影长为2.5米,那么这根电线杆的高为________米.4. 如果△ABC和△A′B′C′的相似比等于1,则这两个三角形________.5.如果Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,AB = 3,BC =2,A′B′=12,则A′C′=________.6.如图4—6—2,D、E分别为△ABC中AB、AC边上的点,请你添加一个条件,使△ADE与△ABC相似,你添加的条件是_____________(只需填上你认为正确的一种情况即可).7.两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.1 8.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的2倍,那么边长应缩小到原来的________倍.9.如果a∶b=3∶2,则(a+b)∶b=________.10.如果梯形的中位线长是12 cm,一条对角线与中位线所成两条线段的比是2∶1,则梯形两底的长分别为________.三.细心算一算:(共计40分)1.求下列各式中的x:(每题4分,共计8分)(1)7:4=11:x; (2)2:3=(5-x):x.2.(8分)如图4—4—3,有一个半径为50米的圆形草坪,现在沿草坪的四周开辟了宽10米的环形跑道,那么:(1)草坪的外边缘与环形跑道的外边缘所成的两个圆相似吗?(2)这两个圆的半径之比和周长之比分别是多少?它们有什么关系?3.(8分)已知△ABC中,AB=15 cm,BC=20 cm,AC=30 cm,另一个与它相似的△A′B′C′的最长边为40 cm,求△A′B′C′的其余两边长.4.(8分)某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.。
北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (15)
一、选择题1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化.在这个过程中,因变量是( )A.明明B.电话费C.时间D.爷爷2.下列图象中,y是x的函数的是( )A.B.C.D.3.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度4.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升6.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/h B.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h7.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少8.如图,等边三角形ABC中,AB=4,有一动点P从点A出发,以每秒一个单位长度的速度沿着折线A−B−C运动至点C,若点P的运动时间记作t秒,△APC的面积记作S,则S与t的函数关系应满足如下图象中的( )A.B.C.D.9.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明,两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列图象能大致反映y与x之间关系的是( )A.B.C.D.10.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时后与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是( )A.2个B.3个C.4个D.5个二、填空题11.小明从家出发到公园,在公园锻炼一段时间后按原路返回;小明从家出发的同时,小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的图象,则下列结论中正确的是.(写序号即可)①小明从家出发去公园时的速度为150米/分,小明爸爸从公园返回家中的速度为30米/分;分钟后与爸爸第一次相遇;②小明出发253③小明与爸爸第二次相遇时,离家的距离是900米;④小明按原路返回时的速度为60米/分.12.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了10.5分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.13.王师傅从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用时间与路程的关系如图所示;下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致.请根据图象所提供的信息,解答下列问题:(1)王师傅从家门口到单位需要分钟;(2)王师傅从单位到家门口需要分钟.14.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.15.将关系式3x+4y=12改写成y=f(x)的形式:.16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松,途中,她在便利店挑选一瓶矿泉水.耽误了一段时间后继续骑行,愉快地到了公园,图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.小丽从家到便利店的平均速度为100米/分钟17.某校组织学生到距学校6km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下:当里程数在3km以下(含3km)时,收费8元,超过3km,每增加1km加收1.80元,则当x≥3时,车费y(元)与出租车行驶里程数x(km)之间的关系式为.三、解答题18.某水果批发市场的香蕉的价格如表所示,若小明购买x千克(x大于40)香蕉付了y元,请写出y关于x的函数解析式.购买香蕉的量不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元19.一根弹簧原长12cm,它的挂重不超过16kg,并且每挂重1kg就伸长12cm.(1) 写出挂重后弹簧长度y(cm)关于挂重x(kg)的函数关系式;(2) 求出自变量x的取值范围.20.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距503km.设甲、乙两车与B地之间的距离为y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1) A,B两地之间的距离为km;(2) 当x为何值时,甲、乙两车相距5km?21.如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1) 填空:a=km,AB两地的距离为km;(2) 求线段PM,MN所表示的y与x之间的函数表达式;(3) 求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?22.某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度ℎ(米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是.(2) 无人机在75米高的上空停留的时间是分钟.(3) 在上升或下降过程中,无人机的速度为米/分.(4) 图中a表示的数是,b表示的数是.(5) 图中点A表示.23.如图,A,B,C为⊙O上的定点,连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90∘,交⊙O于点D,连接BD,若AB=6cm,AC=2cm,记A,M两点间的距离为x cm,B,D两点间的距离为y cm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:(1) 通过取点,画图,测量,得到了x与y的几组值,如下表:x/cm00.250.47123456y/cm 1.430.660 1.31 2.59 2.76 1.660(2) 在平面直角坐标系中xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为cm.24.探究函数y=∣2x−2∣+x+12的图象和性质,洋洋同学根据学习函数的经验,对函数y=∣2x−2∣+x+12的图象和性质进行探究,下面是洋洋的探究过程,请补充完成:(1) 化简函数解析式:当x≥1时,y=.当x<1时,y=.(2) 根据(1)的结果,请在所给坐标系中画出函数y=∣2x−2∣+x+12的图象:(直尺画图,不用列表)(3) 观察函数图象,请写出该函数的一条性质:.25.如图1,在等腰直角△ABC中,∠A=90∘,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0∘<α<360∘),如图2.(1) 请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2) 请你在图3中,画出当α=45∘时的图形,连接CE和BE,求出此时△CBE的面积;(3) 若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.答案一、选择题1. 【答案】B【知识点】常量、变量2. 【答案】B【解析】A,C,D选项中对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义;只有B选项对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义.【知识点】函数的概念3. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,=4米/秒,故B正确;则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,∴可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,∴两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,∴甲的速度都大于乙的速度,故D正确.由于该题选择错误的,故选C.【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【知识点】用函数图象表示实际问题中的函数关系5. 【答案】D【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】由图象知:=60(km/h),故此选项正确;A.甲车的平均速度为30010−5B.乙车的平均速度为3009−6=100(km/h),故此选项正确;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故此选项正确;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】A【解析】等边三角形ABC中,AB=4,则△ABC的高ℎ=2√3,当点P在AB上运动时,S=12×AP×ℎ=12×x×2√3=√3x,图象为一次函数,x=4时,S=4√3;当点P在BC上运动时,同理可得:S=12×(8−x)×2√3,同样为一次函数.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】D【解析】由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选D.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】B【解析】分析图象可知:(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;(5)根据图形可得出两车是匀速行驶,相遇前摩托车的速度比汽车的速度快,错误.故正确的有3个.【知识点】用函数图象表示实际问题中的函数关系二、填空题11. 【答案】①②④【解析】v小明1=150010=150米/分,v 爸=150050=30米/分,故①正确.(150+30)⋅t=1500,t1=253,故②正确.第二次相遇t=30,离家距离30×(50−30)=600(米),故③错误.v小明2=60040−30=60米/分,故④正确.【知识点】用函数图象表示实际问题中的函数关系12. 【答案】270【解析】由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0∼10.5分钟时,小明自己走,爸爸还没有出发,∴小明的速度v1=630÷10.5=60米/分钟,从10.5∼21分钟时,爸爸开始从家出发,并在时间t=21分钟时追上小明,∴此时小明的路程为:60×21=1260米,∴爸爸的速度为v2=1260÷(21−10.5)=120米/分钟,设爸爸返回时的速度为v,根据题意得,4v+60×6=920,∴v=140米/分钟,∴等爸爸送完作业返回家时所用时间为21×60÷140=9分钟,∴等爸爸到家小明总用时:21+9+2=32,∴此时小明与学校相距的距离为:2280−32×60=360米.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】7;13.4【知识点】用函数图象表示实际问题中的函数关系14. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系x15. 【答案】y=3−34【知识点】解析式法16. 【答案】A【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=1.8x+2.6(x≥3)【解析】由题意得,所付车费为:y=1.8(x−3)+8=1.8x+2.6(x≥3).故:y=1.8x+2.6(x≥3).【知识点】解析式法三、解答题18. 【答案】y=4x.【知识点】解析式法19. 【答案】x,(1) y=12+12(2) 0≤x≤16.【知识点】实际问题中的自变量的取值范围、解析式法20. 【答案】(1) 20(2) 乙车的速度为:20÷16=120(km/h),甲车的速度为:503÷16=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)−120x=5,解得x=0.75;相遇后:120x−(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.【解析】(1) A,B两地之间的距离为20km.【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 240;390(2) 由图象可得,A与C之间的距离为150km,汽车的速度1502.5=60km/h,PM所表示的函数关系式为:y1=150−60x,MN所表示的函数关系式为:y2=60x−150.(3) 由y1=60得150−60x=60,解得:x=1.5,由y2=60得60x−150=60,解得:x=3.5,由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米.【解析】(1) 由题意和图象可得,a=1502.5×4=240km,A,B两地相距:150+240=390km.【知识点】行程问题、用函数图象表示实际问题中的函数关系22. 【答案】(1) t;ℎ(2) 5(3) 25(4) 2;15(5) 在第6分钟时,无人机的飞行高度为50米【解析】(1) 横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或ℎ).(2) 无人机在75米高的上空停留的时间是12−7=5分钟.(3) 在上升或下降过程中,无人机的速度75−507−6=25米/分.(4) 图中 a 表示的数是 5025=2, b 表示的数是 12+7525=15.【知识点】自变量与函数值、用函数图象表示实际问题中的函数关系23. 【答案】(1) 2.41(2) 如图所示. (3) 1.38 或 4.62 【知识点】列表法、图像法24. 【答案】(1) y =32x −12;y =−12x +32 (2)(3) 由图象可知,当 x >1 时,y 随 x 的增大而增大 【解析】 (1) 化简函数 y =∣2x−2∣+x+12,当 x ≥1 时,y =2x−2+x+12=32x −12.当 x <1 时,y =−(2x−2)+x+12=−2x+2+x+12=−12x +32.【知识点】根据函数图像确定函数性质、解析式法、图像法25. 【答案】(1) CE =BD ;理由:连接 CE 和 BD ,如图 2 所示,由题意可知,△ABC 和 △ADE 都是等腰直角三角形, ∵∠EAD =∠CAB =90∘, ∴∠EAC =∠DAB , 又 ∵AE =AD ,AC =AB , ∴△AEC ≌△ADB (SAS ), ∴CE =BD .(2) 当 α=45∘ 时,连接 CE 和 BE ,如图所示,延长 AD 交 BC 于 F , ∵α=45∘,△ABC 和 △ADE 都是等腰直角三角形, ∴∠BAF =∠CAF =∠EAC =45∘, ∴AF =BF =CF ,∠EAB =135∘, ∴∠EAB +∠ABC =135∘+45∘=180∘,∴AE∥BC,∵BC=√32+32=3√2,∴AF=12BC=3√22,∴S△CBE=12BC⋅AF=12×3√2×3√22=92.(3) 1【解析】(3) 如图4,当点M不在AC上时,取AC中点G,连接GM,∵M是CDʹ的中点,∴GM=12ADʹ=12AD=12,当点M在AC上时,由M是CDʹ的中点可得GM=12,∴在△ADE绕点A逆时针方向旋转的过程中,点M在以G为圆心,12长为半径的圆上,∴当点M与点E重合时AM取最小值,此时AM=AE=1.【知识点】三角形的中位线、直角三角形斜边的中线、等腰直角三角形、旋转及其性质、边角边。
北师大版八年级下《相似图形》单元试卷(A卷)含答案
2013-2014学年度大庆市房顶中学单元测试《相似图形》(A卷)一、选择题1.若,且3a-2b+c=3,则2a+4b-3c的值是()A.14B.42C.7D.2.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,•以PB、AB为边的矩形面积为S2,则S1与S2的关系是().A.S1>S2B.S1<S2C.S1=S2D.S1≥S23.把矩形对折后,和原来的矩形相似,那么这个矩形的长、宽之比为()A.2:1 B.4:1 C.:1 D.:14.把△ABC的各边分别扩大为原来的3倍,得到△A′B′C′,下列结论不能成立的是()A.△ABC∽△A′B′C′B.△ABC与△A′B′C′的各对应角相等C.△ABC与△A′B′C′的相似比为D.△ABC与△A′B′C′的相似比为5.若△ABC与△A′B′C′相似,∠A=55°,∠B=100°,那么∠C′的度数是()A.55°B.100°C.25°D.不能确定6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是()A.1B.C.2D.46题 8题 9题 11题 12题7.在□ABCD中,E在BC边上,AE交BD于F,若BE∶EC=4∶5,则BF∶FD等于()A.4∶5B.5∶4C.5∶9D.4∶98.如图,慢慢将电线杆竖起,如果所用力F的方向始终竖直向上,则电线杆竖起过程中所用力的大小将()A.变大 B.变小 C.不变 D.无法判断9.如图,将△ADE绕正方形ABCD的顶点A顺时针旋转90°得△ABF,连结EF交AB于H,则下列结论错误的是()A.AE⊥AFB.EF∶AF=∶1C.AF2=FH·FED.FB∶FC=HB∶EC10.已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积之比为【】A.4:3 B.3:4 C.16:9 D.9:1611.某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图,在Rt△ABC 中,∠C=90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm的矩形彩条a1、a2、a3…….若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条总数是()A.24B.25C.26D.2712.如图,在△ABC中,AB=8,BC=7,AC=6,延长边BC到点P,使得△PAB与△PCA相似.则PC的长是( ).(A)7 (B)8 (C)9 (D)10二、填空题(题型注释)13.四边形ABCD∽四边形,他们的面积之比为36∶25,若四边形的周长为15cm,则四边形ABCD的周长为 cm。
【最新整理】八年级数学第二学期《相似图形》单元测试卷(含答案)北师大版
卷答案
一、选择题 1、C 2、D 12、 C 二、填空题 1、 1..2
3、 C
4、A
5、B
6、A
7、 C
8、 A
9、 C
10、B
11、C
51
2、
2
333
3、 ; ;
33 3
4、 3 5、 5: 4; 28.8cm 和 36cm 或 36cm 和 45cm 6、 70cm 和 50cm
2
7、
3
8、 5: 2 9、 7.3 ; 5.0 10、 1:2
(只要求出一个得 6 分 ;如果还有其他数 ;每求出一个加 1 分)
AD
4、( 7 分)在△ ABC中 ,AB=14, 点 E 在 AC上 , 点 D 在 AB上, 若 AE=3,EC=4, 且
DB (1) 求 AD的长 ; (2) 试问 DB EC , 能成立吗 ?请说明理由 .
AB AC
AE
.
EC
长分别为 _________.
7、已知 a
c
e
2 ,则 a
e
=___________.
b d f 3 bf
8、已知( a- b )∶( a+ b) = 3∶ 7;那么 a∶ b 的值是
。
9、电视节目主持人在主持节目时 ;站在舞台的黄金分割点处最自然得
体 ; 若舞台 AB 长为 20m; 试计算主持人应走到离 A 点至少
要 CD 等于 (
)
1/9
A、 b2 c
B、 b2 a
C、 ab c
D、 a2 c
9、如图 ; 矩形 ABCD 中 ;DE ⊥ AC;E 为垂足 ; 图中相似三角形共有(全等除外)
A 、3 对 B、4 对 C、5 对
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转定向测评试卷(含答案详解)
八年级数学下册第三章图形的平移与旋转定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC 的顶点坐标为()3,6A -,()4,3B -,()1,3C -,若将ABC 绕点C 按顺时针方向旋转90°,再向左平移2个单位长度,得到A B C ''',则点A 的对应点A '的坐标是( ).A .()0,5B .()4,3C .()2,5D .()4,52、下列图形既是轴对称图形又是中心对称图形的是( )A.B.C.D.3、下列四个图案中,是中心对称图形的是()A.B.C.D.△,若点B'刚好4、如图,在ABC中,∠BAC=108°,将ABC绕点A按逆时针方向旋转得到AB C''落在BC边上,且AB'=CB',则∠C的度数为()A.22°B.24°C.26°D.28°5、下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.6、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7、下列图形中,是中心对称图形的是()A.B.C.D.8、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A .50°B .60°C .40°D .30°9、下列图形中,是中心对称图形的是( )A .B .C .D .10、如图,在△ABC 中,∠BAC =130°,将△ABC 绕点C 逆时针旋转得到△DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,则∠BAD 的大小是( )A .80°B .70°C .60°D .50°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,与点(31)P ,关于原点对称的点的坐标是________.2、如图,将三角形ABC 沿射线BF 方向平移到三角形DEF 的位置,10BC =厘米,7EC =厘米,则平移距离为__厘米.3、如图所示,△ABC经过平移得到△A’B’C’,图中△_________与△_________大小形状不变,线段AB与A’B’的位置关系是________,线段C C’与B B’的位置关系是________.4、如图所示,把图中的交通标志图案绕它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 _____.5、如图,将△AOB沿x轴方向向右平移得到△CDE,点B的坐标为(3,0),DB=1,则点E的坐标为___.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,△ABC如图所示.(1)画出把△ABC向下平移3个单位长度,再向左平移4个单位长度得到的△A1B1C1,并写出B1的坐标;(2)画出把△A1B1C1关于y轴对称的△A2B2C2,并写出A2、B2、C2三点坐标.2、如图,已知三角形ABC中,∠B=90°,将三角形ABC沿着射线BC方向平移得到三角形DEF,其中点A、点B、点C的对应点分别是点D、点E、点F,且CE=DE.(1)如图①,如果AB=4,BC=2,那么平移的距离等于____________;(请直接写出答案)(2)在第(1)题的条件下,将三角形DEF绕着点E旋转一定的角度α(0°<α<360°),使得点F恰好落在线段DE上的点G处,并联结CG、AG.请根据题意在图②中画出点G与线段CG、AG,那么旋转角α等于____________;(请直接写出答案)(3)在图②中,如果AB=a,BC=b,那么此时三角形ACG的面积等于____________;(用含a、b的代数式表示)(4)在第(3)小题的情况下,如果平移的距离等于8,三角形ABC 的面积等于6,那么三角形ACG 的面积等于____________;(请直接写出答案)如果平移距离等于m ,三角形ABC 的面积等于n ,那么三角形ACG 的面积等于____________.(用含m 、n 的代数式表示,请直接写出答案)3、在△ABC 中,AB =AC ,∠BAC =90°,D 为平面内的一点.(1)如图1,当点D 在边BC 上时,BD =2,且∠BAD =30°,AD = ;(2)如图2,当点D 在△ABC 的外部,且满足∠BDC ﹣∠ADC =45°,求证:BD AD ;(3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把△DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°)直线BD 与CE 的交点为P ,连接PA ,直接出△PAB 面积的最大值 .4、如图(1)将ABD 平移,使点D 沿BD 延长线移至点C 得到A B D '''△,A B ''交AC 于点E ,AD 平分∠BAC .(1)猜想∠B 'EC 与∠A '之间的关系,并说明理由.(2)如图将ABD 平移至如图(2)所示,得到A B D '''△,请问:A D ''平分B A C ''∠吗?为什么?5、如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0).(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,①画出线段MN并写出点M的坐标;②直接写出线段MN与线段CD的位置关系.-参考答案-一、单选题1、A【分析】画出旋转平移后的图形即可解决问题.【详解】解:旋转,平移后的图形如图所示,()0,5A ',故选:A【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.2、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A .不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.是轴对称图形,也是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.4、B【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系即可解决问题.【详解】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,故选:B.【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得∠B、∠C的关系为解决问题的关键.5、C【详解】解:A.不是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.不是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题主要考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可.【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键.8、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.9、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】选项A 、C 、D 均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形,选项B 能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形, 故选:B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、A【分析】根据三角形旋转得出DC AC =,130EDC BAC ∠=∠=︒,根据点A ,D ,E 在同一条直线上利用邻补角关系求出18050ADC EDC ∠=︒-∠=︒,根据等腰三角形的性质即可得到∠DAC =50°,由此即可求解.【详解】证明:∵ABC 绕点C 逆时针旋转得到DEC ,∴DC AC =,130EDC BAC ∠=∠=︒,∴∠ADC =∠DAC ,∵点A ,D ,E 在同一条直线上,∴18050ADC EDC ∠=︒-∠=︒,∴∠DAC =50°,∴∠BAD =∠BAC -∠DAC =80°故选A .【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.二、填空题1、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点(31)P ,关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.2、3【分析】根据平移的性质和线段的和差关系即可求得BE 即平移的距离【详解】解:由平移的性质可知,平移的距离1073(cm)BE BC EC =-=-=,3、ABC A’B’C’ 平行 平行【分析】根据平移的性质:经过平移,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等,平移不改变图形的形状、大小和方向,进行求解即可.【详解】解:∵A B C '''是△ABC 经过平移得到的,∴图中△ABC 与A B C '''大小形状不变,线段AB 与线段A B ''的位置关系式平行,线段CC '与线段BB '的关系式平行,故答案为:ABC ,A B C ''',平行,平行.【点睛】本题主要考查了平移的性质,解题的关键在于能够熟练掌握平移的性质.4、120°度【分析】根据图形的对称性,用360°除以3计算即可得解.【详解】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故答案为:120°.【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.5、(5,0)【分析】先由点B坐标求得OB,进而求得OD,根据平移性质可求得点E坐标.【详解】解:∵点B的坐标为(3,0),∴OB=3,又∵DB=1,∴OD=OB-DB=3-1=2,∵△AOB沿x轴方向向右平移得到△CDE,∴BE=OD=2,∴点E坐标为(5,0),故答案为:(5,0).【点睛】本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键.三、解答题1、(1)图见解析,B1(﹣2,0);(2)图见解析,A2(4,﹣2),B2(2,0),C2(0,-3).【分析】(1)根据平移的方式,把△ABC 向下平移3个单位长度,再向左平移4个单位长度得到的△A 1B 1C 1,即将,,A B C 的横坐标减4,纵坐标减3,找到对应点111,,A B C ,并顺次连接111,,A B C ,则△A 1B 1C 1即为所求,根据平面直角坐标系写出点1B 的坐标即可(2)根据轴对称的性质,找到111,,A B C 关于y 轴对称的点222,,A B C 并顺次连接222,,A B C ,则△A 2B 2C 2即为所求,根据平面直角坐标系写出点222,,A B C 的坐标即可【详解】解:(1)如图,△A 1B 1C 1即为所求,B 1(﹣2,0).(2)如图,△A 2B 2C 2即为所求,A 2(4,﹣2),B 2(2,0),C 2(0,-3).【点睛】本题考查了平移作图,轴对称作图,坐标与图形,掌握平移与轴对称的性质是解题的关键.2、(1)6;(2)见解析,90°或者270°;(3)222a b +;(4)20;222m n - 【分析】(1)根据平移的性质可得DE =AB =4,再由CE =DE ,则CE =4,即可得到BE =CE +BC =6;(2)由平移的性质可得∠DEF =∠B =90°,则当△DEF 绕点E 顺时针旋转270°时,点F 落在DE 上的G 点处,当△DEF 绕点E 逆时针旋转90°时,点F 落在DE 上的G 点处;(3)由平移和旋转的旋转的性质可得:∠BAC =∠ECG ,AC =CG =DF ,然后证明∠ACG =90°,得到211=22ACG S AC CG AC ⋅=△,再由22222AC AB BC a b =+=+,即可得到222ACG a b S +=△, (4)由平移的距离等于8,可推出a +b =8,由三角形ABC 的面积等于6,可得12ab =,则()222122022ACG a b S a b ab +⎡⎤==+-=⎣⎦△;同理当平移距离为m 时,三角形ACG 面积为n 时,a +b =m ,2ab n =,可得222222ACGa b m S n +==-△. 【详解】解:(1)由平移的性质可知:DE =AB =4,∵CE =DE ,∴CE =4,∴BE =CE +BC =6,∴平移距离为6,故答案为:6;(2)如图所示,点G ,AG ,CG 即为所求;由平移的性质可得∠DEF =∠B =90°,∴当△DEF 绕点E 顺时针旋转270°时,点F 落在DE 上的G 点处,当△DEF 绕点E 逆时针旋转90°时,点F 落在DE 上的G 点处,∴旋转角α=90°或270°;故答案为:α=90°或270°(3)由平移和旋转的旋转的性质可得:∠BAC =∠ECG ,AC =CG =DF ,∵∠B =90°,∴∠ACB +∠ABC =90°,∴∠ACB +∠ECG =90°,∴∠ACG =90°, ∴211=22ACG S AC CG AC ⋅=△, 又∵22222AC AB BC a b =+=+, ∴222ACG a b S +=△, 故答案为:222a b +; (4)∵平移的距离等于8,∴CE +BC =8,即AB +BC =8,∴a +b =8,∵三角形ABC 的面积等于6, ∴11622AB BC ab ⋅==, ∴12ab =, ∴()222122022ACG a b S a b ab +⎡⎤==+-=⎣⎦△; 同理当平移距离为m 时,a +b =m ,∵三角形ABC 的面积等于n ,∴1122AB BC ab n⋅==,∴2ab n=,∴222222ACGa b mS n+==-△;故答案为:20;222mn-.【点睛】本题主要考查了平移的性质,勾股定理,完全平方公式的变形求值,解题的关键在于鞥个熟练掌握相关知识进行求解.3、(1)(2)见解析;(3)4【分析】(1)如图1,将△ABD沿AB折叠,得到△ABE,连接DE,由折叠的性质可得AE=AD,BE=BD,∠ABE =∠ABD=45°,∠BAD=∠BAE=30°,可得∠DBE=90°,∠DAE=60°,由等腰直角三角形的性质和等边三角形的性质可得结论;(2)如图2,过点A作AE⊥AD,且AE=AD,连接DE,由“SAS”可证△BAE≌△CAD,可得∠ACD=∠ABE,由“ASA”可证△DOB≌△DOE,可得DB=DE,由等腰直角三角形的性质可得结论;(3)作AB的中点M,PM⊥AB,交AB所在直线于点N,求出PN的最大值,即可求解.【详解】证明:(1)如图1,将△ABD沿AB折叠,得到△ABE,连接DE,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵将△ABD沿AB折叠,得到△ABE,∴△ABD≌△ABE,∴AE=AD,BE=BD,∠ABE=∠ABD=45°,∠BAD=∠BAE=30°,∴∠DBE=90°,∠DAE=60°,且AD=AE,BE=BD,∴△ADE是等边三角形,DE=,∴AD=DE=故答案为:(2)如图2,过点A作AE⊥AD,且AE=AD,连接DE,∵AE⊥AD,∴∠DAE=∠BAC=90°,∴∠BAE=∠DAC,且AD=AE,AB=AC,∴△BAE≌△CAD(SAS)∴∠ACD=∠ABE,∵∠ACD+∠DCB+∠ABC=90°,∴∠DCB+∠ABC+∠ABE=90°,∴∠BOC=90°,∵AE=AD,AE⊥AD,∴DE=,∠ADE=45°,∵∠BDC﹣∠ADC=45°,∴∠BDC=∠ADC+45°=∠EDC,且DO=DO,∠DOB=∠DOE=90°,∴△DOB≌△DOE(ASA)∴BD=DE,∴BD=;(3)如图3,连接PC交AB于G点∵△DAE绕A点旋转∴AD=AE,AB=AC,∵∠DAE=∠BAC=90°∴∠DAB=∠EAC∴△DAB≌△EAC∴∠DBA=∠ECA∵∠PGB=∠AGC∴∠BPC=∠GAC=90°∴△BPC为直角三角形∴点P在以BC中点M为圆心,BM为半径的圆上,连接PM交AB所在直线于点N,当PM ⊥AB 时,点P 到直线AB 的距离最大,∵∠BAC =90°∴A 、P 、B 、C 四点共圆∵PM ⊥AB ,∴N 是AB 的中点∵M 是BC 的中点∴MN =122AC = ∵AB =AC =4,∴CB =22442,∴BM =PM =12BC =,∴PN =2 ,∴点P 到AB 所在直线的距离的最大值为:PN =2 .∴△PAB 的面积最大值为12AB ×PN =4.【点睛】本题是几何变换综合题,主要考查了全等三角形的性质和判定,勾股定理的应用,作出辅助线是解本题的关键.4、(1)2B EC A ''∠=∠,见解析;(2)A D ''平分B A C ''∠,见解析【分析】(1)由题意根据平移的性质得出∠BAD =∠DAC ,∠BAD =∠A ′,AB ∥A ′B ′,进而得出∠BAC =∠B ′EC ,进而得出答案;(2)根据题意利用平移的性质得出∠B ′A ′D ′=∠BAD ,AB ∥A ′B ′,进而得出∠BAD =12∠BAC ,即可得出∠B′A′D′=12∠B′A′C.【详解】解:(1)∠B′EC=2∠A′,理由:∵将△ABD平移,使点D沿BD延长线移至点C得到△A′B′D′,A′B′交AC于点E,AD平分∠BAC,∴∠BAD=∠DAC,∠BAD=∠A′,AB∥A′B′,∴∠BAC=∠B′EC,∴∠BAD=∠A′=12∠BAC=12∠B′EC,即∠B′EC=2∠A′.(2)A′D′平分∠B′A′C,理由:∵将△ABD平移后得到△A′B′D′,∴∠B′A′D′=∠BAD,AB∥A′B′,∴∠BAC=∠B′A′C.∵∠BAD=12∠BAC,∴∠B′A′D′=12∠B′A′C,∴A′D′平分∠B′A′C.【点睛】本题主要考查平移的性质,熟练掌握并根据平移的性质得出对应角、对应边之间的关系是解题的关键.5、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)①作图见解析,点M的坐标为(1,-5);②MN∥CD.(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)①分别作出A,B的对应点M,N,连接即可;②由平行线的传递性可得答案.【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)①如图所示,线段MN即为所求,点M的坐标为(1,-5);②∵线段MN与线段AB关于原点成中心对称,∴MN∥AB,∵线段CD是由线段AB平移得到的,∴CD∥AB,∴MN∥CD.本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题.。
北师大版八年级下册数学第四章相似图形期末基础题复习(含答案和
北师大版八年级下册数学第四章相似图形期末根底题复习(含答案和北师大版数学八年级〔下〕第四章相似图形期末复习一、学而时习之,不亦说乎?——[知识点提问篇] 1、比例尺通常表示什么含义?2、四条线段a,b,c,d中,如果a与b的比等于c与d的比,即=d叫做______,简称______.abc,那么这四条线段a,b,c,dac,将此等式变为乘积的形式,可得新等式______. bdaca b4、=,那么=______.bdbacma+c++m5、===〔b+d+…+n≠0〕,那么=______.bdnb+d++n3、=6、如右图,如果点C是线段AB的黄金分割点〔AC>BC〕,那么可得到什么关系式?什么是黄金比?黄金比的比值是多少?7、什么样的多边形是相似多边形?什么是相似比?全等的图形是相似图形吗?8、什么是相似三角形?△ABC与△DEF相似用符号可以表示为______,用符号表示三角形相似时对应点有什么要求?9、判定两个三角形相似的方法:如果两个三角形_________,那么这两个三角形相似;如果两个三角形_________,那么这两个三角形相似;如果两个三角形_________,那么这两个三角形相似.10、在同一时刻,太阳光下物体的高度与其影长的比值是______. 阳光下测量旗杆的高度有以下三种方法:①利用太阳光下的______;②利用______;③利用____的反射.11、相似三角形对应高的比、对应角平分线的比和对应中线的比都等于______.12、相似多边形的周长比等于______,面积比等于______.13、如果两个图形不仅是相似图形,而且__________________,那么这样的两个图形叫做位似图形,______叫做位似中心,______又称为位似比.14、位似图形上任意一对对应点到位似中心的距离之比等于______.二、学以致用兮,举一反三!——[根底题目精选篇]1、在某市城区地图〔比例尺1:9000〕上,新安大街的图上长度与光华大街的图上长度分别是16 cm,10 cm. 〔1〕新安大街与光华大街的实际长度各是多少米?〔2〕新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?2、P是线段AB上的一点,且AP:PB=2:5,那么AB:PB=______.3、a,b,c,d是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,求线段d 的长.4、〔1〕=2,求5、假设==aba+ba-ba5;〔2〕=,求. ba+bb2abcde=2,且b+d+f=4,那么a+c+e=______. f6、M是线段AB的黄金分割点,且AM>BM. 〔1〕写出AB、AM、BM之间的比例式;〔2〕如果AB=12 cm,求AM与BM的长.7、一支铅笔长16 cm,把它按黄金分割后,较长局部涂上橘红色,较短局部涂上浅蓝色,那么橘红色局部的长是______cm,浅蓝色局部的长是______cm.〔结果保存一位小数〕8、以下各组图形中,两个图形形状不一定相同的是〔〕A、两个等边三角形B、有一个角是35°的两个等腰三角形C、两个正方形D、两个圆 9、以下各组图形中相似的图形是〔〕A、对应边成比例的多边形B、四个角都对应相等的两个梯形C、有一个角相等的两个菱形D、各边对应成比例的两个平行四边形10、两个正六边形的边长分别为a和b,请问它们是否相似?不相似请说明理由,相似求出相似比.。
北师大八年级初二下册相似三角形练习题答案
相似三角形练习题一、填空题:1、若b m m a 2,3==,则_____:=b a 。
2、已知653zy x ==,且623+=z y ,则__________,==y x 。
3、在Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。
4、反向延长线段AB 至C ,使AC =21AB ,那么BC :AB = 。
5、如果△ABC ∽△A ′B ′C ′,相似比为3:2,若它们的周长的差为40厘米,则 △A ′B ′C ′的周长为 厘米。
6、如图,△AED ∽△ABC ,其中∠1=∠B ,则()()()AB BC AD_________==。
第6题图 第7题图7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。
若BC =6,AB =10,则BD = ,CD = 。
8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。
第8题图 第9题图9、如图,四边形ADEF 为菱形,且AB =14厘米,BC =12厘米,AC =10厘米,那BE = 厘米。
10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。
二、选择题:11、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b aC 、10,5,6,4====d c b aD 、32,15,5,2====d c b aEAD C 1C BD AD CM P N Q AB12、等边三角形的中线与中位线长的比值是( )A 、1:3B 、2:3C 、23:21 D 、1:3 13、已知754zy x ==,则下列等式成立的是( ) A 、91=+-y x y x B 、167=++z z y x C 、38=-+++z y x z y x D 、x z y 3=+14、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( )A 、27B 、12C 、18D 、2016、已知c b a ,,是△ABC 的三条边,对应高分别为c b a h h h ,,,且6:5:4::=c b a ,那么c b a h h h ::等于( )A 、4:5:6B 、6:5:4C 、15:12:10D 、10:12:15 17、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( )A 、44厘米B 、40厘米C 、36厘米D 、24厘米 18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( )A 、1个B 、2个C 、3个D 、多于3个第19题图 第20题图20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( )A 、4:5B 、3:5C 、4:9D 、3:8 三、解答题:A E F GBC21、已知()3:2:=-y y x ,求yx yx 2352-+的值。
新北师大版八年级数学下册各章测试题附答案(全册)
第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似图形》水平测试 一、试试你的身手(每小题3分,共30分) 1.在比例尺为1∶50 0000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为 千米.
2.若线段a ,b ,c ,d 成比例,其中5cm a =,7cm b =,4cm c =,则d = .
3.已知450x y -=,则():()x y x y +-的值为 .
4.两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 .
5.把一个矩形的各边都扩大4倍,则对角线扩大到 倍,其面积扩大到 倍.
6.厨房角柜的台面是三角形(如图1),如果把各边中点连线所围成三角形铺成黑色大理石,其余部分铺成白色大理
石,则黑色大理石的面积与白色大理石的面积之比为 .
7.顶角为36°的等腰三角形称为黄金三角形,如图2,ABC △,BDC △,DEC △都是黄金三角形,已知1AB =,则DE 的长= .
8.在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .
9.如图3,ABC △中,DE BC ∥,2AD =,3AE =,4BD =,则AC = .
10.如图4,在ABC △和EBD △中,53
AB BC AC EB BD ED ===,ABC △与EBD △的周长之差为10cm ,则ABC △的周长是 .
二、相信你的选择(每小题3分,共30分)
11.在下列说法中,正确的是( )
A .两个钝角三角形一定相似
B .两个等腰三角形一定相似
C .两个直角三角形一定相似
D .两个等边三角形一定相似
12.如图5,在ABC △中,D ,E 分别是AB 、AC 边上的点,DE BC ∥,30ADE =∠,120C =∠,
则A =∠( )
A .60°
B .45°
C .30°
D .20°
13.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )
A .都扩大为原来的5倍
B .都扩大为原来的10倍
C .都扩大为原来的25倍
D .都与原来相等
14.如图6, 在Rt ABC △中,90ACB =∠,CD AB ⊥于D ,若1AD =,
4BD =,则CD =( ) A .2
B .4
C .2
D .3 15.如图7,6BC =,
E ,
F 分别是线段AB 和线段AC 的中点,那么线段
EF 的长是( )
A .6
B .5
C .4.5
D .3
16.如图8,点E 是ABCD 的边BC 延长线上的一点,AE 与CD 相交于点G ,
AC 是ABCD 的对角线,则图中相似三角形共有( )
A .2对
B .3对
C .4对
D .5对
17.如图9,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )
18.如图10,梯形ABCD 的对角线交于点O ,有以下四个结论:
①AOB COD △∽△; ②AOD ACB △∽△;③::DOC AOD S S DC AB =△△;
④AOD BOC S S =△△.其中始终正确的有( )
A . 1个
B .2个
C .3个
D .4个
19.用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在( )
A .原图形的外部
B .原图形的内部
C .原图形的边上
D .任意位置
20.如图11是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( )
A .16cm
B .13 cm
C .12 cm
D .1cm
三、挑战你的选择(本大题共60分)
21.(8分)我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形.
现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.
22.(8分)如图12,梯形ABCD 中,AB DC ∥,90B =∠,E 为BC 上一点,
且AE ED ⊥. 若12BC =,7DC =,BE ∶EC =1∶2,求AB 的长.
3.(8分)如图13,已知ABC △中,点F 是BC 的中点,DE BC ∥,则DG 和GE 有怎样的关系?请你说明理由.
4.(8分)某中学平整的操场上有一根旗杆(如图14),一数学兴趣小组欲测量其高度,现有测量工具(皮尺、标杆)
可供选用,请你用所学的知识,帮助他们设计测量方案.
要求:(1)画出你设计的测量平面图;
(2)简述测量方法,并写出测量的数据(长度用a ,b ,c …表示).
5.(14分)阳光通过窗户照到室内,在地面上留下2.7米宽的光亮区,如图15,已知亮区一边到窗下墙脚的距离CE=8.7米,窗口高AB=1.8米,那么窗口底边离地面的高BC是多少米?
6.(14分)如图16,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A→B→C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B
地
2
2
3
m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影
子也恰好落在对角线AC上.
(1)求他们的影子重叠时,两人相距多少米(DE的长)?(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?
《相似图形》水平测试二参考答案 一、1.230 2.285cm 3.9 4.60或
1085 5.4,16
6.13
7.
35- 8.30m
9.9
10.25cm
二、1.D 2.C 3.D 4.A 5.D 6.B 7.A 8.C 9.D 10.D
三、1. ①、④是相似图形,②、③不一定是相似图形 理由:两个圆和两个正六边形分别为相似图形,因为它们的对应元素都成比例;两个菱形和两个长方形都不是,因为它们的对应元素不一定都成比例(或举出具体的反例).
2.解:因为AB DC ∥,且90B =∠,所以90AEB BAE +=∠∠及90C =∠.
所以90AEB CED +=∠∠.故BAE CED =∠∠.
又 90B C ==∠∠,
所以EAB DEC △∽△. 所以AB BE EC CD
=. 又:1:2BE EC =,且12BC =及7DC =, 故
487AB =.所以327AB =. 3.解:DG GE =.
因为DE BC ∥,所以ADG B =∠∠,AGD AFB =∠∠,
所以ADG ABF △∽△,所以
DG AG BF AF
=. 同样AGE AFC △∽△,所以GE AG FC AF =,所以DG GE BF FC
=, 又F 是BC 的中点,所以DG GE =. 4.解:(1)如图,沿着旗杆的影竖立标杆,使标杆影子的顶端正好
与旗杆影子顶端重合. (2)用皮尺测量旗杆的影长BE a =米,标杆CD 的影长DE b =米,
标杆CD c =米. 根据EDC EBA △∽△,得CD ED AB EB =,c b AB a =,所以ac AB b
=米.
即旗杆AB 的高为ac b
米. 5.解:由已知可得BD AE ∥,所以CBD CAE △∽△,所以
CB CD CA CE =. 又8.78.7 2.76 1.8CE CD CA CB ==-==+,,, 所以
61.88.7
CB CB =+,解得4CB =. 即窗口底边离地面的高BC 是4米.
6.(1)根据投影的特征可知AC DE ∥,所以BDE BAC △∽△, 所以DE BD AC BA =,DE BE AC BC
=. 又40AB CF ==
,50AC ==,223
BD =. 所以2235040
DE =,所以103DE =(m ). (2)因为DE BE AC BC
=,30BC AF ==, 所以1030350
DE BC BE AC ⨯==,即2BE =, 所以40242AB BE +=+=(m ),
所以王刚从A 到E 的时间为42÷3=14(s ),
所以张华从A 到D 的时间为14-4=10(s ),
所以张华的速度为(40-223)÷10≈3.7(m/s ).。