第1章 热力学基本原理(8)

合集下载

热力学统计物理第1章总复习

热力学统计物理第1章总复习
dV dT T dp V 沿一任意路径积分
ln V ( dT T dp ) ln V0
(T , p)
(T0 , p0 )
T
如果由实验测得α、κT作为T、p的函数,由上 式可得物质的物态方程。
对理想气体
1 T
1 T p
选择该积分路径由一个等压过程和一个等压过程组成,
p 常数 T
1
TV
1
常数
V V dV ( ) p dT ( )T dp T p
并利用 1 ( V ) P V T
同除V得到
KT
1 V ( )T V p
得到:
dV dT K T dp V
dV V (dT KT dp)
对固体和液体,α、KT很小,并假定为常数,积分得:
作级数展开,取近似, V (T , P) V0 (T0 ,0)1 (T T0 ) KT p 并取p0=0有
T
1.4 简单固体和液体的体胀系数 和等温压缩系数 T 数值都很小,在一定温度范围内可以把 和 T 看作 常量. 试证明简单固体和液体的物态方程可近似为
V (T , p) V0 T0 , 0 1 T T0 T p .
1.4解:令 V=V(T,P)进行全微分:
2 1 p R RV ( )V p T p(V b) RTV 2 a(V b)
1 1 1 V T ( ) T 2a RT V V p 3 V
V 2 (V b) 2 3 V RT 2a(V b) 2
(V b) 2
1.2 证明任何一种具有两个独立参量 T , p 的物质,其 物态方程可由实验测得的体胀系数 及等温压缩系 数 ,根据下述积分求得:

高等工程热力学第1章

高等工程热力学第1章
附: 华氏温标和摄氏温标
t
( C) =5 t(F ) 32 9
° °
33
☻ 压力
绝对压力 p;
表压力 pe(pg); 真空度 pv;
p=
F A
p = pb + pe ( p > pb )
p = pb - pv ( p < pb )
动压力、静压力、滞止压力和绝对压力 ?
☻ 热力学能
Uch
G = G( p, T , n1 , n2 , , nr )
热力平衡系统
其中
是驱使第i 种组分变化的势,即化学势:
12
用A表示的化学势
改变约束条件,化学势还可有其它的表达式、但是 无论如何表示,其实质都相同:
据化学势概念,定温、定容和定压、定温系统的 平衡判据:
13
四. 稳定平衡判据
力学中平衡的稳定性
+
+
1
b2
1
C)状态参数分类: 广延量 强度量 (广延量的比性质,具有强度量特性)32
► 系统两个状态相同的充要条件: 所有状参一一对应相等 简单可压缩系两状态相同的充要条件: 两个独立的状态参数对应相等
► 基本状态参数
☻ 温度
测温的基础—热力学零定律 热力学温标和国际摄氏温标
{t } C = {T }K 273.15
δ AT ,V = 0
1
δ AT , V > 0
2
定温定压系统,平衡与稳定的条件
δ GT , p = 0
1
δ GT , p > 0
2
16
过程
不同形式能量之间的转换必须通过工质的状态变化过程才 能完成。 一切过程都是平衡被破坏的结果,工质和外界有了热的、力的 或化学的不平衡才促使工质向新的状态变化,故实际过程都是不 平衡的。

工程热力学第一章

工程热力学第一章
燃料化学能
排入大气
压缩燃烧、膨胀
吸气排气
工作过程:
能量转换:
工作物质:
燃气
蒸汽动力装置流程简图
蒸汽动力装置流程简图
550℃
过热器
锅炉
给水泵
冷凝器
冷却水
汽轮机
发电机
Q
Q
1
2
W
20℃
高温高压蒸汽
W
p
蒸汽动力装置
1-炉子 2-炉墙 3-沸水管 4-汽锅 5-过热器6-汽轮机 7-喷嘴 8-叶片 9-叶轮 10-轴 11-发电机 12-冷凝器 13、14、16-泵 15-蓄水池
华氏温标:
1724年由德国人华氏(cabridl D Fahrenheit)提出。他把水、冰和氯化铵的混合物作为制冷剂而获得的当时可得到的最低温度作为0度,把人体的温度作为 96度,中间等分,这样的数字是由于当时广泛使用12进位法。符号tF ,单位 °F。
华氏温标与摄氏温标的换算关系为:t(℃)=0℃ = 32 oF100 ℃ = 212oF郎肯温标:
压力计 测量工质压力的仪器。常见的压力计有压力表和U型管。
由于压力计的测压元件处于某种环境压力的作用下,因此压力计所测得的压力是工质的真实压力p (或称绝对压力)与环境压力pb之差,叫做表压力pe或真空度pv
分子运动学说认为压力是大量气体分子撞击器壁的平均结果。
绝对压力、表压力、真空度及大气压力之间的关系
0.96784
1
735.559
10000
mmHg
133.322
133.322×10-5
1.31579×10-3
1.35951×10-3
1
13.5951
mmH2O

高等工程热力学-第一章、热力学基本原理及定义

高等工程热力学-第一章、热力学基本原理及定义
⑴试证明刚性容器绝热放气时,容器内剩余 气体经历了一个可逆的绝热膨胀过程。
⑵试写出终态温度T2及排出质量me的表达式。
§1-3 热力学第二定律
一、热力学第二定律的实质及说法
1、热力学第一定律的局限性及热力学第二定律的实质
◆热力学第一定律的实质是能量转换及守恒定律。.
◆任何一个已经完成或正在进行的过程都遵循热力学第一定律。
◆热过程是有方向性的,过程的进行是有条件的, 并有一定的限度。
◆热力学第一定律具有局限性。
热力学第二定律的实质----能质衰贬原理
◆热力学第二定律揭示了不同形式的能量,在转换成功 量的能力上是有“质”的差别的;
◆即使同一种形式的能量,其存在状态不同时,它的转 换能力也是不同的。
◆正是因为各种不同存在形式或不同存在状态的能量, 在传递及转换能力上存在着“质”的差别,所以,在能 量传递及转换过程中,就呈现出一定的方向、条件及限 度的特征。
①能量的存在形式。 有序能>无序能 ②周围环境----定义能质高低的共同基准。
“不能脱离周围环境来进行能质分析!” ③能量的存在状态,即系统所处的状态。
2、寂态(dead state)
当系统与周围环境达到热力学平衡时,系统的状态称为寂态。 此系统中的能量就完全丧失了转换的能力,其能质为零。因此, 寂态可以作为度量任何系统能量品位高低的统一基准。 系统的状态偏离寂态越远,系统能量的品位越高。
∴ 而

忽略动、位能变化,则
一种流体的焓增加等于另一种流体的焓减。 即一种流体的吸收的热量等于另一种放出的热量。
例3、喷管
0
0
0
则 对1kg流动工质
∵ ∴ ∴
例4、绝热节流
0
0

大学物理(第三版)热学-第一章

大学物理(第三版)热学-第一章

从实验归纳总结
定律
热力学第一定律 ---能量转化 热力学第二定律 ---过程方向性 基础定律
地位: 相当于力学中的牛顿定律
2021/6/7
12
三、 本课程中研究对象的理想特征
1.对象 理想气体
宏观定义:
严格遵守玻意耳定律
实际气体理想化:
P 不太高 T 不太低
若高压 低温?
2021/6/7
1) 在理想气体理论基础上加以修正
每一时刻系统都处于平衡态 实际过程的理想化---无限缓慢(准) “无限缓慢”:系统变化的过程时间>>驰豫时 间 例1 气体的准静态压缩
2021/6/7
过程时间 ~ 1 秒
驰豫 时间
<
103 16
s
实际过程太迅速了 怎么办? 1)修正原理论 2)更普遍的理论或经验
本课介绍 • 气体分子动理论
平衡态下 理想气体的状态量与微观量的关系 •热力学基础 实验的总结---必定涉及过程
3.5 4190/m 3 十亿
大量、无规则
统计方法
数学基础---概率论
2021/6/7
23
讨论 1.理气状态方程
PV M RT PV RT NkT
P nkT
2.不漏气系统 各状态的关系
PV C T
2021/6/7
24
3. P-V 图
P
P.V.T P.V.T
V
P V 图上一个点代表一个平衡态 一条线代表一个准静态过程
2021/6/7
5
解决问题的一般思路 •从单个粒子的行为出发
统计的方法
•大量粒子的行为--- 统计规律 例如:微观认为宏观量P
是大量粒子碰壁的平均作用力

化工热力学第一章.

化工热力学第一章.
化工热力学是理论和工程实践性都较强的学科。
化工热力学 第一章 绪 论
化工热力学解决的实际问题可以归纳为三类: (1) 过程进行的可行性分析和能量的有效利用; (2) 相平衡和化学反应平衡问题; (3) 测量、推算与关联热力学性质。
化工热力学 第一章 绪 论
2. 热力学在化工过程开发中的作用
局限:对物质结构必须采用一些假设的模型,这 些假设模型只是物质实际结构的近似描写。
化工热力学 第一章 绪 论
四、化工热力学研究内容及在化工过程开发中的作用 1. 化工热力学的研究内容
化工热力学的主要任务是以热力学第一、第二定律 为基础,研究化工过程中各种能量的相互转化及其有效利 用的规律,研究物质状态变化与物质性质之间的关系以及 物理或化学变化达到平衡的理论极限、条件和状态。
7 了解热力学在化工过程中的主要实际应用。
化工热力学 第一章 绪 论
预备知识(复习名词、概念)
体系与环境
体系:研究的对象 环境:研究对象以外的部分
敞开体系(开系):体系与环境之间有能量与物质的交换。
体系 封闭体系(闭系):体系与环境之间只有能量交换而无物质的交换。
孤立体系:体系与环境之间既无能量交换也无物质的交换。
化工热力学 第一章 绪 论
过程与循环
过程:状态的变化历程 按可逆程度分:可逆过程、不可逆过程。 按状态参数变化分:等温、等压、等容、等焓、绝热过程等。
循环: 正向循环:热能变为机械能的热力循环。PV图上以顺时针 方向循环。所有热机都是。
逆向循环:消耗能量迫使热量从低温流向高温。 V图上以逆 时针方向循环。所有制冷、热泵都是。
3.化工热力学在化工过程开发中的作用
降低原料消耗,减少环境污染; 降低能耗(利用夹点技术); 提高产品的质量(利用新型分离技术); 为化工单元操作提供多元相平衡数据; 为实验成果的放大,实现工业化提供基础

工程热力学名词解释

工程热力学名词解释

工程热力学名词解释专题注:参考哈工大的工程热力学和西交大的工程热力学第一章——基本概念1、闭口系统:热力系与外界无物质交换的系统。

2、开口系统:热力系与外界有物质交换的系统。

3、绝热系统:热力系与外界无热量交换的系统。

4、孤立系统:热力系与外界有热量交换的系统。

5、热力平衡状态:热力系在没有外界作用的情况下其宏观性质不随时间变化的状态。

6、准静态过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程7、热力循环:热力系从某一状态开始,经历一系列中间状态后,又回复到原来状态。

8、系统储存能:是指热力学能、宏观动能、和重力位能的总和。

9、热力系统:根据所研究问题的需要,把用某种表面包围的特定物质和空间作为具体指定的热力学的研究对象,称之为热力系统。

第二章——热力学第一定律1、热力学第一定律:当热能与其他形式的能量相互转换时,能的总量保持不变。

或者,第一类永动机是不可能制成的。

2、焓:可以理解为由于工质流动而携带的、并取决于热力状态参数的能量,即热力学能与推动功的总和。

3、技术功:技术上可资利用的功,是稳定流动系统中系统动能、位能的增量与轴功三项之和4、稳态稳流:稳定流动时指流道中任何位置上的流体的流速及其他状态参数都不随时间而变化流动。

第三章——热力学第二定律1、可逆过程:系统经过一个过程后,如果使热力系沿原过程的路线反向进行并恢复到原状态,将不会给外界留下任何影响。

2、热力学第二定律:克劳修斯表述:不可能把热从低温物体转移到高温物体而不引起其他变化。

开尔文普朗克表述:不可能从单一热源吸热而使之全部转变为功。

3、可用能与不可用能:可以转变为机械功的那部分热能称为可用能,不能转变为机械功的那部分热能称为不可用能。

4、熵流:热力系和外界交换热量而导致的熵的流动量5、熵产:由热力系内部的热产引起的熵的产生。

6、卡诺定理:工作再两个恒温热源(1T 和2T )之间的循环,不管采用什么工质,如果是可逆的,其热效率均为121T T ,如果不是可逆的,其热效率恒小于121T T 。

热力学 第一章

热力学 第一章


(3)状态参量:描述热力学系统平 衡状态的宏观性质的物理量。

描述系统状态的宏观参量一般可以 直接测量。
广延量和强度量
3、均匀系与非均匀系
(1)均匀系:一个系统各部分的性质完全
一致,称为一个均匀系。(也称为一个相 —单相系) (2)非均匀系:复相系
§1.2 热平衡定律和温度

一、热平衡定律(热力学第零定律) 实验
2 3 3 6 1
如果保持温度不变,将1mol的水从1 1000 pn ,求:外界所做的功。
pn
加压到
§1.5 热力学第一定律
一、热量:系统与外界仅由于温度差,通过边界 所传递的能量。(通过分子间的碰撞来实现)
Q 过程量 热量是能量传递的另一种方式 Q 0 系统从外界吸收热量
Q 0 系统向外界放出热量
3 6 2 3
1
§1.6 热容量和焓
一、热容量
1、引入:桶的装水量(水容量)
M 水容: C h
Q 电容: C U
2、热容量:一个系统在某一过程中温度升 高1K所吸收的热量。
Q C lim T T dQ C dT
单位:焦耳/开尔文 J / K
3、系统的质量对热容量的影响:
an2 ( p 2 )(V nb) nRT V
1mol : a ( p 2 )( v b) RT v
3、简单固体和液体:
V (T , p) V0 (T0 ,0)1 (T T0 ) KT p
例1、一个简单可压缩系统,已知
nR 1 a ; KT pV p V
作业:1、1mol理想气体,在27℃的恒温下 发生膨胀,其压强由 20Pn 准静态地降到 1Pn ,求:气体所做的功和所吸取的热量。 2、在27℃,压强在0至 1000pn 之间,测得 水的体积为V (18.066 0.71510 p 0.04610 p )cm mol 如果保持温度不变,将1mol的水从1 pn 加压至 1000pn ,求:外界所做的功。

第1章 热力学第一定律

第1章 热力学第一定律

§ 1.5 定容及定压下的热
U、H、U、 H、Qp、QV的区别与联系
1.哪个是状态函数? U、H 2.哪个能测量? ΔU、ΔH、Qp、QV 3.有何关系?W’=0时ΔU=Q ,ΔH=Q V p
§ 1.6 热容 1. 定容热。 δQ 注意:Wf=0,无相变、无 C= dT 化学变化的封闭系统。
2.可逆过程
可逆过程是一个极限的理想过程。
研究可逆过程的用处:
(1)确定提高实际过程的效率的可能性。
(2)求解重要热力学函数的变化值。
2.可逆过程





几种典型的可逆过程 可逆膨胀和可逆压缩:力平衡 可逆传热:热平衡 可逆相变:相平衡 可逆化学反应:A+B C
§ 1.4 体积功 3.可逆相变的体积功
§ 1.2 几个基本概念
1.系统和环境
在研究时被划分出来作为研究对象的 物体称为系统(System);系统以外与 系统有相互作用的周围部分称为环境 (Surroundings)。
1.系统和环境
系统分类
(1)敞开系统
(2)密闭(封闭)系统 (3)隔绝(孤立)系统
与环境的关系
物质交换 能量交换
√ × ×



1)三种不同过程的功相同么? 三种不同过程的内能变化相同么? 三种不同过程的热相同么? 2)哪种过程的功最大?
1.体积功 例: H2(1000Pa,3m3)
等温压缩 W=?
1molH2(3000Pa,1m3)
1)一次压缩? 2)等温可逆压缩?
1)一次膨胀:W=-2000 J 反向(一次压缩):W逆=(-3000)*(1-3)=6000 J 所以,在环境中留下了影响。 2)可逆膨胀:W=-3296 J 反向(可逆压缩):W逆=3296 J 所以,在环境中没有留下影响。

热力学第一定律物理化学

热力学第一定律物理化学
30
解:根据
T2
T2
H Qp dH CpdT mC dT
T1
T1
mC(T2 T1)
T2 = 351.7K 设每天蒸发出x克水恰能维持体温不变,则
x △VHm = Qp 2406x = 10460×103
x = 4327g
31
四、理想气体的热力学能和焓
32
结果:V p ΔT水=0 Q =0 W=0 ΔU=0 结论:U = f ( T ) H = f ( T )
33
用数学式表示为:
(UV )T 0 (HV )T 0
( U p
)T

0
( H p
)T

0
U U (T ) H H (T )
还可以推广为理想气体的Cv,Cp也仅为温度的函数。
34
五、热容与热的计算
无相变、无化学变化、不做其他功
C Q
dT
实验表明: 1. 物质的热容与状态有关(例:液态水和气态水) 2. 物质的热容与所进行的变温过程有关
W2 = △U2- Q2
=1.247×103J – 2.078×103J
= - 0.831×103J
43
第四节 功与过程
一、理想气体的恒温体积功 功的定义式
体积功
功 = 力 位移
p外
δW = – f dl
dl A
= – p外 A dl
gas d
δW = – p外dV
V
积分式 W
1.247 103 J
40
根据热力学第一定律,有 W1 = △U1- Q1 = 0
由式(1-25)可得
T2
H1 nC p,mdT nC p,m (T2 T1 )

物理化学热力学第一定律

物理化学热力学第一定律
第一章 热力学第一定律
§1.1 热力学概论 §1.2 热力学基本概念 §1.3 热力学第一定律 §1.4 体积功与可逆过程 §1.5 焓 §1.6 热容 §1.7 热力学第一定律的应用 §1.8 热化学 §1.9 化学反应热效应的计算 §1.10 能量代谢与微量量热技术简介(自习)
-1-
物理化学
第一章 热力学第一定律
-12-
Vm
V n
物理化学
§1.2 热力学基本概念
四、状态函数与状态方程 (state function & equation of state)
(一) 状态函数
体系状态一定时, 其值一定的物理量.
又称为系统的热力学性质.
eg. T 、p 、V、U、H 等。
-13-
物理化学
§1.2 热力学基本概念
eg.
dT =0 isothermal process dp =0 isobaric process
dV =0 isochoric process Q =0 idiabatic process dZ =0 cyclical process
-17-
物理化学
§1.2 热力学基本概念
状态函数法 ── 计算状态函数的改变值△Z △Z =Z2 - Z1 与路径无关
Q > 0 Q < 0
物理化学
§1.2 热力学基本概念
2. 功W ── 系统在广义力的作用下, 产生
了 广义位移时, 系统与环境交换的能量
为功W .
[W ] = J
其微变量用δW 表示;
规定: 体系从环境 得功为正. W > 0
体系对环境 作功为负. W < 0
-21-
物理化学
§1.2 热力学基本概念

工程热力学---第1章 基本概念

工程热力学---第1章 基本概念

pv RgT
实际气体(real gas; imperfect gas)的状态方程
范德瓦尔方程
R—K方程
a p 2 v b v
RgT
a p 0.5 v b T v(v b)
RgT
(a,b为物性常数)
27
三、状态参数坐标图
一简单可压缩系只有两个独立参数,所以 可用平面坐标上一点确定其状态,反之任一状 态可在平面坐标上找到对应点,如:p-v、T-s。
a)刚性的或可变形的或有弹性的 b)固定的或可移动的 c)实际的或假想的
边界示意图
10
汽缸-活塞装置(闭口系例)
11
汽车发动机(开口系示例)
12
热力系分类
按照组元和相数分 单元系 多元系 按系统与外界能质交换分 单相系 复相系
闭口系—closed system 控制质量CM) —没有质量越过边界 开口系—open system (控制体积CV) —通过边界与外界有质量交换
所有状参一一对应相等
简单可压缩系两状态相同的充要条件: 两个独立的状态参数对应相等
状态法则:系统独立状态参数的数目N等于系统对外所 作广义功的数目n加1,即N=n+1.
20
基本状态参数
温度
热力学第零定律(R.W. Fowler in 1931) 如果两个系统分别与第三个系统处于 热平衡,则两个系统彼此必然处于热平衡。
dx 0
ห้องสมุดไป่ตู้
2、分类 #可逆循环与不可逆循环,状态参数坐标图上表示。 正向循环:输出功,热能 目的 机械能 Q 高温热源
逆向循环:消耗功,低温热源
二、正向循环(动力循环)
wnet t 1 q1
6 6 6

热力学第一定律

热力学第一定律

可见,外压差距越 小,膨胀次数越多,做 的功也越多。
34
(5) 准静态过程
若系统由始态到终态的过程是由一系列极接近于
平衡的状态构成,这种过程称为准静态过程。
准静态过程 p外 = p – dp (外压比内压小一个无穷小的值)
W V2 ( p dp)dV V2 pdV
能量守恒原理是人们长期经验的总结,在宏观及 微观世界中,没有发生过任何例外的情形。
热力学第一定律的表达形式 ① 能量不能凭空产生或消灭,只能从一种形式以严格
的当量关系转换为另一种形式。 ② 不供给能量而可连续不断对外做功的机器叫第一类
永动机,第一类永动机的创造是不可能存在的。 20
1. 热力学能(内能)的概念
15
5. 过程和途径
在一定的环境条件下,系统发生了一个由始态到终 态的变化,称为发生了一个过程。完成这变化所经历的 具体方式或步骤,称为途径。
常见的过程 定温过程:T =Constant 定压过程:p = Constant 循环过程:系统由某一状态出发,经过一系列变化, 又回到原来的状态 准静态过程:过程进行的任何时刻体系都处于平衡态 变温过程,混合过程,化学反应过程……
16
例:一系统由始态 (25oC, 105Pa) 变到终态 (100oC, 5×105Pa) 的途径:
25 oC, 105 Pa
定温过程
25 oC, 5×105 Pa
定压过程
定压过程1ຫໍສະໝຸດ 0 oC, 105 Pa定温过程
100 oC, 5×105 Pa
不同途径的示意图
17
6. 热力学平衡
如果系统与环境之间没有任何物质和能量交换, 系统中各个状态性质又均不随时间而变化,则称系 统处于热力学平衡状态。

第一章 热力学第一定律

第一章 热力学第一定律

封闭系统 , 从状态 1 变为状态 2 ,此系统热力学能的
改变ΔU为:
ΔU = U2 - U1 = Q +W
d U = δQ +Δw
若系统所发生的变化非常微小,则:
——热力学第一定律的数学表达式
二、热力学能
热力学能,亦称为内能,它是指系统内部能量的总 和,包括分子运动的平动能、转动能、振动能、电子能、 核能以及位能等。热力学能用符号U表示。
胀次数无限多,系统自始至终是对抗最大的阻力情况
下,所以此过程所作的功为最大功。这种过程称为准 静态过程。
二、不同过程的体积功
准静态膨胀过程: 若气体为理想气体,且为 等温膨胀,则
V1 p
W4
V2
V
W4
V2
V1
pdV
V2
V1
V2 nRT dV nRT ln V V1
二、不同过程的体积功
T,p Zn s 2HCl aq ZnCl2 aq H 2 g
请问这是什么体系,界面在什么位置?
思考与讨论
3、如果物体A分别与物体B、C达到温度一致,则 物体B和C是否达到热力学平衡态? 4、某体系可以从状态B变化到状态A,也可以从 状态C变化到状态A,这两种状态A以及各种状 态函数在此两种状态A的数值是否完全相同? 5、理想气体向真空膨胀,当一部分气体进入真空 容器后,余下的气体继续膨胀时所做的功是大
能量效应;
• 研究物理过程和化学变化的方向和限度。
二、化学热力学研究的内容
将热力学的基本原理应用于化学现象及与化学有关
的物理现象的规律的研究,就称为化学热力学。其主要
内容是利用:
热力学第一定律---计算化学变化中的热效应 热力学第二定律---计算变化的方向和限度,特别是化 学反应的可能性以及平衡条件的预示。

(1)热力学第一章1

(1)热力学第一章1

热力系统选取
只交换功
过热器 锅 炉 汽轮机
绝热系统
只交换热
发电机
绝功系统
凝 汽 器 给煤
给水泵 发电
既交换功 工质质量 不变 也交换热
闭口系统
热力系统
m W 4 Q
1 开口系 1+2 闭口系 1+2+3 绝热闭口系 1+2+3+4 孤立系
1
2
3
非孤立系+相关外界 =孤立系
简单可压缩系统
5 t[ C ] (t[ F ] 32) 9
O
• 答案:t=-40℃
本节总结
• 绪论 • 第一章

• •

热能动力装置的工作过程 热力系统 状态参数的特征 基本状态参数(温度)
课后作业
• 1-1 • 1-2(1)、(2)问
温度计感应元件的物体应具备某种物理性质,它 随物体的冷热程度不同有显著的变化。

几种类型的温度计及其测量属性
温度计 气体温度计 液体温度计 电阻温度计 热电偶 磁温度计 光学温度计 测温属性 压力或体积 体积 电阻 热电动势 磁化率 辐射强度


温标就是温度的数值表示法。 经验温标:由选定的任意一种测量物质的 某种物理性质,采用任意一种温度标定规 则所得到的温标。
介物质称为工质。 • 热源(高温热源):把工质从中吸收热 能的物系称为热源。 • 冷源(低温热源):把接收工质排出热 能的物系叫做冷源。
蒸汽动力装置
1、热源,冷源 2、工质 (水、蒸汽) 3、膨胀做功 4、循环 (加压、加热、 膨胀做功、放热)
过热器 锅 炉
汽轮机
发电机
凝 汽 器

物理化学第1章 热力学第一定律及其应用

物理化学第1章 热力学第一定律及其应用
U Q W 40.69kJ 3.1kJ 37.59kJ (2)
Q U W U H=40.69kJ
37.59kJ
§2.6 理想气体的热力学能和焓
一、理想气体U
理想气体有两个基本特点:a 分子本身不占有体积 b分子间没有相互作用力
理气内能只是温度的函数,即 U =f (T )
具体写成数学式为:
功可以分为:
体积功:本教材又称膨胀功 定义——由于系统体积变化而与环境交换的功 We
非体积功:也称非膨胀功,其他功 指体积功以外的功 Wf 热力学中一般不考虑非膨胀功
四、数学表达式
设想系统由状态(1)变到状态(2),系统与环
境的热交换为Q,功交换为W,则系统的热力学能的变
化为:
U U2 U1 QW
二、内能(热力学能)
1.定义:指系统内部能量的总和, 包括分子运动的平动能、 分子之间相互作用的位能、 分子内部的所有能量 符号:U
系统总能量通常(E )有三部分组成:
(1)系统整体运动的动能
(2)系统在外力场中的位能 (3)内能
热力学中一般只考虑静止的系统,无整体运动,不考虑 外力场的作用,所以只注意内能
对于微小变化
dU Q W
说明:(1)W指的是总功,包括We、Wf (2)适用范围:封闭体系 、孤立体系 (没有物质交换的体系)
§2.4 体积功 W Fdl
一、体积功的计算 pi > pe We FedlFe AAdlpedV
公式说明:
(1)不管体系是膨胀还是压缩,体积功都用-p外dV表示; (2)不用-pdV表示;p指内部压力, p外指外压,也不能用-p外V、 -Vdp外表示。
§2.3 热力学的一些基本概念
一、系统与环境

第一章 热力学基础

第一章 热力学基础

W pV
W=0
1.1.5 能量守恒定律——热力学第一定律 热功当量 1 cal = 4.1840 J 焦耳自1840年起, 历经20多年,用 各种实验求证热和功的转换关系,得到的
结果是一致的。
在任何变化过程中,能量不会自生自灭, 只能从一种形式转化为另一种形式,能量 总值不变。
封闭系统:始态(1) → 终态(2) 热力学第一定律数学表达式:
n=1 mol T=300 K
途径2) 反抗100 kPa
n=1 mol
T=300 K p2=100 kPa
p1=1000 kPa
途径3)a 反抗 500 kPa
n=1 mol
T=300 K
途径 3)b
p3=500 kPa
反抗 100 kPa
体积功及其计算
几种不同过程功的计算:
气体向真空膨胀(气体自由膨胀): ∵ p环 = 0 恒压过程: 恒容过程 ∴W = 0

非体积功: 除体积功外的功,如电功, 表面功等。
气体受热,体积膨胀dV , 活塞移动dl,反抗环境压 力p环而作微功:
微功 = 力×位移 = p 环· s · A dl
δW p 环dV = p环· dV
W p环 V
注 1. 加“-”号是因为气体膨胀(dV > 0)而系 意 统输出功(W<0) 。气体压缩过程同样适用。 : 2. 计算功时用的是环境的压力p环。
·
a
Z b2
1
·b A
V
1.1.3 系统的状态函数及其性质
通常用系统的宏观可测性质如体积、压力、 温度、粘度、表面张力等来描述系统的热力 学状态。这些性质也称为热力学变量。 可分为两类:容量性质和强度性质。

第1章 热力学基础

第1章 热力学基础

dX 0
dX X
1
2
2
X1
• 强度量状态参数: 与系统内所含工质数量无关的状态参数。 • 广延量状态参数: 与系统内所含工质数量有关的状态参数。
20
西安交通大学热流中心
(三)、基本状态参数 1、比体积 (Specific volume)
V v m
密度(Density)
单位 m3/kg
16
西安交通大学热流中心
热力系边界的特点
• • • • 固定边界 移动边界 真实的边界界面 假想的空间界面
17
西安交通大学热流中心
工质 实现能量相互传递与转换的物质(介质)称为工质。 如:水蒸汽、 内燃机中工作的燃气 制冷剂 常用的气态物质等。
18
西安交通大学热流中心
二 平衡状态及基本状态参数
过程进行得非常缓慢,平衡破坏后能自动恢复 平衡,且弛豫时间很短,过程中随时都不致远 离平衡状态。 准平衡态过程就可在p - v图上用连续曲线表 示。

实现准平衡态过程的条件是: 热平衡中心
(二)、可逆过程(理想过程) • 定义 如果系统完成某一热力过程后,再沿原来路径逆向返回原 来的状态,并使相互作用中所涉及到的外界也回复到原来的状 态,而不留下任何变化,则这一过程为可逆过程。 非平衡损失:热力系的非平衡态引起的损失。其中包括力 的、热的和化学的三种平衡损失。 耗散损失(效应):通过机械摩擦阻力、液体的粘性阻力、电 阻、磁阻等而产生的不可逆损失(使功变为热的效应)
2、间接利用 将热能转化成机械能或电能。 热能----机械能(或电能) (Thermal Energy -------- Mechanical Energy)
如:热力发电厂、车辆、船舶、飞机等动力装置。 为了使热能更加有效、经济地转化为机械能,必须有高效 的动力装置,这就需要掌握有关热能及其转换规律的科学-- 工程热力学。

第1章 工程热力学基础

第1章 工程热力学基础
44
喷管出口流速计算:
根据稳定流动开口系统能量方程:
1 2 q h c gz ws 2
简化得到:
c2 2(h1 h2 ) c12
喷管出口流速c2 ,取决于喷管入口压力p1与喷管 出口环境压力pb(背压)之比; 进出口压力之比越大,喷管出口流速越高。
45
喷管是一种能量转换部件,通过截面的变化把 系统的储存能变成动能(提高流速)。
第1章 工程热力学基础
1-1 热能与机械能的转换过程 1-2 基本概念 1-3 热力学基本定律 1-4 热力过程与热力循环 1-5 热力学的工程应用
1
1-1 热能与机械能的转换过程
一、工程热力学
定义:工程热力学是研究热能与机械能的转换规律、 条件、方法,以及工程应用的一门学科。 燃料能源的利用方式: 燃料(化学能) →热能 →机械能 →电能
与热力学能相关的能量传递和转化过程,都 具有方向性,如传热、自由膨胀等。 自发过程:能够自动进行,不需要附加条件; 非自发过程:自发过程的反方向过程,需要在 一定的附加条件才能进行;
热力学第二定律研究内容: 研究能量传递和转换的方向、条件与转换限度。为非自发过程。 在制冷循环中,通过消耗机械能,实现热量从低温 热源传导高温热源。消耗机械能就是附加条件。 能量转换分析:
热力学能组成:
内动能+内位能、化学能、原子能…..(内能)
一般不涉及化学、原子反应时: U= Uk+Up
比热力学能u:单位质量工质的热力学能:
u=U/m,kJ/kg
内动能Uk:主要取决于系统温度T; 内位能Up:主要取决于系统压力p。
25
(五)焓H
概念:流体的热力学能与推动功之和,kJ;

《材料物理化学》练习题题库

《材料物理化学》练习题题库

材料物理化学-题库(第1章热力学基本原理)一、填空题1. 四大化学一般包括无机化学、有机化学、分析化学和()。

2. 四大化学一般包括()、有机化学、分析化学和物理化学。

3. 物理化学是采用()方法研究化学问题的学科。

4. 物理化学研究的内容一般包括()和动力学两大部分。

5. 物理化学研究的内容一般包括热力学和()两大部分。

6. ()学科研究的内容一般包括热力学和动力学两大部分。

7. 热力学主要研究的内容是化学反应的方向和()两部分。

8. 热力学主要研究的内容是化学反应的()和限度两部分。

9. 动力学主要研究的内容是化学反应的()和机理两部分。

10. 动力学主要研究的内容是化学反应的速率和()两部分。

11. 所谓化学反应的机理,意思是指化学反应的具体步骤和()。

12. 系统与环境是热力学的基本概念之一。

系统可分为三种:敞开系统、封闭系统和()。

13. 系统与环境是热力学的基本概念之一。

系统可分为三种:敞开系统、()和孤立系统。

14. 针对封闭系统,系统与环境之间不能发生物质交换,但可以发生()交换。

15. 针对封闭系统,系统与环境之间不能发生()交换,但可以发生能量交换。

16. 针对隔离系统,系统与环境之间既不能发生()交换,也不能发生能量交换。

17. 只跟初始()有关,而跟过程无关的函数,称为状态函数,如热力学能、温度、压力等函数。

18. 只跟初始状态有关,而跟()无关的函数,称为状态函数,如热力学能、温度、压力等函数。

19. 有的状态函数具有广度性质,有的函数具有强度性质。

所谓广度性质,就是指这些函数具有加和性,如热力学能、焓、熵等。

所谓(),就是指这些函数跟质量无关,如温度、压力等。

20. 当系统的各种性质都不随时间而变化,就说该系统处于热力学平衡状态。

这时,系统必须同时满足四个平衡条件:热平衡、力学平衡、相平衡和()。

21. 系统的总能量可分为三部分:动能、势能、热力学能。

热力学能也称(),用U表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q H r S T T
100℃、1atm下,1mol水蒸发向真空蒸发成等温等压下的水蒸气
1.10 熵变的计算
100℃、1atm下,1mol水蒸发向真空蒸发成等温等压下的水蒸气
向真空蒸发
100℃、1atm,液态
△S不可逆
△S可逆
100℃、1atm,气态
Qr H S T T
0℃, 100kPa, 液
ΔS = ΔS 液态+ΔS可逆相变 + ΔS气态
273.15 ΔH m,凝固 263.15 = nCp ,m,固态 ln + + nCp ,m,液态 ln 263.15 273.15 273.15
1.10 熵变的计算
-10℃, 100kPa, 液
pVT变化
△S不可逆
-10℃, 100kPa, 固
Q
大高温热源TB
1 )>0 TA
1 ΔS = ΔS A + ΔS B = Q( TB

应用 Ⅰ




实际过程?
可逆过程 ΔS
1.设计可逆过程,求出该过程的热温商即为此过程的熵变。
ΔS系统= ∑(δQr/T )
2.绝热过程,小孤立系统 3.大孤立系统, ΔS系统≥ 0 ΔS环境= -∑δQ/T环境 ΔS系统+ΔS环境≥0 4.求实际过程的热温商 (∑δQ/T)实际 ΔS系统= ∑(δQ/T )实际


1.10 熵变的计算
25℃、1atm下,1mol水蒸发成等温等压下的水蒸气 25℃、1atm,液态
△S不可逆
25℃、1atm,气态
△S液态
100℃、1atm,液态
△S气态 △S可逆
100℃、1atm,气态
ΔS = ΔS 液态+ΔS可逆相变 + ΔS气态
373.15 ΔH m,蒸发 298.15 = nCp ,m,液态 ln + + nCp ,m,气态 ln 298.15 373.15 373.15
1atm 水蒸气
1atm
Q
活塞

Q
1.10 熵变的计算
100℃、1atm下的1mol水真空蒸发成100℃、1atm下的水蒸气 向真空蒸发 100℃、1atm,液态 不可逆 非恒压 100℃、1atm,气态
T=100℃
T=100℃
Q
真空
活塞

Q
水蒸气
1.10 熵变的计算
1.10.2.1 可逆相变化过程熵变的计算 在相平衡压力p和温度T 下
(2)为不可逆过程
1
1.10 熵变的计算
理想气体
U = f (T)
T2 T1
C p ,m Cv ,m R
H = f (T)
p
T1 绝 恒 温 T2 =T1 热 T2’< T2
U n CV ,m dT nCV ,m T2 T1
H n C p ,m dT nC p ,m T2 T1
热力学基本方程 化学反应应用
演绎 推导
应用
热力学状态方程
1.10 熵变的计算
环境熵变
S环境 Q环境 Q 系统 T环境 T环境
单纯PVT
凝聚态变温 S nC p ,m ln
理想气体
S nCV ,m ln
T2 T1
T2 V nR ln 2 T1 V1
ΔS
相变过程
可逆相变 不可逆相变
ΔS总 = ΔS系统 + ΔS环境 = ΔS系统 > 0
没有相变的两个恒温热源之间的热传导是自发过程。
1.10 熵变的计算
没有相变的两个变温物体之间的热传导: 首先要求出终态温度T
Q1 + Q2 = 0 C1 (T T1 ) + C2 (T T2 ) = 0
T1
T2
T
T
(C1T1 C 2T2 ) T C1 C 2
绝热可逆
TV 1 C2
=0 p1 T K3
pV C1
1.10 熵变的计算
[例] 在273 K时,将一个22.4dm3 的绝热盒子用隔板一 分为二,一边放 0.5 mol O2 (g) ,另一边放 0.5 mol N2 (g) 。 求抽去隔板后,两种气体混合过程的熵变?
1.10 熵变的计算
理想气体的卡诺循环 的p~V图: S 理想气体的卡诺循环 的T~S图:
△T=0
△S=0
△S=0
△T=0
T
1.10 熵变的计算
T2 V2 S nCV ,m ln nR ln T1 V1 T2 p2 nC p ,m ln nR ln T1 p1 p2 V2 nCV ,m ln nC p ,m ln p1 V1
Q环境 Q系统 S系统 T环境 T环境
S(隔离) S(体系) S(环境) 0
(1)为可逆过程
1.10 熵变的计算
(2)向真空膨胀
熵是状态函数,始终态相同,体系熵变也相同,所以:
S (体系) 19.14 J K
但环境没有熵变,则:
1
S (隔离) S (体系) 19.14 J K 0
在25℃、3176Pa下,1mol水蒸发成等温等压下的水蒸气
在100℃、1atm下,1mol水蒸发向真空蒸发成等温等压下的水蒸气
1.10 熵变的计算
100℃、1atm下的1mol水可逆蒸发成100℃、1atm下的水蒸气
可逆
100℃、1atm,液态
恒温恒压
100℃、1atm,气态
T=100℃
T=100℃
该气体绝热混合过程的熵变大于零,且无外力,则自发。
1.10 熵变的计算
1.10.1.4 没有相变的两个恒温热源之间的热传导
大高温热源TA
Q
大高温热源TB
QA QB S S A S B TA TB Q Q 1 1 Q( ) TA TB TB TA
ΔS系统 > 0
*
1.10 熵变的计算
100℃、1atm下,1mol水蒸发成等温等压下的水蒸气
Qr H S T T
25℃、1atm下,1mol水蒸发成等温等压下的水蒸气 100℃、2atm下,1mol水蒸发成等温等压下的水蒸气 25℃、3176Pa下,1mol水蒸发成等温等压下的水蒸气
pVT变化
△S 1 液
△S5 固
-10℃, P*l,
可逆相变
-10℃, P*s,
可逆相变
△S 2 △S3
pVT变化
△S4 气
-10℃, P*g, 气
-10℃, P*s,
ΔS = ΔS1+ΔS2 + ΔS3 + ΔS4 + ΔS5 ≈ ΔS2 + ΔS3 + ΔS4
* nΔH m,凝华 nΔH m,蒸发 ps = + nR ln * + 263.15 pl 263.15
Q
S不可逆 S可逆
Qr H m,汽化 Q T T T
该过程存在且自发
1.10 熵变的计算
【例1-13】 -10℃、100kPa下,1mol水等温凝结成等温等压下的冰
△S不可逆 -10℃, 100kPa, 液 -10℃, 100kPa, 固
△S液
△S可逆
△S固
0℃,100kPa, 固
《物理化学》电子教案
第1章 热力学基本原理
U Q W
δQ ΔS ≥ ∑T
前 节 内 容
热温商: Q
T
1.卡诺循环的热温商之和等于零 2.任意可逆循环的热温商之和等于零 3.任意不可逆循环的热温商之和小于零
循环

Qr
T Qr T 0 Qir
循环
0


Q
T
T
0
0
< 不可逆循环 = 可逆循环
化学反应
1.10 熵变的计算
[例] 1mol理想气体在等温下通过:(1)可逆膨胀, (2)真空膨胀,体积增加到10倍,分别求其熵变。 解:(1)可逆膨胀
V2 Wmax Q nR ln S (体系) ( )R nR ln10 19.14 J K 1 T T V1
S环境
1.10 熵变的计算
25℃、1atm下,1mol水蒸发成等温等压下的水蒸气 25℃、1atm,液态
△H不可逆
25℃、1atm,气态
△H液态
100℃、1atm,液态
△H气态 △H可逆
100℃、1atm,气态
ΔH = ΔH 液态+ΔH可逆相变 + ΔH气态
nCp,m,液态 (373.15 298.15) nHm,蒸发 nCp,m,气态 (298.15 373.15)
V 解: S (O 2 ) nR ln 2 0.5 8.315ln 22.4 J K 1 12.2 V1 22.4 S (N 2 ) 0.5 8.315ln J K 1 12.2
22.4 J K 1 8.315 ln 2 J K 1 mix S S (O2 ) S (N2 ) 8.315 ln 12.2
1 2
Qr ( ) T
Q
T
>不可逆 =可逆
> 不可逆 = 可逆
S 0
S总 S系统 S环境 ≥ …0 >不可逆
=可逆
熵是状态函数,广度量,宏观物理量。 熵是系统混 乱度的量度,熵增大的过程是混乱度增大的过程,也是 系统不可用能增加的过程。

大高温热源TA

Q


TA > TB WA 1 WB = ( TB 1 )TC Q > 0 TA
相关文档
最新文档