人教版数学九下第二十九章综合达标训练卷(A卷)及答案解析
人教版初中数学九年级下册第二十九章综合测试卷及答案
第二十九章综合测试一、选择题(每小题3分,共36分)1.投影不可能为一条线段的是()A.线段B.正方形C.正五边形D.球2.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的3.两个不同长度的物体,在同一时刻同一地点的太阳光下,得到的投影的长度关系是()A.相等B.长的较长C.短的较长D.不能确定4.在太阳光的投影下,正方形所形成的影子可能是()A.正方形B.平行四边形或一条线段C.矩形D.菱形5.(2012·湖南益阳中考)下列命题是假命题的是()A.中心投影下,物高与影长成比例B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径6.(2012·湖北随州中考)如图所示,下列四个立体图形中,主视图与左视图相同的有()A.1个B.2个C.3个D.4个7.如图是由一些完全相同的小立方块搭成的立体图形的三视图,那么搭成这个立体图形所用的小立方块的块数是()A.5B.6C.7D.88.(2012·湖北黄冈中考)如图所示,水平放置的圆柱体的三视图是()ABCD9.用两张完全相同的矩形纸片分别卷成两个形状不同的柱面(圆柱的侧面),设较高圆柱的侧面积和底面半径分别是1S ,和1r ,较矮圆柱的侧面积和底面半径分别是2S 和2r ,那么( ) A .12S S =,12r r =B .12S S =,12>r rC .12S S =,12<r rD .12S S ≠,12r r ≠10.长方体的主视图与左视图如图所示(单位:cm ),则其俯视图的面积是( )A .12 2cmB .8 2cmC .6 2cmD .4 2cm11.(2012·黑龙江鸡西中考)小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图所示),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的展开图可能是( )ABCD12.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )A .37B .33C .24D .21二、填空题(每空3分,共24分)13.如图所示是由若干个大小相同的小正方体堆砌而成的立体图形,那么其三视图中面积最小的是________。
人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析
人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题,30分)1.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.2.下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.3.如图所示几何体的左视图正确的是()A.B.C.D.4.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.5.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥6.如图,是某个几何体从不同方向看到的形状图(视图)这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.7.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③8.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.()A.中心投影,平行投影C.平行投影,平行投影B.平行投影,中心投影D.中心投影,中心投影9.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短C.先变长后变短B.先变短后变长D.逐渐变长10.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长二.填空题(共8小题,24分)11.从三个方向看所得到的图形都相同的几何体是(写出一个即可).12.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.(14.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉个小正方体.15.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.16.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是.17.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子.(长,短)三.解答题(共5小题,46分)19.8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.20.(10分)如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?21.(8分)从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.22.(10分)两棵小树在同一时刻的影子如图所示:(1)试判断哪是小树白天在太阳光下的影子,哪是小树晚上在路灯下的影子?并确定出路灯灯泡的位置(2)根据你的判断,请画出图中另一棵小树的影子(影子用线段表示即可)23.(10分)如图所示:笔直的公路边有甲、乙两栋楼房,高度分别为12m和25m,两楼之间的距离为10m,现有一人沿着公路向这两栋楼房前进,当他走到与甲楼的水平距离为30m且笔直站立时(这种姿势下眼睛到地面的距离为1.6m),他所看到的乙楼上面的部分有多高?参考答案一.选择题(共10小题)1.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.2.下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.【解答】解:A、主视图和左视图都为矩形的,所以A选项正确;B、主视图和左视图都为等腰三角形,所以B选项错误;C、主视图为矩形,左视图为圆,所以C选项错误;D、主视图是矩形,左视图为三角形,所以D选项错误.故选:A.3.如图所示几何体的左视图正确的是()A.B.C.D.【解答】解:从几何体的左面看所得到的图形是:故选:A.4.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【解答】解:A、的主视图是第一层两个小正方形,第二层右边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左一个小正方形,故选:A.5.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选:B.6.如图,是某个几何体从不同方向看到的形状图(视图)这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.7.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.8.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.()A.中心投影,平行投影B.平行投影,中心投影(C .平行投影,平行投影D .中心投影,中心投影【解答】解:∵太阳发出的光是平行光线,灯发出的光线是不平行的光线,∴太阳发出的光照在物体上是平行投影,车灯发出的光照在物体上是中心投影.故选:B .9.如图,晚上小亮在路灯下散步,在小亮由A 处径直走到 B 处这一过程中,他在地上的影子()A .逐渐变短C .先变长后变短B .先变短后变长D .逐渐变长【解答】解:晚上小亮在路灯下散步,在小亮由 A 处径直走到 B 处这一过程中,他在地上的影子先变短,再变长.故选:B .10.小强的身高和小明的身高一样,那么在同一路灯下()A .小明的影子比小强的影子长B .小明的影子比小强的影子短C .小明的影子和小强的影子一样长D .无法判断谁的影子长【解答】解:小强的身高和小明的身高一样,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的影子长.故选:D .二.填空题(共 8 小题)11.从三个方向看所得到的图形都相同的几何体是 球体(正方体)(写出一个即可).【解答】解:正方体,三视图均为正方形;球,三视图均为圆,故答案为:球体(正方体).12.在如图所示的几何体中,其三视图中有矩形的是 ①② . 写出所有正确答案的序号)【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.14.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要10个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉1个小正方体.【解答】解:这个几何体由10小正方体组成,最多可以拿掉1个小正方体,故答案为:10,1.15.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【解答】解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).16.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是5.【解答】解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.17.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.(长,短)【解答】解:∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.三.解答题(共5小题)19.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).20.如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?【解答】解:(1)根据从正面看所得视图可得该物体有2层高;(2)根据从左边看的视图可得该物体最长处为3个长方体;(3)如图所示:该物体最高部分位于阴影部分.21.从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.【解答】解:如图即为所求作的图形.22.两棵小树在同一时刻的影子如图所示:(1)试判断哪是小树白天在太阳光下的影子,哪是小树晚上在路灯下的影子?并确定出路灯灯泡的位置(2)根据你的判断,请画出图中另一棵小树的影子(影子用线段表示即可)【解答】解:(1)因为光线是相交的,所以是中心投影,所以(1)是小树晚上在路灯下的影子,路灯灯泡的位置是三条光线的交点;(2)因为光线是平行的,所以是平行投影,所以(2)是小树在太阳光下的影子.23.如图所示:笔直的公路边有甲、乙两栋楼房,高度分别为12m和25m,两楼之间的距离为10m,现有一人沿着公路向这两栋楼房前进,当他走到与甲楼的水平距离为30m且笔直站立时(这种姿势下眼睛到地面的距离为 1.6m),他所看到的乙楼上面的部分有多高?【解答】解:作AN⊥GH,交EF于M,如图,AB=1.6m,EF=12m,GH=25m,AF=30m,MN=15m,点A、E、C共线,则MF=NH=AB=1.6,EM=EF﹣MF=10.4,∵EM∥CN,∴△AEM∽△ACN,∴=,即=,∴CN=15.6,∴CG=GH﹣NH﹣CN=25﹣﹣1.6﹣15.6=7.8(m),即他所看到的乙楼上面的部分有7.8m高.。
人教版九年级数学下册第二十九章达标测试卷含答案
人教版九年级数学下册第二十九章达标测试卷一、选择题(每题2分,共20分)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是()2.下列关于投影与视图的说法正确的是()A.平行投影中的光线是聚成一点的B.线段的正投影还是线段C.三视图都是大小相同的圆的几何体是球D.正三棱柱的俯视图是正三角形3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯,如图,甲木构件带有榫头,乙木构件带有卯,两个构件可完全咬合,则乙木构件的俯视图是()4.如图,树AB在路灯O的照射下形成投影AC,若树高AB=2 m,树影AC=3 m,树与路灯的水平距离AP=4.5 m,则路灯的高度OP是()A.3 m B.4 m C.5 m D.6 m5.一个几何体的三视图如图所示,则这个几何体是()6.如图,在房檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED7.如图,太阳光线与地面成60°的角,照射在放置在地面上的一个皮球上,皮球在地面上的投影长是20 3,则皮球的直径是()A.15 B.8 3 C.10 3 D.30(第7题)(第9题)(第10题)8.在平面直角坐标系中,点P(2,4)是一个光源,木杆AB两端的坐标分别是(1,2),(4,1),则木杆AB在x轴上的投影A′B′的长是()A.4 B.143 C.92D.59.如图,将由6个棱长为1的小正方体组成的几何体在桌面上顺时针旋转90°后,左视图的面积为()A.3 B.4 C.5 D.610.如图是某风车的示意图,其大小、形状相同的四个叶片均匀分布,点M在旋转中心O的正下方.某一时刻,太阳光恰好垂直照射叶片OA,OB,叶片影子为线段CD,测得MC=8.5米,CD=13米,此时垂直于地面的标杆EF与它的影子FG的长度之比为23(其中点M,C,D,F,G在同一直线上),则OM的长为()A.10米B.13米C.13米D.20米二、填空题(每题3分,共18分)11.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于____________.(填“平行投影”或“中心投影”)(第11题)(第13题) (第14题)12.在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图可以完全相同的是__________(填序号).13.一个几何体的主视图和俯视图如图所示,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=________.14.公元前6世纪,古希腊学者泰勒斯用图①的方法巧测金字塔的高度.如图②,小明仿照这个方法,测量圆锥形小山包的高度,已知圆锥底面周长为62.8 m.先在小山包旁边立起一根木棒,当木棒影子的长度等于木棒高度时,测得AB的长为23 m(直线AB过圆锥底面圆的圆心),则圆锥形小山包的高度约为________m(π取3.14).15.如图是一个三棱柱的三视图,在△EFG中,EF=6 cm,EG=10 cm,∠EGF =30°,则AB的长为________cm.(第15题) (第16题)16.在同一时刻两根垂直于水平地面的木杆在太阳光下的影子如图所示,其中木杆AB=2.5 m,它的影子BC=2 m,木杆PQ的影子有一部分落在了墙上(MN),PM=1.6 m,MN=1 m,则木杆PQ的长度为________.三、解答题(17题6分,18~21题每题8分,22,23题每题10分,24,25题每题12分,共82分)17.(6分)把下图中的几何体与它们对应的三视图用线连接起来.18.(8分)如图所示的图形是一个水平放置的直三棱柱被斜着截去一部分后形成的,请画出它的主视图、左视图和俯视图.19.(8分)一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)求这个几何体侧面展开图的圆心角;(3)求这个几何体的全面积.20.(8分)如图是某时刻的太阳光线,光线与水平面的夹角为45°.小星身高1.6米.(1)若小星正站在水平地面上的点A处,则他的影长为多少米?(2)若小星来到一个倾斜角为30°的坡面底端B处,则他在坡面上前进多少米时,他的影子恰好都落在坡面上?21.(8分)学校食堂厨房的桌子上整齐地摆放着若干个相同规格的菜碟,每一摞菜碟的高度与菜碟的个数的关系如表所示.菜碟的个数菜碟的高度(单位:cm)1 323+1.833+3.643+5.4……(1)把x个菜碟放成一摞时,这一摞菜碟的高度为________(用含x的式子表示);(2)如图所示,是几摞菜碟的三视图,厨师想把它们整齐地叠成一摞,求叠成一摞后的高度.22.(10分)如图,两栋居民楼之间的距离CD=45 m,楼AC和BD均为11层,每层楼高为3 m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:3≈1.7,2≈1.4)23.(10分)如图所示,有4张除了正面图案不同,其余都相同的卡片,将这4张卡片背面朝上洗匀.(1)若小李从中抽一张卡片,求抽到的卡片上所示的立体图形的主视图为矩形的概率;(2)若小李先从中随机抽出一张后放回并洗匀,小张再随机抽出一张,请用列表法或画树状图法求两人抽到的卡片上所示的立体图形的主视图都是矩形的概率.24.(12分)按要求完成下列问题.(1)如图①,它是由6个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图②,请你借助虚线网格(甲)画出该几何体的俯视图.(3)如图③,它是由几个小正方形组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助虚线网格(乙)画出该几何体的主视图.(4)如图④,它是由8个大小相同的正方体组成的几何体的主视图和俯视图,请你借助虚线网格(丙)画出该几何体的左视图.25.(12分)如图①是一个直四棱柱,如图②是它的三视图,其俯视图是等腰梯形.(1)根据图②中给出的数据,可得俯视图(等腰梯形)的高为________,腰长为________;(2)主视图和左视图中a=________,b=________,c=________,d=________;(3)请你根据图①②和问题(1)中的结果,计算这个直四棱柱的侧面积.(结果可保留根号)答案一、1.B 2.C 3.C 4.C 5.D 6.C7.D8.B9.B10.A点拨:如图,过点O作OP∥BD,交MG于P,过P作PN⊥BD于N,则OB=PN.∵AC∥BD∥EG,∴AC∥OP∥BD∥EG,∴OAOB=CPPD,∠EGF=∠OPM,∴tan∠EGF=tan∠OPM.∵OA=OB,∴CP=PD=12CD=6.5米,∴MP=CM+CP=8.5+6.5=15(米),∴EFFG=OMMP=23,∴OM=23×15=10(米).二、11.中心投影12.②⑤13.1614.3315.5点拨:如图,过点E作EH⊥FG交FG于点H.∵EH⊥FG,∠EGF=30°,EG=10 cm,∴EH=12×EG=12×10=5(cm),由题中三视图可得,AB=EH=5 cm,故答案为5.16.3 m点拨:如图,过点N作ND⊥PQ于点D,则易知四边形DPMN是矩形.∴DN=PM,PD=MN.由题知,BCAB=DNQD,∵AB=2.5 m,BC=2 m,DN=PM=1.6 m,∴QD=AB·DNBC=2.5×1.62=2(m),∴PQ=QD+DP=QD+NM=2+1=3(m).三、17.解:如图所示.18.解:如图所示.19.解:(1)该几何体为圆锥.(2)由题图上数据知圆锥的底面圆的直径为4,母线长为6,设这个几何体的侧面展开图的圆心角为n°,则π×4=nπ×6 180,所以n=120,所以这个几何体侧面展开图的圆心角为120°.(3)该几何体的全面积为S侧+S底=π×42×6+π×⎝⎛⎭⎪⎫422=16π.20.解:(1)如图,由题意得AD=1.6米,∠DCA=45°,AD⊥CA,∴AC=AD=1.6米.答:他的影长为1.6米.(2)如图,由题意得EF=1.6米.∵∠FBG=30°,FG⊥BG,∴设FG =x 米,则BF =2x 米,∴BG =3x 米, ∴EG =EF +FG =(x +1.6)米, 在Rt △EBG 中,∠EBG =45°,∴BG =EG ,∴3x =1.6+x ,解得x =45(3+1), ∴BF =2x =2×45(3+1)=85(3+1)(米).答:他在坡面上前进85(3+1)米时,他的影子恰好都落在坡面上. 21.解:(1)(1.8x +1.2)cm(2)由题中三视图可知,共有7+4+3=14(个)菜碟, 所以叠成一摞后的高度是1.8×14+1.2=26.4(cm).22.解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于点H ,如图.由题意知,AC =BD =3×11=33(m),易知四边形FCDH 是矩形,∠BFH =30°,∴FH =CD =45 m , 在Rt △BFH 中,tan ∠BFH =BH FH =BH 45=33,∴BH =45×33=15 3≈25.5(m), ∴FC =HD =BD -BH ≈33-25.5=7.5(m). ∵7.5÷3=2.5,∴在2层的上面,即第3层, ∴此刻楼BD 的影子会遮挡到楼AC 的第3层.23.解:(1)∵球的主视图为圆,长方体的主视图是矩形,圆锥的主视图为等腰三角形,圆柱的主视图为矩形,每张卡片被抽到是等可能的,∴小李从中抽一张卡片,抽到的卡片上所示的立体图形的主视图为矩形的概率为 24=12.(2)列表可得,小张小李A B C DA (A,A) (A,B) (A,C) (A,D)B (B,A) (B,B) (B,C) (B,D)C (C,A) (C,B) (C,C) (C,D)D (D,A) (D,B) (D,C) (D,D)由表可知,共有16种等可能的结果,其中两人抽到的卡片上所示的立体图形的主视图都是矩形的结果有4种,所以两人抽到的卡片上所示的立体图形的主视图都是矩形的概率为416,即14.24.解:(1)将正方体①移走后,新几何体的三视图与原几何体的三视图相比,左视图没有发生改变.(2)如图甲所示.(3)如图乙所示.(4)如图丙所示.25.解:(1)6;4 3(2)2 3;3 3;2 3;6(3)这个直四棱柱的侧面积为3 3×20+7 3×20+2×4 3×20=60 3+1403+160 3=360 3.11。
人教版九年级下册数学第二十九章测试题(附答案)
人教版九年级下册数学第二十九章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.如图所示的四个几何体中,主视图与其他几何体的主视图不同的是()A. B. C. D.2.将一个机器零件按如图方式摆放,则它的左视图为()A. B. C. D.3.如图,你能看出这个倒立的水杯的俯视图是()A. B. C. D.4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A. 美B. 丽C. 家D. 园5.如图是下列哪个几何体的主视图与俯视图()A. B. C. D.6.圆锥的侧面展开图是()A. 扇形B. 等腰三角形C. 圆D. 矩形7.把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A. 祝B. 你C. 顺D. 利8.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A. 3B. 4C. 5D. 69.下列几何体中,主视图是三角形的是()A. B. C. D.10.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A. B. C. D.11.如下图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和五边形,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图是()A. B. C. D.12.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A. 2B. 3C. 4D. 5二、填空题(共8题;共16分)13.某个立体图形的侧面展开图形如图所示,它的底面是正三角形,这个立体图形一定是14.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是________ .15.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.16.如图是某个几何体的三视图,该几何体是______16题图17题图18题图17.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为 ________.18.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是________cm3.19.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是________ m.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共4题;共25分)21.如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.(1)写出与棱AB平行的所有的棱。
人教版九年级数学下册第二十九章检测卷(含答案)
第二十九章检测卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1.下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()2.下列几何体中,主视图是等腰三角形的是()3.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()第3题图第4题图4.一个几何体的三视图如图所示,则这个几何体是()5.王丽同学在某天下午的不同时刻拍了三张同一景物的风景照A,B,C,冲洗后不知道拍照的顺序,已知投影l A>l C>l B,则A,B,C的先后顺序是()A.A,B,C B.A,C,B C.B,C,A D.B,A,C6.如图,该几何体的左视图是()7.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体个数是()A.3个B.4个C.5个D.6个8.如图,一条线段AB在平面Q内的正投影为A′B′,AB=4,A′B′=23,则AB与A′B′的夹角为()A.45°B.30°C.60°D.以上都不对第8题图第9题图第10题图9.图a和图b中所有的正方形都全等,将图a的正方形放在图b中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π二、填空题(本大题共4小题,每小题5分,满分20分)11.如图是测得的两根木杆在同一时间的影子,那么它们是由________形成的投影(填“太阳光”或“灯光”).第11题图第12题图第13题图12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影子CD等于2米,若树底部到墙的距离BC等于8米,则树高AB等于________米.13.如图是一个上、下底密封的纸盒的三视图,根据图中数据,可计算出这个密封纸盒的表面积为____________cm2(结果可保留根号).14.如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.三、(本大题共2小题,每小题8分,满分16分)15.如图是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P表示),并在图中画出人在此光源下的影子(用线段EF表示).16.下面几何体的三种视图有无错误?如果有,请改正.四、(本大题共2小题,每小题8分,满分16分)17.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)请在下图方格纸中分别画出该几何体的主视图和左视图;(2)这个几何体的体积为________个立方单位.18.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上.(1)请在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=5米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.五、(本大题共2小题,每小题10分,满分20分)19.下图是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.20.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.六、(本题满分12分)21.下图是一个直三棱柱的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸,计算这个几何体的全面积.七、(本题满分12分)22.如图,小华在晚上由路灯AC走向路灯BD.当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯BD的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离;(2)当小华走到路灯BD的底部时,他在路灯AC下的影长是多少?八、(本题满分14分)23.如图,一透明的敞口正方体容器ABCD-A′B′C′D′中装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE =α).探究:如图①,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图②所示.解决问题:(1)CQ 与BE 的位置关系是________,BQ 的长是________dm ; (2)求液体的体积(提示:V 液=S △BCQ ×高AB );(3)求液面到桌面的高度和倾斜角α的度数⎝⎛⎭⎫注:sin37°≈35,tan37°≈34.参考答案与解析1.D 2.D 3.C 4.D 5.C 6.C 7.C 8.B 9.A 10.B 11.太阳光 12.1013.(753+360) 解析:根据该几何体的三视图知道它是一个正六棱柱,其高为12cm ,根据正六边形的性质易知它的底面边长为5cm ,∴其侧面积为6×5×12=360(cm 2),底面积为12×5×523×6=7523(cm 2),∴这个密封纸盒的表面积为(753+360)cm 2. 14.9 解析:由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6(个)小立方块,第2层最多有1+1=2(个)小立方块,最上一层最多有1个小立方块,∴组成该几何体的小立方块最多有6+2+1=9(个).15.解:如图,点P 是光源,(4分)EF 就是人在光源P 下的影子.(8分)16.解:有错误.主视图错,中间应画一条实线;左视图错,中间应画一条虚线;俯视图错,中间应画一条实线,如图所示.(8分)17.解:(1)如图所示.(6分)(2)6(8分)18.解:(1)如图所示.(4分)(2)设木杆AB 的影长BF 为x 米,由题意得5x =34,解得x =203.(7分)答:木杆AB 的影长是203米.(8分)19.解:如图所示.(10分)20.解:根据三视图,可知下面的长方体的长、宽、高分别为8mm ,6mm ,2mm ,上面的长方体的长、宽、高分别为4mm ,2mm ,4mm.(4分)则这个立体图形的表面积为2(8×6+6×2+8×2)+2(4×2+2×4+4×4)-2×4×2=200(mm 2).(9分)答:这个立体图形的表面积为200mm 2.(10分)21.解:(1)如图所示.(4分)(2)由勾股定理得底面的斜边长为10cm ,(5分)S 底=12×8×6=24(cm 2),S侧=(8+6+10)×3=72(cm 2),(9分)S 全=72+24×2=120(cm 2).(11分)答:这个几何体的全面积是120cm 2.(12分)22.解:(1)设AP =BQ =x m .∵MP ∥BD ,∴△APM ∽△ABD ,∴PM BD =AP AB ,∴1.69.6=x2x +12,解得x =3,∴AB =2x +12=2×3+12=18(m).(5分)答:两个路灯之间的距离为18m.(6分)(2)设小华走到路灯BD 处,头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,则BF 即为此时他在路灯AC 下的影子长.设BF =y m .∵BE ∥AC ,∴△FEB ∽△FCA ,∴BEAC =BF AF ,即1.69.6=y y +18,解得y =3.6.(11分) 答:当小华同学走到路灯BD 处时,他在路灯AC 下的影子长是3.6m.(12分) 23.解:(1)平行 3(4分)(2)V 液=12×3×4×4=24(dm 3).(7分)(3)过点B 作BF ⊥CQ ,垂足为F .(8分)∵S △BCQ =12×3×4=12×5×BF ,∴BF =125dm ,∴液面到桌面的高度是125dm.(11分)∵在Rt △BCQ 中,tan ∠BCQ =BQ BC =34,∴∠BCQ ≈37°.由(1)可知CQ ∥BE ,∴α=∠BCQ ≈37°.(14分)。
(人教版)初中数学九下 第二十九章综合测试01-答案
第二十九章综合测试答案解析一、1.【答案】D【解析】球的投影从任何角度来讲都是圆.2.【答案】A【解析】平行投影中的光线是平行的,不可能聚成一点或向四面八方发散.3.【答案】D【解析】因为两物体与投影面的位置关系不确定,故其影子的长度无法确定.4.【答案】B【解析】当正方形所在的面与太阳光线平行时,它的影子是一条线段,其余情况下都是平行四边形.5.【答案】A【解析】A .中心投影下,影长取决于物体与光源的距离及相对位置,故此选项错误;B .根据平移的性质知平移不改变图形的形状和大小,故此选项正确;C .根据三角形中位线的性质知三角形的,中位线平行于第三边,故此选项正确;D .根据切线的性质定理知因的切线垂直于过切点的半径,故此选项正确.6.【答案】D【解析】①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥的主视图与左视图都是三角形;④圆柱的主视图与左视图都是长方形.7.【答案】C【解析】由三视图可知,该立体图形由两层小立方块组成,由俯视图可知下层有5块,由主视图和左视图可知,上层有2块,故搭成这个立体图形所用的小立方块的块数为7.8.【答案】A【解析】依据圆柱体放置的方式及观察方位来说,从正面和上面看到的长方形是一样的,从左面可看到一个圆.9.【答案】C【解析】设两矩形的长为a ,宽为b (a b >),则较高圆柱的底面圆的周长为b ,较矮圆柱的底面圆的周长为a ,所以1S ab =,2S ab =,12r b π=,22r a π=,所以12S S =,12b r π=,22a r π=,又a b >,所以12r r <. 10.【答案】A【解析】由主视图和左视图中的数据:可知其俯视图是长为4 cm ,宽为3 cm 的长方形,故其面积为212 cm .11.【答案】C【解析】A 项中“预”与“中”相邻,B 项中“预”与“中”相邻,D 项中“成”与“功”相邻,只有C 项符合.12.【答案】B【解析】正方体每个面的面积为1,底层侧面共有12个面,其面积为12,上面共有9个面,但被第二层盖住4个面,露出面的面积和为5;第二层侧面共有8个面,其面积为8,上面共有4个面,但被最上层盖住1个面,露出面的面积和为3;最上层露出的面共有5个,其面积和为5.所以被染成红色的面积为12583533++++=.二、13.【答案】左视图【解析】该立休图形的主视图为,左视图为,俯视图为,故该立体图形的三视图中面积最小的为左视图.14.【答案】俯视图15.【答案】矩形 矩形 半圆16.【答案】中间上方17.【答案】0 2.5m 【解析】如图所示,由题意,知()12AD OC BE =+,即()12 1.52OC =+,所以 2.5OC =m.18.【答案】32000 cm π【解析】由三视图可知,该立体图形是圆柱,该圆柱底面圆的直径为20 cm ,高为20 cm ,故其体积为210202000ππ⨯⨯=(3cm ). 19.【答案】5 22【解析】因为每个正方体的体积为1,共5个正方体,所以立体图形的体积为5;因为每个正方形的面积为1,前后各有5个面,上下各有3个面,左右各有2个面,中间还有2个面,共有22个面,所以表面积为22.20.【答案】4或5或6或7【解析】其俯视图为,图中小正方形中的数字表示此处小正方体的个数,0x =或1,0y =或1,0z =或1,故组成这个立体图形的小正方体的个数可能是4或5或6或7.三、21.【答案】解:如图所示:22.【答案】解:顺序为④③②①.【解析】我国位于地球的北半球,故标杆的影子在标杆的偏北侧,且从早到晚的方向变化为:西→西北→北→东北→东.23.【答案】解:由三视图可知,该工件是一个正四棱锥,它的底面正方形的边长为6,高为4,则侧面三角,如图所示是它的表面展开图,则此工件的表面积214656962S =⨯⨯⨯+=.24.【答案】根据题意可知,该立体图形的草图如图所示.表面积()()224030402030201640285200512πππ=⨯⨯+⨯+⨯+⨯-⨯⨯=+(3mm ).体积()2403020840240002560ππ=⨯⨯-⨯⨯=-(3mm ).25.【答案】(1)解:设树高为x m ,则0.81 2.4x =,所以 1.92x =. (2)解:设树高为x m ,则 1.20.82.81x -=,所以 3.44x =. 答:图①与图②中的树高分别为1.92 m ,3.44 m .26.【答案】(1)解:能求出此时两人的距离(DE 的长).在Rt ABC △中,40AB = m ,30BC = m,所以50AC (m ).依题意,知DE AC ∥,所以BDE BAC △∽△,所以DE BD AC BA =,所以850103403DE ⨯==(m ),即当张华和王刚的影子重叠时,两人相距103m . (2)解:因为BDE BAC △△,所以DE BE AC BC=所以10303250BE ⨯==(m ),则42AB BE +=m ,所以王刚从A 地到E 地共用42314÷=(s ).而张华只用14410-=(s ),设张华的速度为x m/s ,则有2104023x =-,解得56 3.715x =≈(m/s ).所以张华追赶王刚的速度约是3.7 m/s .。
初中数学(新人教版)九年级下册同步测试:第29章测评(同步测试)【含答案及解析】
第二十九章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.下列投影是正投影的是()A.(1)B.(2)C.(3)D.都不是2.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6 m,5 m,4 mB.4 m,5 m,6 mC.4 m,6 m,5 mD.5 m,6 m,4 m3.已知6个棱长为1的小正方体组成的一个几何体如图所示,则其俯视图的面积是()A.6B.5C.4D.34.一个水平放置的全封闭物体如图所示,则它的俯视图是()5.已知由4个大小相同的长方体搭成的立体图形的左视图如图所示,则这个立体图形的搭法不可能是()6.图①表示一个正五棱柱形状的高大建筑物,图②是它的俯视图.小健站在地面观察该建筑物,当他在图②中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为()A.30°B.36°C.45°D.72°7.已知一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A.66B.48C.48√2+36D.578.已知一个由多个相同的小正方体堆积而成的几何体的俯视图如图所示,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()二、填空题(每小题4分,共24分)9.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6 m,他向墙壁走1 m 到B处时发现影子刚好落在点A,则灯泡与地面的距离CD=.10.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之间,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为. 11.如图,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则图象A是号摄像机所拍,图象B是号摄像机所拍,图象C是号摄像机所拍,图象D是号摄像机所拍.12.已知由四个相同的小正方体组成的立体图形的主视图和左视图如图所示,则原立体图形可能是.(把图中正确的立体图形的序号都填在横线上)13.已知三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为cm.14.观察由棱长为1的小正方体摆成的图形(如图),寻找规律:如图①中:共有1个小正方体,其中1个看得见,0个看不见;如图②中:共有8个小正方体,其中7个看得见,1个看不见;如图③中:共有27个小正方体,其中19个看得见,8个看不见;……则第⑥个图中,看不见的小正方体有个.三、解答题(共44分)15.(10分)按规定尺寸作出如图所示几何体的三视图.16.(10分)如图,两幢楼高AB,CD为30 m,两楼间的距离AC为24 m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)17.(12分)已知一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.18.(12分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?第二十九章测评一、选择题1.C2.B3.B4.C5.A6.B由题图可知∠MPN是由正五边形的两条边的延长线所夹的角,由正五边形的内角度数为108°,知∠MPN=36°.7.A8.D根据俯视图,可知这个几何体从左面看共有两列,其中左边一列最高有两个小正方体,右边一列最高有三个小正方体,因此其左视图应为D.二、填空题m10.上午8时11.234112.①②④9.641513.6如图,过点E作EQ⊥FG于点Q,由题意可得出EQ=AB.在Rt△EGQ中,∵EG=12 cm,∠×12=6(cm).EGF=30°,∴EQ=AB=1214.125通过分析:题图①中,1个小正方体,0个看不见;题图②中,共有8个小正方体,1个看不见;题图③中,共有27个小正方体,8个看不见,所以看不见的小正方体个数正好是上一个图形中小正方体的个数,所以第⑥个图中看不见的小正方体有53=125(个).三、解答题15.解如图.16.解延长MB交CD于点E,连接BD,因为AB=CD,所以NB和BD在同一条直线上.所以∠DBE=∠MBN=30°.因为四边形ABDC是矩形,所以BD=AC=24 m.在Rt△BED中,tan 30°=DEBD,DE=BD tan 30°=24×√33=8√3(m),所以CE=30-8√3≈16.14(m).即甲楼投在乙楼上的影子的高度约为16.14 m.17.解(1)圆锥.(2)S表=S侧+S底=πrl+πr2=12π+4π=16π(cm2).(3)如图将圆锥的侧面展开,线段BD为所求的最短路程.因为AB=6 cm,底面圆半径r=2 cm,设∠BAB'=n°,所以nπ×6180=2π×2,解得n=120,即∠BAB'=120°.由题易知C为弧BB'的中点,所以BD=3√3 cm.18.解(1)由对称性可知AP=BQ.设AP=BQ=x m.因为MP∥BD,所以△APM∽△ABD.所以MPBD =APAB,即1.69.6=x2x+12,解得x=3.所以AB=2x+12=2×3+12=18(m),即两个路灯之间的距离为18 m.(2)设王华走到路灯BD处,头的顶部为E,如图.连接CE,并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=y m.因为BE∥AC,所以△FEB∽△FCA.所以BEAC =BFFA,即1.69.6=yy+18,解得y=3.6.故当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6 m.。
人教版九年级数学下册第二十九章达标测试卷及答案【推荐】
第二十九章达标测试卷一、选择题(每题3分,共30分)1.下列几何体中,主视图和左视图都为矩形的是()2.如图是一个长方体包装盒,则它的平面展开图可能是()3.如图所示的几何体的俯视图是()4.在一个晴朗的上午,乐乐拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是()5.用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是47.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2 cm3B.4 cm3C.6 cm3D.8 cm3(第7题) (第8题) (第9题) (第10题)8.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是()A.1号房间B.2号房间C.3号房间D.4号房间9.如图是某几何体的三视图,根据图中数据,可得该几何体的体积为() A.9π B.40π C.20π D.16π10.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则组成这个几何体的小立方体的个数可能是()A.5或6 B.5或7C.4,5或6 D.5,6或7二、填空题(每题3分,共24分)11.工人师傅要制造某一工件,他想知道工件的高,他需要看三视图中的__________或__________.12.如图,将△ABC绕AB边所在直线旋转一周所得的几何体的主视图是图中的__________(填序号).(第12题) (第13题) (第14题) 13.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5 m的标杆DF,如图所示,量出DF的影子EF的长度为1 m,再量出旗杆AC的影子BC 的长度为6 m,那么旗杆AC的高度为________m.14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.15.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.(第15题) (第16题) (第17题) (第18题)16.如图,在某一时刻,太阳光线与地面成60°的角,一只皮球在太阳光的照射下的投影长为10 3 cm,则皮球的直径是________cm.17.如图,在平面直角坐标系内,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为D,C点坐标为(3,1),则CD在x轴上的影长为________,点C的影子B的坐标为____________.18.如图,有一块边长为6 cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是________cm2.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).20.(1)用5个棱长为1 cm的小立方块搭成的几何体如图所示,在网格图中画出它的三视图.(2)在实物图中,再添加若干个棱长为1 cm的小立方块,使得它的左视图和俯视图不变,那么最多可添加________个小立方块.21.如图,棱长为a cm的正方体其上下底面的对角线AC,A1C1与平面α垂直.(1)指出正方体在平面α上的正投影图形形状;(2)计算投影MNPQ的面积.22.阳光通过窗口照到教室内,在地面上留下2.1 m长的亮区,如图所示,已知亮区一边到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的长).23.如图所示为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若三视图中的长方形的长为10 cm,正三角形的边长为4 cm,求这个几何体的侧面积.24.如图,花丛中有一根路灯杆AB,在光线下小明在点D处的影长DE=3 m,沿BD 方向行走到达点G,测得DG=5 m,这时小明的影长GH=5 m.如果小明的身高为1.7 m,求路灯杆AB的高度.答案一、1.B 2.A 3.D 4.C 5.D6.B点拨:由题意可知,这个几何体的主视图的面积为4,左视图的面积为3,俯视图的面积为4,故选B.7.A点拨:此几何体为长方体,它的底面是边长为1 cm的正方形,高为2 cm,则该几何体的体积为1×1×2=2(cm3).8.B9.B点拨:观察三视图可知,该几何体为空心圆柱,其底面内圆半径为2,外圆半径为3,高为8,所以其体积为8×(π×32-π×22)=40π.10.D点拨:由俯视图易得,最底层有4个小立方体,由左视图易得,第二层最多有3个小立方体、最少有1个小立方体,那么组成这个几何体的小立方体的个数可能是5个、6个或7个.二、11.主视图;左视图12.②13.914.6点拨:由正方体展开图的特点可知,2和6所在的面是相对的两个面;3和4所在的面是相对的两个面;1和5所在的面是相对的两个面.∵2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字之和的最小值是6.15.22点拨:综合三视图可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5(个),∴这个几何体的表面积是5×6-8=22.16.15点拨:过点A作AB⊥DC于点B,由题意可知,AB的长即为皮球的直径.易得∠BAC=30°,所以AB=AC·cos 30°=103×32=15(cm),故皮球的直径是15 cm.17.34;⎝⎛⎭⎪⎫154,018.923点拨:如图,由正三角形的性质可以得出∠BAC=∠B=∠BCA=60°,由三个筝形全等可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连接AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD =x cm,则AO=2x cm,由勾股定理就可以求出AD=3x cm,由矩形的面积公式就可以表示出纸盒的侧面积,由二次函数的性质就可以求出结论.三、19.解:(1)如图,P 点即为路灯灯泡所在的位置.(2)如图,线段EF 即为小华此时在路灯下的影子. 20.解:(1)如图所示.(2)221.解:(1)该正方体在平面α上的正投影图形是矩形(中间有一条竖线).(2)连接BD .∵该正方体的棱长为a cm , ∴BD =a 2+a 2=2a (cm).∴投影MNPQ 的面积为2a ·a =2a 2(cm 2). 22.解:∵AE ∥BD ,∴△AEC ∽△BDC . ∴AC BC =EC DC .又AC =AB +BC ,DC =EC -ED ,EC =3.9,ED =2.1,BC =1.2, ∴AB +1.21.2= 3.93.9-2.1,解得AB =1.4(m ). 答:窗口的高度为1.4 m . 23.解:(1)这个几何体是正三棱柱.(2)如图所示.(答案不唯一)(3)S 侧=3×4×10=120(cm 2).24.解:由题意,得AB ⊥BH ,CD ⊥BH ,FG ⊥BH .在Rt △ABE 和Rt △CDE 中, ∵AB ⊥BH ,CD ⊥BH , ∴CD ∥AB .∴Rt △ABE ∽Rt △CDE . ∴CD AB =DE DE +BD.同理可得Rt △ABH ∽Rt △FGH , ∴FG AB =HG HG +GD +BD . 又∵CD =FG =1.7, ∴DE DE +BD =HG HG +GD +BD . ∵DE =3,DG =5,GH =5, ∴33+BD =55+5+BD , 解得BD =7.5(m).∴AB =CD·(DE +BD )DE =1.7×(3+7.5)3=5.95(m).答:路灯杆AB 的高度为5.95 m.。
人教版数学九年级下册 第二十九章 基础过关测试卷(解析版)
人教版数学九年级下册第二十九章基础过关测试卷一、选择题1.(2019湖北天门中考,2)如图所示的正六棱柱的主视图是( ) 2.(2019广西贺州中考,4)如图是某几何体的三视图,则该几何体是( )A.长方体B.正方体C.三棱柱D.圆柱3.如图所示,投影线的方向如箭头所示,它的正投影是( )4.(2019江苏镇江中考,14)一个物体如图所示,它的俯视图是( )5.六个大小相同的正方体搭成的几何体如图所示,其主视图是( )6.在同一时刻,两根长度不等的木杆置于阳光下,但它们的影长相等,则它们的相对位置是( )A.两根木杆都垂直于地面B.两根木杆平行地斜插在地面上C.两根木杆不平行D.一根木杆倒在地上7.如图,小明夜晚从路灯下的A处走到B处,在这一过程中,他在路上的影子( )A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长8.(2019山东滨州中考,4)如图所示,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( )A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是49.如图是一个由若干个小正方体组成的几何体的三视图,则该几何体最多可由几个小正方体组合而成?( )A.6个B.9个C.11个D.13个10.如图是某几何体的三视图,则该几何体的体积是( )A.318B.3108C.354D.3216二、填空题11.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是________.(说出一种形状即可)12.在如图所示的几何体中,其三视图中有矩形的是____.(写出所有正确答案的序号)13.如图所示是6个棱长为1的立方体组成的几何体,其俯视图的面积是____.14.一天小明和爸爸在阳光下的操场上散步,小明测得在同一时刻他和爸爸的影子长度分别是2.1 m和2m,已知小明爸爸的身高是1.8 m,去年两人一样高,则小明今年长高了____cm.15.如图,已知路灯离地面的高度AB为4.8 m,身高为1.6 m的小明垂直站立在D处的影长为2m,那么此时小明离AB的距离BD为____m.16.如图,一电线杆AB的高度为10米,当太阳光线与地面的夹角为60°时,其影长AC为____米.17.如图是一个长方体的主视图、左视图与俯视图(单位:cm),根据图中数据,计算这个长方体的体积是____.18.如果一个圆锥的主视图是等边三角形,俯视图是面积为4πcm²的圆(有圆心),那么这个圆锥的高是____.三、解答题19.画出如图所示几何体的三视图.20.如图所示,太阳光线AC和A'C'是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么这两个建筑物是否一样高?请说明理由.21.一个几何体的三视图如图所示(单位:cm),根据图示的数据计算该几何体的侧面积和体积.22.如图所示,小欣站在灯光下,投在地面上的影长AB= 2.4 m,蹲下来,则影长AC= 1.05 m,已知小欣的身高AD= 1.6 m,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH.23.学校厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的个数与累积高度的关系如下表:(1)当一摞碟子有x个时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,其三视图如图所示,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.第二十九章基础过关测试卷1.B题图所示的正六棱柱的主视图是矩形,看见的两条棱用实线表示.故选B.2.B 三个视图为全等的正方形,则该几何体是正方体,故选B.3.A该几何体的正投影为矩形,看得见的棱用实线表示,故选A.4.D该几何体可看成两部分,下面的长方体的俯视图是矩形,上方的长方体的俯视图也是矩形,看得见的棱用实线表示.故选D.5.C从正面看有三列,从左起第一列有一个正方形,第二列有两个正方形,第三列有一个正方形,C符合题意.故选C.6.C在同一时刻,两根木杆置于阳光下,它们的影长相等,那么这两根木杆的顶部到地面的垂直距离相等,又因为木杆的长度不等,所以两根木杆不平行,故选C.7.A当他从A处走到B处时,光线与地面的夹角越来越小,小明在地面上的影子越来越长,故选A.8.A观察该几何体可知,主视图有四个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有四个小正方形,面积为4,A正确.故选A.9.C由三视图知该几何体由3层小正方体组成,最下面一层有6个小正方体,中间一层最多有4个小正方体,最上面一层有1个小正方体,故最多有6+4+1= 11个小正方体,故选C.10.B由三视图可得,该几何体是正六棱柱,其底面正六边形的边长为6,高是2,所以该几何体的体积=6×43×6²×2= 1083,故选B.11.答案:矩形(或正方形或平行四边形)解析:矩形玻璃窗户在阳光下的投影形状的对边应该是相等的,所以影子的形状可能是矩形或正方形或平行四边形.12.答案:①②解析:长方体的主视图、左视图、俯视图都是矩形;圆柱的主视图是矩形,左视图是矩形,俯视图是圆;圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆.13.答案:5解析:由题中几何体知俯视图由5个正方形组成,故其俯视图的面积为5.14.答案:9解析:设小明今年的身高是x m,由题意得21.28.1=x,解得x= 1.89.1.89-1.8=0.09(m),0.09 m=9 cm,故小明今年长高了9 cm.15.答案:4解析:易知DE∥AB,∴△CDE∽△CBA,∴ABDECBCD=,即8.46.12=CB∴CB=6 m.∴BD=BC-CD=6-2=4(m).16.答案:3310解析:在Rt△ABC中,∠ACB= 60°,∵AB=10米,tan 60°= 310==ACACAB,∴AC=3310米.17.答案:24 cm³解析:由该几何体的主视图及左视图都是矩形,俯视图也是一个矩形,可知这个几何体是一个长方体,故该几何体的体积为3×2×4= 24 cm³.18.答案:23cm解析:设圆锥的底面圆的半径为r cm,则πr²= 4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4 cm,所以该圆锥的高=2422 =23cm.19.解析:该几何体的三视图如图所示.20.解析:这两个建筑物一样高.理由:∵AB⊥BC,A'B'⊥B'C'.∴∠ABC=∠A'B'C'= 90°.∵AC∥A'C',∴∠ACB= ∠A'C'B'.在△ABC和△A'B'C'中,.∴△ABC≌△A'B'C'(ASA),∴AB=A’B’.故这两个建筑物一样高,21.解析:根据三视图可得该几何体是一个三棱柱,其侧面积为3×4×6=72(cm²).体积为21×4×4sin 60°×6= 243( cm³).22.解析:∵M是AD的中点,∴AM=MD.∵AD∥PH,∴△ADB∽△HPB,△AMC∽△HPC.∴AB: HB=AD: PH,AC: AM=HC: PH,即2.4:(2.4+AH)= 1.6: PH,1.05: 0.8=(1.05+HA):PH,解得PH= 7.2 m.故灯离地面的高度PH为7.2 m.23.解析:(1)由题表可知,每增加一个碟子累积高度增加1.5 cm,当一摞碟子有x个时,累积高度为2+1.5(x-1)=(1.5x+0.5) cm.(2)由题图可知,共有3摞,左前一摞有4个碟子,左后一摞有5个碟子,右边一摞有3个碟子,共有3+4+5= 12个碟子,叠成一摞后的累积高度为1.5×12+0.5=18.5(cm).。
人教版九年级数学下册第二十九章-投影与视图综合测评试卷(含答案解析)
人教版九年级数学下册第二十九章-投影与视图综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,该几何体的俯视图是A.B.C.D.2、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=()A.7.2 B.6.6 C.5.7 D.7.53、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.12 B.16 C.18 D.244、如图几何体的主视图是()A.B.C.D.5、一个几何体从不同方向看到的图形如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体6、如图所示的几何体的左视图是()A.B.C.D.7、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为()A.6 B.7 C.8 D.98、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.9、下列哪种光线形成的投影是平行投影()A.太阳B.探照灯C.手电筒D.路灯10、如图是由4个相同的正方体组成的立体图形,它的左视图是()A. B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加_____个小正方体,该几何体可成为一个正方体.2、一个几何体由若干大小相同的小正方体搭成,如图分别是从它的正面、上面看到的形状图,若组成这个几何体的小正方体最少需要m个,最多需要n个,则m﹣n=____.3、如图所示是一个几何体的三视图,这个几何体的名称是___________4、当你晨练时,你的影子总在你的正后方,则你是在向正__方跑.5、某立体图形的三视图中,主视图是矩形,请写出一个符合题意的立体图形名称:_________.三、解答题(5小题,每小题10分,共计50分)1、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图.2、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.3、马路边上有一棵树AB,树底A距离护路坡CD的底端D有3米,斜坡CD的坡角为60度,小明发现,下午2点时太阳光下该树的影子恰好为AD,同时刻1米长的竹竿影长为0.5米,下午4点时又发现该树的部分影子落在斜坡CD上的DE处,且BE CD,如图所示.(1)树AB的高度是________米;(2)求DE的长.4、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉个立方块.5、画出从3个方向看如图所示几何体的形状图.---------参考答案-----------一、单选题1、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.【详解】解:根据题意得:D选项是该几何体的俯视图.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.2、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可.【详解】解:∵AE⊥OD,OG⊥OD,∴AE//OG ,∴∠AEB =∠OGB ,∠EAB =∠GOB ,∴△AEB ∽△OGB , ∴AE AB OG BO =,即 1.65.65AB AB =+, 解得:AB =2m ;∵OA 所在的直线行走到点C 时,人影长度增长3米,∴DC =AB +3=5m ,OD =OA+AC+CD =AC+10,∵FC∥GO ,∴∠CFD =∠OGD ,∠FCD =∠GOD ,△DFC ∽△DGO , ∴FC CD GO DO=, 即1.655.610AC =+, 解得:AC =7.5m .所以小方行走的路程为7.5m .故选择:D .【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.3、A【分析】由主视图所给的图形可得到俯视图的对角线长为的体积公式底面积乘以高即为这个长方体的体积.【详解】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为,∴a2+a2=()2,解得a2=4,∴这个长方体的体积为4×3=12.故选A.【点睛】本题主要是考查三视图的基本知识以及长方体体积计算公式.解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.4、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解.【详解】解:从正面看,主视图是两个长方形.故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.5、B【分析】根据各个几何体的三视图,依次判别即可;【详解】解:A、球的三视图均为圆形;B、圆柱的三视图与题图相符;C、圆锥的主视图和左视图为等腰三角形;D、立方体的三视图均为四边形.故选:B.【点睛】本题考查了由三视图判断几何体,熟悉相关性质是解题的关键.6、B【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线.故选:B.【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.7、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.8、B【分析】根据既可以堵住圆形空洞,又可以堵住方形空洞从物体的三视图中即有圆形又有正方形的物体可以堵住空洞,然后对各选项的视图进行一一分析即可.【详解】解:∵既可以堵住圆形空洞,又可以堵住方形空洞,∴从物体的三视图来看,三视图中具有圆形和方形的可以堵住带有圆形空洞和方形空洞的小木板,A.正方体的三视图都是正方形,没有圆形,不可以是选项A;B.圆柱形的直径与高相等时的正视图与左视图都是正方形,俯视图是圆形,具有圆形与正方形,可以是选项B,C.圆锥的正视图与左视图都是三角形,俯视图数圆形,没有方形,不可以是选项C;D.球体的三视图都是圆形,没有方形,不可以是选项D.故选择B.【点睛】本题考查物体能堵住圆形空洞和方形空洞,实际上是考查物体的视图,掌握物体三视图中找出具有圆形和方形的物体是解题关键.9、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.10、A【分析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.【详解】从左面看所得到的图形为A选项中的图形.故选A【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.二、填空题1、4【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解.【详解】解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,8﹣4=4(个).故至少再加4个小正方体,该几何体可成为一个正方体.故答案为:4.【点睛】本题主要考查三视图,能够根据三视图想象出立体图是解题的关键.2、﹣4【解析】【分析】由主视图和俯视图,判断最多的正方体的个数即可解决问题.【详解】解:由主视图和俯视图可确定所需正方体个数多时的俯视图为:最多的小正方形个数时:∴n=1+2+2+2+3+3=13,最少的小正方形个数时:∴m=1+1+1+2+1+3=9,∴m-n=9-13=﹣4,故答案为:﹣4【点睛】此题主要考查了由三视图判断几何体,根据主视图和俯视图画出所需正方体个数最多和最少的俯视图是关键.3、圆柱体##圆柱【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱体.故答案为:圆柱体.【点睛】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力.4、东【解析】利用平行投影的性质,得出影子的位置,即可得出答案.【详解】当你晨练时,太阳从东方,人的影子向西,所以当你的影子总在你的正后方,则你是在向正东方跑.故答案为:东.【点睛】本题主要考查了平行投影的性质,得出影子与太阳的位置关系是解题关键.5、圆柱【解析】【分析】根据三视图的定义求解即可.【详解】解:圆柱的主视图是矩形,故答案为:圆柱.【点睛】本题考查三视图,解题的关键是掌握三视图的定义.三、解答题1、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【点睛】本题考查了几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字.2、(1)见解析;(2)路灯O与地面的距离为3m【分析】MA NB并延长,两条线的交点就是灯光的位置;(1)由题意连接,,(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为所求;(2)作OF ⊥MN 交AB 于E ,如图,AB =1.2m ,EF =1.2m ,MN =2m ,∵AB MN ∥,∴△OAB ∽△OMN ,∴AB :MN =OE :OF , 即1.2 1.2=2OF OF,解得OF =3(m ). 经检验:符合题意答:路灯O 与地面的距离为3m .【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.3、(1)6;(2)−32)米【分析】(1)根据在同一时刻物高和影长成正比,即可求出结果;(2)延长BE 交AD 延长线于F 点,根据30度角的直角三角形即可求出结果.【详解】解:(1)∵同时刻1米长的竹竿影长为0.5米,AD =3米,∴树AB 的高度是6米;故答案为:6;(2)如图,延长BE ,交AD 于点F ,∵AB =6,∠CDF =60°,BE ⊥CD ,∴∠DFE =30°,∴AF =tan30AB =︒63, ∴DF =AF AD -=63−3,∴DE =12DF =12 (63−3)=(33−32)米.【点睛】本题考查了解直角三角形的应用以及平行投影.解决本题的关键是作出辅助线得到AB 的影长.4、(1)见详解;(2)6【分析】(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数.【详解】解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图故答案为:6.【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”.5、见解析【分析】从正面看有3列,每列小正方形数目分别为1,3,1;从左面有1列,小正方形数目为3;从上面看有3列,每行小正方形数目分别为1,1,1;【详解】解:如图所示:【点睛】本题考查了实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。
人教版九年级数学下册第二十九章综合素质评价含答案 (2)
人教版九年级数学下册第二十九章综合素质评价一、选择题(每题3分,共30分)1.下列光线所形成的是平行投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2.【2022·丽水】如图是运动会领奖台,它的主视图是()3.【教材P98例3变式】【2022·黔东南州】一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥4.正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.下列四个立体图形中,它们各自的三视图都相同的是()6.如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图不变,左视图不变7.【2022·黑龙江】如图是由一些完全相同的小正方体搭成的几何体的三视图,这个几何体只能是()8.【教材P92习题T1改编】如图①②③④是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序排列正确的一项是()A.④③①②B.①②③④C.②③①④D.③①④②9.【2021·东营】已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°10.如图②是图①所示长方体的三视图,若用S表示面积,Sa2,S左=a2+a,则S俯=()主=A.a2+a B.2a2C.a2+2a+1 D.2a2+a二、填空题(每题3分,共24分)11.写出一个在三视图中左视图与主视图完全相同的几何体:__________.12.如图,晚上小亮从路灯下经过,在小亮由A处径直走到B 处这一过程中,他在地上的影子长度的变化情况是____________.13.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是________cm2.14.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2 m,树影BC=3 m,树与路灯的水平距离BP=4.5 m,则路灯的高度OP为________.15.对于下列说法:①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体投影的长短在任何情况下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④看书时人们之所以使用台灯,是因为台灯发出的光线是平行光线.其中正确的是________(把所有正确说法的序号都填上).16.如图,这是圆桌正上方的灯泡(看成一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2 m,桌面距地面1 m,灯泡距地面3 m,则地面上阴影部分的面积是__________.17.三棱柱的三视图如图,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为________cm.18.【教材P102习题T5变式】由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图,则搭成该几何体的小正方体有________个.三、解答题(19,20题每题9分,其余每题12分,共66分)19.如图,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻,AB在阳光下的投影BC=4 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量立柱AB的投影长时,同时测出立柱DE在阳光下的投影长为6m,请你计算立柱DE的长.20.画出图中几何体(上半部分为正六棱柱,下半部分为圆柱)的三视图.21.【教材P89探究变式】如图,已知线段AB=2 cm,投影面为P.(1)当AB垂直于投影面P时(如图①),请画出线段AB的正投影;(2)当AB平行于投影面P时(如图②),请画出它的正投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图③中画出线段AB的正投影,并求出其正投影的长.22.如图,路灯(点P)距地面9 m,身高1.5 m的小云从距路灯的底部(点O)20 m的A点,沿AO方向行走14 m到点B时,小云影子的长度是变长了还是变短了?变长或变短了多少米?23.为加快新农村建设,某市投入资金建设新型农村社区.如图为住宅区内的两幢楼,它们的高AB=CD=30 m,现需了解甲楼对乙楼采光情况的影响.当太阳光线与水平线的夹角为30°时,试求:(1)若两楼间的距离AC=24 m,则甲楼落在乙楼上的影子有多高(结果保留根号)?(2)若甲楼的影子刚好不影响乙楼,则两楼之间的距离应当有多远(结果保留根号)?24.【教材P110复习题T6变式】如图①是一种包装盒的平面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型最确切的名称是________;(2)如图②是根据a,h的取值画出的几何体的主视图和俯视图,请在网格中画出该几何体的左视图;(3)在(2)的条件下,已知h=20 cm,求该几何体的表面积.答案一、1.A2.A3.B4.D5.A6.C7.A 8.A9.C10.A二、11.正方体(答案不唯一)12.先变短后变长13.1814.5 m15.①16.0.81π m217.618.6或7三、19.解:(1)如图,EF是此时DE在阳光下的投影.(2)由(1)得AC∥DF,∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴ABDE=BCEF.∵AB=5 m,BC=4 m,EF=6 m,∴5DE=46,解得DE=7.5 m.答:立柱DE的长为7.5 m.20.解:如图所示.21.解:(1)画图略.(2)画图略.AB的正投影长2 cm.(3)画图略.AB的正投影长 3 cm.22.解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴MAMO=ACOP,即MA20+MA=1.59,解得MA=4 m.同理,由△NBD∽△NOP,可求得NB=1.2 m.故小云影子的长度变短了,变短了4-1.2=2.8(m).23.解:(1)∵AB=CD=30 m,BA⊥AC,CD⊥AC,∴四边形ABDC是矩形.∴BD=AC=24 m,∠BDE=90°.∵∠DBE=30°,∴设DE=x m,则BE=2x m.∴在Rt△BDE中,BD=BE2-DE2=(2x)2-x2=3x(m).∴3x=24,解得x=83.∴EC=CD-DE=(30-83)m.答:甲楼落在乙楼上的影子有(30-83)m高.(2)如图,当太阳光照射到点C时,甲楼的影子刚好不影响乙楼.在Rt△ABC中,AB=30 m,∠ACB=30°,∴BC=2AB=60 m.在Rt△ABC中,由勾股定理得AC=BC2-AB2=602-302=303(m).答:若甲楼的影子刚好不影响乙楼,则两楼之间的距离应当为30 3m.24.解:(1)直三棱柱(2)如图所示.(3)由题意可得a2+a2=h2,h=20 cm,解得a=10 2 cm(负值舍去).所以该几何体的表面积为12×(102)2×2+2×102×20+202=600+4002(cm2).11。
初中九年级数学下册 第二十九章综合测试题附答案
人教版九年级数学下册第二十九章综合测试卷03一、选择题(每小题4分,共32分)1.图29-16是北半球一根电线杆在一天中不同时刻的影子图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①2.若木棒长为1.2 m,则它的正投影长一定()A.大于1.2 mB.小于1.2 mC.等于1.2 mD.小于或等于1.2 m3.(2014·四川宜宾)如图29-17,放置的一个机器零件(图①),若其主视图如图②所示,则其俯视图是()A B C D4.(2013·广东茂名)如图29-18,由两个相同的正方体和一个圆锥组成一个立体图形,其俯视图是()A B C D5.(2013·山东威海)图29-19是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变6.(2013·山东聊城)如图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是()A .3B .4C .5D .67.如图29-21,晚上小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间函数关系的图象大致为()A B C D8.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A .66B .48C .36D .57二、填空题(每小题5分,共20分)9.一张桌子上摆放若干碟子,从三个方向上看,三种视图如图29-23所示,则这张桌子上共有碟子__________个.10.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度.如图29-24(示意图),在同一时刻,身高为1.6 m 的小明(AB )的影子(BC )长是3 m ,而小颖(EH )刚好在路灯灯泡G 的正下方点H ,并测得 6 m HB =.那么路灯灯泡的垂直高度GH =________m .11.如图29-25,在太阳光下,一电线杆AB 的影子分别落在了地上和墙上,小明竖起1 m 高的直杆,量得其影长为0.5 m ,此时,他又量得电线杆AB 落在地上的影子BD 长为3 m ,落在墙上的影子CD 的高为2 m ,则电线杆AB =________.12.如图29-26,在平面直角坐标系内,一点光源位于点0,5A ()处,CD x ⊥轴,垂足为点D ,点C 的坐标为3,1(),则CD 在x 轴上的影长为________,点C 的影子B 的坐标为________.三、解答题(共48分)13.(12分)图29-27是由若干个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图和左视图.14.(12分)某晚的海滨路,小明和小亮与安装有路灯的电线杆整齐划一地排列在马路的一侧,地面上有他们两人在路灯灯光下的影子(如图29-28①所示).在图29-28②中,线段AB 和CD 分别表示小明和小亮的身高,'A B 和'C D 表示所对应的影子。
人教版九年级数学下册 第二十九章综合测试卷及答案
人教版九年级数学下册第二十九章综合测试卷02一、选择题(30分)1.下列图形中,主视图为图①的是()① A B C D2.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A.6B.5C.4D.33.在同一时刻,将两根不等长的杆子置于阳光下,使它们的影长相等,那么这两根杆子的相对位置是()A.两根都垂直于地面B.两根平行斜插在地上C.两根杆子不平行D.一根倒在地面上4.如图是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()① A B C D5.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,小正方体的个数最多有()A.5个B.7个C.8个D.9个6.一个几何体的三视图如图所示,这个几何体的侧面积为( ) A .22π cmB .24π cmC .28π cmD .216π cm7.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有() A .4个B .5个C .6个D .7个8.小颗同学到学校领来n 盒粉笔,整齐地擦在讲桌上,其三视图如图所示,则a 的值是( ) A .6B .7C .8D .99.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( ) A .60πB .70πC .90πD .160π10.如图是由8个相同的小立方块搭成的几何体,它的三个视图都是22⨯的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为22⨯的正方形,则最多能拿掉小立方块的个数为( ) A .1B .2C .3D .4二、填空题(24分)11.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为________.12.如图所示,正方形ABCD 的边长为3 cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是________.13.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是________.14.如图是由一些小立方块所搭几何体的三视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块15.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是________.15题图第16题图第17题图第18题图16.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是________.17.看图,小军小珠之间的距离为2.7 m.他们在同一盏路灯下的是长分别为1.5 m,1.3 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高约为________m.(精确到1 m)18.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有几________种.三、解答题(4+6+8+8+10+10=46分)19.分别将下列四个物体与其相应的俯视图连起来.CD20.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,.(1)请你在图中画出路灯灯泡所在的位置(用点P表示).(2)画出小华此时在路灯下的影子(用线段EF表示).21.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图. (1)小立方体的个数不可能是_________.(填字母) A .6B .7C .8D .9(2)说明你的理由.22.如图是一个由若干个同样大小的正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方体的个数.(1)请你画出它的主视图和左视图.(2)如果每个正方体的楼长均为2厘米,那么该几何体的表面积是多少?23.根据如图所示的视图(单位:mm ),求该物体的体积.24.如图,AB 和DE 是直立在地面上的两根立柱, 5 m AB =,某一时刻,AB 在阳光下的投影 4 m BC =. (1)请你在图中画出此时DE 在阳光下的投影.(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6 m ,请你计算DE 的长.第二十九章综合测试答案一、 1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】B 8.【答案】B 9.【答案】B 10.【答案】B 二、11.【答案】20π 12.【答案】218 cm 13.【答案】5 14.【答案】54 15.【答案】6 16.【答案】8 17.【答案】3 18.【答案】10 三、19.【答案】解:①—d ②—b ③—a ④—c 21.【答案】解:(1)D(2)根据左视图可以推测1d e ==,a ,b ,c 中至少有一个为2.当a ,b ,c 中一个为2时,小立方体的个数为112116++++=;当a ,b ,c 中两个为2时,小立方体的个数为112217++++=;当a ,b ,c 三个都为2时,小立方体的个数为112228++++=.所以小立方体的个数可能为6,7,8.22.解:(1)如图所示.(2)438152⨯=(平方厘米).故该几何体的表面积是152平方厘米.23.【答案】解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为()223π (162)16π(82)4 1 088πmm ÷⨯+÷⨯=.24.【答案】解:(1)作法:连接AC ,过点D 作DF AC ∥,交直线BE 于点F ,则EF 就是DE 的投影。
人教版九年级数学下册第二十九章综合素质评价含答案
人教版九年级数学下册第二十九章综合素质评价一、选择题(每题3分,共30分)1.唐代李白《日出行》云:“日出东方隈,似从地底来”,描述的是看日出的景象,意思是太阳从东方升起,似从地底而来.如图,此时观测到地平线和太阳所成的视图可能是()2.【教材P99练习(1)变式】【2022·黔东南州】一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥3.下列各图中,物体的影子不正确的是()4.擎檐柱是木结构建筑用以支撑屋面出檐的柱子,多用于重檐或重檐带平座的建筑物上,用来支撑挑出较长的屋檐及角梁翼角等,如图①的晋商博物馆大门有若干根擎檐柱.如图②是一根擎檐柱的结构图,它是由一根圆柱形柱子中间挖去一个柱体后形成的,它的左视图是()5.【教材P89探究变式】在一个晴朗的上午,乐乐拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是()6.【教材P101习题T1改编】【2021·德阳】图中几何体的三视图是()7.北京冬奥会吉祥物“冰墩墩”“雪容融”深受广大人们的喜爱,体现了“瑞雪兆丰年”的寓意及包容交流拼搏的理念.一名艺术爱好者雕刻制作了“冰墩墩”“雪容融”,并在中午12点观测到高为165 cm的“冰墩墩”的影长为55 cm,此时在同一地点的“雪容融”的影长为60 cm,那么“雪容融”的高为()A.160 cm B.170 cm C.180 cm D.185 cm8.如图,在一条笔直的小路上有一盏路灯,晚上小雷从点B处径直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是()(第8题)(第9题)9.如图是某几何体的三视图,根据图中数据,可得该几何体的体积为() A.9π B.40πC.20π D.16π10.如图所示的是某三棱柱及其三视图,在△PMN中,∠P=90°,PM=6,cos M=35,则FG的长为()A.8 B.6 C.5 D.4.8二、填空题(每题3分,共24分)11.皮影戏(如图)是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是__________(填“平行投影”或“中心投影”).(第11题)(第13题)(第14题)12.工人师傅要制造某一工件,他想知道工件的高,需要看三视图中的__________或__________.13.如图,某学生身高AB=1.5 m,在灯光下,他从灯杆底部点D处,沿直线前进到达点B处,在B处他的影长为PB,经测量此时恰有BD=2PB,则灯杆CD的高度为________m.14.一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看得到的平面图形如图所示,那么桌上共有________枚硬币.15.【教材P103习题T10变式】如图是某圆锥的主视图和左视图,该圆锥的侧面积是________.(第15题) (第16题)16.如图,在某一时刻,太阳光线与地面成60°的角,一个皮球在太阳光照射下的投影长为10 3 cm,则这个皮球的直径是________cm.17.如图是用7块相同的小长方体搭成的几何体,若拿走一块长方体后,该几何体的主视图和左视图都没改变,则这块长方体的序号是________.(第17题) (第18题)18.【教材P109复习题T3拓展】如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则组成这个几何体的小立方体的个数可能是____________.三、解答题(19,20,24题每题10分,其余每题12分,共66分)19.如图,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为8 m,请你计算DE的长.20.运动会的领奖台可以近似看成如图所示的立体图形,请你画出它的三视图.21.由几个相同的棱长为1的小立方块搭成的几何体的俯视图如图①所示,小正方形中的数字表示该位置的小立方块的个数.(1)请在上面方格纸(如图②)中分别画出这个几何体的主视图和左视图.(2)根据三视图,请你求出这个几何体的表面积.22.小明的身高如图中线段AB所示,在路灯下,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子;(2)如果小明的身高AB=1.6 m,他的影子长AC=1.4 m,且他到路灯的距离AD=2.1 m,求灯泡的高.23.第24届冬奥会吉祥物“冰墩墩”收获无数“迷弟”“迷妹”而一“墩”难求.为了满足需求,其中一间正规授权生产厂通过技术改造来提高产能,两次技术改造后,由日产量2 000个扩大到日产量2 420个.(1)求这两次技术改造日产量的平均增长率;(2)该生产厂还设计了三视图如图所示的“冰墩墩”盲盒(单位:cm),请计算这种盲盒的表面积.24.马路边上有一棵树AB,树底A距离护路坡CD的底端D有3 m远,斜坡CD 的坡角为60°.小明发现,下午2点时太阳光下该树的影子恰好为AD,在同一时刻1 m长的竹竿影长为0.5 m;下午4点时又发现该树的部分影子落在斜坡CD上的DE处,且BE⊥CD,如图所示.(1)树AB的高度为________m;(2)求DE的长.答案一、1.B 2.B 3.B 4.D 5.C 6.A7.C8.C9.B10.D点拨:如图,过点P作PQ⊥MN于点Q.由图可知FG=PQ.∵cos M=35=MQPM,PM=6,∴MQ=18 5.∴PQ=PM2-MQ2=4.8.∴FG=PQ=4.8.二、11.中心投影12.主视图;左视图13.4.514.1115.20π16.1517.⑤18. 5或6或7点思路:由俯视图易得,最底层有4个小立方体,由左视图易得,第二层最多有3个小立方体,最少有1个小立方体,那么组成这个几何体的小立方体的个数可能是5或6或7.三、19.解:(1)如图,连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为此时DE在阳光下的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴ABDE=BCEF.∵AB=4 m,BC=3 m,EF=8 m,∴4DE=38,解得DE=323m.20.解:如图所示.21.解:(1)如图所示.(2)这个几何体的表面积为(3+4+5)×2=24.22.解:(1)如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)由已知可得ABDO=CACD,∴1.6DO=1.41.4+2.1,解得DO=4 m.答:灯泡的高为4 m.23.解:(1)设这两次技术改造日产量的平均增长率为x.由题意得2 000(1+x)2=2 420,解得x=10%(负值已舍去).答:这两次技术改造日产量的平均增长率为10%.(2)由三视图可知,这种盲盒为圆柱纵切的一半,其中底面半径为4 cm,高为8 cm,∴这种盲盒的表面积为8×8+π×42+8×π×4=(64+48π)cm2.24.解:(1)6(2)如图,延长BE交AD所在直线于点F.∵∠CDF=60°,BE⊥CD,∴∠DFE=30°.∴AF=ABtan 30°=63m.∴DF=AF-AD=(63-3)m.∴DE=12DF=12(63-3)=⎝⎛⎭⎪⎫33-32m.。
难点解析:人教版九年级数学下册第二十九章-投影与视图综合测评试卷(含答案详解)
人教版九年级数学下册第二十九章-投影与视图综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体,其俯视图是()A.B.C.D.2、如图所示的礼品盒的主视图是()A.B.C.D.3、一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个B.13个C.11个D.5个4、一个几何体是由几个大小相同的小立方块搭成的,从正面、左面、上面看到的这个几何体的形状图如图所示,则搭成这个几何体所需的小立方块的个数为( )A.8 B.7 C.6 D.55、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A.左视图和俯视图不变B.主视图和左视图不变C.主视图和俯视图不变D.都不变6、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为()A.6 B.7 C.10 D.17、下列几何体中,俯视图为三角形的是()A.B.C.D.8、如图所示的几何体,它的左视图是()A.B.C.D.9、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()A.B.C.D.10、如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、路灯下行人的影子属于______投影.(填“平行”或“中心”)2、如图是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为_______.3、如图是由6个大小相同的小正方体拼成的几何体,若去掉最左面的小正方体,则视图不发生改变的是________(填主视图、左视图或俯视图)4、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.5、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要_________个小正方体木块,最多需要_________个小正方体木块.三、解答题(5小题,每小题10分,共计50分)1、如图所示的几何体是由几个相同的小正方体排成3行组成的.(1)填空:这个几何体由个小正方体组成;(2)画出该几何体的三个视图.(用阴影图形表示)2、由5个相同的小正方体搭成的物体的俯视图如图所示,这个物体有几种搭法?3、一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.4、作图题:如图,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.请在方格中分别画出几何体的主视图、左视图.5、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图.(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示.请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数.---------参考答案-----------一、单选题1、D【分析】几何体的俯视图即为从上往下看,所看到的平面图形,由此判断即可.【详解】解:该几何体俯视图有2行,第一行有两个正方形,第二行右边有一个正方形,∴D选项图形符合题意,故选:D.【点睛】本题考查简单组合体的三视图识别,理解三视图的基本概念,灵活运用空间想象能力是解题关键.2、B【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从礼品盒的正面看,可得图形:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3、A【分析】根据主视图和左视图,分别找出每行每列立方体最多的个数,相加即可判断出答案.【详解】综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个,++++++++=(个),不可能有15个.所以最多有21211121213故选:A.【点睛】本题考查三视图,根据题目给出的视图,出每行每列的立方体个数是解题的关键.4、B【分析】易得这个几何体共有2层,底层5个,第二层有2个,共有7个.【详解】解:由从俯视图看到的形状图易得该几何体的最底层有5个小立方块,由从正面看到的形状图和从左面看到的形状图得第二层有2个小立方块,所以搭成这个几何体所需的小立方块的个数为7.故选B.【点睛】本题考查了三视图的知识点,解题的关键是掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”.5、A【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.【详解】解:若去掉1号小正方体,主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变;所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A.【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.6、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.故选:C.【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.7、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=错误,应该是a=6,b =11,a+b=17.故选:B.【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.19.D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.8、B【分析】根据从左边看得到的图形是左视图即可得到答案.【详解】解:它的左视图是.故选:B.【点睛】本题考查了简单几何体的三视图-左视图,理解左视图的定义“从左边看得到的图形是左视图”是解题关键,注意看不到但存在的线段要画成虚线.9、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.10、D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】解:从物体左面看,是左边2个正方形,右边1个正方形.故选:D..【点睛】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.二、填空题1、中心【解析】【分析】根据中心投影的概念填写即可.中心投影是指把光由一点向外散射形成的投影.解:路灯发出的光线可以看成是从一点发出的光线,像这样的光线所形成的投影叫做中心投影,故路灯下人的影子是中心投影.故答案为:中心.【点睛】本题主要考查了中心投影的概念,做题的关键是熟练掌握中心投影的概念,区别中心投影和平行投影概念.2、3π【解析】【分析】由三视图判断出几何体的形状以及相关长度,根据圆柱的体积公式计算即可.【详解】解:由三视图可知:该几何体是圆柱,该圆柱的底面直径为2,高为3,∴这个几何体的体积为2232π⎛⎫⨯⨯⎪⎝⎭=3π,故答案为:3π.【点睛】本题考查了几何体的三视图,圆柱的体积,解题的关键是判断出该几何体为圆柱.3、左视图【解析】【分析】画出原立体图形的三视图,与去掉小正方体的立体图形与三视图,对比即可得出答案.解:未去掉小正方形的立体图形的三视图为:,去掉最左面的小正方体后立体图形变为:其三视图,发现其主视图与俯视图都发生改变,只有左视图不发生改变.故答案为:左视图.【点睛】本题考查简单组合体的三视图,减少一个小正方体的组合体的三视图的变化,掌握简单组合体的三视图是解题关键.4、3【解析】【分析】根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得【详解】主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,∴这个几何题为圆柱体,∴这个圆柱体体积为2133ππ⨯⨯=故答案为:3π【点睛】本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.5、 10 16【解析】【分析】综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块.【详解】解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,故这个几何体最少有10个小正方形,最多有16个,故答案为:10,16.【点睛】本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果.三、解答题1、(1)10;(2)见解析【分析】(1)数出小立方体的个数即可;(2)根据三视图的画法画出主视图、左视图、俯视图.【详解】解:(1)根据几何体,在俯视图中标出:31221+110++++=个,故答案为:10;(2)三视图如图所示:【点睛】考查简单几何体的三视图的画法,解题的关键是掌握主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.2、3种,见解析【分析】根据俯视图分析底层有三个小正方形,上层一个,还有一个小正方体有3种放置即可.【详解】解:∵从小正方体搭成的物体的俯视图如图所示,是从物体的上方向下看得到的图形,∴从俯视图看,反映出两层,底层有3个小正方体,从前往后排,第一排两个,第二排一个,左对齐,上层有一个小正方体,在第一排中间偏右,∵有5个小正方体,还有一个小正方体与其他底层三个小正方形重叠或与二层重叠,底层从左边数第一排第一列不能重叠放置,上层小正方体不能固定,为此底层重叠放置有两种如图1,图2,与上层小正方体重叠一种图3,一共有3种搭法,它们的立体图分别如图.【点睛】本题考查由俯视图画立体图形,利用俯视图确定底层有3个小正方体,上层有一个小正方体,另一正方体有3个位置放法是解题关键.3、(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.4、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.【详解】解:如图所示:【点睛】本题考查简单组合体的三视图,理解视图的意义是解决问题的关键.5、(1)见解析;(2)见解析【分析】(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可.【详解】解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,如图所示:(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或两个正方体,,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2.根据题意,填图如下:【点睛】本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键.。
人教版九年级数学下册达标检测卷:第29章达标检测卷含答案试卷分析详解
第二十九章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下面四个几何体中,主视图是圆的几何体是()2.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属于同一种投影的有()(第2题) A.L、K B.C C.K D.L、K、C3.如图是一个几何体的三视图,则此几何体为()(第3题)4.如图是一个由多个相同小正方体堆积而成的几何体的俯视图.图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()(第4题)5.如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体个数是()A.2个B.3个C.4个D.6个(第5题)(第7题) 6.在同一时刻的阳光下,身高1.6 m的小强的影长是1.2 m,旗杆的影长是15 m,则旗杆的高为()A.16 m B.18 m C.20 m D.22 m7.如图(1)、(2)、(3)、(4)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序排列正确的一项是()A.(4)、(3)、(1)、(2) B.(1)、(2)、(3)、(4)C.(2)、(3)、(1)、(4) D.(3)、(1)、(4)、(2)8.有一个正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为()A.3 B.7 C.8 D.11(第8题)(第9题)(第10题)9.如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4,A′B′=23,则AB 与A′B′的夹角为()A.45°B.30°C.60°D.以上都不对10.如图是一个几何体的三视图,其中俯视图为等边三角形,则这个几何体的侧面积是()A.18 cm2B.20 cm2C.(18+23)cm2D.(18+43)cm2二、填空题(每题3分,共30分)11.投影可分为____________和____________.12.举两个俯视图为圆的几何体的例子:____________,____________.13.有下列投影:①阳光下遮阳伞的影子;②探照灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子,其中属于平行投影的是________.(填序号)14.一个长方体的主视图和左视图如图所示(单位:厘米),则其俯视图的面积是________平方厘米.(第14题)(第16题)(第18题)15.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为________m.16.如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影(正方形)示意图,已知方桌边长1.2 m,桌面离地面1.2 m,灯泡离地面3.6 m,则地面上阴影部分的面积为________.17.一个圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,则圆柱的表面积为________;体积为________.19.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:cm),计算出这个立体图形的表面积是________cm2.(第20题)20.如图是由8个相同的小立方块搭成的几何体,它的三视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为________.三、解答题(21题6分,22~24题各10分,25~26题各12分,共60分)21.如图所示:大王站在墙前,小明站在墙后,小明不能让大王看见,请你画出小明的活动区域.(第21题)22.如图,在一间黑暗的屋子里用一盏白炽灯照一个球.(第22题)(1)球在地面上的阴影是什么形状?(2)当把白炽灯向高处移时,阴影的大小怎样变化?(3)若白炽灯到球心的距离是1米,到地面的距离是3米,球的半径是0.2米,问:球在地面上的阴影的面积是多少?23.如图,正方形ABCD的边长为4,点M,N,P分别为AD,BC,CD的中点.现从点P观察线段AB,当长度为1的线段l(图中的黑粗线)以每秒1个单位长的速度沿线段MN从左向右运动时,l将阻挡部分观察视线,在△PAB区域内形成盲区.设l的左端点从M点开始,运动时间为t秒(0≤t≤3),△PAB区域内的盲区面积为y(平方单位).(第23题)(1)求y与t之间的函数关系式;(2)请简单概括y随t的变化而变化的情况.24.如图,已知线段AB=2 cm,投影面为P.(第24题)(1)当AB垂直于投影面P时(如图①),请画出线段AB的正投影;(2)当AB平行于投影面P时(如图②),请画出它的正投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图③中画出线段AB的正投影,并求出其正投影长.25.如图,某游乐园门口需要修建一个由正方体和圆柱组合而成的立体图形,已知正方体的棱长与圆柱的底面直径及高相等,都是0.8 m.(1)请画出它的主视图、左视图、俯视图;(2)为了好看,需要在这个立体图形表面刷一层油漆,已知油漆每平方米40元,那么一共需要花费多少元?(结果精确到0.1)(第25题)26.某数学兴趣小组,利用树影测量树高,如图,已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(第26题)(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.答案一、1.D 2.A 3.B 4.B 5.C 6.C7.A8.B点拨:可在一小正方体各个面上按图示要求标上数字,也可发挥空间分析与想象力作出判断,a=3,b=4,∴a+b=7.9.B10.A二、11.平行投影;中心投影12.圆柱;球(答案不唯一)13. ①②③④14.6 点拨:其俯视图如图.(第14题)15.12 16.3.24 m 217.24π;16π 点拨:由题意得底面半径r =42=2,高h =4,∴S 侧=2πrh =2π×2×4=16π,∴S 全=S 侧+2×S 底=16π+2×π×22=16π+8π=24π,V =πr 2·h =π×22×4=16π.18.7 点拨:根据题意得搭成该几何体的小正方体最多有1+1+1+2+2=7(个). 19.200 点拨:由三视图可知立体图形由上下两个长方体构成,上面长方体长4、宽2、高4,下面长方体长8,宽6、高2,去掉重合部分,立体图形表面积为:6×8×2+8×2×2+6×2×2+4×4×2+4×2×2=200(cm 2).20.2(第21题)22.解:(1)阴影是圆形;(2)白炽灯向高处移时,阴影会逐渐变小; (3)设球在地面上阴影的半径为x 米,抽象出图形如图,易知△ABC ∽△AED ,得AB AE =BCDE ,∴12-0.223=0.2x ,解得:x 2=38,则S 阴影=38π(平方米).(第22题)23.解:(1)∵正方形ABCD 的边长为4,点M ,N ,P 分别为AD ,BC ,CD 的中点, ∴AM =2,盲区为梯形,且上底为下底的一半,高为2, 当0≤t ≤1时,y =12(t +2t)·2=3t ,当1<t≤2时,y=12×(1+2)×2=3,当2<t≤3时,y=12[3-t+2(3-t)]·2=9-3t;(2)1秒内,y随t的增大而增大;1秒到2秒,y的值不变;2秒到3秒,y随t的增大而减小.24.解:(1)画图略.(3)画图略.AB的正投影长 3 cm.25.解:(1)如图所示.(第25题)(2)根据题意得0.8×0.8×5+0.8π×0.8=(0.64π+3.2)(m2),40×(0.64π+3.2)≈208.4(元).答:一共需要花费208.4元.26.解:(1)AB=AC·tan 30°=12×33=43(米).答:树高AB为43米.(2)当树与地面成60°角时影长最大(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大),最大影长为2AB=83米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间:45分钟 满分:100
分 题
序 一
二
三
总 分
结分人
核分人
得 分
一、选择题(每题3分,共24分)
1.下列图中是太阳光下形成的影子是
(
).
2.下列四个立体图形中,
主视图为圆的是( ).
3.从不同方向看一只茶壶,你认为是俯视效果图的是( ).
4.一个几何体的三视图如图所示,
则这个几何体是(
).
A .四棱锥
B . 四棱柱
C . 三棱锥
D . 三棱柱
(第3题)
(第4题)
5.如果用 表示1个立方体,
用 表示两个立方体叠加,用 表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).
6.长方体的主视图、
俯视图如图所示,则其左视图面积为( ).
(第5题)
(第6题)
第二十九章 综合达标训练卷
投影与视图
、
A.3
B
.
4C.12D.16
7.如图,路灯距地面8m,身高1.6m的小明从距离灯的底部(点O)20m的点A处,沿O A所在的直线行走14m到点B时,人影的长度().
A.增大1.5m B.减小1.5m
C.增大3.5m D.减小3.5m
(第7题) (第8题)
8.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为().
二、填空题(每题3分,共24分)
9.请写出三种视图都相同的两种几何体是.
10.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人”.
11.如图,甲、乙两盏路灯相距20m,一天晚上,当小刚从甲走到距路灯乙底部4m处时,发现自己的身影顶部正好接触到路灯乙的底部,已知小刚的身高为1.6m,那么路灯甲的高为m.
(第11题)(第12题)
12.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是
.13.如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方
形,则最多能拿掉小立方块的个数为.
.如图是由若干个大小相同的小正方体堆砌而成的几何体
积最小的是.
,那么其三种视图中面
(第13题)
(第14题)(第15题)(第16题).如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数可能是个.
14
15
) )
、
16.兴趣小组的同学要测量树的高度.
在阳光下,一名同学测得一根长为1m 的竹竿的影长为 0.4m ,
同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2m ,一级台阶高为0.3m ,如图所示,若此时落在地面上的影长为4.4m ,
则树高为
m .
三 解答题(第17、18题每题6分,第19、20题每题7分,第21、22 题每题8分,第23 题10 分, 共52分)
17.如图,快下降到地面的伞兵在灯光下的影子为A B ,
试确定灯源P 的位置,并画出竖立在地面上木桩的影子.(保留作图痕迹,不要求写作法)
(第17题)
18.下列(1)、(2)
的三视图不完整,请添线补充下列各几何体的三视图. (1
(2
, (第18题)
, 19.如图 高2
0m 的教学大楼在某一天的某一时刻在地面上的影子长15m 在教学楼前10m 处有一高为5m 的国旗杆,试问在这一时刻你能看到旗杆的影子吗? 通过计算说明.
(第19题)
20.如图,小华家(点 A 处)和公路(l )之间竖立着一块30 m 长且平行于公路的巨型广告牌 (D E )
,广告牌挡住了小华的视线,请在图中画出视点 A 的盲区,并将盲区的那段公路记为 B C ,一辆以60公里/小时匀速行驶的汽车经过公路B C 段的时间为6秒,已知广告牌和公路的距离为35m ,
求小华家到公路的距离.
(第20题)
21.把一个底面的边长为2的正方形,高为1的四棱柱,分别切去一个小正方体,一个小三棱柱,然后把它们分别叠合到原来的图形上面,得到三个新几何体,如图所示.
(1)试求新几何体的体积;
(2)画出新几何体投影线由物体上方射到下方的正投影.
(第21题)
22.如图是一个正六棱柱的主视图和左视图,求图中a 的值.
(第22题)
23.如图,花丛中有一路灯杆A B.在灯光下,小明在点D处的影长D E=3m,沿B D方向行走到达点G,D G=5m,这时小明的影长G H=5m.如果小明的身高为1.7m,求路灯杆A B的高度.(精确到0.1m)
(第23题)
10+
60×60
B C A F 1 第二十九章 综合达标训练卷(A
卷) .A 2.B 3.A 4.C 5.B 6.A 7.D 8.A 9.球体 正方体 10.中间 11.8
12.5 提示:
易得这个几何体共有2 层,由俯视图可得第一层立方体的个数为4,由主视图和左视图 可得第二层立方体的个数为1,则搭成这个几何
体的小立方体的个数是5. 13.2 14.左视图 1
5.6、7、8 16.11.8 17.图略 18.图略 21.(1
)二个新几何体的体积均为原四棱柱的体积,即 4个立方单位,V =4×2×2×1=16
; (2
)如图.
(第21题)
22. 3
19.设旗杆高为 A B ,过 A 作AG ∥ 光线 E C 交F B 的 , , ,
延长线于G 点.
,
23.
根据题意 得AB ⊥B H CD ⊥BH FG ⊥BH . 则 △A B G ∽ △E D C
∴ AB =BG .
在 R t △A B E 和 R t △C D E 中,
∵ A B ⊥B H ,C D ⊥B H , ED DC ∵ , , ,
∴ C D ∥A B ,可证得△A B E ∽ △C D E .
E D =20m C D =15m A B =5m
∴ CD = D E .
① ∴ B G =A B D C =5×15=3.75(m ), AB DE +BD ED
∴ G F 20. ( ).
同理FG = HG . ②
=10+3.75=1375 m AB HG +GD +BD 13.75<15,即G F <C D .
故教学楼挡住了光线,旗杆无法形成影子.
又 C D =F G =1.7m ,
由①② ,可得 D E =
HG , DE +BD 3
HG +GD +BD 即 3+B D = 5B
D , 解得B D =7.5m . ,
( ) ( ), 将B D =7.5代入① 得A B =5.95 m ≈6.0 m 即路灯杆A B 的高度约为6.0m .
(第19题)
20.①
盲区即为图中阴影部分.
(第20题)
B C =60×1000×6=100(m ).
②如图,过点A 作A F ⊥B C ,交 D E 于点P .
∵ D E ∥B C ,A F ⊥B C , ∴ △A D E ∽ △A B C ,P F =35m .
∴ DE =AP .
又 D E =30m ,B C =100m ,
∴ 30 =A F -35.
100 A F 解得A F =50(m ).
∴ 小华家到公路的距离为50m .。