2017年遵义市中考数学试卷含答案解析

合集下载

2017年贵州省遵义市中考数学试卷(解析版)

2017年贵州省遵义市中考数学试卷(解析版)

2017年贵州省遵义市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣3的相反数是()A.﹣3B.3C.D.2.(3分)2017年遵义市固定资产总投资计划为2580亿元,将2580亿用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014 3.(3分)把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.4.(3分)下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2D.(a2b)3=a5b35.(3分)我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°6.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°7.(3分)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个8.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm29.(3分)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m10.(3分)如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.611.(3分)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示.则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④12.(3分)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11B.12C.13D.14二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)+=.14.(4分)一个正多边形的一个外角为30°,则它的内角和为.15.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.16.(4分)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.(4分)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.18.(4分)如图,点E、F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.三、解答题(本大题共9小题,共90分)19.(6分)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.20.(8分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.22.(10分)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97m处的P 点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)23.(10分)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.24.(10分)如图,P A、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.25.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.(12分)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C 不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.27.(14分)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i.探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变.若存在,试求出P点坐标;若不存在,请说明理由;ii.试求出此旋转过程中,(NA+NB)的最小值.2017年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:﹣3的相反数是3.故选:B.2.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.【解答】解:重新展开后得到的图形是C,故选:C.4.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选:D.6.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选:B.8.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:A.9.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选:B.10.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CE是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选:D.12.【解答】解:(方法一)∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.(方法二)过点B作BM∥AD交CA的延长线于点M,如图1所示.∵BM∥AD,AD是∠BAC的平分线,∴∠M=∠CAD=∠BAD=∠ABM,∴AM=AB.∵E是BC中点,BM∥AD,∴EF为△CBM的中位线,∴FC=CM=(CA+AM)=(15+11)=13.(方法三)过点E作EN∥AB,交AC于点N,如图2所示.∵E是BC中点,EN∥AB,∴EN为△ABC的中位线,∴CN=AC=,NE=AB=.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.∵EN∥AB,AD∥EF,∴∠NFE=∠CAD,∠NEF=∠BAD,∴∠NFE=∠NEF,∴NF=NE=,∴CF=CN+NF=+=13.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:=2+=3.故答案为:3.14.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.16.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.18.【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴=,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,∴S△OEF=S梯形ECDF=(+)(3t﹣t)=;故答案为:.三、解答题(本大题共9小题,共90分)19.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2P A=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣(250+200+400)=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.【解答】解:(1)连接AO,BO,∵P A、PB是⊙O的切线,∴∠OAP=∠OBP=90°,P A=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.25.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠F AP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图3,同理可得:PF=PG=EQ.27.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B(0,),A(﹣6,0),把B(0,),A(﹣6,0)代入y=ax2+bx﹣a﹣b得,∴,∴抛物线的函数关系式为:y=﹣x2﹣x+,令y=0,则=﹣x2﹣x+=0,∴x1=﹣6,x2=1,∴C(1,0);(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m+(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴①当△NOP∽△BON时,=,∴不变,即OP=ON=×4=3,∴P(0,3),∵ON=OM′=4,OB=,∵∠NBP=∠OBN,②当△NBP∽△OBN时,,∴==∴不变,存在P点,但无法确定坐标.ii:∵N在以O为圆心,4为半径的半圆上,由(i)知,=,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

2017年贵州省遵义市中考数学试卷(解析版)-(27596)

2017年贵州省遵义市中考数学试卷(解析版)-(27596)

2017年贵州省遵义市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011 B.2.58×1012 C.2.58×1013 D.2.58×10143.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2 D.(a2b)3=a5b35.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2 9.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤ D.m10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG 的面积是()A.4.5 B.5 C.5.5 D.611.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc >0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③ B.②③C.②④ D.②③④12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14二、填空题(本大题共6小题,每小题4分,共24分)13.计算:= .14.一个正多边形的一个外角为30°,则它的内角和为.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D 两点.若∠CMA=45°,则弦CD的长为.18.如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.20.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B 处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.27.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB 和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.2017年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.【考点】14:相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011 B.2.58×1012 C.2.58×1013 D.2.58×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2 D.(a2b)3=a5b3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【考点】W5:众数;W1:算术平均数.【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【考点】JA:平行线的性质.【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【考点】MP:圆锥的计算.【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;9.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤ D.m【考点】AA:根的判别式.【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG 的面积是()A.4.5 B.5 C.5.5 D.6【考点】KX:三角形中位线定理;K3:三角形的面积.【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc >0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③ B.②③C.②④ D.②③④【考点】H4:二次函数图象与系数的关系.【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【考点】JA:平行线的性质;KF:角平分线的性质.【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF= CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.二、填空题(本大题共6小题,每小题4分,共24分)13.计算:= 3.【考点】78:二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:=2+=3.故答案为:3.14.一个正多边形的一个外角为30°,则它的内角和为1800°.【考点】L3:多边形内角与外角.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【考点】37:规律型:数字的变化类.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【考点】8A:一元一次方程的应用.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D 两点.若∠CMA=45°,则弦CD的长为.【考点】M2:垂径定理;KQ:勾股定理;KW:等腰直角三角形.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.18.如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.【考点】G5:反比例函数系数k的几何意义.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴=,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,∴S△OEF=S梯形ECDF=(+)(3t﹣t)=;故答案为:.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【考点】6D:分式的化简求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B 处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000 人;(2)关注城市医疗信息的有150 人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144 度;(4)说一条你从统计图中获取的信息.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B 类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与。

贵州省遵义市2017年中考数学试题

贵州省遵义市2017年中考数学试题

遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A .-3B .3C .13D .13- 2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( )A .112.5810⨯B .122.5810⨯C .132.5810⨯D .142.5810⨯3.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .4.下列运算正确的是( )A .55523a a a -=B .236a a a ⋅= C.752a a a ÷= D .2353()ab a b =5.我市某连续7天的最高气温为:28︒,27︒,30︒,33︒,30︒,30︒,32︒.这组数据的平均数和众数分别是( )A .28︒,30︒B .30︒,28︒ C.31︒,30︒ D .30︒,30︒6.把一块等腰直角三角尺和直角如图放置.如果130∠=︒,则2∠的度数为( )A .45︒B .30︒ C.20︒ D .15︒7.不等式6438x x -≥-的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个8.已知圆锥的底面面积为9π 2cm ,母线长为6cm ,则圆锥的侧面积是( )A .18π 2cmB .27π 2cm C.18 2cm D .27 2cm9.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( )A .94m ≤B .94m < C.49m ≤ D .49m < 10.如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A .4.5B .5 C.5.5 D .611.如图,抛物线2y ax bx c =++经过点(1,0)-,对称轴l 如图所示.则下列结论:①0abc >;②0a b c -+=;③20a c +<;④0a b +<,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④12.如图,ABC ∆中,E 是BC 中点,AD 是BAC ∠的平分线,//EF AD 交AC 于F .若11AB =,15AC =,则FC 的长为( )A .11B .12 C.13 D .14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)= .14.一个正多边形的一个外角为30︒,则它的内角和为 .15.按一定规律排列的一列数依次为:28111417,1,,,,,3791113,按此规律,这列数中的第100个数是 .16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为 .18.如图,点E 、F 在函数2y x=的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且:1:3BE BF =,则EOF ∆的面积是 .三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.)19. 计算:02017|(4)(1)π--+--.20. 化简分式:222233()4424x x x x x x x ---÷-+--,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A 处正上方97 m 处的P 点,测得B 处的俯角为30︒(超出C 处被小山体阻挡无法观测).无人机飞行到B 处正上方的D 处时能看到C 处俯角为8036''︒.(1)求主桥AB 的长度.(2)若两观察点P 、D 的连线与水平方向的夹角为30︒,求引桥BC 的长.(长度均精确到1 m , 1.73≈,sin8036''0.987︒≈,cos8036''0.163︒≈,tan 8036'' 6.06︒≈.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人.(2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,D 部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,60APB ∠=︒.连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(1)求证:四边形ACBP 是菱形.(2)若⊙O 半径为1,求菱形ACBP 的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A 、B 两型自行车各50辆.投放成本共计7500元,其中B 型车的成本单价比A 型车高10元.A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”;乙街区每1000人投放8240a a+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a 的值.26.边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90︒到BQ .连接QP ,QP 与BC 交于点E .QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =.(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求出当x 为何值时,38CE BC =. (3)猜想PF 与EQ 的数量关系,并证明你的结论.27.如图,抛物线2y ax bx a b =+--(0a <,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点(,0)M m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,BDE ∆恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE ∆恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点'M ,将'OM 绕原点O 顺时针旋转得到ON (旋转角在0︒到90︒之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,3()4NA NB +的最小值.。

2017年各地中考试卷2017年贵州省遵义市中考数学试卷

2017年各地中考试卷2017年贵州省遵义市中考数学试卷

2017年贵州省遵义市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C.D.2.(3分)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×10143.(3分)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.4.(3分)下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b35.(3分)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°6.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°7.(3分)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个 B.3个 C.4个 D.5个8.(3分)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm29.(3分)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m10.(3分)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE 的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.611.(3分)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④12.(3分)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算:=.14.(4分)一个正多边形的一个外角为30°,则它的内角和为.15.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.16.(4分)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.(4分)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.18.(4分)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.三、解答题(本大题共9小题,共90分)19.(6分)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.20.(8分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.22.(10分)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC 两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)23.(10分)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.24.(10分)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO 并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.25.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.(12分)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P 与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.27.(14分)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.2017年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•遵义)﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)(2017•遵义)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•遵义)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.【点评】本题主要考查了剪纸问题,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.4.(3分)(2017•遵义)下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b3【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.【点评】本题综合考查了合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方,属于基础题.5.(3分)(2017•遵义)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.【点评】此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大.6.(3分)(2017•遵义)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•遵义)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个 B.3个 C.4个 D.5个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.8.(3分)(2017•遵义)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的侧面积的计算方法,难度不大.9.(3分)(2017•遵义)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2017•遵义)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE 的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.【点评】本题主要考查了三角形的面积,解决问题的关键是掌握:三角形的中线将三角形分成面积相等的两部分.11.(3分)(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3分)(2017•遵义)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.【点评】本题考查了相似三角形的判定与性质、角平分线的性质、线段的中点以及平行线的性质,根据角平分线的性质结合线段的中点,找出=是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2017•遵义)计算:=3.【分析】先进行二次根式的化简,然后合并.【解答】解:=2+=3.故答案为:3.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简与合并.14.(4分)(2017•遵义)一个正多边形的一个外角为30°,则它的内角和为1800°.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.【点评】本题考查了多边形内角与外角:多边形内角和定理为(n﹣2)•180 (n ≥3)且n为整数);多边形的外角和等于360度.15.(4分)(2017•遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.【点评】本题考查了数字变化类问题,解决问题的关键是找出变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法.16.(4分)(2017•遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解.17.(4分)(2017•遵义)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.【点评】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE是解决问题的关键.18.(4分)(2017•遵义)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S △OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴=,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF +S△OFD=S△OEC+S梯形ECDF,而S=S△OEC=×2=1,△OFD=S梯形ECDF=(+)(3t﹣t)=;∴S△OEF故答案为:.【点评】本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.三、解答题(本大题共9小题,共90分)19.(6分)(2017•遵义)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=0【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(8分)(2017•遵义)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.【点评】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.21.(8分)(2017•遵义)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2017•遵义)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,熟练掌握仰角俯角的定义和三角函数的定义是解题的关键.23.(10分)(2017•遵义)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000人;(2)关注城市医疗信息的有150人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144度;(4)说一条你从统计图中获取的信息.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣(250+200+400)=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.【点评】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2017•遵义)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.【点评】本题考查了切线的性质,菱形的判定和性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.25.(12分)(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.【点评】本题主要考查了一元一次方程以及分式方程的应用,解题时注意:列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.26.(12分)(2017•遵义)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.如图4,当F在AD的延长线上时,同理可得结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、四点共圆的性质和判定、相似三角形的判定与性质等知识;本题综合性强,有一定难度.27.(14分)(2017•遵义)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之。

2017年遵义市中考数学试卷

2017年遵义市中考数学试卷

遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A .-3B .3C .13D .13- 2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( )A .112.5810⨯B .122.5810⨯C .132.5810⨯D .142.5810⨯3.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .4.下列运算正确的是( )A .55523a a a -=B .236a a a ⋅= C.752a a a ÷= D .2353()ab a b = 5.我市某连续7天的最高气温为:28︒,27︒,30︒,33︒,30︒,30︒,32︒.这组数据的平均数和众数分别是( )A .28︒,30︒B .30︒,28︒ C.31︒,30︒ D .30︒,30︒6.把一块等腰直角三角尺和直角如图放置.如果130∠=︒,则2∠的度数为( )A .45︒B .30︒ C.20︒ D .15︒7.不等式6438x x -≥-的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个8.已知圆锥的底面面积为9π 2cm ,母线长为6cm ,则圆锥的侧面积是( )A .18π 2cmB .27π 2cm C.18 2cm D .27 2cm9.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( )A .94m ≤B .94m < C.49m ≤ D .49m < 10.如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A .4.5B .5 C.5.5 D .611.如图,抛物线2y ax bx c =++经过点(1,0)-,对称轴l 如图所示.则下列结论:①0abc >;②0a b c -+=;③20a c +<;④0a b +<,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④12.如图,ABC ∆中,E 是BC 中点,AD 是BAC ∠的平分线,//EF AD 交AC 于F .若11AB =,15AC =,则FC 的长为( )A .11B .12 C.13 D .14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.) 13.82+= .14.一个正多边形的一个外角为30︒,则它的内角和为 .15.按一定规律排列的一列数依次为:28111417,1,,,,,3791113,按此规律,这列数中的第100个数是 .16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为 .18.如图,点E 、F 在函数2y x=的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且:1:3B E B F =,则EOF ∆的面积是 .三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.)19. 计算:02017|23|(4)12(1)π--+--+-.20. 化简分式:222233()4424x x x x x x x ---÷-+--,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A 处正上方97 m 处的P 点,测得B 处的俯角为30︒(超出C 处被小山体阻挡无法观测).无人机飞行到B 处正上方的D 处时能看到C 处俯角为8036''︒.(1)求主桥AB 的长度.(2)若两观察点P 、D 的连线与水平方向的夹角为30︒,求引桥BC 的长.(长度均精确到1 m ,参考数据:3 1.73≈,sin8036''0.987︒≈,cos8036''0.163︒≈,tan 8036'' 6.06︒≈.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人.(2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,D 部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,60APB ∠=︒.连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(1)求证:四边形ACBP 是菱形.(2)若⊙O 半径为1,求菱形ACBP 的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A 、B 两型自行车各50辆.投放成本共计7500元,其中B 型车的成本单价比A 型车高10元.A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”;乙街区每1000人投放8240a a+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a 的值.26.边长为22的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90︒到BQ .连接QP ,QP 与BC 交于点E .QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =.(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求出当x 为何值时,38CE BC =. (3)猜想PF 与EQ 的数量关系,并证明你的结论.27.如图,抛物线2y ax bx a b =+--(0a <,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点(,0)M m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,BDE ∆恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE ∆恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点'M ,将'OM 绕原点O 顺时针旋转得到ON (旋转角在0︒到90︒之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,3()4NA NB +的最小值.。

贵州省遵义市2017年中考数学试题

贵州省遵义市2017年中考数学试题

贵州省遵义市2017年中考数学试题遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满。

)1.-3的相反数是()A。

-3.B。

3.C。

1/1.D。

-1/32.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为()A。

2.58×10^12.B。

2.58×10^11.C。

2.58×10^10.D。

2.58×10^93.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A。

11.B。

12.C。

13.D。

144.下列运算正确的是()A。

2a-3a=a。

B。

a×a=a。

C。

a÷a=a。

D。

(a^2b)^3=a^5b^35.我市某连续7天的最高气温为:28℃,27℃,30℃,33℃,30℃,30℃,32℃。

这组数据的平均数和众数分别是()A。

28℃,30℃。

B。

30℃,28℃。

C。

31℃,30℃。

D。

30℃,30℃6.把一块等腰直角三角尺和直角如图放置。

如果∠1=30°,则∠2的度数为()A。

45°。

B。

30°。

C。

20°。

D。

15°7.不等式6-4x≥3x-8的非负整数解为()A。

2个。

B。

3个。

C。

4个。

D。

5个8.已知圆锥的底面面积为9πcm,母线长为6cm,则圆锥的侧面积是()A。

18πcm。

B。

27πcm。

C。

18cm。

D。

27cm9.关于x的一元二次方程x+3x+m=0有两个不相等的实数根,则m的取值范围为()A。

m≤-99/44.B。

m<-99/44.C。

m≤-44/99.D。

m<-44/9910.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A。

2017年贵州省遵义市中考数学试题(含解析)

2017年贵州省遵义市中考数学试题(含解析)

2017年遵义市中考数学试卷满分:120分 版本:人教版一、选择题(本大题共12个小题,每小题3分,共36分.) 1.(2017贵州遵义)-3的相反数是( ) A .-3 B .3 C .13 D .13答案:B ,解析:实数a 的相反数是-a .-3的相反数是3,故选B .2.(2017贵州遵义)2017年遵义市固定资产总投资计划为2580亿元,将2580亿用科学计数法表示为( ) A .2.58×1011 B .2.58×1012 C .2.58×1013 D .2.58×1014答案:A ,解析:2580亿=258000000000=2.58×100 000 000000=2.58×1011.故选A .3.(2017贵州遵义)把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )答案:C ,解析:选项A 、B 不符合以折痕所在直线为对称轴的特征,选项C 、D 四个图形都符合以折痕所在直线为对称轴的特征,当选项D 的基本图形的△位置与题意不符,只有C 与之吻合(如图),故选择C . 4.(2017贵州遵义)下列运算正确的是( ) A .2a 5-3a 5=a 5 B .a 2·a 3=a 6 C.a 7÷a 5=a 2 D .(a 2b )3= a 5b 3答案:C ,解析:选项A ,根据整式的加减法则得2a5-3a 5=-a 5,错误;选项B ,根据同底数幂的乘法法则得a 2·a 3=a 5,错误;选项C ,根据同底数幂的除法法则得a 7÷a 5=a 2,正确;选项D ,根据幂的乘方法则得(a 2b )3= a 6b 3,错误.5.(2017贵州遵义)我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°.这组数据的平均数和众数分别是( )A .28°,30°B .30°,28° C. 31°,30° D .30°,30°答案:D ,解析:∵该组中数据30°出现的次数对多,∴这组数据的众数为30°,利用平均数的计算公式解得这组数据的平均数是30°.6.(2017贵州遵义)把一块等腰直角三角尺和直角如图放置.如果∠1=30°,则∠2的度数为( )A .45°B .30° C.20° D .15°答案:D ,解析:根据平行线的性质可知∠1=∠ABD=30°,∠2=∠CBD , ∵∠ABC=45°,∴∠2=∠AB C -∠ABD=45°-30°=15°.A B C D7.(2017贵州遵义)不等式6-4x ≥3x -8的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个答案:B ,解析:不等式6-4x ≥3x -8的解集为x ≤2,所以它的非负整数解为2,1,0,共3个. 8.(2017贵州遵义)已知圆锥的底面面积为9πcm 2,母线长为6cm ,则圆锥的侧面积是( ) A .18πcm 2 B .27πcm 2 C. 18πcm 2 D .27πcm 2答案:B ,解析:因为圆锥的底面面积为9πcm 2,所以它的半径为3cm ,圆锥的底面周长为9πcm ,根据扇形面积得S=12lR =1962π⨯=27πcm 2.9.(2017贵州遵义)关于x 的一元二次方程x 2+3x +m =0有两个不相等的实数根,则m 的取值范围为( ) A .m ≤94 B .m <94 C. m ≤49 D .m <49答案:B ,因为一元二次方程有两个不相等的实数根,所以△>0,即△=32-4>0,解得m <94. 10.(2017贵州遵义)如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5 C.5.5 D .6答案:A ,解析:∵点E 是AD 的中点,∴△EBC 的面积等于△ABC 的面积的12,四边形ABEC 的面积等于△ABC 的面积的12,∵点D 、F 、G 分别是BC 、BE 、CE 的中点,∴△EFG 的面积等于△EBC 的面积的14,四边形AFEG 的面积等于四边形ABEC 的面积的12,∴△AFG 的面积=38△ABC 的面积=4.5. 11.(2017贵州遵义)如图,抛物线y =ax 2+b x +c 经过点(-1,0),对称轴l 如图所示.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④答案:B ,解析:∵开口向下,∴a <0.∵对称轴在y 轴的正半轴,∴a ,b 异号,即b >0.∵抛物线与y轴正半轴相交,∴c >0,即ab c <0,选项①错误.∵抛物线y =ax 2+b x +c 经过点(-1,0),∴a -b +c =0,选项②正确.∵当x=2时,y <0,即4a +2b+c <0,又b=a+c ,∴4a +2(a+c )+c <0,即2a +c <0,选项③正确.∵12ba-<,∴a +b >0,选项④错误. 12.(2017贵州遵义)如图,△ABC 中,E 是BC 中点,AD 是∠BAC 的平分线,EF ∥AD 交AC 于F .若AB =11,AC =15,则FC 的长为( )A.11 B.12 C.13 D.14答案:C,解析:∵AD是∠BAC的平分线,AB=11,AC=15,∴AB BDAC DC==1115,∵E是BC中点,∴CE=12BC,∵EF∥AD,∴CE CFCD CA=,即131515CF=,解得CF=13.二、填空题(本大题共6小题,每小题4分,满分24分.)13.(2017贵州遵义)8+2= .答案:32,解析:根据二次根式加减法则可知8+2=22+2=32.14.(2017贵州遵义)一个正多边形的一个外角为30°,则它的内角和为.答案:1800°,解析:∵正多边形的一个外角为30°,且每一个外角都相等,∴它的边数为360°÷30°=12,∴它的内角和为(n-2)·180°=(12-2)·180°=1800°.15.(2017贵州遵义)按一定规律排列的一列数依次为:23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是.答案:299201,解析:分别寻找分子、分母蕴含的规律,第n个数可以表示为3121nn-+,当n=100时,第100个数是299 201.16.(2017贵州遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)答案:46两,解析:设这群人人数为x人,根据题意得7x+4=9x-8,解得x=6,银子的数量为46两. 17.(2017贵州遵义)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D 两点.若∠CMA=45°,则弦CD的长为.答案:14,解析:过点O作ON⊥CD于N,连接OC,∵∠CMA=45°,∠ONC=90°,∴△MON是等腰直角三角形,∵AB=4,点M 是OA 的中点,∴OM=1,根据勾股定理解得ON=22,在Rt △CON 中,CN=222222()2OC ON -=-=142,∴CD=2CN=14. 18.(2017贵州遵义)如图,点E 、F 在函数y=2x的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE :BF =1:3,则△EOF 的面积是 .答案:163,解析:∵EP ⊥y 轴,FH ⊥y 轴, ∴EP ∥FH ,∴△BPE ∽△BHF , ∴PE HF =BE BF =14,即HF=3PE , 设E 点坐标为(t ,2t ),则F 点的坐标为(3t ,23t), ∵S △OEF +S △OFD =S △OEC +S 梯形ECDF , 而S △OFD =S △OEC =2, ∴S △OEF =S 梯形ECDF =12(23t +2t )(3t ﹣t )=163. 三、解答题(本大题共9小题,共90分.) 19.(2017贵州遵义)计算:|23|-+(4+π)0-12+(-1)2017.思路分析:首先求出乘方,零次幂的运算,去掉绝对值符号,然后根据运算顺序计算. 解:原式=23+1-23-1=020.(2017贵州遵义)化简分式:222233()4424x x x x x x x ---÷-+--,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.思路分析:先将括号里面的分式进行加法运算,然后将除法转换成乘法,再化简. 解:原式=233()224x x x x x --÷---=3(2)(2)23x x x x x -+-⋅--=x+2. 当x=4时,原式=x+2=4+2=6.21.(2017贵州遵义)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是.(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率. 思路分析:(1)直接利用概率公式计算;(2)用树形图或列表法列举出所有可能情况,然后由概率公式计算求得.解:(1)P(取出的是肉粽)=14;(2)画黄树状图表示如下:共有12种等可能的结果数,其中两个都是白棕子占2种,故P(取出两个都是白棕子)=212=16.22.(2017贵州遵义)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A处正上方97 m处的P点,测得B处的俯角为30°(超出C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处俯角为80°36″.(1)求主桥AB的长度.(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1 m,参考数据:3≈1.732,sin80°36″≈0.987,cos80°36″≈0.163,tan80°36″≈6.06.)思路分析:(1)过点P作PE⊥DB于E,在Rt△PAB中,已知∠PBA的角度和PA的长,求AB的长,利用三角函数tan∠PBA=PAAB即可直接求解;(2)在Rt△PDE中,已知∠DPE的角度和PE的长,求DE的长,利用三角函数tan∠DPE =DEPE即可直接求解;在Rt△DBC中,已知∠DCB的角度和DB的长,求BC的长,利用三角函数tan∠DCB =DBBC即可直接求解;解:(1)在Rt△PAB中,tan∠PBA=PA AB,∴AB=tan PAPBA∠=97tan30︒=9733≈168(m).开始豆肉白白肉白白豆白白豆肉白豆肉白(2)在Rt△PDE中,tan∠DPE =DE PE,∴DE=P E·tan∠DPE =168×tan30°=168×33≈97(m).∴BD=AP+DE=97+97=19497(m).在Rt△DBC中,tan∠DCB =DB BC,∴BC=tan DBDCB∠=194tan8036︒′≈32(m).答:求主桥AB的长度168米,引桥BC的长为32米.23.(2017贵州遵义)贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人.(2)关注城市医疗信息的有人.并补全条形统计图.(3)扇形统计图中,D部分的圆心角是度.(4)说一条你从统计图中获取的信息.思路分析:(1)根据扇形图中选择C方式出行的占比为20%,在条形统计图中对应人数为200人,所以总人数=200÷20%=1000(人);(2)关注城市医疗信息的人数为:1000-250-200-400=150(人);(3)因为扇形统计图D部分的圆心角度数为400800×360°=180°;(4)答案不唯一,如市民最关心交通信息问题..解:(1)1000;(2)150,如图所示;(3)D部分的圆心角度数为400800×360°=180°;(4)答案不唯一,如市民最关心交通信息问题等..24.(2017贵州遵义)如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°.连接PO并延长与⊙O交于C点,连接AC、BC.(1)求证:四边形ACBP是菱形.(2)若⊙O半径为1,求菱形ACBP的面积.思路分析:(1)连接OA,由切线的性质可知∠OAP=90°,由PA、PB是⊙O的切线,∠APB=60°可得∠APC=∠BPC=30°,依据三角形的外角性质可知∠ACO=∠BCO=30°,所以A P∥OB,B P∥OA,即四边形ACBP是菱形;(2)连接AB交CP于M,由菱形ACBP的性质可知A B⊥CP,利用解直角三角形的性质分别求出AM、CM的长,从而求出菱形ACBP的面积..解:(1)连接OA,∴∠OAP=90°,∵PA、PB是⊙O的切线,∠APB=60°,∴PA=PB,∠APC=∠BPC=30°,∵OA=OC,∴∠ACO=30°,同理∠BCO=30°,∴A P∥OB,B P∥OA,∴四边形ACBP是平行四边形.∴四边形ACBP是菱形.(2)连接AB交CP于M,连接OA,∴A B垂直平分CP,在Rt△AOM中,AO=1,∠AOM=60°,∴∠OAM=30°,∴OM=12AO=12,∴AM=223 2AO OM-=,∴CM=32,即PC=3,AM=3,∴菱形ACBP的面积=12×3×3=332.25.(2017贵州遵义)为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A、B两型自行车各50辆.投放成本共计7500元,其中B型车的成本单价比A型车高10元.A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”;乙街区每1000人投放8240aa+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a的值.思路分析:(1)根据题中的等量关系:50辆A型自行车+50辆B型自行车=7500元,列一元一次方程求解;(2)先分别用含a的代数式表示甲、乙两个街区每辆小黄车使用的人数,然后根据等量关系:两个街区的总人数共有15万人列分式方程求解.解:(1)设A型自行车的单价为x元,B型自行车的单价为(x+10)元,根据题意得50(x+x+10)=7500,解得x=70,当x=70时,x+10=80,答:A、B两型自行车的单价分别为70元,80元.(2)根据题意得10001000 150012001500008240aa a⨯+⨯=+,解得a=15,经检验,a=15是原方程的根.26.(2017贵州遵义)边长为22的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ.连接QP,QP与BC交于点E.QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP.(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求出当x为何值时,CE=38 BC.(3)猜想PF与EQ的数量关系,并证明你的结论.思路分析:(1)由题意可知AB=BC,BP=BQ,∠ABP=∠CBQ,利用“SAS”证明△ABP≌△CBQ即可得证;(2)由(1)得AP=CQ,∠BAP=∠CQB=45°,即∠PCQ=90°,在Rt△PCQ中,利用勾股定理用含x的代数式表示PQ的长,又△PBQ是等腰直角三角形,即可用含x的代数式表示PB的长,利用两角对应相等可证△PBE∽CBP,所以PB CBBE PB=,利用这个关系式可以构造y关于x的函数关系式,然后先求出y的值,在求x的值;(3)相等,解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵BP=BQ,∠PBQ=90°,∴∠ABP=∠CBQ,∴△ABP≌△CBQ∴CQ=AP.(2)∵正方形的边长为22,∴AC=4.∵△ABP ≌△CBQ∴∠BAP=∠CQB=45°,PC=4-x 又∠ACB=45°, ∴∠PCQ=90°. ∵CQ =AP =x ,则在Rt △PCQ 中,PQ=2222(4)PC CQ x x +=-+=22816x x -+. 在Rt △PBQ 中,PB=22·22816x x -+=248x x -+. ∵∠BPE=∠BCP=45°,∠PBE=∠CBP ,∴△PBE ∽CBP ,∴PB CBBE PB =, 即2248222248x x yx x -+=--+∴2224y x x =-. 当CE =38BC 时,CE=324.当y=324时,2322244x x =-,即243x x -=,解得127x =+,227x =-. ∴当x 为27+或27-时,CE =38BC .(3)PF 与EQ 的数量关系为PF =EQ .27.(2017贵州遵义)如图,抛物线y =ax 2+b x -a -b (a <0,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为y =89x +163.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点M (m ,0)是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,△BDE 恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当△BDE 恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点M ′,将OM ′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NPNB始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,(NA +34NB )的最小值. 思路分析:(1)先求出直线AB 与x ,y 轴的交点,然后把两个交点的坐标代入抛物线y =ax 2+b x -a -b ,构造方程组求出a ,b 的值,进而得到c 的坐标;(2)先分别用含m 的代数式表示点D 、点E 的坐标,过点B 作B F ⊥直线l 于点F ,然后利用勾股定理分别用含m 的代数式表示BE 、BD 的长,依据BE 、BD. 满足以DE 为底边的等腰三角形即BE=BD 时,构造方程求解m 的值;(3)在(2)的条件下,求出ON 与AB 的交点N 的坐标,并求出点E 的坐标和PE 的解析式,然后设NP 的解析式为89y x b =-+,从而求出P 点坐标.解:(1)直线AB 与x 轴相交时,令y=0,则89x +163=0,解得x =-6,即它与x 轴的交点坐标为(-6,0),直线AB 与y 轴相交时,x=0,即它与y 轴的交点坐标为(0,163), ∵抛物线y =ax 2+b x -a -b 经过A 、B 两点,根据题意得 16,3869a b a b ⎧+=-⎪⎪⎨⎪-=-⎪⎩,解得8,9409a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线为y =89-x 2409-x +163,∴C 点坐标为(1,0).(2)如图1,过点B 作B F ⊥直线l 于点F , ∵点M 的的坐标为(m ,0),∴点D 的坐标为(m ,81693m +),E 的坐标为(m ,-284016933m m -+).∴DE=-284016933m m -+-(81693m +)=-2812816993m m -+.在Rt △EBF 中,BE=2228401616()9933m m m ⎡⎤+--+-⎢⎥⎣⎦=222840()99m m m +--,在Rt △DBF 中,BD=2216816()393m m +--=228()9m m +,∵△BDE 恰好是以DE 为底边的等腰三角形 ∴BE=BD ,即222840()99m m m +--=228()9m m +,解得m 1=-6(不合题意,舍去), m 2=-4,∴当m =-4时, △BDE 恰好是以DE 为底边的等腰三角形.(3)i.当m =-4时,存在定点P ,使得NP NB =BDBE=1.版权均属于北京全品文教科技股份有限公司,未经本公司授权,不得转载、摘编或任意方式使用上述作品,否则坚决追究转载方法律责任 ∵ON ⊥AB ,NP ∥BE ,则ON 的解析式为98y x =-, ∵直线AB 与ON 相交,根据题意得816,9398y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得384,145432145x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴点N 的坐标为(384145-,432145-).此时点E 的坐标为(-4,809). 设BE 的解析式为y=kx+b ,根据题意得 804,9163k b b ⎧-+=⎪⎪⎨⎪=⎪⎩解得8,9163k b ⎧=-⎪⎪⎨⎪=⎪⎩∴BE 的解析式为81693y x =-+. 设NP 的解析式为89y x b =-+,把点N 的坐标代入得272435b =, ∴点P 坐标为272(0,)435ii.在旋转过程中,(NA +34NB )的最小值为6.71.图1 图2。

贵州省遵义市中考数学真题试题(含解析)

贵州省遵义市中考数学真题试题(含解析)

2017年贵州省遵义市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×10143.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2D.(a2b)3=a5b35.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45° B.30° C.20° D.15°7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm29.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.611.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc >0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③ B.②③ C.②④ D.②③④12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14二、填空题(本大题共6小题,每小题4分,共24分)13.计算: = .14.一个正多边形的一个外角为30°,则它的内角和为.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.18.如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.20.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.27.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.2017年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.【考点】14:相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2D.(a2b)3=a5b3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【考点】W5:众数;W1:算术平均数.【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45° B.30° C.20° D.15°【考点】JA:平行线的性质.【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【考点】MP:圆锥的计算.【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;9.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【考点】AA:根的判别式.【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【考点】KX:三角形中位线定理;K3:三角形的面积.【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc >0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③ B.②③ C.②④ D.②③④【考点】H4:二次函数图象与系数的关系.【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【考点】JA:平行线的性质;KF:角平分线的性质.【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.二、填空题(本大题共6小题,每小题4分,共24分)13.计算: = 3.【考点】78:二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解: =2+=3.故答案为:3.14.一个正多边形的一个外角为30°,则它的内角和为1800°.【考点】L3:多边形内角与外角.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【考点】37:规律型:数字的变化类.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时, =,即这列数中的第100个数是,故答案为:.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【考点】8A:一元一次方程的应用.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【考点】M2:垂径定理;KQ:勾股定理;KW:等腰直角三角形.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.18.如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.【考点】G5:反比例函数系数k的几何意义.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.△OFD【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴=,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,∴S△OEF=S梯形ECDF=(+)(3t﹣t)=;故答案为:.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【考点】6D:分式的化简求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000 人;(2)关注城市医疗信息的有150 人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144 度;(4)说一条你从统计图中获取的信息.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【考点】LO:四边形综合题.【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P 四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.如图4,当F在AD的延长线上时,同理可得结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.27.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【考点】HF:二次函数综合题.【分析】(1)根据已知条件得到B(0,),A(﹣6,0),解方程组得到抛物线的函数关系式为:y=﹣x2﹣x+,于是得到C(1,0);(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m, m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到=,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由(i)知, =,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B(0,),A(﹣6,0),把B(0,),A(﹣6,0)代入y=ax2+bx﹣a﹣b得,∴,∴抛物线的函数关系式为:y=﹣x2﹣x+,令y=0,则=﹣x2﹣x+=0,∴x1=﹣6,x2=1,∴C(1,0);(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m, m+),当DE为底时,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∴m+(﹣m2﹣m++m+)=,解得:m1=﹣4,m2=9(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时, =,∴不变,即OP==3,∴P(0,3)ii:∵N在以O为圆心,4为半径的半圆上,由(i)知, =,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

贵州省遵义市中考数学试卷 (2)

贵州省遵义市中考数学试卷 (2)

2017年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•遵义)﹣3的相反数是()A.﹣3 B.3 C.D.【解答】解:﹣3的相反数是3.故选:B.2.(3分)(2017•遵义)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.(3分)(2017•遵义)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【解答】解:重新展开后得到的图形是C,故选C.4.(3分)(2017•遵义)下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2 D.(a2b)3=a5b3【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.(3分)(2017•遵义)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.6.(3分)(2017•遵义)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.(3分)(2017•遵义)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.8.(3分)(2017•遵义)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;9.(3分)(2017•遵义)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.10.(3分)(2017•遵义)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.(3分)(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③ B.②③ C.②④ D.②③④【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.12.(3分)(2017•遵义)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2017•遵义)计算:=3.【解答】解:=2+=3.故答案为:3.14.(4分)(2017•遵义)一个正多边形的一个外角为30°,则它的内角和为1800°.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.(4分)(2017•遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.16.(4分)(2017•遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.(4分)(2017•遵义)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.18.(4分)(2017•遵义)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴=,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,∴S△OEF=S梯形ECDF=(+)(3t﹣t)=;故答案为:.三、解答题(本大题共9小题,共90分)19.(6分)(2017•遵义)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.(8分)(2017•遵义)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.(8分)(2017•遵义)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.(10分)(2017•遵义)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.(10分)(2017•遵义)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000人;(2)关注城市医疗信息的有150人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144度;(4)说一条你从统计图中获取的信息.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣(250+200+400)=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.(10分)(2017•遵义)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.25.(12分)(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.(12分)(2017•遵义)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.27.(14分)(2017•遵义)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B(0,),A(﹣6,0),把B(0,),A(﹣6,0)代入y=ax2+bx﹣a﹣b得,∴,∴抛物线的函数关系式为:y=﹣x2﹣x+,令y=0,则=﹣x2﹣x+=0,∴x1=﹣6,x2=1,∴C(1,0);(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∴m+(﹣m2﹣m++m+)=,解得:m1=﹣4,m2=9(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,=,∴不变,即OP==3,∴P(0,3)ii:∵N在以O为圆心,4为半径的半圆上,由(i)知,=,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

2017年各地中考试卷2017年贵州省遵义市中考数学试卷

2017年各地中考试卷2017年贵州省遵义市中考数学试卷

2017年贵州省遵义市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C.D.2.(3分)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×10143.(3分)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.4.(3分)下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b35.(3分)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°6.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°7.(3分)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个 B.3个 C.4个 D.5个8.(3分)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm29.(3分)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m10.(3分)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE 的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.611.(3分)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④12.(3分)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)计算:=.14.(4分)一个正多边形的一个外角为30°,则它的内角和为.15.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.16.(4分)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.(4分)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.18.(4分)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.三、解答题(本大题共9小题,共90分)19.(6分)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.20.(8分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.22.(10分)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC 两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)23.(10分)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.24.(10分)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO 并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.25.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.(12分)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P 与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.27.(14分)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.2017年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•遵义)﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)(2017•遵义)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•遵义)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.【点评】本题主要考查了剪纸问题,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.4.(3分)(2017•遵义)下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b3【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.【点评】本题综合考查了合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方,属于基础题.5.(3分)(2017•遵义)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.【点评】此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大.6.(3分)(2017•遵义)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•遵义)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个 B.3个 C.4个 D.5个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.8.(3分)(2017•遵义)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的侧面积的计算方法,难度不大.9.(3分)(2017•遵义)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2017•遵义)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE 的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.【点评】本题主要考查了三角形的面积,解决问题的关键是掌握:三角形的中线将三角形分成面积相等的两部分.11.(3分)(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3分)(2017•遵义)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.【点评】本题考查了相似三角形的判定与性质、角平分线的性质、线段的中点以及平行线的性质,根据角平分线的性质结合线段的中点,找出=是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2017•遵义)计算:=3.【分析】先进行二次根式的化简,然后合并.【解答】解:=2+=3.故答案为:3.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简与合并.14.(4分)(2017•遵义)一个正多边形的一个外角为30°,则它的内角和为1800°.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.【点评】本题考查了多边形内角与外角:多边形内角和定理为(n﹣2)•180 (n ≥3)且n为整数);多边形的外角和等于360度.15.(4分)(2017•遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.【点评】本题考查了数字变化类问题,解决问题的关键是找出变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法.16.(4分)(2017•遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解.17.(4分)(2017•遵义)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.【点评】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE是解决问题的关键.18.(4分)(2017•遵义)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S △OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴=,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF +S△OFD=S△OEC+S梯形ECDF,而S=S△OEC=×2=1,△OFD=S梯形ECDF=(+)(3t﹣t)=;∴S△OEF故答案为:.【点评】本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.三、解答题(本大题共9小题,共90分)19.(6分)(2017•遵义)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=0【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(8分)(2017•遵义)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.【点评】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.21.(8分)(2017•遵义)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2017•遵义)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,熟练掌握仰角俯角的定义和三角函数的定义是解题的关键.23.(10分)(2017•遵义)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000人;(2)关注城市医疗信息的有150人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144度;(4)说一条你从统计图中获取的信息.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣(250+200+400)=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.【点评】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2017•遵义)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.【点评】本题考查了切线的性质,菱形的判定和性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.25.(12分)(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.【点评】本题主要考查了一元一次方程以及分式方程的应用,解题时注意:列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.26.(12分)(2017•遵义)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.如图4,当F在AD的延长线上时,同理可得结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、四点共圆的性质和判定、相似三角形的判定与性质等知识;本题综合性强,有一定难度.27.(14分)(2017•遵义)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之。

贵州省遵义市2017年中考数学真题试题

贵州省遵义市2017年中考数学真题试题

遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A .-3B .3C .13D .13− 2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( )A .112.5810⨯B .122.5810⨯C .132.5810⨯D .142.5810⨯3.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .4.下列运算正确的是( )A .55523a a a −=B .236a a a ⋅= C.752a a a ÷= D .2353()ab a b =5.我市某连续7天的最高气温为:28︒,27︒,30︒,33︒,30︒,30︒,32︒.这组数据的平均数和众数分别是( )A .28︒,30︒B .30︒,28︒ C.31︒,30︒ D .30︒,30︒6.把一块等腰直角三角尺和直角如图放置.如果130∠=︒,则2∠的度数为( )A .45︒B .30︒ C.20︒ D .15︒7.不等式6438x x −≥−的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个8.已知圆锥的底面面积为9π 2cm ,母线长为6cm ,则圆锥的侧面积是( )A .18π 2cmB .27π 2cm C.18 2cm D .27 2cm9.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( )A .94m ≤B .94m < C.49m ≤ D .49m < 10.如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A .4.5B .5 C.5.5 D .611.如图,抛物线2y ax bx c =++经过点(1,0)−,对称轴l 如图所示.则下列结论:①0abc >;②0a b c −+=;③20a c +<;④0a b +<,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④12.如图,ABC ∆中,E 是BC 中点,AD 是BAC ∠的平分线,//EF AD 交AC 于F .若11AB =,15AC =,则FC 的长为( )A .11B .12 C.13 D .14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)13.82+=.14.一个正多边形的一个外角为30︒,则它的内角和为.15.按一定规律排列的一列数依次为:28111417,1,,,,,3791113,按此规律,这列数中的第100个数是.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB是⊙O的直径,4AB=,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若45CMA∠=︒,则弦CD的长为.18.如图,点E、F在函数2yx=的图象上,直线EF分别与x轴、y轴交于点A、B,且:1:3BE BF=,则EOF∆的面积是.三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.)19. 计算:02017|23|(4)12(1)π−−+−−+−.20. 化简分式:222233()4424x x x x x x x −−−÷−+−−,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A 处正上方97 m 处的P 点,测得B 处的俯角为30︒(超出C 处被小山体阻挡无法观测).无人机飞行到B 处正上方的D 处时能看到C 处俯角为8036''︒.(1)求主桥AB 的长度.(2)若两观察点P 、D 的连线与水平方向的夹角为30︒,求引桥BC 的长.(长度均精确到1 m ,参考数据:3 1.73≈,sin8036''0.987︒≈,cos8036''0.163︒≈,tan8036'' 6.06︒≈.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人.(2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,D 部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,60APB ∠=︒.连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(1)求证:四边形ACBP 是菱形.(2)若⊙O 半径为1,求菱形ACBP 的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A 、B 两型自行车各50辆.投放成本共计7500元,其中B 型车的成本单价比A 型车高10元.A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”;乙街区每1000人投放8240a a+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a 的值.26.边长为22的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90︒到BQ .连接QP ,QP 与BC 交于点E .QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =.(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求出当x 为何值时,38CE BC =. (3)猜想PF 与EQ 的数量关系,并证明你的结论.27.如图,抛物线2y ax bx a b =+−−(0a <,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点(,0)M m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,BDE ∆恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE ∆恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点'M ,将'OM 绕原点O 顺时针旋转得到ON (旋转角在0︒到90︒之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,3()4NA NB +的最小值.。

九年级数学(浙教)课件-贵州省遵义市中考数学试卷

九年级数学(浙教)课件-贵州省遵义市中考数学试卷

当狂风刮起的时候作文写出人们的精神下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

当狂风刮起的时候作文写出人们的精神该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 当狂风刮起的时候作文写出人们的精神 can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary,word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!标题:风雨同行:狂风刮起时的人们精神在风雨交加的时刻,人们的精神往往会得到最真实的呈现。

贵州省遵义市2017年中考数学试题(图片版%2C含答案)

贵州省遵义市2017年中考数学试题(图片版%2C含答案)

前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣
杭信一中何逸冬
错误!未指定书签。

1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒冷的银光。

2、抬眼望去,雨后,青山如黛,花木如洗,万物清新,青翠欲滴,绿意径直流淌摘心,空气中夹杂着潮湿之和泥土草木的混合气味,扑面来,清新而湿热的气流疾钻入人的身体里。

脚下,雨水冲刷过的痕迹跃然眼前,泥土地上,湿湿的,软软的。

不要叹人生苦短,若把人一生的足迹连接起来,也是一条长长的路;若把人一生的光阴装订起来,也是一本厚厚的书。

开拓一条怎样的路,装订一本怎样的书,这是一个人生命价值与内涵的体现。

有的人的足迹云烟一样消散无痕,有的人却是一本读的厚书,被历史的清风轻轻翻动着,给一代又一代的人以深情的启迪与深刻的昭示。

贵州省遵义市2017年中考数学试卷(含答案)

贵州省遵义市2017年中考数学试卷(含答案)

机密★启用前遵义市2017初中毕业生学业(升学)统一考试数学试题卷(全卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回.一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.-(-2)的值是A .-2 B.2 C.2± D.42.据有关资料显示,2017年遵义市全年财政总收入202亿元,将202亿元用科学记数法可表示为A .21002.2⨯ B. 810202⨯ C. 91002.2⨯ D. 101002.2⨯ 3.把一张正方形纸片如图① 、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是4.下列运算中,正确的是A. 33=-a aB. 532a a a =+C. ()3362a a -=- D. 22b a ab =÷5.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误..的是 A.众数是80 B.极差是15 C.平均数是80 D.中位数是756.如图,数轴上表示某不等式组的解集,则这个不等式组可能是A.⎩⎨⎧≥-≥+0201x x B.⎩⎨⎧≥-≤+0201x x C. ⎩⎨⎧≥-≤+0201x x D. ⎩⎨⎧≥-≥+0201x x 7.如图,在△ABC 中,EF ∥BC ,21=EB AE , 8=BCFE S 梯形,则8=∆ABC S 是 A. 9 B. 10 C. 12 D. 138.如图,从边长为()cm a 1+的正方形纸片中剪去一个边长为()cm a 1-的正方形),1(>a 剩余部分沿虚线又剪拼成一个矩形(不重叠无缝 隙),则该矩形的面积为A. 22cmB. 22acmC. 24acmD. ()221cm a -9.如图,半径为1cm 、圆心角为o90的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为A. 2cm π B.232cm π C.221cm D.232cm 10.如图,矩形ABCD 中,E 是AB 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD于点F ,若CF=1,FD=2,则BC 的长为A.23 B.62 C.52 D. 32二、填空题(本题共8小题,每小题4分,共32分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上.) 11.计算:232-= ▲ .12.一个等腰三角形的两条边长分别为4cm 和8cm ,则这个三角形的周长为 ▲ cm . 13.已知5-=+y x ,6=xy ,则=+22y x ▲ .14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ▲ .15.如图,将边长为cm 2的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动6次后,正方形ABCD 的中心O 经过的路线长是 ▲ cm .(结果保留π)16.猜数字游戏中,小明写出如下一组数:,52,74,118,19163532……,小亮猜想出第六个数字是,6764根据此规律,第n 个数是 ▲ .17.在44⨯的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 ▲ 种. 18.如图, 的顶点A 、C 在双曲线xk y 11-=上,B 、D 在双曲线x k y 22=上,212k k =)0(1>k ,AB ∥y 轴,ABCD S ⊗=24,则1k = ▲ .三、解答题(本题共9小题,共88分.答题请用0.5毫米黑色墨水签字笔或钢笔书写在答题卡的相应位置上.解答是应写出必要的文字说明,证明过程或演算步骤.) 19.(6分)计算:()()()21101212131--⎪⎭⎫⎝⎛+-+--π20.(8分)化简分式1211222+--÷⎪⎭⎫ ⎝⎛---x x x x x x x x,并从31≤≤-x 中选一个你认为适合的 整数x 代人求值.21.(8分)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB .如图,在山外一点C 测得BC 距 离为20m ,∠,540=CAB ∠,300=CBA 求隧道AB 的长.(参考 数据: ,73.13,38.154tan ,59.054cos ,81.054sin 000≈≈≈≈ 精确到个位)22.(10分)如图,4张背面完全相同的纸牌(用①、②、③、④表示)在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.23.(10分) 根据遵义市统计局发布的2017年遵义市国民经济和社会发展统计公报中相关数据,我市2017年社会消费品销售总额按城乡划分绘制统计图①,2017年与2017年社会消费品销售总额按行业划分绘制条形统计图②,请根据图中信息解答下列问题:(1)图①中“乡村消费品销售额”的圆心角是▲ 度,乡村消费品销售额为▲ 亿元;(2)2017年到2017年间,批发业、零售业、餐饮住宿业中销售额增长的百分数最大的行业是▲ .(3)预计2017年我市社会消费品销售总额达到504亿元,求我市2017~2017年社会消费品销售总额的年平均增长率.24.(10分)如图,△OAC中,以O为圆心、OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)判断AC与⊙O的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC的长.25.(10分)为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户居民每月用电电费y(元)与用电量x(度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:(2)小明家某月用电120度,需交电费▲ 元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度缴纳电费153元,求m的值.26.(12分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时....以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠O时,求AP的长;BQD30(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.27.(14分)已知抛物线)0(2≠++=a c bx ax y 的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为()3,3-. (1)求该抛物线的函数关系式及点A 的坐标; (2)在抛物线上求点P ,使AOB POA S S ∆∆=2;(3)在抛物线上是否存在点Q ,使△QAO 与△AOB 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.参考答案及评分意见一、选择题(每小题3分,共30分)二、填空题(每小题4分,共32分)11.23 12.20 13.13 14.415.π3 16.322+n n17.13 18.8三、解答题(共9小题,共88分) 19.(6分)解:原式 =()12211--++-=122+- =23-20.(8分)解:原式= xx x x x x x x -+-∙⎪⎭⎫⎝⎛---2221211=()()()()()()111111122--∙-+---∙-x x x x x xx x x x x =111+-x =1+x x∵101、、-≠x , ∴当 2=x 时,原式=32122=+21.(8分)解:过点C 作CD ⊥AB 于D在Rt △BCD 中,∵∠B =30o ,BC =200m .∴CD =BC21=100,BD =3100在Rt △ACD 中,∵tan ∠CAB =ADCD∴AD =7254tan 100≈ ∴AB =AD +BD =245(m ) 答:隧道AB 的长约为245米22.(10分)解:(1)解法一:树状图为解法二:列表法:(2)共12种情况∵能使四边形ABCD 是平行四边形的有8种 ∴P (四边形ABCD 是平行四边形)=32128= 23.(10分)解:(1)72,70 (2)批发业(3)设2017~2017年社会消费品销售总额的年平均增长率为x , 据题意得:()50413502=+x()44.112=+x2.01=x 2.22-=x (舍去) 答:2017~2017年平均增长率20% 24.(10分)(1) (5分)证明:∵点A 、B 在⊙O 上 ∴OB =OA∴∠OBA =∠OAB∵∠CAD =∠CDA =∠BDO ∴∠CAD +∠OAB =∠BDO +∠OBA ∵OB ⊥OC ∴∠CAD +∠OAB =090 ∴∠090=OAC , ∴AC 是⊙O 的切线(2) (5分)解:设AC 的长为x∵∠CAD =∠CDA ,∴CD 长为x 由(1)知OA ⊥AC∴在Rt △OAC 中,222OC AC OA =+ 即()22215x x +=+∴x =12, 即线段AC 长为1225.(10分)解:(1)(2分)(2)(2分)54元(3)解:设y 与x 的关系式为b kx y +=∵点(140,63)和(230,108)在b kx y +=上∴⎩⎨⎧+=+=b k b k 23010814063解得⎩⎨⎧-==75.0b k∴y 与x 的关系式为75.0-=x y(4)解法一:第三档中1度电交电费(153-108)÷(290-230)=0.75(元)第二档中1度电交电费(108-63)÷(230-140)=0.5(元) 所以m =0.75-0.5=0.25解法二:据题意得()25.015310823029014023063108==+-⨯⎪⎭⎫⎝⎛+--m m 26.解: (1)(6分)解法一:过P 作PE ∥QC则△AFP 是等边三角形,∵P 、Q 同时出发、速度相同,即BQ =AP ∴BQ =PF∴△DBQ ≌△DFP , ∴BD =DF∵∠=BQD ∠BDQ =∠FDP =∠FPD =030, ∴BD =DF =F A =31AB =631⨯=2,∴AP =2.解法二: ∵P 、Q 同时同速出发,∴AQ =BQ 设AP =BQ =x ,则PC =6-x ,QC =6+x在Rt △QCP 中,∠CQP =030,∠C =060 ∴∠CQP =090 ∴QC =2PC ,即6+x =2(6-x ) ∴x =2 ∴AP =2(2)由(1)知BD =DF而△APF 是等边三角形,PE ⊥AF , ∵AE =EF又DE +(BD +AE )=AB =6, ∴DE +(DF +EF )=6, 即DE +DE =6∵DE =3为定值,即 DE 的长不变27.解:(1)(3分)∵抛物线的顶点为B ()3,3-∴设()332--=x a y抛物线经过原点(0、0) ∴()33002--=a∴93=a ∴()33932--=x y ,即x x y 332932-=令0=y 得:0332932=-x x 解得01=x ,62=x ,∴A 的坐标为(6,0)(2)∵△AOB 与△POA 同底不同高,且AOB POA S S ∆∆=2∴△POA 中OA 边上的高是△AOB 中OA 边上高的2倍 即P 点纵坐标是32∴=32x x 332932-,01862=--x x 解得3331+=x ,3332-=x ∴()32,3331+P ,()32,3332-P (3)过B 作BC ⊥x 轴于C在Rt △OBC 中,tan ∠OBC =333=∴∠OBC =060,而OB =AB ,故∠OBA =0120分两种情况:当点Q 在x 轴下方时,△QAO 就是△BAO , 此时Q 点坐标Q ()3,3-当点Q 在x 轴上方时,由△ABO ∽△QAO ,有AQ =OA =6,∠OAQ =0120, 作QD ⊥x 轴,,垂足为D ,则∠QAD =060, ∴33=QD ,AD =3, ∴OD =9.此时Q 点坐标是()33,9而()33,9满足关系()33932--=x y ,即Q 在抛物线上 根据对称性可知点()33,3-也满足条件∴Q 点坐标为)3,3(1-Q ,)33,9(2Q ,)33,3(3-Q。

遵义市中考数学试卷

遵义市中考数学试卷

遵义市2017年初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A .-3B .3C .13D .13- 2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( ) A .112.5810⨯ B .122.5810⨯ C .132.5810⨯ D .142.5810⨯3.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )4.下列运算正确的是( )A .55523a a a -=B .236a a a ⋅= C.752a a a ÷= D .2353()a b a b = 5.我市某连续7天的最高气温为:28︒,27︒,30︒,33︒,30︒,30︒,32︒.这组数据的平均数和众数分别是( )A .28︒,30︒B .30︒,28︒ C.31︒,30︒ D .30︒,30︒6.把一块等腰直角三角尺和直角如图放置.如果130∠=︒,则2∠的度数为( )A .45︒B .30︒ C.20︒ D .15︒7.不等式6438x x -≥-的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个8.已知圆锥的底面面积为9π 2cm ,母线长为6cm ,则圆锥的侧面积是( )A .18π 2cmB .27π 2cm C.18 2cm D .27 2cm9.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( ) A .94m ≤ B .94m < C.49m ≤ D .49m < 10.如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A .4.5B .5 C.5.5 D .611.如图,抛物线2y ax bx c =++经过点(1,0)-,对称轴l 如图所示.则下列结论:①0abc >;②0a b c -+=;③20a c +<;④0a b +<,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④12.如图,ABC ∆中,E 是BC 中点,AD 是BAC ∠的平分线,//EF AD 交AC 于F .若11AB =,15AC =,则FC 的长为( )A .11B .12 C.13 D .14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.) 13.82+= .14.一个正多边形的一个外角为30︒,则它的内角和为 .15.按一定规律排列的一列数依次为:28111417,1,,,,,3791113L ,按此规律,这列数中的第100个数是 .16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为 .18.如图,点E 、F 在函数2y x =的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且:1:3BE BF =,则EOF ∆的面积是 .三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.)19. 计算:02017|23|(4)12(1)π--+--+-.20. 化简分式:222233()4424x x x x x x x ---÷-+--,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A 处正上方97 m 处的P 点,测得B 处的俯角为30︒(超出C 处被小山体阻挡无法观测).无人机飞行到B 处正上方的D 处时能看到C 处俯角为8036''︒.(1)求主桥AB 的长度.(2)若两观察点P 、D 的连线与水平方向的夹角为30︒,求引桥BC 的长.(长度均精确到1 m ,参考数据:3 1.73≈,sin8036''0.987︒≈,cos8036''0.163︒≈,tan8036'' 6.06︒≈.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人. (2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,D 部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,60APB ∠=︒.连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(1)求证:四边形ACBP 是菱形.(2)若⊙O 半径为1,求菱形ACBP 的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A 、B 两型自行车各50辆.投放成本共计7500元,其中B 型车的成本单价比A 型车高10元.A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”;乙街区每1000人投放8240a a+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a 的值.26.边长为22的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90︒到BQ .连接QP ,QP 与BC 交于点E .QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =.(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求出当x 为何值时,38CE BC =. (3)猜想PF 与EQ 的数量关系,并证明你的结论.27.如图,抛物线2y ax bx a b =+--(0a <,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点(,0)M m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,BDE ∆恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE ∆恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点'M ,将'OM 绕原点O 顺时针旋转得到ON (旋转角在0︒到90︒之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,3()4NA NB +的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年遵义市中考数学试卷含答案解析2017年贵州省遵义市中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C. D.【考点】14:相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【考点】W5:众数;W1:算术平均数.【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【考点】JA:平行线的性质.【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2 B.27πcm2C.18cm2D.27cm2【考点】MP:圆锥的计算.【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;9.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【考点】AA:根的判别式.【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE 的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【考点】KX:三角形中位线定理;K3:三角形的面积.【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD 的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③ B.②③ C.②④ D.②③④【考点】H4:二次函数图象与系数的关系.【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【考点】JA:平行线的性质;KF:角平分线的性质.【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.二、填空题(本大题共6小题,每小题4分,共24分)13.计算:=3.【考点】78:二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:=2+=3.故答案为:3.14.一个正多边形的一个外角为30°,则它的内角和为1800°.【考点】L3:多边形内角与外角.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【考点】37:规律型:数字的变化类.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【考点】8A:一元一次方程的应用.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【考点】M2:垂径定理;KQ:勾股定理;KW:等腰直角三角形.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM 是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.18.如图,点E ,F 在函数y=的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是 . 【考点】G5:反比例函数系数k 的几何意义.【分析】证明△BPE ∽△BHF ,利用相似比可得HF=4PE ,根据反比例函数图象上点的坐标特征,设E 点坐标为(t ,),则F 点的坐标为(3t ,),由于S △OEF +S △OFD =S △OEC +S 梯形ECDF ,S △OFD =S △OEC =1,所以S △OEF =S 梯形ECDF ,然后根据梯形面积公式计算即可.【解答】解:作EP ⊥y 轴于P ,EC ⊥x 轴于C ,FD ⊥x 轴于D ,FH ⊥y 轴于H ,如图所示:∵EP ⊥y 轴,FH ⊥y 轴,∴EP ∥FH ,∴△BPE ∽△BHF ,∴=,即HF=3PE ,设E 点坐标为(t ,),则F 点的坐标为(3t ,),∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =×2=1,∴S △OEF =S 梯形ECDF =(+)(3t ﹣t )=;故答案为:.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.【考点】6D :分式的化简求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000人;(2)关注城市医疗信息的有150人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144度;(4)说一条你从统计图中获取的信息.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP 与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【考点】LO:四边形综合题.【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE= BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.如图4,当F在AD的延长线上时,同理可得结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.27.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C 两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l 分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【考点】HF:二次函数综合题.【分析】(1)根据已知条件得到B(0,),A(﹣6,0),解方程组得到抛物线的函数关系式为:y=﹣x2﹣x+,于是得到C(1,0);(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到=,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由(i)知,=,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B(0,),A(﹣6,0),把B(0,),A(﹣6,0)代入y=ax2+bx﹣a﹣b得,∴,∴抛物线的函数关系式为:y=﹣x2﹣x+,令y=0,则=﹣x2﹣x+=0,∴x1=﹣6,x2=1,∴C(1,0);(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∴m+(﹣m2﹣m++m+)=,解得:m1=﹣4,m2=9(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,=,∴不变,即OP==3,∴P(0,3)ii:∵N在以O为圆心,4为半径的半圆上,由(i)知,=,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

相关文档
最新文档