平面向量的加减法ppt课件
合集下载
6.3.3平面向量的加减运算的坐标表示课件共12张PPT
A O
C D
x
而 OD = OB + BD = (-1, 3) + (3, -1) = (2, 2)
所以顶点D的坐标为(2,2)
达标检测
1.点 A(1,-3),A→B的坐标为(3,7),则点 B 的坐标为( A )
A.(4,4)
B.(-2,4)
C.(2,10)
D.(-2,-10)
【解析】 设点 B 的坐标为(x,y),由A→B=(3,7)=(x,y)-(1,
【解】 如图,正三角形 ABC 的边长为 2,
3.已知边长为 2 的正三角形 ABC,顶点 A 在坐标原点,AB 边在 x
轴上,C 在第一象限,D 为 AC 的中点,分别求向量A→B,A→C,B→C,B→D
的坐标.
则顶点 A(0,0),B(2,0),C(2cos 60°,2sin 60°),
∴C(1,
(1, 2) = (3 - x, 4 - y)
y B
A O
C D
x
1= 3-x 2= 4-y
解得 x=2,y=2 所以顶点D的坐标为(2,2)
y B
解法2:由平行四边形法则可得
BD = BA + BC = (-2 - (-1),1 - 3) + (3 - (-1), 4 - 3) = (3, -1)
O
x
结论:一个向量的坐标等于表示此向量的有向线段 的终点的坐标减去起点的坐标.
例2:如图,已知平行四边形ABCD 的三个顶点A、B、C的坐标分别 是(-2,1)、(-1,3)、(3,4),试求顶点D的坐标.
解法1:设点D的坐标为(x,y)
AB = (-1, 3) - (-2,1) = (1, 2) DC = (3, 4) - (x, y) = (3 - x, 4 - y) 且AB = DC
6.2平面向量的运算课件共40张PPT
故选 B.
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
平面向量的加法减法运算PPT课件
ABCD
首
则
AC a b
首 相
C
连
第8页/共29页
练一练
a, b 如图,已知 用向量加法的平行四边形法则作出 ab
(1)
b
ab
首
ba
首 相
(2)
b
a
ab
连
a
第9页/共29页
回顾例1:平行四边形ABCD中,
AB AD AC
AD 问: 能否不移动向量 , 而移动向
量 ?结果是否和原来一样呢?
AB
。 a
说明:
① 规定 0 0
② 性质
a
a
a
a
a
a
0
第16页/共29页
2、向量的减法:
向量
a
与向量
b
的负向量的和定义为向量
a
b 与向量
的差,即
ab a b
求两个向量差的运算叫作向量的减法
第17页/共29页
a b 1、向量减法法则:已知向量 , 不共线,求作
向量 ,使 c
a a a a
a
a bbbbb
B
A
C
a b AB AC CB
第21页/共29页
a b 例1 已知如图所示向量 、 ,请画出向量
a
b
O a
A
b a b
a b
B
第22页/共29页
例2 化简:
⑴ OD OA
⑵ AB AC BD DC
解: ⑴ OD OA AD
⑵ AB AC BD DC
的向量.
这种求不共线的两个向量和的方法叫做
首
向量加法的平行四边形法则
首 相
平面向量的加减法 ppt课件
数与向量的乘法运算叫做向量的数乘运算,容易验证,对于
任意向量a, b及任意实数、,向量数乘运算满足如下的法则:
向量加法及数乘运算
1 1 a在形a, 式上1与 a实数a的 有;关运算规 2 律的相去 a类括似号,、因移a此项 ,、实合数并a运同;算类中项
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
ppt课件
11
探究一:当向量共线时,如何相加?
(1)同向
(2)反向
a
b
a
b
A
B
C
AC = a + b
B
CA
AC = a + b
规定:a 0 0 a a
ppt课件
12
探究二:向量的加法是否具备交换律和结合律?
• 数的加法满足交换律与结合律,即对任意a,b∈R, 有a+b=b+a, (a+b)+c=a+(b+c)
• 向量的加法具备吗?你能否画图解释?
向量加法满足交换律和结合律:
a b b a (a+b)+c a (b c)
• 橡皮条在力F1与F2的作用下,从E点伸长到了O点; 同时橡皮条在力F的作用下也从E点伸长到了O点.
• 问:合力F与力F1、F2有怎样的关系?
F1+F2=F
E
O
E
O
F
F
F是以F1与F2为邻边所形成的
平行四边形的对ppt课角件线
5
向量加法运算及其几何意义
任意向量a, b及任意实数、,向量数乘运算满足如下的法则:
向量加法及数乘运算
1 1 a在形a, 式上1与 a实数a的 有;关运算规 2 律的相去 a类括似号,、因移a此项 ,、实合数并a运同;算类中项
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
ppt课件
11
探究一:当向量共线时,如何相加?
(1)同向
(2)反向
a
b
a
b
A
B
C
AC = a + b
B
CA
AC = a + b
规定:a 0 0 a a
ppt课件
12
探究二:向量的加法是否具备交换律和结合律?
• 数的加法满足交换律与结合律,即对任意a,b∈R, 有a+b=b+a, (a+b)+c=a+(b+c)
• 向量的加法具备吗?你能否画图解释?
向量加法满足交换律和结合律:
a b b a (a+b)+c a (b c)
• 橡皮条在力F1与F2的作用下,从E点伸长到了O点; 同时橡皮条在力F的作用下也从E点伸长到了O点.
• 问:合力F与力F1、F2有怎样的关系?
F1+F2=F
E
O
E
O
F
F
F是以F1与F2为邻边所形成的
平行四边形的对ppt课角件线
5
向量加法运算及其几何意义
人教版高中数学第二章2平面向量的减法(共18张PPT)教育课件
练习1,已知AB, AD是两个不共线的向量, 求 AB AD, AB AD
D
C
A
B
AC AB AD DB AB AD
特殊的,
当a, b方向相同时:
a
b
ab
C
A
B
CB a b
当a, b方向相反时:
b
a
C
b
a
A•
B
CB a b
(1)两个向量的差仍然是一个向量 (2)a b 与a、b之间是关系:
若船自身的速度方向垂直于河岸,船能垂直于河岸驶去吗?
v0
v
若要使船能垂直过河,你能求出船自身行驶速度的大小与方向吗?
1、向量的减法:求两个向量差的运算(差仍为向量)
相反向量 : 长度相等,方向相反的向量 记作 a ,
a 与 a 互为相反向量 .
(a ) a
AB BA
规定,零向量的相反向量仍是零向量 ,即 0 0 .
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
平面向量加减法课件
在物理学中的应用
01
平面向量加减法在物理学中的性质和定理
02
向量的加法满足平行四边形定则
向量的减法满足三角形定则
03
在物理学中的应用
向量的数乘满足标量积定理
1
2
平面向量加减法在物理学中的实际应用
确定力的合成与分解
3
在物理学中的应用
计算物体的运动轨迹和速度
解决物理问题,如力学、电磁学等
05
平面向量加减法的练习 与巩固
平行法则适用于任何两个相同的向量 。通过将一个向量分解成两个相同的 子向量,可以找到原始向量的和。这 个法则也可以用于任何数量的相同向 量。
04
平面向量加减法的应用
解向量方程
求解向量方程的解 根据给定的向量方程,确定未知量
通过加减法运算,解出未知量的值
解向量方程
检验解的正确性,确 保解符合原始向量方 程
向量减法的几何意义
两个向量相减,得到的新的向量的方向和大小与原来的两个向量有关系。
02
平面向量加减法的运算 性质
向量的加法交换律
总结词
向量加法满足交换律
详细描述
设$\mathbf{a}$和$\mathbf{b}$是平面向量,则有$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,即向量加法满足交换律。ຫໍສະໝຸດ 练习题一:判断题总结词
掌握平面向量加减法的基本概念
判断下列说法是否正确
向量a+向量b的和向量等于向量a与 向量b之和。(×)
判断下列说法是否正确
向量a与向量b的和向量等于向量a+ 向量b。(×)
判断下列说法是否正确
平面向量的加法减法与数乘运算课件
数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向
平面向量的加减法PPT文档36页
ቤተ መጻሕፍቲ ባይዱ
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
平面向量的加减法
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
平面向量的加减法
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
《平面向量的运算》平面向量及其应用PPT课件(第1课时向量的加法运算)
AO OC,OB DO因, A此B D∥C, 且| A|=B CD
AB
| DC|,即四边形ABCD是平行四边形.
【素养·探】 在用向量加法证明几何问题时,经常利用核心素养中的 逻辑推理,通过对条件与结论的分析,确定论证思路及 方法予以证明.
若将本例改为:四边形ABCD中,
AB DC,且 BC BA
又因为AP AQ==0A,B所 A以C BP CQ.
BP CQ
AP AQ=AB AC.
类型四 航行中的向量加法问题 【物理情境】 在长江南岸的某渡口A处,江水以12.5 km/h的速度向 东流,“顺风号”渡船要以25 km/h的速度,由南向北 垂直地渡过长江,其航向应如何确定?
【转化模板】 1. —由题意可得渡船的实际垂直过江的速度是船 的速度与水流速度的和,因此解决此问题可建立向量 加法模型.
AC
AO
AD
类型三 利用向量加法解决几何问题 【典例】用向量方法证明对角线互相平分的四边形是 平行四边形. 世纪金榜导学号
【思维·引】将互相平分利用向量表示,以此为条件 推证使四边形为平行四边形的向量等式成立.
【解析】如图,设四边形ABCD的对角线AC,BD相交于
点O,AB AO OB, DC ADCO与 BOCD.互相平分,
【类题·通】 向量加法运算律的意义和应用原则 (1)意义:向量加法的运算律为向量加法提供了变形的 依据,实现恰当利用向量加法法则运算的目的.实际 上,由于向量的加法满足交换律和结合律,故多个向
量的加法运算可以按照任意的次序、任意的组合来进 行. (2)应用原则:利用代数方法通过向量加法的交换律, 使各向量“首尾相连”,通过向量加法的结合律调整 向量相加的顺序.
【习练·破】 化简:
平面向量的加法减法与数乘运算31页PPT
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
平面向量的加法减法与数乘运算
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷Байду номын сангаас屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
平面向量的加法减法与数乘运算
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷Байду номын сангаас屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
《平面向量加减法》课件
三角形法则:将 两个向量首尾相 接,构成一个三 角形,则其对角 线就是两个向量 的和。
平行四边形法则 和三角形法则的 适用范围:适用 于任意两个向量 的加法运算。
平行四边形法则 和三角形法则的 优缺点:平行四 边形法则直观易 懂,但计算量较 大;三角形法则 计算量较小,但 需要一定的几何 知识。
向量减法的平行四边形法则和三角形法则
几何意义:向量减法的几何意义是表示两个向量的差向量,即从第一个向 量的终点指向第二个向量的终点的向量。
应用:向量减法在物理、工程等领域有着广泛的应用,如力的合成与分解、 速度的合成与分解等。
注意事项:在进行向量减法时,需要注意两个向量的起点必须重合,否则 得到的差向量可能不是正确的。
向量加减法的应用实例
向量减法的定义
向量减法是向量加法的逆运算
向量减法的定义式为:A-B=C,其中A、B、C都是向量
向量减法的运算法则为:A-B=C,其中A、B、C都是向量,且A、B、 C的起点相同 向量减法的运算结果为一个新的向量,其方向与A、B的差方向相同, 其大小为A、B的差大小
03
向量加减法的几何 意义
向量加法的几何意义
向量加法是将两个向量首尾相接, 得到一个新的向量
新的向量的方向由两个向量的方 向决定
添加标题
添加标题
添加标题
添加标题
新的向量的长度等于两个向量长 度之和
新的向量的起点和终点分别对应 两个向量的起点和终点
向量减法的几何意义
向量减法:将两个向量的起点重合,然后从第一个向量的终点指向第二个 向量的终点,得到的向量就是两个向量的差向量。
向量加法的结合 律: (a+b)+c=a+(b+ c)
《向量的加法与减法》课件
结果向量的方向由输入向量的相对位 置决定,结果向量的大小则由输入向 量的长度和夹角决定。
THANKS
感谢观看
向量加法的几何意义
总结词
向量加法的几何意义是表示两个向量在平面或空间中的相对 位置关系。
详细描述
向量加法的几何意义在于表示两个向量在平面或空间中的相 对位置关系。通过向量加法,我们可以理解一个向量是如何 由另一个向量产生的,以及它们之间的角度和长度关系。
向量加法的性质
总结词
向量加法满足交换律和结合律,不满足消去律。
向量减法的性质
总结词
向量减法的性质
详细描述
向量减法具有一些重要的性质,包括交换律、结合律和反身性。交换律指的是向量减法 的结果不依赖于减数向量的顺序,结合律指的是向量的加减运算满足结合律,反身性指
的是任意向量减去其自身等于零向量。
03 向量的加法与减 法的应用
在物理中的应用
力的合成与分解
在物理中,向量加法和减法常用于表 示力的合成与分解。通过向量加法, 可以将多个力合成一个力;通过向量 减法,可以将一个力分解成多个分力 。
速度和加速度的计算
在运动学中,向量的加法和减法用于 计算速度和加速度。例如,在平抛运 动中,水平和垂直方向的速度可以通 过向量加法和减法计算出物体的最终 速度和加速度。
在数学中的应用
向量模的计算
向量的加法和减法可以用于计算向量的 模。通过向量加法,可以计算两个向量 的和的模;通过向量减法,可以计算两 个向量的差的模。
详细描述
向量加法满足交换律,即向量a加向量b等于向量b加向量a。同时,向量加法也 满足结合律,即(a+b)+c=a+(b+c)。但是,向量加法不满足消去律,即 a+b=b+a并不意味着a=b。这是因为向量的加法不具有唯一性,与实数加法不 同。
THANKS
感谢观看
向量加法的几何意义
总结词
向量加法的几何意义是表示两个向量在平面或空间中的相对 位置关系。
详细描述
向量加法的几何意义在于表示两个向量在平面或空间中的相 对位置关系。通过向量加法,我们可以理解一个向量是如何 由另一个向量产生的,以及它们之间的角度和长度关系。
向量加法的性质
总结词
向量加法满足交换律和结合律,不满足消去律。
向量减法的性质
总结词
向量减法的性质
详细描述
向量减法具有一些重要的性质,包括交换律、结合律和反身性。交换律指的是向量减法 的结果不依赖于减数向量的顺序,结合律指的是向量的加减运算满足结合律,反身性指
的是任意向量减去其自身等于零向量。
03 向量的加法与减 法的应用
在物理中的应用
力的合成与分解
在物理中,向量加法和减法常用于表 示力的合成与分解。通过向量加法, 可以将多个力合成一个力;通过向量 减法,可以将一个力分解成多个分力 。
速度和加速度的计算
在运动学中,向量的加法和减法用于 计算速度和加速度。例如,在平抛运 动中,水平和垂直方向的速度可以通 过向量加法和减法计算出物体的最终 速度和加速度。
在数学中的应用
向量模的计算
向量的加法和减法可以用于计算向量的 模。通过向量加法,可以计算两个向量 的和的模;通过向量减法,可以计算两 个向量的差的模。
详细描述
向量加法满足交换律,即向量a加向量b等于向量b加向量a。同时,向量加法也 满足结合律,即(a+b)+c=a+(b+c)。但是,向量加法不满足消去律,即 a+b=b+a并不意味着a=b。这是因为向量的加法不具有唯一性,与实数加法不 同。
平面向量的加减法36页PPT
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
平面向量的加减法
1、 舟 遥 遥 以 轻飏, 风飘飘 而吹衣 。 2、 秋 菊 有 佳 色,裛 露掇其 英。 3、 日 月 掷 人 去,有 志不获 骋。 4、 未 言 心 相 醉,不 再接杯 酒。 5、 黄 发 垂 髫 ,并怡 然自乐 。
Байду номын сангаас 谢谢你的阅读
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
平面向量的加减法
1、 舟 遥 遥 以 轻飏, 风飘飘 而吹衣 。 2、 秋 菊 有 佳 色,裛 露掇其 英。 3、 日 月 掷 人 去,有 志不获 骋。 4、 未 言 心 相 醉,不 再接杯 酒。 5、 黄 发 垂 髫 ,并怡 然自乐 。
Байду номын сангаас 谢谢你的阅读
第六章6.2.1向量的加法运算6.2.2向量的减法运算PPT课件(人教版)
图形
平 前提
已知不共线的两个向量 a,b
行
在平面内任取一点 O,以同一点 O 为起点的两个
四
作法 已知向量 a,b 为邻边作
OACB
法
边
则 形 结论 对角线―O→C 就是 a 与 b 的和
法 图形
则
规定 零向量与任一向量 a 的和都有 a+0= 0+a = a .
2.向量加法的运算律
结合律 运算律
2 千米/
时.
【名师点拨】 物理学中的力、速度、加速度、位移等都是向量,它们的合成与分解 就是向量的加法与减法. ◆用向量知识研究物理问题的基本思路和方法 (1)通过抽象、概括,把物理现象转化为与之相关的向量问题; (2)利用向量知识获得向量问题的解; (3)利用这个结果对物理现象作出合理的解释. ◆用向量解决物理问题的一般步骤
2.解决向量加法运算时应关注两点 (1)可以利用向量的几何表示,画出图形进行化简或计算. (2)要灵活运用向量加法的运算律,注意各向量的起、终点及向量 起、终点字母的排列顺序,特别注意勿将0写成0.
训练题
1.[2019·济南历城区高一联考]已知平面四边形ABCD,则 AB +BC +CD
=( A ) A. AD B. BD C. AC D.0
◆向量减法运算的常用方法 (1)可以通过相反向量,把向量减法的运算转化为加法运算. (2)运用向量减法的三角形法则,此时要注意两个向量要有共同的 起点. (3)引入点O,逆用向量减法的三角形法则,将各向量起点统一为 O. 【提示】 对相反向量的理解 (1)两个非零向量a与b互为相反向量应具备两个条件: ①长度相等;②方向相反. 二者缺一不可. (2) AB 与 BA 互为相反向量,且 AB + BA =0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例1] 如图所示,
已知向量a,b,c试作出向量a+b+c.
[精解详析] 法一:如图 1 所示,
uuur 首先在平面内任取一点 O,作向量 OA =
uuur
uuur
a,再作向量 AB =b,则得向量 OB =a+b;
uuur
uuur
然后作向量 BC =c,则向量 OC =(a+b)+c
=a+b+c 即为所求.
uuur 解:用 AB 表示向正东行驶 10 km 的位移, uuur BC 表示沿北偏东 30°方向行驶了 15 km
uuur 的位移,则 AC 表示小船两次的合位移(如 图).
14
例题讲解
[例 2] 化简或计算:
uuur uuur uuur
(1) CD + BC + AB ;
uuur uuur uuur uuur uuur
OE,则 OE = OD + OC =a+b+c 即为所
求.
12
跟踪练习
1.如图,已知平行向量 a、b,求作 a+b.
uuur
uuur
uuur
解:作 OA =a,AB =b,则 OB =a+b 就是求作的向量.
13
2.小船向正东方向行驶了 10 km,又沿北偏东 30°方向行驶 了 15 km,作出小船两次的合位移.
11
uuur
法二:如图 2 所示,首先在平面内任取一点 O,作向量 OA =a,
uuur
uuur
uuur
OB =b,OC =c,以 OA、OB 为邻边作▱OADB,连接 OD,则 OD
uuur uuur
= OA + OB =a+b.
再以 OD、OC 为邻边作▱ODEC,连接 uuur uuur uuur
(2) AB + DF + CD + BC + FA .
uuur uuur uuur uuur uuur uuur
[精解详析] (1) CD + BC + AB =( AB + BC )+ CD uuur uuur uuur
= AC + CD = AD .
uuur uuur uuur uuur uuur
提示:有. 问题4:在问题3中,物体为什么没沿水平或垂直方 向运动?
提示:力的合力不在这两个方向上.
4
一、向量加法的定义和法则 1.向量加法的定义 求 两个向量和的运算,叫做向量的加法.
2.求向量和的方法
(1)三角形法则:
已知非零向量a、b,在平面上任取一点A,
作
uuur AB
=a,
uuur BC
以O为
起点
的对角线
uuur OC
就是a与b的和,如图.这种作两个向量
和的方法叫做向量加法的平行四边形法则.
对于零向量与任一向量a,规定:a+0= 0 + a =a .
6
二、向量加法的运算律 问题1:数的加法满足交换律和结合律,向量的加法 是否也满足交换律和结合律?
提示:满足. 问题2:你能验证向量也满足结合律吗?
1,则|
uuur AB
+
uuur AD
|为
A.1
B. 2
C.3
D.2 2
uuur uuur uuur
解析:正方形 ABCD 中, AB + AD = AC
uuur uuur uuur
∴| AB + AD |=| AC |= 2.
答案:B
()
16
2.化简下列各式:
uuur uuur uuur
(1) PB + OP + OB
uuur uuur uuuur uuur = AB + BO + OM + MB
=
uuur AO
+
uuur OB
=
uuur AB
.
17
例题讲解
[例 3] 船在静水中的速度为 20 m/min,水流的速度为 10 m/min,如果船从岸边出发沿垂直于水流的航线到达对岸,求船 行进的方向.
uuur uuur uuur uuuur
2 AB + MB + BO + OM
uuur uuur uuur uuur uuur uuur
解:1 PB + OP + OB =( OP + PB )+ OB
uuur uuur
= OB + BO =0.
uuur uuur uuur uuuur 2 AB + MB + BO + OM
=b,则向量
uuur AC
叫做a与
uuur
b的和或和向量,记作a+b,即a+b= AB + uuur uuur BC = AC .上述求两个向量和的方法,称为向量加法的三角
形法则.
5
(2)平行四边形法则:
uuur
已知两个不共线向量a,b,作 OA =a
uuur OB
=b,以a,b为邻边作▱OACB,则
(2) AB + DF + CD + BC + FA
uuur uuur uuur uuur uuur
=( AB + BC )+( CD + DF )+ FA uuur uuur uuur uuur uuur
= AC + CF + FA = AF + FA =0.
15
跟踪练习
1.正方形
ABCD
的边长为
2.2 平面向量的运算
1
2.2.运算吗?请举例说明. 提示:能,如力的合成. 问题2:如果两个力F1,F2作用于同一个物体上, 当物体静止时,说明了什么? 提示:F1+F2=0.
3
问题3:做斜上抛运动的物体在水平方向上有速度 吗?在竖直方向上有速度吗?
uuuur uuuur uuuuur
uuuuuur uuuuur
有 A0 A1 A1A2 A2 A3 L An1An A0 An ,这可以称为向量加法
的多边形法则.
2.在向量加法的三角形法则中,可得|a|+|b|≥|a+b|.其
中,“=”在有一者为零向量或两个向量共线且方向相同时取
得.
10
例题讲解
uuur uuur uuur
如图所示: AC = AB + AD (平行四边形法则, uuur uuur uuur AC = AB + BC (三角形法则).
9
(3)在使用三角形法则时,应注意“首尾连接”;在使用平
行四边形法则时应注意两向量起点相同.
(4)三角形法则可以推广为多边形法则,即对于几个向量,
提示:如图,a+b+c=(a+b)+c=a+(b+c).
7
(1)向量加法的交换律:a+b= b+a ; (2)向量加法的结合律:(a+b)+c= a+(b+c.)
8
深化理解
1.对两种求向量和的方法的理解. (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法 则只适用于两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的.