无理数课件2.
合集下载
北师大版八年级数学上册《认识无理数》第2课时示范公开课教学课件
a ,b都不是整数,也不是分数,是无限不循环小数.
把下列各数表示成小数,你发现了什么?
有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.
定义
无限不循环小数称为无理数.
判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数.
你能找到其他的无理数吗?
分析
面积为2的正方形的边长a究竟是多少呢?
面积为2的正方形的边长a究竟是多少呢?
(1) 如下图,三个正方形的边长之间有怎样的大小关系?
1
a
面积为2
1
a
2
2
通过观察,可以直观得出:3个正方) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
还可以继续算下去吗?a可能是有限小数吗?
(2) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
边长a会不会算到某一位时,它的平方恰好等于2呢?为什么?a可能是有限小数吗?
假如a算到某一位时,它的平方恰好等于2,即a是一个有限小数,那么它的平方一定是一个有限小数,而不可能是2,所以边长a不会算到某一位时,它的平方恰好等于2,所以a不可能是有限小数.
重点
难点
数a确实存在,但又不是有理数,那它到底是什么数呢?
若a2=2,则a 分数, 整数, 有理数.( 填“是” 或“不是”)
不是
不是
不是
能不能确定一下a的大致范围?
∵ a2=2, 而12=1, 22=4,···∴ 12<a2<22 , 1< a< 2,而1.52=2.25, 2.25>2∴a的值一定小于1.5∴a的大致范围在1~1.5之间.
把下列各数表示成小数,你发现了什么?
有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.
定义
无限不循环小数称为无理数.
判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数.
你能找到其他的无理数吗?
分析
面积为2的正方形的边长a究竟是多少呢?
面积为2的正方形的边长a究竟是多少呢?
(1) 如下图,三个正方形的边长之间有怎样的大小关系?
1
a
面积为2
1
a
2
2
通过观察,可以直观得出:3个正方) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
还可以继续算下去吗?a可能是有限小数吗?
(2) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
边长a会不会算到某一位时,它的平方恰好等于2呢?为什么?a可能是有限小数吗?
假如a算到某一位时,它的平方恰好等于2,即a是一个有限小数,那么它的平方一定是一个有限小数,而不可能是2,所以边长a不会算到某一位时,它的平方恰好等于2,所以a不可能是有限小数.
重点
难点
数a确实存在,但又不是有理数,那它到底是什么数呢?
若a2=2,则a 分数, 整数, 有理数.( 填“是” 或“不是”)
不是
不是
不是
能不能确定一下a的大致范围?
∵ a2=2, 而12=1, 22=4,···∴ 12<a2<22 , 1< a< 2,而1.52=2.25, 2.25>2∴a的值一定小于1.5∴a的大致范围在1~1.5之间.
北师大版八年级数学上册第二章2.1认识无理数课件共23张PPT
讲授新课
一 无理数的认识
活动探究
活动:把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1
1
1
还有好多方法哦!课余时间再动手试一试, 比比谁找的多!
11 11
1
1
1
1
11 22 11 22
11 11
11 11
11 11
问题1:设大正方形的边长为a,则a满足什么条件? 因为S大正方形=2,所以a2=2.
追问1:a是一个什么样的数?a可能是整数吗?
从“数”的角度:
a
因为 a2=2, 而12=1, 22=4
所以 12<a2<22 ,
所以 1< a< 2,a不是整数
a
a
从“形”的角度:
A
取出一个三角形 C
B
在三角形ABC中,AC=1,BC=1,AB=a 根据三角形的三边关系:
AC-BC< a<AC+BC 所以0<a<2,且 a≠1,所以a不是整数
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.988 1<S<2.016 4
1.414<a<1.415
1.999 396<S<2.002 225
1.414 2<a<1.414 3 1.999 961 64<S<2.000 244 49
想一想 (1)边长a会不会算到某一位时,它的平方恰好等于2 呢?为什么? (2) a可能是有限小数吗?它会是一个怎样的数呢?
D.面积为1.44的正方形.
无理数的概念及认识
七上数学课件第2章:有理数与无理数-课件
10 10
9
15
1
3 1
456 1151
ሶ
ሶ
ሶ
ሶ
× 3. 5= ×(3+0. 5)= + × =
10
10 10
999
3330
想一想
4、小学里学过的有限小数和循环小数是有理数吗?
如:0.3,-3.11,0.333 …,0.2666.…
0.3=
-3.11=−
311
100
有限小数和循环小数都可以
负分数集合∶{
…};
-4.8、
整数集合∶{ 20、0、-13、-2020、…};
分数集合∶ {
…};
-4.8、
有理数集合∶ {
20、-4.8、0、-13、+ 、
86%、-2020. …};
解析:20是正整数,也是整数、有理数;-4.8是负分数,也是分数、有理数;0是
整数,也是有理数;-13,-2020
= . … … =1.2ሶ
=0.81818181…
−
27
11
9
, , 。
4
9
11
=0. 8ሶ 1ሶ
如果一个无限小数的各数位上的数字,从小数部
分的某一位起,按一定顺序不断重复出现,那么
这样的小数叫做无限循环小数,简称循环小数,
其中重复出现的一个或几个数字叫做它的一个循
环节,例如,0.666…的循环节是“6” ,它可以
典例展示厅
题型二、识别有理数、无理数
无理数
【典例2】⑴若一个边长为a的正方形的面积为8,则数a为___________(填“有理数”
或“无理数” );若一个边长为b的正方形的面积为 9,则数b为____________填“有理数”
2,2有理数与无理数
m
n 0
的形式.
无限不循环小数叫做无理数.
练一练
把下列各数分别填在相应的集合里:
12 , 6 , 3 . 14 , 0 . 222 , 521 120 , 0 , ,1 . 696696669
正数集合: 有理2011江苏无锡中考
请写出一个大于1且小于2的 无理数 .
2.2有理数与无理数
教学目标
1.理解有理数和无理数的意义 2.会判断一个数是有理数还是无理数
思考
1.什么叫做有理数?
我们把能够写出分数形式 的数叫做有理数.
m n
m , n 是整数,
n 0
思考
2.(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.666…、0.818181…化为分数形式吗?
聚焦导学案
既不是正数也不是整数的有理数是( ) A.0和负分数 B.负分数 C.负整数和负分数 D.正整数和正分数 不小于-2.5而小于2.8的非负整数有( )
A.2个
B.3个
C.4个
D.5个
聚焦导学案
写出所有适合下列条件的数: (1)不大于3的正整数: (2)大于-3且不大于4的整数:
; .
反思感悟
1.我最大的收获是? 2.我对自己的表现感想是?
3.我与昨天相比有哪些进步? 4.你对本节课的学习还有哪些 困惑和建议?
(3)你能把0.1333…、0.3456456456…化为分数形式吗?
注意:1.实际上,有理数包括整数和分数两大类, 即整数和分数都是有理数 2.有限小数和循环小数都可以化为分数,所以它们都是有理数
将下列八个数填人它所在的数集里:
-18,3.1416,0,2004,π, 22 -0.1235,-96%,
n 0
的形式.
无限不循环小数叫做无理数.
练一练
把下列各数分别填在相应的集合里:
12 , 6 , 3 . 14 , 0 . 222 , 521 120 , 0 , ,1 . 696696669
正数集合: 有理2011江苏无锡中考
请写出一个大于1且小于2的 无理数 .
2.2有理数与无理数
教学目标
1.理解有理数和无理数的意义 2.会判断一个数是有理数还是无理数
思考
1.什么叫做有理数?
我们把能够写出分数形式 的数叫做有理数.
m n
m , n 是整数,
n 0
思考
2.(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.666…、0.818181…化为分数形式吗?
聚焦导学案
既不是正数也不是整数的有理数是( ) A.0和负分数 B.负分数 C.负整数和负分数 D.正整数和正分数 不小于-2.5而小于2.8的非负整数有( )
A.2个
B.3个
C.4个
D.5个
聚焦导学案
写出所有适合下列条件的数: (1)不大于3的正整数: (2)大于-3且不大于4的整数:
; .
反思感悟
1.我最大的收获是? 2.我对自己的表现感想是?
3.我与昨天相比有哪些进步? 4.你对本节课的学习还有哪些 困惑和建议?
(3)你能把0.1333…、0.3456456456…化为分数形式吗?
注意:1.实际上,有理数包括整数和分数两大类, 即整数和分数都是有理数 2.有限小数和循环小数都可以化为分数,所以它们都是有理数
将下列八个数填人它所在的数集里:
-18,3.1416,0,2004,π, 22 -0.1235,-96%,
七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件
第十页,共十一页。
内容(nèiróng)总结
教学课件。数学 七年级上册 江苏科技版。2.2 有理数与无理数。我们把能够写成分数形式(xíngshì) 且(m,n是整数,n≠0)的数叫做有理数.。, , ,。反过来,这些有限小数、无限循环小数都可
No 以化成分数,因此它们都是。有理数 0。1.2010010001000(相邻两个1之间0的个数逐次增加1。常见的
无理数的三种类型:。例 下列各数中,哪些是有理数。小结
Image
12/9/2021
第十一页,
数学(shùxué) 七年级上册 江苏科技 版
12/9/2021
第一页,共十一页。
第2章 有理数 2.2 有理数与无理数
12/9/2021
第二页,共十一页。
有理数的概念
正整数 整数 0
负整数
正分数 分数
负分数
整数可以表示成分数(fēnshù)的形式吗?
5 =0.5555……, 9
2 =0.181818……, 11
12/9/2021
第四页,共十一页。
0.8
有限小数
0.555…… -0.1777…… 0.181818……
无限(wúxiàn)循环 小数
无限(wúxiàn)循 环小数
无限循环小数
反过来,这些有限小数、无限循环小数都可以化成分数,因此
它们都是
解:有理数:3.14 , , 0.5 73; 无理数: 0.101000100 0004 1…(相邻(xiānɡ lín)两个1之间 0的个数逐次加2个).
12/9/2021
第八页,共十一页。
小结
(xiǎojié)
谈谈你这一节课有哪些(nǎxiē)收获.
北师大版初中八年级数学上册第2章1认识无理数课件
是有理数吗?(2)哪个数是无限不循环小数?哪个是含有π的数?这些数都是
无理数吗?
11
解 有理数:0,-4,0.12,- ,3.141 592 7;无理数: ,1.112 111 211…(相邻两个 2 之
7
2
··
间 1 的个数逐次加 1).
【误区警示】
1.注意3.141 592 7与π的区别.3.141 592 7属于有限小数,不是π,前者是有理
(2)x不是有理数.因为没有一个整数的平方等于7,也没有一个分数的平方等
于7.由上面的计算知,x是无限不循环小数;
(3)x≈2.6;验证略;
(4)x≈2.65.
【方法归纳】
要估算无理数的近似值,第一步应确定被估算的无理数的整数取值范围;第
二步以较小整数逐步开始加0.1(或以较大整数逐步开始减0.1),并求其平方,
实数
1
认识无理数
核心·重难探究
知识点一
无理数的识别
【例1】 下列各数,哪些是有理数?哪些是无理数?
·· 11
π
0, ,-4,0.12,- ,1.112
2
7
111 211…(相邻两个 2 之间 1 的个数逐次加 1),
3.141 592 7.
思路分析 (1)哪个数是整数?哪个是分数?哪个是无限循环小数?这些数都
确定被估算数的十分位;…;如此继续下去,可以求出无理数的近似值.
数,后者是无理数.
2.
π
2
不是分数,分数的分子与分母都是正整数.
知识点二
无理数的近似值的估算
【例2】 设面积为x的整数部分是多少?
(2)x是有理数吗?请简要说明理由.
(3)估计x的值(结果精确到0.1),并用计算器验证你的估计.
认识无理数(2)ppt
小明根据他的探索过程整理出 如下的表格,你的结果呢?
边长a 1<a< 2 1.4< a< 1.5 1.41<a<1.42 1.414<a<1.415 1.4142<a<1.4143 面积s=a2 1<s<4 1.96<s<2.25 1.9881<s<2.0164 1.999369<s<2.002225 1.99996164<s<2.00024449
1、把下列各数表示成小数,你பைடு நூலகம் 现什么?
4 5 8 2 3, , , , . 5 9 45 11
有理数总可以用有限小数或无限循环小数表示。 反过来,任何有限小数或无限循环小数也都是有理数。
强
调
像0.585885888588885…,1.41421356…, 2.2360679…等这些数的小数位数都是无限的,但是又不
a可能是有限小数吗?
你有什么新的发现?
事实上, a=1.41421356……
(1)估计面积为5的正方形的边长 的值(结果精确到十分位) (2)计算结果精确到百分位呢?
事实上b=2.236067978……
事实b=2.236067978…,也是一个无限不循环小数.
自学指导2:
自学课本P23议一议,想一想,完成: 1.理解无理数的概念,有理数与无理数的 区别,会识别一个数是有理数还是无理数.
6.(1)设面积为20的正方形的 边长为x,x是有理数吗?说说你 的理由.
(2)估计x的值(结果精确到十分 位),并用计算器验证你的估计。
(3)如果结果精确到百分位呢?
回顾与小结: 1、_________________叫无理 数。_______________叫有理数。试 举例说明。 2、借助计算器进行探索,用两边 夹逼法可以求一个无理数的近似值。
初中数学--《无理数(2)》PPT
1.82=1.8×1.8=3.24
1.92=1.9×1.9=3.61
边长a
1<a<2
面积S
1<S<4
1.4<a<1.5 1.96<S<2.25
数据整理
边长a
1<a<2 1.4<a<1.5 1.41<a<1.42
1.414<a<1.415
面积S
1<S<4 1.96<S<2.25 1.9881<S<2.0164
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
还可以继续下去吗?
边长a会不会算到某一位时,它的平方恰好等于 2呢?
用自己的语言描述一下这个数的特点
a
它一个无限不循环小数
做一做
请同学们估算面积为5的正方形的边 长b的值(精确到百分位)
教育部审定2013
义务教育教科书
山东教育出版社
第四章 实数
第一节 无理数
第2课时
数学史上的第一次数学危机,导致了一起谋杀……
线索一: a2=2,b2=5中的a、b不是有理数.
学习目标
1.借助计算器探索**数是无限不循环 小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是**数.
线索二:面积为2的正方形的边长a究竟是多少呢如何分类?
要求: 首先,独立思考1分钟; 然后,小组内合作交流; 最后,展示交流成果.
有理数:有限小数或无限循环小数
数 无理数:无限不循环小数
整数 分数
1.92=1.9×1.9=3.61
边长a
1<a<2
面积S
1<S<4
1.4<a<1.5 1.96<S<2.25
数据整理
边长a
1<a<2 1.4<a<1.5 1.41<a<1.42
1.414<a<1.415
面积S
1<S<4 1.96<S<2.25 1.9881<S<2.0164
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
还可以继续下去吗?
边长a会不会算到某一位时,它的平方恰好等于 2呢?
用自己的语言描述一下这个数的特点
a
它一个无限不循环小数
做一做
请同学们估算面积为5的正方形的边 长b的值(精确到百分位)
教育部审定2013
义务教育教科书
山东教育出版社
第四章 实数
第一节 无理数
第2课时
数学史上的第一次数学危机,导致了一起谋杀……
线索一: a2=2,b2=5中的a、b不是有理数.
学习目标
1.借助计算器探索**数是无限不循环 小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是**数.
线索二:面积为2的正方形的边长a究竟是多少呢如何分类?
要求: 首先,独立思考1分钟; 然后,小组内合作交流; 最后,展示交流成果.
有理数:有限小数或无限循环小数
数 无理数:无限不循环小数
整数 分数
八年级数学上册教学课件《认识无理数(第2课时)》
B
π
5.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形.边长是有理数的正方形有_____个,边长是无理数的正方形有_____个.
3
6
CD,EF
解析:设小正方形的边长为x,则x2=2.因为AB2=x2+(3x)2=10x2=20,所以AB的长不是有理数.因为CD2=(2x)2+(2x)2=8x2=16,CD=4,即CD的长是有理数.因为EF2=x2+x2=2x2=4,EF=2,即EF的长是有理数.因为GH2=x2+(2x)2=5x2=10,所以GH的长不是有理数.
3.14
(因为3.14是有限小数)
(因为0. 是无限循环小数)
(因为它是无限不循环小数)
例
1.在 ,0,3.14,-0. ,6.751 755 175 551 7…(7和1之间5的个数逐次加1),- 中,无理数有 个.
2
2.下列各数是无理数的是 ( )A.1 B.-0.6C.-6 D.π
1. 判断题
×
√
√
×
2.以下各正方形的边长是无理数的是( )
A.面积为25的正方形; B.面积为的正方形;C.面积为8的正方形; D.面积为1.44的正方形.
C
3 .下列各数,是大于-4而小于-3的无理数的是( )A.-2.56879 B.-3.121221222…C.-2. D.2.383883888…4.请你写出一个大于2且小于4的无理数: .
思考 a的范围在哪两个数之间?左面的边长
用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?
如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数. 事实上,b=2.236 067 978…它是一个无限不循环小数. 同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.
π
5.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形.边长是有理数的正方形有_____个,边长是无理数的正方形有_____个.
3
6
CD,EF
解析:设小正方形的边长为x,则x2=2.因为AB2=x2+(3x)2=10x2=20,所以AB的长不是有理数.因为CD2=(2x)2+(2x)2=8x2=16,CD=4,即CD的长是有理数.因为EF2=x2+x2=2x2=4,EF=2,即EF的长是有理数.因为GH2=x2+(2x)2=5x2=10,所以GH的长不是有理数.
3.14
(因为3.14是有限小数)
(因为0. 是无限循环小数)
(因为它是无限不循环小数)
例
1.在 ,0,3.14,-0. ,6.751 755 175 551 7…(7和1之间5的个数逐次加1),- 中,无理数有 个.
2
2.下列各数是无理数的是 ( )A.1 B.-0.6C.-6 D.π
1. 判断题
×
√
√
×
2.以下各正方形的边长是无理数的是( )
A.面积为25的正方形; B.面积为的正方形;C.面积为8的正方形; D.面积为1.44的正方形.
C
3 .下列各数,是大于-4而小于-3的无理数的是( )A.-2.56879 B.-3.121221222…C.-2. D.2.383883888…4.请你写出一个大于2且小于4的无理数: .
思考 a的范围在哪两个数之间?左面的边长
用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?
如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数. 事实上,b=2.236 067 978…它是一个无限不循环小数. 同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.
北师大版八年级数学上册第二章实数2.1认识无理数课件(共23张PPT)
,-3.5,…
回顾 & 思考☞
有理数:整数和分数统称为有理数。
分数与有限小数和无限循环小数可以互化 所以我们把有限小数和无限循环小数都看作分数
有限小数 分数
无限循环小数
例如:
1 3
0.3333
•
0.3
1 32 0.03125
4 5
0.8
拼图活动
有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一 个大的正方形。看看能有几种拼法?
1.如图,正三角形的边长为2,高为h,h可能 是整数吗?可能是分数吗?
解:因为ABC是正三角形,且AD BC
A
所以BD DC,则BD 1 AB 1
2
由勾股定理得 : h2 22 12 3
h
h不可能是整数; h也不可能是分数。
B
D
C
生活中真的有很多不是有理数 的数吗?
1:右图是由16个边长 为1的小正方形拼成的, 任意连接这些小正方形 的若干个顶点,可得到 一些线段。试分别找出 两条长度是有理数的线 段和两条长度不是有理 数的线段。
q 为整数且互质),而无理数不能.
数学家寄语 是不 在 我是数 们我学 怎们天 么知地 毕 知道里 达 道什, 哥 么重 拉 ,要 斯 而的
——
无理数(1)
回顾 & 思考☞
什么叫有理数?
整数
有 理 数
分数
正整数:如:1,2,3,…
零:0
负整数:如-1,-2,-3,…
正分数:如 1 , 1 ,5.2, … 23
负分数如
1 5
,
5 6
越来越大,
所以a不可能是整数
a可能是以2为分母的分数吗?
北师大2011课标版初中数学八年级上册 第二章 2.1 认识无理数 课件(共21张PPT)
同伴进行交流.
2 a =2
a既不是整数,也不 是分数,所以a不是 有理数.
做一做 1.如图,以直角三角形的斜边为边的正方形
的面积是多少?
2.设该正方形的边长为b,b满足什么条件?
3.b是有理数吗?
2 b =5
b既不是整数,也不是分
数,所以b不是有理数.
b
无理数的发现
1.长、宽分别为3,2的长方形,它的对角线 的长( D ) A.是分数 C.是整数 B.是小数 D.不是有理数
你一定是最棒 的!加油!
1.在下列正方形网格中,先找出长度为有理 数的线段,再找出长度不是有理数的线段.请 说明理由.
2.一养鱼专业户欲将面积为288m2的长方形 鱼塘改为等面积的边长为l m的正方形鱼塘, 则l满足什么条件?l是有理数吗?请说明理 由.
1、必做题:课本习题2.1(2) 2、选做题:课堂精炼P13(11、12) 3形的 边长均为1,任意连接这些小正方形的若干个 顶点,可得到一些线段.试分别找出两条长
度是有理数的线段和两条长度不是有理数的
线段.
2.如图是小明以他画的线段为边长设计出的 一个正方形,请解决下列问题: (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
你一定是最棒 的!加油!
2.下列各数中,是有理数的是( B ) A.面积为3的正方形的边长 B.体积为8的正方体的棱长
C.两直角边长分别为5和3的直角三角形的
斜边长
D.圆周率π
3.如图,在4×4的正方形网格中,每个小正方 形的边长均为1,则△ABC中三边边长不是有 理数的有( C ) A. 0条 B. 1条 C. 2条 D. 3 条
3.在4×4的正方形网格中,每个小正方形的边长均 为1,请按要求设计如下图形: (1)三边边长均是有理数的三角形; (2)三边边长均不是有理数的三角形; (3)两边边长是有理数,另一边长不是有理数的 直角三角形; (4)一边边长是有理数,另两边长不是有理数的 钝角三角形.
湘教版数学八年级上册第2课时 无理数课件
7.9524<S<8.0089 A
0
C
2.828<x<2.829 7.997584<S<8.003241
2
···
···
照此下去,得到 8 =2.828427125···
D
事实上,它是一个无限不循环小数 。
归纳: 1.无理数的定义: 无限不循环小数叫作无理数。
2.无理数的分类: ①开方不尽:与 8 类似的数, 2, 3,﹣ 3···
3.将0.25,﹣0.6·,0.4··5化成分数。
1
0.25=__4__
﹣0.6·=﹣ ___23_
5
0.·45·=_1_1__
有限小数或无限循环小数都是有理数。
1.什么叫有理数?
①整数和分数统称为有理数。
正整数
整数 零
有理数
负整数
正分数
分数
所有的数都能用 有理数表示吗?
负分数
②有限小数和无限循环小数是有理数。
解:2≈1.414 3≈1.732 5≈2.236 11≈3.317
0.58≈0.762
1.估计与 500 最接近的两个整数是多少?
[选自教材P111 习题1.1 B组 第9题]
解:∵222=484,232=529;
222<( 500)2<232 ∴22< 500 <23. 答:最接近的两个整数是22,23.
[选自《状元大课堂》P174 例3]
A.1个
B.2个
C.3个
D.4个
2.下列说法正确的是( A )[选自《创优作业》P63 第2题] A.无理数都是无限小数 √ B.无限小数都是无理数 ×
C.有理数都是有限小数 ×
D.带根号的数都是无理数 ×
带根号的数并非都是无理数,如
【新教材精创】412无理数指数幂及其运算性质课件(2)-人教A版高中数学必修第一册(共18张PPT)
1
解:(1)将 2
-
1 2
5的两边平方,
得a+a-1+2=5,即a+a-1=3. (2)由a+a-1=3,两边平方,得a2+a-2+2=9, 即a2+a-2=7. (3)设y=a2-a-2,两边平方,得
y2=a4+a-4-2=(a2+a-2)2-4=72-4=45.
所以 y=±3 5,即 a2-a-2=±3 5.
(3)2 3 a ÷4 6 a· b ·3 b3.
解:(1)原式=(0.33)
1
3-
5 22
1 2
+(44)
3 4
+(2
3 2
)
2 3
-1+1=
3
0.3-5+43+2-1+1=64 7 .
2
3
15
(2)原式=-4a-2-1b-3+1÷(12a-4b-2c)
=-1a-3-(-4)b-2-(-2)c-1 3
∴(a-b)2=(a+b)2-4ab=122-4×9=108.
∵a<b,∴a-b=-6 3.
③
11
1
a 2 -b2
将②③代入①,得 1 1
a2 b2
12 - 2 92
= -6 3
=-
3. 3
人教版必修上册
解:原式=
25 4
3
27 + 4
8
10620500-1=52
3 2
+
12-1=12.
题型分析 举一反三
题型一 指数幂的运算性质化简求值
例 1 化简求值
(1)0.027
1 3
-
614
1
3
北师大版八年级数学上册《2.1.2认识无理数》课件
(2)如果结果精确到百分位呢?
事实上,b=2.236067978…,也是一个 无限不循环小数.
同样,对于体积为2的正方体,我们借助计算 器,可以得到它的棱长C=1.25992105…,它 也是一个无限不循环小数
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
一、想一想
1.有理数如何分类?
整数(如-1,0,2,3,… ).
有理数 分数(如
1,2, 9 3 5 11
…)
2.上节课了解到一些数,如a2=2,b2=5中的a,b 既不
是整数,也不是分数,那么它们究竟是什么数呢?
面积为2的正方形的边长a究竟是 多少呢?
(1)下图中,3个正方形的边长之间 有怎样的大小关系?说说你的理由。
(2)边长a的整数部分是几?十分 位是几?百分位呢?千分位 呢? … …借助计数器进行探索。
1 1
a 面积为2 a
2 2
(3)小明根据他的探索过程整理出如下 的表格,你的结果呢?
边长a 1<a <2
面积S 1 <S <4
1.4 <a <1.5
1.96 <S <2.25
1.41 <a <1.42 1.414 <a <1.415 1.4142 <a < 1.4143
5.任何一个分数一定是有理数.
()
二、填空题。
1.面积是25的正方形的边长为 ,它是 数.
面积为7 的正方形边长a的整数部分是 ,边
长a是一个 数.
2.一个直角三角形的两条直角边长分别
事实上,b=2.236067978…,也是一个 无限不循环小数.
同样,对于体积为2的正方体,我们借助计算 器,可以得到它的棱长C=1.25992105…,它 也是一个无限不循环小数
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
一、想一想
1.有理数如何分类?
整数(如-1,0,2,3,… ).
有理数 分数(如
1,2, 9 3 5 11
…)
2.上节课了解到一些数,如a2=2,b2=5中的a,b 既不
是整数,也不是分数,那么它们究竟是什么数呢?
面积为2的正方形的边长a究竟是 多少呢?
(1)下图中,3个正方形的边长之间 有怎样的大小关系?说说你的理由。
(2)边长a的整数部分是几?十分 位是几?百分位呢?千分位 呢? … …借助计数器进行探索。
1 1
a 面积为2 a
2 2
(3)小明根据他的探索过程整理出如下 的表格,你的结果呢?
边长a 1<a <2
面积S 1 <S <4
1.4 <a <1.5
1.96 <S <2.25
1.41 <a <1.42 1.414 <a <1.415 1.4142 <a < 1.4143
5.任何一个分数一定是有理数.
()
二、填空题。
1.面积是25的正方形的边长为 ,它是 数.
面积为7 的正方形边长a的整数部分是 ,边
长a是一个 数.
2.一个直角三角形的两条直角边长分别
北师大版数学八上认识无理数(第2课时)课件
b平方 4.8841 4.9284 4.9729 5.0176 5.0625 5.1076 5.1529 5.1984 5.2441
做一做
怎样确定b的千分位呢?
b 2.231 2.232 2.233 2.234 2.235 2.236 2.237 2.238 2.239 b平方 4.977361 4.981824 4.986289 4.990756 4.995225 4.999696 5.004169 5.008644 5.013121
怎样确定a的整数部分呢?
探究新知一
怎样确定a的十分位呢?
1<a<2 a平方
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.21 1.44 1.69 1.96 2.25 2.56 2.89 3.24 3.61
探究新知一
怎样确定a的百分位呢?
1.41<a<1.42 1.41
事实上,b=2.2360……,它是一个无限不循环小数。
探究新知二
使用计算器计算,把下列有理数写成小数的情势, 你有什么发现?
-485 =-0.1ሶ 7ሶ
事实上,任何一个有理数都可以写成有限小数或无限循环小 数。 反过来,任何有限小数或无限循环小数也都是有理数。
探究新知二
定4 1.96<S<2.25 1.988 1<S<2.016 4 1.999 396<S<2.002 225 1.999 961 64<S<2.000 244 49
…
猜想:还可以继续算下去吗?a可能是有限小数吗?
事实上,a=1.41421356……,它是一个无限不循环小数。
做一做
估计面积为5的正方形的边长b的值,结果
七上数学课件第2章:有理数和无理数 课件
3.12 312 100
0.333 1 3
0.2666 4 15
有限小数和循环小数都可以化为分数,它们 都是有理数.
小练展预习
有理数分类:
正整数
有理数
整数
零 负整数
分数
正分数 负分数
有理数还可以分为:
正整数
正有理数
有
正分数
理 零 数负有理数
负整数
负分数
有限小数和无限循环小数属于分数.
速练在当堂
3. 下列关于有理数的说法中,错误的是( ) A.所有的整数都是有理数 B. 所有的分数都是有理数 C. 所有的有限小数都是有理数 D. 所有的无限小数都是有理数
速练在当堂
4. 下列关于无理数的说法中,正确的是( ) A.有最小的无理数 B. 有最大的无理数 C. 无理数有有限个 D. 无理数有无限个
第二章
初中数学 七年级(上册)
2.2有理数与无理数
精练固旧知
1.我们学过整数和分数. 你能把整数也写成分数的形式吗?
5
如: 5 = 1
,
-
4
=
4 1
,
0
0= 1
.
我们把可化为分数形式 m (m、n是整数, n≠0)
n
的数叫做有理数.
小练展预习
小学里学过的有限小数和循环小数是有理数吗?
0.3 3 10
5.打开课本17页 练一练
小结:
1.什么叫无理数? 2.数的分类? 3.如何判定一个数是无理数还是有理数.
它们都是无理数.
大练主课堂
3.有理数与无理数的主要区别:
(1)无理数是无限不循环小数, 有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式, 而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
• 这一悖论直接触犯了毕氏学派的根本 信条,导致了当时认识上的"危机", 从而产生了第一次数学危机。 到 了公元前370年,这个矛盾被毕氏学 派的欧多克斯通过给比例下新定义的 方法解决了。他的处理不可通约量的 方法,出现在欧几里得《原本》第5 卷中。
• 欧多克斯和狄德金于1872年给出的 无理数的解释与现代解释基本一致。 今天中学几何课本中对相似三角形的 处理,仍然反映出由不可通约量而带 来的某些困难和微妙之处。
• 由于并没有经历过西方的数学危机革 命的基础上 ,我国从11 世纪开始,逐渐摸索到 数值解高次方程的一般规律。
毕达哥拉斯兴师问罪,然而希伯斯事先 已经得知了消息,他抢先一步逃走了。毕 达哥拉斯学派是不公放过他的,他们在一 条海船上发现了他,把希伯斯装进了口袋 ,扔进了大海,希伯斯就这样被害死了! ”。希伯斯虽然被害死了,但是他发现的 “新数”却还存在着,后来,人们从他的 发现中知道了除去整数和分数之外,世界 上还存还着一种“新数”。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
• 第一次数学危机对古希腊的数学观点有 极大冲击。这表明,几何学的某些真理与 算术无关,几何量不能完全由整数及其比 来表示,反之却可以由几何量来表示出来 ,整数的权威地位开始动摇,而几何学的 身份升高了。危机也表明,直觉和经验不 一定靠得住,推理证明才是可靠的,从此 希腊人开始重视演译推理,并由此建立了 几何公理体系,这不能不说是数学思想上 的一次巨大革命。
• 其数不可得而定。……故惟以面命之,为 不失耳”,这说明刘徽认识到“加不加借 算命分”都得到的不是精确值,只有用被 开方数的方根表示才是精确的,接着他在 “开方术注”中提出一种更为精确的表示 方根近似值的方法,即求微数法:“不以 面命之,加定法如前,求其微数。
• 微数无名者以为分子,其一退以十为母, 其二退以百为母。退之弥下,其分弥细, 则朱幂虽有所弃之数,不足言之”,就是 用 10 进制小数来无限逼近无理数。中算 学家没有像希腊人那样在发现无理数时出 现逻辑上的困难,又能顺利地将有理数运 算规则推广到无理数,因此把数学向前推 进的同时,并没有深究无理数与有理数实 质上的不同。
无理数的出现
背景故事
在古希腊,有一个很了不起的数学家,叫做毕 达哥拉斯,他开了一间学校,教了很多学生, 他的学校的名字叫“毕达哥拉斯学园”。别的 人也给它起了个名字,叫“毕达哥拉斯学派” ,他们认为,数是世界的法则,是主宰生死的 力量,他们就像崇拜天神一样崇拜数。毕达哥 拉斯和他的学生们在学园里研究数学,做出了 好多的数学发现,比如“毕达哥拉斯定理”就 是这么发现的。这个定理,在我们中国叫“勾 股定理”。
无理数的由来
正方形的对角线和边长的比是这种新数、给这种新数 起个什么名字呢?当时人们觉得,整数和分数是人们 已经习惯的,容易理解,就把整数和分数合称“有理 数”,而把希伯斯发现的新数起名叫“无理数”。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
无理数在中国的发现
• 中国古代在处理开方问题时,不可避免地 碰到了无理根数。中国早期的开方术见于 刘徽的《九章算术》少广、勾股两章,起 源于长度的测度。已知面积求正方形边长 ;已知体积求立方体棱长;已知圆面积求 圆的直径;已知球体积求球的直径或直角 三角形勾、股、弦互求。《九章算术》“ 少广”章的开(平)方术有“若开之不尽者 ,为不可开,当以面命之”,“令不加借 算而命分,则常微少;其加借算而命分, 则又微多。
• 毕达哥拉斯认为,世界上只存着整数和分数, 除此之外,就再也没有什么别的数了,可是, 他有一个学生,叫希伯斯,就发现了这样的一 种数,比如,一个边长是1的正方形,从一个角 到对着它的一个角之间的线段长度是多少呢? 毕达哥拉斯知道了学生的这个发现,大惊失 色,因为如果承认了这个发现,那他们学派的 基础就没有了,毕达哥拉斯这位伟大的数学家 ,在这上面的表现却很不光彩;他禁止希伯斯 把这个发现传出去,否则就要用学园的戒律来 处置他——活埋。