1固体晶格结构全解

合集下载

固体物理第一章(2)

固体物理第一章(2)

例2解答:
c
b
0a (101)
c
b
0a (1-22)
c
b
0a (021)
c
b
a (2-10)
例3、在六角晶系中,晶面指数常用(hkml)表示, 它们代表一个晶面的基矢的截距分别为a1/h,a2/k, a3/m,在c轴上的截距为c/l。
证明(1)h+k=-m;
(2)求出O’A1A3、A1A3B3B1、A2B2B5A5和 A1A3A5四个面的面指数。
例1解答:
晶面族(123)截a1、a2和a3分别为1、2、3等份,ABC面是离原点O最近 的晶面,OA长度等于a1的长度,OB长度等于a2长度的1/2,OC长度等于a3 长度的1/3,所以只有A点是格点。若ABC面的指数为(234)的晶面族,则 A、B和C都不是格点。
例2、在简立方晶胞中,画出(101)、(021)、(1-22)和(2-10)晶面。
ra1 n ra1 cos a1, n d
sa2 n sa2 cos a2 , n d
ta3 n tas cos a3 , n d
由此得: c o sa 1 ,n:c o sa 2 ,n:c o sa 3 ,n1:1:1
r a 1 s a 2 ta 3
与上式相比较,有
cos
h1h2k1k2l1l2
h12k12l12 h22k22l22
指数简单的面是最重要的晶面,如(100)、(110)、(111)之类。 这些面指数低的晶面系,其面间距d 较大,原子层之间的结合力弱,晶 体往往在这些面劈裂,成为解理面,一般容易显露。如Ge、Si、金刚石 的解理面是(111)面,而III-V族化合物半导体的解离面是(110)面。
立方晶格的等效晶面

1固体物理-晶体结构1

1固体物理-晶体结构1

晶面

{ }表示一组由于对称性而相互等价的晶面; 如对简单立方格子,{100}表示3个相互等价的晶 面,(100), (010), (001).
晶面
晶面

对于简单立方格子,晶向[h1, h2, h3]与晶面(h1, h2, h3)正交.
单胞(unit cell)


晶体学中,习惯用晶系的基矢a, b, c构成的 平行六面体作为周期性重复排列的基本单 元,称为单胞或惯用单胞(conventional unit cell). 原胞只含有一个格点,是体积最小的周期 性重复单元,单胞则不同,可含有一个或 者数个格点,体积是原胞的一倍或数倍。
晶格
晶体结构包括两方面: (1)重复排列的单元,称为基元(basis or motif); (2)基元重复的方式,一般抽象成空间点阵,称为晶体格子 (crystal lattice),简称晶格; 基元以相同的方式,重复地放置在晶格的格点上(等价性); 基元中的原子种类,数量、位置依不同晶体而定(结构性);
本课小结


晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞 晶向、晶面、米勒指数
晶体结构数据库

(CCDC) http://www.fiz-karlsruhe.de/icsd.html (ICSD) /AMS/amcsd.php (AMCSD) (COD) /pcd/ (PCD) http://www.cryst.ehu.es/
原胞
维格纳-塞茨(Wigner-Seitz)原胞

维格纳-塞茨(WS)原胞 以晶格中某一格点为中心, 作其与近邻格点连线的垂直平分面,这些平面所 围成的以该点为中点的最小体积是属于该点的WS 原胞。

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。

固体物理:1-晶体结构-1

固体物理:1-晶体结构-1

1 4
a1
1 4
a2
1 4
a3
晶列、晶向、晶面、及其指数标记
在布拉伐格子中作一簇平行的直线,这些平行直线 可以将所有的格点包括无遗。
—— 在一个平面里,相邻晶列之间的距离相等 —— 每一簇晶列定义了一个方向 —— 晶向
沿晶向到最短的一个格点的位矢
l1a1 l2a2 l3a3
晶向指数 [l1, l2 , l3 ]
Graphene, 石墨烯(2010 Nobel Prize)
布拉维格子(Bravais lattice)
晶体可以看作是在布拉维点阵(Bravais Lattice)的 每一个格点上放上一组基元(Basis )
原胞(元胞,初基元胞) primitive cell
和一个给定格点的最近邻格点的数量为配位数 z
原子球排列为:AB AB AB ……
Be、Mg、Zn、Cd
各种晶格的堆积比
金刚石晶格结构(diamond)
碳原子构成的一个面心立方原胞内还有四个 原子,分别位于四个空间对角线的 1/4处
NaCl晶体的结构 (sodium chloride)
CsCl晶体的结构(cesium chloride)
CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对角线位移1/2 的 长度套构而成
闪锌矿结构 (zinc blende) ZnS
立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
钙钛矿结构 (perovskite)
钙钛矿型的化学式可写为ABO3 —— A代表二价或一价的金属 —— B代表四价或五价的金属 —— BO3称为氧八面体基团, 是钙钛矿型晶体结构的特点
晶体结构1

固体物理第一章总结

固体物理第一章总结

固体物理(黄昆)第一章总结(总5页)页内文档均可自由编辑,此页仅为封面第一章晶体结构1.晶格实例1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等1.5金刚石结构最近邻原子数4 次近邻原子数12 致密度0.34晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构2.1基本概念晶体:1. 化学性质相同 2. 几何环境相同 基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞2.2维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志 晶列(向)指数:[l m n]晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=4.1简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k ⎧=⎪=⎨⎪=⎩4.2体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体4.3面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.1对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪⎪ ⎪⎝⎭,中心反演的正交矩阵1 0 0 0 1 0 0 0 1-⎛⎫⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。

固体物理基础第1章-晶体结构

固体物理基础第1章-晶体结构

ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!

数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞

尼曼半导体物理与器件第一章课件

尼曼半导体物理与器件第一章课件

广义原胞
尼曼半导体物理与器件第一章
12
1.3.2 基本的晶体结构
立方晶系基本的晶体结构:
常见的三个基本的立方结构 (1)简单立方结构(sc) (2)体心立方结构(bcc) (3)面心立方结构(fcc)
尼曼半导体物理与器件第一章
13
➢简立方结构 Simple Cubic
每个顶角有一个原子
z
➢ 体心立方结构 Body Centered Cubic
• 原胞:可以复制得到整个晶格的最小单元。
单晶晶格二维表示
•晶格、原胞的选取都不是唯一的。
尼曼半导体物理与器件第一章
11
•晶胞和晶格的关系用矢量 a 、b 、c 表示,三个矢 量可不必互相垂直,长度可以不相等,基矢长度称 为晶格常数 。
•每个等效格点可用下述矢量表示
rpaqbsc
•其中,p、q、s为整数。
1. 离子晶体:离子键,例如NaCl晶体等; 2. 共价晶体:共价键,例如Si、Ge以及GaAs晶体等; 3. 金属晶体:金属键,例如Li、Na、K、Be、Mg以及Fe、 Cu、Au、Ag等; 4. 分子晶体:范德华键,例如惰性元素氖、氩、氪、氙等 在低温下则形成分子晶体,HF分子之间在低温下也通过范 德华键形成分子晶体。
• 第六章 半导体中的非平衡过剩载流子
半 • 第七章 pn结
导 • 第八章 pn结二极管
体 器
• 第九章 金属半导体和半导体异质结
件 • 第十章 金属-氧化物-半导体场效应晶体管基础
基 • 第十一章 金属-氧化物-半导体场效应晶体管:概念深入
础 • 第十二章 双极晶体管
• 第十三章 结型场效应晶体管 • 第十四章 光器件
1.11(a)-(c) 1.16 1.24(Si晶格常数5.43Å)

固体晶格结构讲义课堂PPT

固体晶格结构讲义课堂PPT

位矢R
r
R+r
13
1.3.2 简单晶 格 的 实 例
1. 简单立方晶格 2. 体心立方晶格 3.面心立方晶格
14
1.简单立方晶格的基矢
15
2. 体心立方晶格
具有体心立方晶格结构的金属:Li、
Na 、K、 Rb、 Cs、 Fe等,
16
3. 面心立方晶格
具有面心立方晶格结构的金属:Al
Cu等
17
(1)通过任一格点,可以作全同的晶面与一晶面平行,构成 一族平行晶面.
(2)所有的格点都在一族平行的晶面上而无遗漏;
(3)一族晶面平行且等距,各晶面上格点分布情况相同;
(4)晶格中有无限多族的平行晶面。
23
24
2. 密勒指数
表示晶面的方法,即方位: 在一个坐标系中用该平 面的法线方向的余弦;或表示出这平面在坐标轴上的 截距。即把晶面在坐标轴上的截距的倒数的比简约为互质的
[l1l2l3]
20
21
22
2、晶面-
。。。。。。。。。。。 。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。。。。。 。。。。。。。。。。。
晶面的特点:
19
晶向
每一族晶列的定义了一个方向,该取向为晶向;
同样一族晶面的特点也由取向决定,因此无论对于晶 列或晶面,只需标志其取向。
晶列指数 (晶列方向的表示方法)
任一格点 A的位矢Rl为 Rl =l1a1+l2a2+l3a3
a2
O a3
A
Rl a1

第一章 晶体结构

第一章 晶体结构

Wigner-Seitz原胞(对称原胞)
3.晶胞(or单胞): 为反映晶格的对称性,在结晶学中选择较大的周期单元 → 称为晶体学原胞.
4.晶胞的基矢: 沿晶胞的三个棱所作的三个矢量,常 晶格常数:指晶胞的边长. 固体物理学原胞:最小重复单元—只反映周期性 (n=1) 晶体学原胞:反映周期性和对称性 (n ≥1)
金刚石由碳原子构成.
构成:由面心立方单元的中心到顶角 引8条对角线,在互不相邻的4条对角 线的中点处各加一个原子,就得到金 刚石结构。
一个碳原子和其它四个碳原 子构成一个正四面体。
配位数:4
金刚石晶格结构的 典型单元
五、金刚石晶格
1·特点:每个原子有4 个最近邻,它们正好在一个正 四面体的顶角位置
简单立方晶格的典 型单元
(原胞,晶胞)
bcc
bcc 格子的一个立方单元体 积中含的原子数:2 晶胞
原胞--由立方体的中心到三个近 邻格点(顶点)引三个基矢: a a1 i j k 2 a a2 i j k 2 a a3 i j k 2
一、基元
基元:是构成晶体的完全相同的原子、分子或原子团。 “完全相同” 的含义:原子的化学性质完全 相同,且原子的几何环境完全相同. 单个原子、分子或有若干个原子的集团 基元是一种原子的晶体:铜、金、银等; 基元是两种或两种以上原子组成的原子团: 金刚石、氯化钠、磷化镓等.
二、格点(结点)
格点:代表基元在空间中的位置的点称为格点。 每个代表点都必须选择在各个基元的相同位置上。 如选择基元的重心,也可以选择在基元 中的某个原子上。 因为一切基元的组成,位向都相同。 →一切格点是等价的 。 格点在空间分布的周期性与晶体中原子排列的周 期性完全一致。

第1章 晶体与晶格结构

第1章 晶体与晶格结构

体心立方结构
钠(Na)钼(Mo)钨(W)
晶格结构
5
面心立方结构
铝(Al)铜(Cu)金(Au)银(Ag)
晶格结构
6
金刚石晶格
硅(Si)锗(Ge)
由两个面心立方结构沿空间对角线错开四分之一的空间对角线长度相互嵌套而成。
晶格结构
7
闪锌矿晶格
与金刚石晶格结构类似,只是两个相互套构的面心立方副晶格中的组成原子不同
晶体结构
2
晶体结构
2
晶体
自然界中存在的固体材料,按其结构形式不同,可以分为晶体(如石英、金刚石、硫酸铜等)和非晶体(玻璃、松香、沥青等)。
单胞
晶体中原子的周期性排列称为晶格,对半导体晶体而言,通常会用一个单胞或晶胞来代表整个晶格,将此单胞向晶体的四面八方连续延伸,即可产生整个晶格。
晶格结构
砷化镓(GaAs)磷化镓(GaP) 硫化锌(ZnS) 硫化镉(CdS)
8
假使将圆球放入一体心立方晶格中,并使中心圆球与立方体8个顶点的圆球紧密接触,试计算这些圆球占此体心立方单胞的空间比率。
例1-1

晶格结构
在体心立方单胞中,每个角落的圆球与邻近的八个单胞共用,因此每个单胞各有8个1/8个顶点圆球和1个中心圆球,得 每单胞中的圆球(原子)数为=(1/8) 8(角落)+1(中心)=2; 相邻两原子距离= 每个圆球半径= 每个圆球体积= 单胞中所能填的最大空间比率=圆球数 每个圆球体积/每个单胞总体积 = 因此,整个体心立方单胞有68%为圆球所占据,32%的体积是空的。
单胞与晶格的关系可用三个向量a、b及c表示为
式中,m、n及p是整数。
广义原始单胞图
3
3

固体物理学第一章 晶体的结构(1)

固体物理学第一章 晶体的结构(1)

1.3 晶向、晶面和它们的标志 晶体周期性的描述通常还要用到:晶列、晶向、晶 面和密勒指数、面间距等概念。
(1)晶列
• 通过Bravias格子的任意两点连一条直线,该直线上包括无限多 个格点,这样的直线称晶列.晶体外观上所见的晶棱为个别晶列。
• 通过其它任一格点可引出与原晶列平行的晶列,这些
相互平行的晶列族将包含全部的格点。 • 晶列的性质:同一晶列族上,格点具有 相同的周期分布 • 通过一个格点可以引出无数晶列,晶列 数目是无限的,(晶列的性质)。
固体由大量原子(离子)组成,1022—1023/cm3。晶体中原子、 离子的排列是有规律的,这种排列方式称固体晶体的结构。固体 的宏观物理性质是由组成材料的[原子、分子和离子]成分和原子 分子的排列方式共同决定的。
可以将固体分为:晶体和非晶体。 晶体:原子严格按一定周期性的规则排列,具有周期性和平移对 称性 ,即长程有序。 非晶:原子排列短程有序,长程无序。 何为长程有序呢?主要是与原子的尺寸相比。 晶体分为:单晶:理想的大块晶体 多晶:有许多晶粒组成的晶体 1984年 D.Shechtman等从实验上发现了具有五重旋转对称性的 不同于晶体和非晶体的固体,称准晶。准晶从结构上讲,其有序 程度是介于晶体和非晶之间的。
(2) 体心立方结构(bcc) • 排列方式:ABABAB….. • a为原子间的距离, 称为晶格常数。对角线距离
0.31ro
a
ro
• 体心立方结构晶体自然界中很多:Li, Na, K,ro 2ro 3
(3)六角密排结构(主要是金属晶体) • 排列方式:ABABAB….. • 层内原子密排列,层之 间原子紧密接触。 • 自然界中。碱土金属Be, Mg 及Zn, Cd, Ti等三十多种晶体

固体物理与半导体物理第一章 晶格结构-晶面晶向

固体物理与半导体物理第一章 晶格结构-晶面晶向
4
一. 晶向符号(三轴,如立方)
用三指数u,v,w表示晶向符号。 确定三轴坐标系下晶向指数[uvw]的步骤如下: (1)设坐标 以晶胞的某一阵点O为原点,过原点O的晶轴为坐标轴x, y , z, 以晶胞点阵矢量的长度作为坐标轴的长度单位。
立方 晶系 中阵 点坐 标
5
(2) 求坐标 过原点O作一直线OP,使其平行于待定晶向。在直线 OP上任取(除原点外)一个阵点P,确定P点的3个坐 标值X、Y、Z。
15
<111>=?
<111>=[111]+[111]+[111]+[111]+ [TT1]+[1TT]+[T1T]+[TTT] 晶向族:任意交换指数的位置和改变符号后的所有指数。
<112>=?
<123>=?
16
二. 晶面指数(三轴,如立方)
晶面符号中应用最广的是米氏符号,由英国学者米勒尔在 1839年创立。 1、确定立方晶系晶面指数(hkl)的步骤如下: 设坐标: 在点阵中设定参考坐标系,设置方法与确定晶向指数时 相同;原点设在待求晶面以外。
e.g., x-axis [100] y-axis [010] z-axis [001]
[110]
8
9
若原点不在待标晶向上,还可以这样操作:
(1)找出该晶向上两点的坐标(x1,y1,z1)和(x2,y2,z2); (2)将(x1-x2),(y1-y2),(zl-z2)化成互质整数u,v,w; (3)满足u:v:w=(x1一x2):(y1一y2) :(zl—z2)。
32
晶面间距的计算
晶面间距可根据一些几何关系求得
h、k、l为晶面指数(hkl),a、b、c为点阵常数, α、β、γ为晶面法线方向与晶轴夹角。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26
1.6半导体材料的生长

直拉单晶法(Czochralski方法)

外延生长:在单晶衬底表面生长一层薄单晶 的工艺 27
1.7小结



常用半导体材料 晶格结构、晶胞、原胞 硅的金刚石结构 晶面、晶向的描述(密勒指数) 半导体中的缺陷 原子体密度,原子面密度的计算
28
课程主要内容

固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章
1
绪论

什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
22
1.4原子价键

硅原子和硅晶体
23
1.5固体中的缺陷和杂质

晶格振动 点缺陷 (空位和填隙) 线缺陷
24
1.5固体中的缺陷和杂质

替位式杂质 填隙式杂质
25
1.5固体中的缺陷和杂质

掺杂 为了改变半导体的导电性而向其中加 入杂质的技术.


高温扩散 离子注入
1000度 50kev 损伤与退火
5
1.2固体类型
半导体的晶体结构
晶体又可分为:单晶和多晶。
单晶:指整个晶体主要由原子(或离子)的一 种规则排列方式所贯穿。常用的半导体材 料锗(Ge)、硅(Si)、砷化镓 (GaAs)都是单 晶。
多晶:是由大量的微小单晶体(晶粒)随机 堆积成的整块材料,如各种金ห้องสมุดไป่ตู้材料和电 子陶瓷材料。(晶界分离)
1.3空间晶格

晶面与密勒指数
简立方晶体的三种晶面
(100)
(110)
(111)
14
1.3空间晶格

晶面与密勒指数
体心立方结构(110)晶面及所截的原子

原子面密度
15
1.3空间晶格

晶面与密勒指数
2、晶向_通过晶体中原子中心的不同方向的 原子列 [hkl]
16
1.3空间晶格

1.3.4 金刚石结构
金刚石结构
17
1.3空间晶格

金刚石结构
四面体结构
18
1.3空间晶格

金刚石结构
金刚石晶格
19
1.3空间晶格

金刚石结构
闪锌矿结构(GaAs)

不同原子构成的四面体
20
1.3空间晶格
金刚石结构
21
1.4原子价键


离子键 (NaCl 库仑力) 共价键 (H2 共用电子对) 金属键 (Na 电子海洋) 范德华键 (弱 HF 电偶极子 存在分子或 分子内非健结合的力)
3
1.1半导体材料


元素半导体(Si、 Ge) 化合物半导体(双元素,三元素等)
4
1.2固体类型
半导体的晶体结构
一、晶体的基本知识 长期以来将固体分为:晶体和非晶体。 晶体的基本特点: 具有一定的外形和固定的熔点,组成晶 体的原子(或离子)在较大的范围内(至 少是微米量级)是按一定的方式有规则的 排列而成--长程有序。(如Si,Ge, GaAs)
6
1.2固体类型
半导体的晶体结构
非晶(体)的基本特点: 无规则的外形和固定的熔点,内部 结构也不存在长程有序,但在若干原子 间距内的较小范围内存在结构上的有序 排列——短程有序 (如非晶硅:a-Si)
7
1.2固体类型

半导体的晶体结构
非晶体(无定型) 多晶 单晶
8
1.3空间晶格
晶体是由原子周 期性重复排列构成 的,整个晶体就像 网格,称为晶格, 组成晶体的原子(或 离子)的重心位置称 为格点,格点的总 体称为点阵。
2
绪论




半导体具有一些重要特性,主要包括: 温度升高使半导体导电能力增强,电阻率下降 如室温附近的纯硅(Si),温度每增加8℃,电阻率相应地降 低50%左右 微量杂质含量可以显著改变半导体的导电能力 以纯硅中每100万个硅原子掺进一个Ⅴ族杂质(比如磷) 为例,这时 硅的纯度仍高达99.9999%,但电阻率在室温下 却由大约214,000Ωcm降至0.2Ωcm以下 适当波长的光照可以改变半导体的导电能力 如在绝缘衬底上制备的硫化镉(CdS)薄膜,无光照时的电 阻为几十MΩ,当受光照后电阻值可以下降为几十KΩ 此外,半导体的导电能力还随电场、磁场等的作用而改变
简立方sc
体心立方bcc

原子体密度
12
1.3空间晶格

1.3.3晶面与密勒指数
(2)平面截距的倒数:1/3, 1/2,1 (3) 倒数乘以最小公分母: 2,3,6 平面用(236)标记,这些整 数称为密勒指数。
晶面可用密勒指数(截距的 倒数)来表示:(hkl)13
1、晶面表示方法:(1)平面截距:3,2,1
9
1.3空间晶格

1.3.1 晶胞和原胞
1、晶胞_可以复制成整个晶体的一小部分 (基本单元,可以不同)
10
1.3空间晶格

晶胞和原胞
2、原胞_可以形成晶体的最小的晶胞
广义三维晶胞的表示方法: 晶胞和晶格的关系
r pa qb sc
11
1.3空间晶格

1.3.2 基本晶体结构
面心立方fcc
相关文档
最新文档