三相异步电动机的7种转速方式

合集下载

三相异步电机计算公式

三相异步电机计算公式

三相异步电机计算公式三相异步电机是一种常见的交流电动机,通过在定子上产生的旋转磁场和转子上的感应电流之间的相互作用来实现电能转换为机械能。

在实际应用中,我们经常需要计算三相异步电机的相关参数,如转速、功率、效率等。

下面将介绍三相异步电机的常用计算公式及相关内容。

1. 转速计算公式转速是三相异步电机运行最基本的参数之一,通常以每分钟转速(RPM)为单位。

计算转速的公式如下:N = 120 * f / P其中N为转速,f为电源频率(Hz),P为极对数。

该公式适用于常用的四极电机。

对于其他极数,可以根据需要进行相应的修正。

2. 功率计算公式电机功率是指电机输出的机械功率,通常以瓦特(W)为单位。

计算功率的公式如下:P = V * I * √3 * cos(θ)其中P为功率,V为电压,I为电流,θ为功率因数(通常为0.8-0.95之间,取决于电机负载类型)。

√3即为根号3,表示三相电流的有效值与相电压的关系。

3. 效率计算公式电机效率是指输入的电能与输出的机械能之间的比值,通常以百分比表示。

计算效率的公式如下:η = (Pout / Pin) * 100其中η为效率,Pout为输出功率,Pin为输入功率。

电机效率通常会随着负载变化而变化,一般在最大转矩时达到最高值。

4. 线电流计算公式三相异步电机的线电流是指电机各相之间的电流,通常以安培(A)为单位。

计算线电流的公式如下:I = P / (√3 * V * cos(θ))其中I为线电流,P为功率,V为电压,θ为功率因数。

5. 绕组电流计算公式三相异步电机的绕组电流是指电机定子绕组或转子绕组中的电流,通常以安培(A)为单位。

计算绕组电流的公式如下:Iw = I * √3其中Iw为绕组电流,I为线电流。

6. 输出转矩计算公式三相异步电机的输出转矩是指电机在运行状态下输出的转矩,通常以牛顿·米(N·m)为单位。

计算输出转矩的公式如下:T = (9.55 * P) / N其中T为输出转矩,P为输出功率,N为转速。

三相电机七种调速方式

三相电机七种调速方式

三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

三相异步电动机控制方式

三相异步电动机控制方式

三相异步电动机控制方式引言三相异步电动机是工业中常用的一种电动机类型,其控制方式多种多样。

本文将对三相异步电动机的控制方式进行全面、详细、完整地探讨。

直接启动控制方式直接启动是最简单、最常用的三相异步电动机控制方式之一。

它的原理是将电动机直接连接到电源,通过开关将电动机启动或停止。

直接启动控制方式的特点如下:1.简单易行:直接启动控制方式不需要额外的控制设备,只需要一个开关即可实现电动机的启动和停止。

2.能耗较高:由于直接启动时电动机的起动电流较大,所以会导致较高的能耗。

3.对电动机和电网冲击较大:直接启动时,电动机的起动电流会对电网造成较大的冲击,容易引起电网电压的波动。

磁力起动器控制方式磁力起动器是一种常用的三相异步电动机控制设备,它通过控制电磁铁的吸合和断开来控制电动机的启动和停止。

磁力起动器控制方式的特点如下:1.起动电流小:磁力起动器通过控制电磁铁的吸合和断开,可以减小电动机的起动电流,降低能耗。

2.对电动机和电网冲击较小:磁力起动器可以通过控制电磁铁的断开和吸合,减小电动机启动时对电网的冲击。

3.需要辅助设备:磁力起动器需要额外的控制设备,如热继电器、过载保护器等,以保证电动机的安全运行。

变频器控制方式变频器是一种能够调节电动机转速的控制设备,通过改变电源频率来改变电动机的转速。

变频器控制方式的特点如下:1.转速调节范围广:变频器可以实现对电动机转速的精确调节,转速范围广,适用于不同的工况要求。

2.节能效果好:变频器可以根据实际负载情况调节电动机的转速,减小能耗,提高能源利用效率。

3.控制精度高:变频器控制方式可以实现对电动机转速的精确控制,满足不同工况下的控制需求。

变频器控制方式的工作原理变频器控制方式通过改变电源频率来改变电动机的转速,其工作原理如下:1.电源输入:将电源输入变频器,变频器将电源的直流电转换成交流电。

2.逆变器输出:变频器通过逆变器将直流电转换成交流电,交流电的频率可以通过变频器进行调节。

三相电机七种调速方式

三相电机七种调速方式

三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式一、手动控制调速手动控制是一种最普遍的三相异步电动机调速方式。

它依靠加装变压器、电阻器或多脉冲变压器等器件,调节其输入电压、输入频率或输出电压,从而在一定范围内实现电动机的速度调节。

手动控制调速简单易行,但需要对其进行操作并且无法在一定时间内快速响应,因此其调速效果难以满足大功率调速应用的需求。

二、电压型调速又称为调压调速,它利用晶闸管、继电器等智能控制器调节电动机供电输入电压或输出电压,控制电动机转速。

这种调速方式具有精度高、响应快的优点,而且兼容性好,可实现精细调节。

三、频率型调速频率型调速是运用变频器将变频器输入电源的固定频率变换为可调的变频电源,并通过变频器控制电动机转速。

变频器能够调节电动机速度,实现电机无极调速,从而应用广泛。

此外,特别适用于中低速大扭矩的电动机。

四、矢量控制调速矢量控制调速又称为磁场定向控制调速。

它是一种高精度、高响应速度的调速方式,它利用磁场定向技术,利用电机开机后的瞬态响应,精确测量电机位置并控制电机转速。

与其它调速方式相比,矢量控制调速能够实现缓启动、粘滑保护,并且可以自动调整电磁场大小和角度,实现高速、高精度的调速。

五、惯量调节法惯量调节法是利用电动机惯性和输出转矩的反比关系控制电动机转速的,通常应用于重载起动场景中的电动机调速。

它适用于一些运行要求高的场合,在某些情况下,可达到更好的调速效果,但一般不适用于低速调节。

六、PWM调速PWM调速广泛应用于三相异步电动机调速中,它结合了电压调速和频率调速的优点,而且具有成本低、可靠性高等优点。

PWM调速采用高频脉冲宽度调制技术,调节输出电压的宽度,从而控制电动机转速。

PWM调速还可以实现过流保护、欠压保护等,应用性强。

以上为六种三相异步电动机的调速方式,每种调速方式都有其适用的场合。

根据实际应用需求,选择合适的调速方式可以实现电动机稳定、高效的工作。

三相异步电动机的调速

三相异步电动机的调速

m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)

三相异步电机的调速

三相异步电机的调速

一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了

相异步电动机的七种调速方法及特点:

相异步电动机的七种调速方法及特点:

三相异步电动机分类特点以及调速方法三相异步电动机分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。

不改变同步转速的调速方法在生产机械中广泛使用。

2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

我们清楚三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。

一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

三相异步电机运行原理

三相异步电机运行原理

三相异步电机运行原理三相异步电机是一种常见的交流电动机,其运行原理是基于磁场的转动作用。

本文将从基本原理、构造、运行特点、控制方式和应用等方面详细介绍三相异步电机。

1. 基本原理三相异步电机的运行原理是基于磁场的转动作用。

当三相交流电源通入三相异步电机的定子绕组时,产生的电磁场沿着定子铁芯出现旋转磁场。

该磁场的转速与电源频率和定子线圈的极数成正比,转速的大小表示为:n=s*f/Pn为电机转速,s为滑差,f为电源频率,P为定子线圈的极数。

当电机转子沿着旋转磁场旋转时,旋转磁场会在转子铁芯中引起感应电流,产生逆磁场,使得转子跟随旋转磁场转动。

转子跟随旋转磁场转动的结构,使得转子铁芯与旋转磁场之间的相对运动产生力矩,使得转子继续沿着旋转磁场转动。

这种情况下,电机的空载转速接近同步转速,但转速会随负载变化而下降。

2. 构造三相异步电机包括定子和转子两部分。

定子结构复杂,由定子铁核、定子线圈和端部盖板等部分组成。

定子线圈绕在定子铁核的上面,并由扯出的端子连接到电源上。

转子结构相对简单,由转子铁心、转子线圈和轴承等部分构成。

转子的铁心轴向排列,在其表面上有许多槽孔,用以装载转子线圈。

转子线圈是一组导电线,绕在铁心上,并与固定于轴上的端环互相连接。

转子在轴承内旋转。

3. 运行特点三相异步电机运行时,其特点如下:(1) 转速随负载变化而下降:电机空载转速接近于同步转速,即与电源频率和极数等条件有关的理论转速n1。

但是电机在负载下,由于动能的消耗,因此电机的转速会随着转矩的变化而回落,这种现象称为“滑差现象”。

实际上,电机的转速是与转矩成反比例关系,即在负载下电机的转速会下降。

(2) 起动电流大:在电机起动时,由于转子的静止不动,所以此时的转速为零,旋转磁场的转速为n1。

转子中的感应电流很大,由于磁通量变化而产生的转子电动势使得转子中的感应电流也很大,这就导致电机启动时的电流较大。

(3) 运行效率低:由于电机在运行时会产生都流,因此电机的功率因数较小,在功率传输时,会有一定的功率损失。

三相异步电动机 转子转速,电机的转差率,转子电动势频率的关系

三相异步电动机 转子转速,电机的转差率,转子电动势频率的关系

三相异步电动机转子转速,电机的转差率,转子电动势频率的关系
三相异步电动机的转子转速、电机的转差率和转子电动势频率之间存在一定的关系。

以下是它们之间的关系:
1.转子转速与转差率的关系:三相异步电动机的转子转速与转差率之间存在线性关系。


差率是指电动机的转子转速与同步转速之差与同步转速的比值。

当电动机启动时,转差率接近于1,即转子转速接近于0;当电动机正常运行时,转差率会减小,但永远不会等于0;当电动机负载过重时,转差率会增大。

因此,通过测量转差率的大小,可以大致判断出电动机的运行状态。

2.转子转速与转子电动势频率的关系:三相异步电动机的转子转速与转子电动势频率之间
存在一定的比例关系。

由于电动机的同步转速与电源频率成正比,因此,在电源频率一定的情况下,转子转速越高,其电动势频率也越高。

这种关系在电动机的调速控制中得到了广泛应用。

最新电机与运动控制系统(第二版)罗应立课后答案

最新电机与运动控制系统(第二版)罗应立课后答案

2-1安培环路定律P11,磁路的欧姆定律P12,电磁感应定律P19不一定可以,因为磁路是非线性的,存在饱和现象。

2-2磁阻和磁导与磁路的磁导率、长度和截面积有关,其中磁导率取决于磁路的饱和程度,即磁通密度的大小。

2-3Φ2>Φ1 B2=B1Φ2=Φ1 B1>B22-4 (1)如果工作时进入磁饱和区,设备发热加剧,影响设备正常运行。

P15 P16(2)2-5 P242-6(1)P23(2)2-7 P242-8 (1)瞬态值(2)平均值2-9无功功率铁心损耗P372-10(1)P35 P39(2)P422-11 P39 重置前后磁动势不变P402-12 P37 大好2-13 因素:①铁芯材质,磁路结构②磁感应强度③原边和副边的绕线方式,顺序④线圈结构2-142-15 增大2-16 P422-172-18E1=-j4*44fW1ΦmE2 =-j4*44fW2Φm2-192-20 N1=W1 N2=W23-1(1)换向器在直流电机中起什么作用?答:在直流发电机中, 换向器起整流作用, 即把电枢绕组里的交流电整流为直流电, 在正、负电刷两端输出。

在直流电动机中,换向器起逆变作用, 即把电刷外电路中的直流电经换向器逆变为交流电输入电枢元件中。

(2)直流电机的主磁路由哪几部分组成?磁路未饱和时,励磁磁通势主要消耗在哪一部分上?答:直流电机的主磁路由以下路径构成: 主磁极N 经定、转子间的空气隙进入电枢铁心, 再从电枢铁心出来经定、转子间的空气隙进入相邻的主磁极S, 经定子铁心磁轭到达主磁极N, 构成闭合路径。

励磁磁通势主要消耗在空气隙上。

3-2直流电机的铭牌上的额定功率是指什么功率?答:对于直流发电机,是指输出的电功率;对于直流电动机,是指输出的机械功率。

3-33-4直流发电机的损耗主要有哪些? 铁损耗存在于哪一部分, 它随负载变化吗? 电枢铜损耗随负载变化吗?答:直流发电机的损耗主要有: (1 ) 励磁绕组铜损耗; ( 2 ) 机械摩擦损耗; ( 3) 铁损耗; ( 4 )电枢铜损耗; ( 5 ) 电刷损耗; ( 6 ) 附加损耗。

三项异步电动机变频调速控制及其节能改造

三项异步电动机变频调速控制及其节能改造

三项异步电动机变频调速控制及其节能改造本文主要从三项异步电动机概述、三相笼型转子异步电动机的传统起动方式、三相异步电动机调速策略探讨、电动机节能注意事项等方面进行了阐述。

标签:三相异步电动机;调速;节能一、前言三项异步电动机在我国电网中应用非常广泛,技术也相对成熟,但是如何使其变频调速进行控制以及节能问题,都是需要进一步探讨与总结的重点问题。

二、三项异步电动机概述全国年总发电量的一半以上,耗能非常之高。

因此,加强和提高三相异步电动机的节能控制对我国电能的节约将会起到巨大的作用。

当电流在满负荷的情况下时,三相异步电动机的功效一般比较的高,可以达到85%左右。

但是,如果电流的负荷量下降的话,三相异步电动机的功效就会明显的降低。

因此,总的来说,三相异步电动机的功效还是比较低的。

如果我们通过对三相异步电动机节能控制,我们就会在这方面有所提高,从而提升电动机的运行效率,将会产生巨大的经济效益。

进行三相异步电动机的节能控制主要是从两方面的工作着手,首先就是要提升三相异步电动机的制造技术,而这方面如今已经取得了巨大的发展,另外一方面就是要做好电动机的运行控制技术,这才是我们进行电动机节能控制技术的关键。

三相异步电动机的功效是指三相异步电动机的输出功效同输入功效的比例,因此供电机的一部分电能是用来使电动机驱动的,即输入的功效,而另外一部分电能就会发生在三相异步电动机的自身损耗上,这就是我们所说的输出功效。

三相异步电动机的电能损耗主要是指电动机的铁和铜,而电动机的铜耗则是在电流通过电动机的铜线绕组时而产生的,相比之下,电动机的铁耗则是指电动机在运转的过程中,其定子和转子铁芯中产生的电流而发生的损耗,这主要是与电压有关。

电动机的损耗除了这两部分损耗外,还存在其他的损耗,但是这些损耗都比较小,可以忽略。

而三相异步电动机的节能原理就是在电压的负荷下降的时候,可以通过适当降低电源的电压的方法,从而减少电动机中铁耗,当电压下降的时候,相应的电流也会随之下降,这样也就降低了电动机中的铜耗,只有这样电动机的功效才会得到提高。

三相异步电机频率与转速的关系

三相异步电机频率与转速的关系

三相异步电机频率与转速的关系
三相异步电机是一种常见的电动机,其转速与频率之间存在一定的关系。

根据电机学原理,三相异步电机的转速n与电源频率f之间的关系可以表示为:
n = 60f / p
其中,n表示电机的转速(单位为转/分钟),f表示电源的频率(单位为赫兹),p表示电机的极对数。

从这个公式可以看出,当电源频率f保持不变时,电机的转速n与极对数p成反比。

也就是说,如果电机的极对数增加,那么电机的转速就会降低;反之,如果电机的极对数减少,那么电机的转速就会提高。

此外,需要注意的是,三相异步电机的额定转速通常是指电机在额定工作状态下的转速。

在实际应用中,为了保证电机能够稳定运行并满足负载需求,通常会通过调整电源频率或电机参数来控制电机的转速。

例如,可以通过变频器来改变电源频率,从而实现对电机转速的调节。

三相异步电机的转速与电源频率之间存在一定关系,可以通过调整电源频率或电机参数来实现对电机转速的控制。

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。

三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。

相对其他类型电动机而言故障率较低。

我厂500多台电动机基本均为三相异步电动机。

工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。

转速的大小由电动机极数和电源频率而定。

转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。

转子铜条(铝条)是短路的,有感应电流产生而产磁场。

在磁场中受到力的作用。

转子就会旋转起来。

电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。

起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。

2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。

(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。

3、变频起动及分段变频起动。

直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将负荷较重的电机也采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

三相异步电动机的6种启动方法选择与比较

三相异步电动机的6种启动方法选择与比较

三相异步电动机的6种启动方法选择与比较1、直接启动直接启动的优点是所需设备少,启动方式简单,成本低。

电动机直接启动的电流理论上来说,只要向电动机提供电源的线路和变压器容是正常运行的 5 倍左右,量年夜于电动机容量的 5 倍以上的,都可以直接启动。

这一要求关于小容量的电动机容易实现,所以小容量的电机绝大部分都是直接启动的,不需要降压启动。

关于年夜容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强年夜的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以年夜容量的电动机和不能直接启动的电动机都要采用降压启动。

直接启动可掖棵胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可掖棵限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。

2、用自偶变压器降压启动采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。

如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。

自耦变压器降压启动的优点是可以直接人工操作控制,也可掖棵交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。

缺陷是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。

3、Y-△降压启动定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。

启动电流小,启动转矩小。

Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺陷是只能用于△连接的电动机,x大型异步电机不能重载启动。

三相异步电动机的七种调速方式

三相异步电动机的七种调速方式

三相异步电动机的七种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机的7种转速方式
三相异步电动机转速公式为:
n=60f/p(1-s)
从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法
这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:
具有较硬的机械特性,稳定性良好;
无转差损耗,效率高;
接线简单、控制方便、价格低;
有级调速,级差较大,不能获得平滑调速;
可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法
变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:
效率高,调速过程中没有附加损耗;
应用范围广,可用于笼型异步电动机;
调速范围大,特性硬,精度高;
技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分
为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:
可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速7 0%-90%的生产机械上;
调速装置故障时可以切换至全速运行,避免停产;
晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法
绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

属有级调速,机械特性较软。

五、定子调压调速方法
当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。

由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。

为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。

为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。

调压调速的主要装置是一个能提供电压变化的电源,目前常用
的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。

晶闸管调压方式为最佳。

调压调速的特点:
调压调速线路简单,易实现自动控制;
调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。

调压调速一般适用于100KW以下的生产机械。

六、电磁调速电动机调速方法
电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。

直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。

电磁转差离合器由电枢、磁极和励磁绕组三部分组成。

电枢和后者没有机械联系,都能自由转动。

电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。

当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。

当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。

电磁调速电动机的调速特点:
装置结构及控制线路简单、运行可靠、维修方便;
调速平滑、无级调速;
对电网无谐影响;
速度失大、效率低。

本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。

七、液力耦合器调速方法
液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。

壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。

液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。

在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为:
功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;结构简单,工作可靠,使用及维修方便,且造价低;
尺寸小,能容大;
控制调节方便,容易实现自动控制。

本方法适用于风机、水泵的调速。

相关文档
最新文档