压阻式称重传感器设计

压阻式称重传感器设计
压阻式称重传感器设计

压阻式电子称传感器的设计

【摘要】:电阻应变式传感器是基于导体或半导体的应变电阻效应,将测量物体形变转化成电阻变化的传感器。通常由两部分组成,即弹性敏感元件和应变计(丝)。弹性敏感元件在被测物理量的作用下,产生一个与被测量成确定函数关系的应变,再用应变计(丝)作为转换元件将应变转换为电阻变化,从而产生感应电压,再通过测量电路转化为信号形式输出【关键字】:应变片直流电桥温度补偿差动放大零点漂移

一.半导体的压阻效应

固体收到作用力后,电阻率就要发生变化,这种效应称为压阻效应。半导体材料的压阻效应特别强,即半导体材料在某一轴向受外力作用时,其电阻率发生的变化较大。

1.半导体压阻效应原理

半导体应变片是用半导体材料制成的一种纯电阻性元件,其工作原理基于半导体材料的压阻效应。

半导体应变片受轴向力作用时,其电阻相对变化为

(1)

式中,为半导体应变片的电阻率的相对变化量。其值与半导体敏感元件在轴向受的应变力关系为

(2)

式中,为半导体的压阻系数,它与半导体材料种类及应力方向与晶轴方向之间的夹角有关;E 为半导体材料的弹性模量,与晶向有关。

将试(2)代入式(1)中,得

(3)

实验证明,对半导体材料,比大上百倍,所以()可以忽略,因此

(4)

2.半导体应变片的灵敏度系数

半导体材料的电阻值变化主要是由电阻率变化引起的,而电阻率的变化是由应变引起的。所以,半导体应变片的灵敏度系数为

(5)

半导体应变片的突出优点是灵敏度高,比金属丝高50~80倍,尺寸小,横向效应小,动态响应好。但它的温度系数大、应变时非线性现象比较严重等缺点。

二.传感器各元器件的选择

电阻应变称重传感器选用等强度梁做弹性元件,使贴片位置不受限制,结构也简单;了提高系统灵敏度,选用膜片式半导体应变片做转换元件;测量电路为恒流源供电电桥,温度补偿电路。

1.应变片的选择

按照结构划分,压阻式传感器主演由三种不同类型,即体型半导体、薄膜型半导体和扩散性半导体。

1)体型半导体应变片

体型半导体应变片是一种将半导体材料硅或锗晶体按照一定法相切割成片状小条,经腐蚀压焊粘贴在基片上而成的应变片,其结构如图

2)薄膜型半导体应变片

薄膜型半导体应变片是利用真空沉淀技术,将半导体材料沉淀在带有绝缘层的试件上而制成,其结构如图

3)扩散型半导体应变片

将P型杂质扩散到N型硅单晶基底上,形成一层极薄的P型导电层,形成四个阻值相等的电阻条,再通过超声波和热压焊法接上引线就形成了扩散型半导体应变片。这是一种应用很广的半导体应变片。结构如图,为接近固定边条件,硅膜片的边缘较厚,呈杯形,也称为硅杯。在膜片上的四个扩散电阻接成电桥。硅杯的内腔与被侧压力p相连,杯外与大气相通。若杯外与另一压力源相接,则可测压值。

2.弹性敏感元件

弹性敏感元件把各种形式的物理量转换成形变,其质量的优劣直接影响传感器的性能及精度,是传感器的工作基础。

1)通常要求弹性敏感元件具有以下性能:

①弹性储能(应变能)高。弹性储能是材料在开始塑性变形以前单位体积所储存的弹性能。它表示弹性材料春村变形功而不发生变形的能力。

②具有较强的抗压(或抗拉)强度,以便在高载荷下有足够的安全性能。

③受温度影响小。弹性模量温度系数小而稳定,热膨胀系数小。

④具有良好的机械加工和热处理性能,易于机械加工及热处理。

⑤具有良好的重复性和稳定性。

⑥热处理后应有均匀稳定的组织,且各项同性。

⑦具有高的抗氧化、抗腐蚀性能。

2)弹性敏感元件的材料主要是合金结构钢。例如,析出硬化型不锈钢、钢塑工具钢、弹簧钢等。

3)通常弹性敏感元件的结构有柱(筒)式、悬臂梁式、轮辐式、环式、膜片式等。这里选择悬臂梁式,精度更

高。结构如图(1)

图1

3.压阻式传感器结构

压阻式传感器是基于压阻效应原理进行工作的。利用固体扩散技术,将P型杂质扩散到一片N型硅底层上,形成一层极薄的导电P型层,装上引线接点后,即形成扩散型半导体应变片。可在圆形硅膜上扩散出四个P型电,则构成惠斯登电桥的四个电桥。如图(2)。

1-P-Si导电层;2-N-Si膜片;3-粘贴剂;4-硅底座;5-引线管;6-Si保护膜;7-引线

图2

4.膜片式半导体应变片传感器的结构示意图

如图(3),在硅膜片上的四个扩散电阻接成电桥。硅杯的内腔与北侧压力P相连,杯外与大

气压相通。若杯外与另一压力源相接,则可测压值。为了减少封装产生的应力对传感器性能的影响,硅中间体经由进气管与外壳相连,不直接连接表壳。

图3

三、结构框图

整个系统包含电阻应变称重传感器、信号放大及V/F转换单元、单片机、显示单元及供电电源,如图(4)

图4

传感器输出信号经放大后,进行V/F变换,以频率信号形式输出到单片机,经单片机运算处理,显示重量值。信号进行V/F变换可以增加信号传输距离,并具有抗干扰能力。同时,省掉了A/D环节,提高了系统精度,简化了与单片机的接口。

四、测量电路图

因为半导体材料对温度很敏感,温度稳定性和线性度比金属电阻应变片差得多。因此,压阻式传感器的温度误差较大,必须要有温度补偿。

压阻式传感器的测量电路仍然使用平衡电桥。

由于制造、温度影响等原因,电桥存在失调、零位温漂、灵敏度温度系数和非线性等问题,影响传感器的准确性。因此,必须采取与补偿误差措施。

1.等强度梁结构设计

等强度梁的结构如图5,是一种特殊形式的悬臂梁。其特点是:沿梁长度方向的

面按照一定规律变化,当集中力F作用在梁端三角形顶点上时,距离作用点任何距离截面上的应力相等,故在对L方向上粘贴应变片闻之要求不严。梁的固定端宽度为b0, 自由端宽度为b,梁长尾L,梁厚为h.

根据悬臂梁特性,当重力作用在自由端时,最大弯曲应力为

(6) 则应变为

(7) 式中 W——被称物体重力;

h——梁厚度;

b0——固定端宽度;

L——梁长;

E——弹性模量;

根据式()和强度理论,可以写出强度条件:

(8)

式中 []——梁材料的许用应力,可从材料手册差得。

由许用应力、称重范围及允许梁占用的空间几何尺寸,加以经验值,来选择制造梁的材料,确定梁长、厚度等结构参数。

2.测量电桥设计

为了消除非线性误差和温度误差对测量结果的影响,设计的称重电阻应变式传感器采用四臂差动式电桥测量电路。距固定端较近的表面顺着梁的长度方向分别贴上R1、R4和R2、R3(R2、R3在底部)四个电阻应变计。若R1、R4承受拉力,则R2、R3将受到压力,两者应变相等,但极性相反,如图6

图5 图6

设R1=R2=R3=R4=R,r1=r4=r,r2=r3=-r,则差动全桥输出电压公式为

(8)因此,电桥输出电压与(应变片电阻变化)成严格线性关系,消除了电桥非线性的影

响,也消除了温度误差的影响。输出电压比单臂桥增大四倍,灵敏度也提高四倍。

3.半导体应变片参数选择

半导体应变片常用硅鍺等材料做成单根状的敏感栅,其使用方法与金属应变片相同。其电阻变化与应变之间的公式如下:

(9)

式中——纵向压阻系数;

——弹性模量;

——应变;

设应变片灵敏系数,则

(10)因此,电桥的输出电压为

(11)

按照该式及后续电路对输入信号幅值的要求,选择值合适的半导体应变片。

被测重力与电压转换公式的推导

由式(7)和式(11)可得

(12)

(13)

式(13)就是传感器输出电压与重力之间的对应函数关系。一旦系统设计完成,

灯饰右边前面部分就是一个常数,,两者为线性关系。

4.零点与灵敏度温度补偿

由于温度变化,将引零点漂移。零点漂移产生的原因是扩散电阻的阻值随温度变化而

变化。灵敏度漂移是因为压阻系数随温度的变化为变化。

采用图6所示的零点漂移和灵敏度漂移补偿电路,可以有效地解决零点漂移和灵敏度漂移问题。

图中,串联电阻、用于抑制零位温漂,起调零作用,并联电阻RP 起补偿作用。串联二极管VD,用于灵敏度的温漂补偿。

四、总体电路设计

1.供电电源设计

称重传感器的电源是由三端稳压块MC7815、MC7915 组成的15V 电源。由2个OP

—07和互补对管D536与C608组成称重传感器的第二级稳压电源,如图7所示。这一级起到高精度稳压作用,其原理是:①15V的三端稳压集成电路作为预稳压电源。②选用低温

漂的运放OP—07,以降低运放受温度影响所产生的温漂。③从图7可见两个运放

的输入端均接入精密电压基准源MC1403的输出端上而被钳位,可以认为输出电

压的误差不会来自输入端。④D536与C608一对互补对管,的负反馈电路分别通过

这对互补管的发射极。当温度上升时,的输出电压上升,D536的上升,上升。但

是的输出电压也随之上升,导致C608的电压下降,增大,使下降,维持

了动态平衡;反之亦然。⑤由于正负三端稳压电源的作用,以及由、和、组成的对称电源结构,称重传感器电桥再无负载时,,。并且由于高阻抗使电桥产生浮地效果,完全免除地线带来的干扰。

经上述处理使传感器电桥电压达到十分稳定的效果,如果电桥的四壁应变片的阻值相等,由于受到压力使电桥的对臂阻值同时增大和减小,则电桥电压的精度将直接传递到电桥输出端。

2.调零电路

图7中标ABCD部分是称重传感器全桥电路。电桥输出端对角线上接一个10电位器,滑动端通过100电阻接于电桥电源负端。这是为了克服制造工艺不完全对称性而设计的。

同时兼做去皮重电路。调节可使电位差等于10 V,的输出范围为015V。3.放放大电路

放大电路是由4个ICL7650组成差分输入单端输出的专用仪表放大电路。放大电路主要特点是:①采用ICL7650斩波自稳零高精度放大器,能比较好地抑制共模电压干扰。②双端输入分别进入测量放大器的同相端,所以输入阻抗大,能够克服电桥传感器输出阻抗低的特点。③极低的温漂系数。④加一级低通有源滤波器以滤除由于放大器ICL7650内时钟斩波频率引起的尖峰脉冲干扰。

图7

调整使放大倍数为

(14)

4.V/F转换电路

在图7中V/F转换电路是一块QD4703厚摸电路,输入电压为05V,输出频率为050kHz,非线性误差为0.02%。称重传感器V/F转换电路可方便地与微机接口,简化单片

机电路,只占用单片机的一位口。来自放大器的输出信号经过一级低通滤波器滤除放大器的尖峰脉冲,再进行V/F转换,V/F对输入信号是一个积分的过程,同时也对窜入V/F输入端的干扰信号进行积分,因而对干扰信号起平滑作用。在V/F转换器的输出端输出05V 标准矩形波频率信号,再传输线上的干扰信号,会叠加在矩形波上,那么只能使矩形波发生形变,但不会百变矩形波的有效值,更不会改变输出频率,有利于远距离传送。V/F转换的转换分辨率高,为5V/25kHz=0.2mV /Hz,而12位A/D的分辨率为5V/4 098=1.2mV 。图7中

为调零电位器,为调满量程电位器。先使QD4703的脚2输入10mV 电压,调使

脚7使出为f=100kHz,然后输入5V调使输出f=50kHz,一般反复调几次就可得到满意

结果。双触发器74HC76接成二分频电路,视具体情况而使用。

5.波形整形输出级

称重传感器V/F转换电路是最后一级是波形整形输出级,这一级由一片六反相MC14049 构成。为了提高驱动能力把反相器的6个输入端和6个输出端分别按并联方式连接。至此完成了从称重传感器的十几毫伏的模拟信号经过一系列措施到六反相的输出端变成05V的标准频率信号输出过程。输出信号可直接接送到单片机。单片机的P3.5脚(定时/计数器1的外部脉冲输入端)和频率信号相连,对脉冲序列计数,以获取频率信息,从而转换为重量值。

五、小结

随着现代社会快速发展,传感器在工业、电子、航天业等领域的应用日趋广泛。本篇论文设计的电子称是基于压阻式传感器,有反应灵敏、误差小等突出优点,有望在以后的测量过程中得到广泛应用。

六、【参考文献】

[1] 董春利. 传感器与检测技术[M]. 1版. 北京:机械工业出版社, 2008(2).`

[2] 何金田,张斌. 传感器原理与应用课程设计指南[M]. 1版. 北京:哈尔滨工业大学出版社,

2009(1).

称重传感器设计word版

称重传感器是用来将重量信号或压力信号转换成电量信号的转换装置。称重传感器采用金属电阻应变计组成测量桥路,利用金属电阻丝在张力作用下伸长变细,电阻增加的原理,即金属电阻随所受应变而变化的效应而制成的(应变,就是尺寸的变化)。 称重传感器的构造原理金属电阻具有阻碍电流流动的性质,即具有电阻(Ω),其阻值依金属的种类而异。同一种金属丝,一般来讲,越是细长,其电阻值就越大。当金属电阻丝受外力作用而伸缩时,其电阻值就会在某一范围内增减。因此,将金属丝(或膜)紧贴在被测物体上,而且这种丝或膜又很细或很薄,粘贴又十分完善,那么,当被测物体受外力而伸缩时,金属电阻丝(膜)也会按比例伸缩,其阻值也会相应变化。称重传感器就是将金属电阻应变计粘贴在金属称重梁上进行测量重量信号的。 称重传感器的外形构造与测重形式,变频传感器的外形构造随被测对象的不同,其外形构造也会不同。A.比较常见的称重传感器的外形构造:柱式;S 型;轮辐式;环式;碟式;箱形等。 B.测重形式:正应力测量(柱型、单点式等),剪应力测量(双剪切梁式、部分S 型、轮辐式等)又可分为压式(柱式、碟式等)、拉式(部分S 型传感器、环式传感器)、拉压两用(部分柱式、轮辐式、S 型等) C.弹性元件内部应变梁的结构形式:平行梁、剪切梁等 D.不同结构形式的传感器的应用对象:柱式——大吨位汽车衡、轮道衡、料斗秤、料罐秤,试验机,力值监控与测量等;S 型——用于料斗秤、料罐秤、包装机,材料试验机等;双剪切梁式——汽车衡、轨道衡等;单点式——天平、计价秤、计数秤、平台秤,工业现场重量控制及测量; 称重传感器的电路组成.称重传感器进行测量时,我们需要知道的是应变计受到载荷时的电阻变化。通常采用应变计组成桥式电路(惠斯登电桥),将应变计引起的电阻变化转换成电压变化来进行测量的。 变频传感器的输出灵敏度的表示方法,传感器响应(输出)的变化对相应的激励(施加的载荷)变化的比。传感器的输出灵敏度采用额定载荷状态电桥的输出电压与输入激励电压之比值(mV/V)来表示。通常称传感器的输出灵敏度。 为什么传感器内部要加补偿电路?称重传感器在制造过程中,为了改善它的性能,特别是改善温度特性,一般要在应变计电路中附加对零点和灵敏度的温度补偿。即除了应变计外,其中还增加了各种补偿电阻。零点补偿的目的是尽量减小电桥零点随温度的变化,因此,除变频传感器本身的温度自补偿外,又加入了电阻温度系数和电桥中应变计的温度系数不同的电阻元件(如铜电阻或镍电阻等),以加强补偿作用。灵敏度补偿的目的是减小输出电压随温度的变化,即补偿弹性体的弹性系数和应变计的灵敏度系数随温度的变化。因此,对电桥中串接了两个与电桥温度补偿作用相同的电阻。同时电路中的其它电阻用于将电桥的初始平衡,额定输出和输入电阻等参数调整到规定的数值。 此篇文章的形成是基于对称重传感器设计者能有所帮助。它深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。此篇文章还介绍了各种误差来源及设计建议。 粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。

课程设计-电阻应变式称重传感器设计

电阻应变式称重传感器设计 摘要:在分析重力传感器信号特性的基础上,模块化地设计了称重传感器信号的调理电路并对其进行了仿真实验。结果表明:电路能实时、准确地处理信号,且工作稳定,可靠,重复性好,抗干扰能力强,可实现精密测量的目的。 关键词:称重;Lab view;电阻应变式传感器;放大电路。 一、引言 随着现代数据采集系统的不断发展,对高精度信号调理技术的要求也越来越高。由于传感器输出的信号往往存在温漂、信号比较小及非线性等问题, 因此它的信号通常不能被控制元件直接接收,这样一来,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系 到数据采集系统的精度和稳定性。 在称重传感器信号检测中,检测精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。电桥输出与激励电压成正比,因此,激励电压出现任何漂移都将导致电桥输出出现相应的漂移。并且现场工作环境恶劣,可能存在粉尘、振动、噪声以及电磁干扰等,称重传感器输出的几百微伏至几十毫伏信号极易受到干扰。所以研究抗干扰能力强、实时性好的信号变送和传输技术对保证检测精度具有重要意义。 二工作原理 1、原理框图

2、称重传感器(MS-1) MS—1型钢制“S”称重传感器,承受拉、压外力均可,输出对称性好,结构紧凑、安装方便、规格齐全。可用于制造机电结合称、吊钩秤、料斗秤及各种专用称、工艺称等。 外形尺寸

量程:50kg; 尺寸:A=51mm;B=13mm;C=64mm;螺纹(公制mm):M8×1.25; 技术指标: 标定数据:

转换系数K: 应变片测量电路: 上图为直流供电的测量电桥原理图,其中第一臂为电阻应变片,由应变片引起的电阻变化为△R1,当R1=R2、R3=R4时,电桥的电压灵敏度S U为最大,此时有:U0=(1) S U=U0/(2) U0=(3) 采用差动电桥可以消除非线性误差。因此本设计电阻应变式称重传感器选用直流供电应变全桥,该电桥的电压灵敏度比单一工作应变片的电压灵敏度提高了4倍,且具有温度补偿作用。 3、放大电路 R1=10K;R2=2.4K; R3=238K; R4=2.4K; R5=100K 放大倍数K=(R3/R2)×(R5/R4)≈4100;

电阻应变式称重传感器的故障检测方法

电阻应变式称重传感器的故障检测方法 2016-04-22 08:32:50 来源:eefocus 关键字:电阻应变式称重传感器故障检测 电阻应变式称重传感器是一种常用的测量仪器,可以将测量的力信号转换为电信号输出,是称重检测系统中的核心元件。电阻应变式称重传感器在使用过程中会出现一定的故障,我们对于电阻应变式称重传感器的故障检测方法是必须要掌握的,下面小编就来介绍一下具体的方法吧。 电阻应变式称重传感器故障往往会因为一些人为或自然因素损坏,比如传感器过载,冲击,或不小心跌落,大力拽传感器导线,雷击或大电流通过传感器,化学腐蚀,潮气浸蚀或高粉尘环境以及传感器内部的元器件的老化等。直接导致的后果可能是称重系统漂移,显示不稳定或不显示数据等现象。 首先,在从称重系统中拆除称重传感器前应该仔细慎重地判别系统的结构和传感器是否存在下列问题: 1)检查是否是系统传力故障,可能由于灰尘,机械部位未对准,元件传力延缓等原因,而非传感器故障; 2)检查系统在传力部位是否有损伤,锈蚀或者明显的磨损;冬季应注意传感器传力部位 是否有结冰现象,影响系统的传力和复位; 3)检查系统的限位装置是否工作,其间隙是否符合要求; 4)检查传感器电缆线与接线盒和显示仪表连接是否正确,有无断线或连接导线接触不良的情形;重点检查总线九芯插头及接线盒内的接线可靠性; 5)检查接线盒和仪表是否有故障,尤其是接线盒中电位器和接线端子的情况; 6)检查传感器是否锈蚀、受潮(特别是贴片孔区域);传感器电缆线的完整性;传感器电缆 线入口处的环境等。 建议用户配备下述的仪表设备作为检测传感器的必要的装置: A)高性能经校准的数字万用表(四位半以上),检查准确度能达到±0.1Ω和±0.01mv,检查 传感器的零点输出和桥路完整性; B)兆欧表(绝缘表),测试传感器的绝缘阻抗。推荐量程范围50VDC下测试5000MΩ。

智能压力变送器设计

摘要 传感器在工业生产中起着重要的作用,随着工业的发展,人们对于传感器的精度和用户体验等方面有着越来越高的要求,相应的仪器仪表在工业生产中也有着越来越重要的地位。压力,作为工业生产过程中重要参数之一,实现对其精确的检测和控制是保证生产过程运行和设备安全必不可少的条件。 这个课程设计是以AT89C51单片机为核心的智能压力变送器。通过压力传感器对工业现场的压力信号进行采集,通过全桥测量电路,三运算放大电路,进过AD0809转换器转换成数字信号送往单片机AT89C51进行处理,再经过DA0832装换成模拟信号,输出4~20mA的标准电压信号,由LED液晶显示屏显示所测得压力值。人机交互采用独立式键盘,键盘设置“+”,“-”和“、”三个按键分别用来设置上限值、下限值和锁存上限值和下限值,并设置报警电路,当输出超过上限值或下限值后自动报警提醒工作人员。 关键词压力变送器智能化

目录 摘要................................................. I 1 绪论.. (1) 1.1压力变送器背景和应用简介 (1) 2 系统总体设计 (2) 2.1 系统设计要求 (2) 2.2 总体设计方案 (2) 3 智能压力变送器的硬件设计 (4) 3.1 压力传感器 (4) 3.1.1 压力传感器的选择 (4) 3.1.2压阻式压力传感器的结构组成 (4) 3.2 电阻信号的测量桥路 (5) 3.2.1 测量电路的工作原理 (5) 3.3 信号放大电路 (6) 3.3.1 放大器的选择 (6) 3.3.2 三运放差分放大电路 (6) 3.4 A/D转换模块 (7) 3.4.1 ADC0809与单片机连接 (7) 3.5 单片机 (8)

称重仪课程设计资料

电控学院 综合实验课程设计 题目:称重仪 院(系):电气与控制工程学院 专业班级: 姓名: 学号: 指导教师: 2014年3月18日

称重传感器设计实验报告 一.称重传感器项目背景意义: 在现代工业生产尤其是自动化生产过程中,要用各种称重传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 称重传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。 在基础学科研究中,传感器更具有突出的地位,现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 cm 的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s 的瞬间反应,此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁砀等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的称重传感器是不可能的,许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破,一些传感器的发展,往往是一些边缘学科开发的先驱。 称重传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域,可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 二.方案分析 称重传感器利用电阻应变片变形时其电阻也随之改变的原理工作。主要由弹性元件、电阻应变片、测量电路几部分组成。称重仪的称重模块的硬件由称重传感器、放大器等组成,其原理框图如图1所示。称重传感器完成重量到电压的变换,被变换的电压经适当放大后,其转换的输出量是计算机能够接受的数字信号。 三.硬件部分 1. 硬件原理框图 图1称重仪原理框图 2.称重传感器的转换电路。 一般将粘贴在弹性体上的电阻应变计连接成差动式惠斯登电桥,见图3。由于差动式惠斯登电桥的灵敏度高,各臂参数一致,各种干扰的影响可以相互抵消,而且还可以方便地解决称重传感器的补偿问题,所以称重传感器均采用箔式双轴片连接成的差动式惠斯登电桥作为测量电路。在图3所示电路中,R1、R2、R3、R4为应变电阻,Ui 为激励电压,Uo 为输出电压,根据以上分析,可以得出Uo 的输出表达式为: Uo=Ui(R2R4-R1R3)/(R1+R2)(R3+R4) (1)当R1R3=R2R4时,电桥平衡, 压力传感器 测量放大电路 报警 电路

两线制压力变送器设计

两线制压力变送器设计 一开篇:认识两线制传感器 工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。这种将物理量转换成电信号的设备称为变送器。工业上最广泛采用的是用4~20mA电流来传输模拟量。 采用电流信号的原因是不容易受干扰。并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。上限取20mA是因为防爆的要求:20mA 的电流通断引起的火花能量不足以引燃瓦斯。下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。常取2mA作为断线报警值。 电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。 其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。显示仪表只需要串在电路中即可。这种变送器只需外接2根线,因而被称为两线制变送器。工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA 供电。这使得两线制传感器的设计成为可能。 在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。两者之间距离可能数十至数百米。按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。 图1 二两线制变送器的结构与原理 两线制变送器的原理是利用了4~20mA信号为自身提供电能。如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。这是两线制变送器的设计根本原则之一。 从整体结构上来看,两线制变送器由三大部分组成:传感器、调理电路、两线制V/I 变换器构成。传感器将温度、压力等物理量转化为电参量,调理电路将传感器输出的微弱或非线性的电信号进行放大、调理、转化为线性的电压输出。两线制V/I变换电路根据信号调理电路的输出控制总体耗电电流;同时从环路上获得电压并稳压,供调理电路和传感器使用。 除了V/I变换电路之外,电路中每个部分都有其自身的耗电电流,两线制变送器的核心设计思想是将所有的电流都包括在V/I变换的反馈环路内。如图,采样电阻Rs串联在电路的低端,所有的电流都将通过Rs流回到电源负极。从Rs上取到的反馈信号,包含了所有电路的耗电。 在两线制变送器中,所有的电路总功耗不能大于3.5mA,因此电路的低功耗成为主要的设计难点。下面将逐一分析各个部分电路的原理与设计要点。

称重传感器的原理(一)

称重传感器的原理(一) 电阻应变式称重传感器[3]是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在它表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。 电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R=ρL/S(Ω)(2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR=ΔρL/S+ΔLρ/S–ΔSρL/S2(2—2) 用式(2--1)去除式(2--2)得到 ΔR/R=Δρ/ρ+ΔL/L–ΔS/S(2—3) 另外,我们知道导线的横截面积S=πr2,则Δs=2πr*Δr,所以 ΔS/S=2Δr/r(2—4) 从材料力学我们知道 Δr/r=-μΔL/L(2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有 ΔR/R=Δρ/ρ+ΔL/L+2μΔL/L

称重设计

应变式称重传感器的设计与计算 [美国]理查德·富兰克林 此篇文章的形成是基于对称重传感器设计者能有所帮助。它深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。此篇文章还介绍了各种误差来源及设计建议。 粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。 通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。 在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。 称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。 有关称重传感器设计的附加内容见参考文献[2](a)和[2](b)。这份小册子及计算机程序比较完整,可以从制造商那里获得。 在过去十年中,计算机技术的发展改变了称重传感器的设计、制造与记录方式,例如在电阻应变计被安装后,所有的称重传感器都有一个原始的不平衡(当没有载荷作用时,也有输出信号存在)。通常零点调整电阻被应用于商业称重传感器,以便消除这种不平衡。运用计算机程序,零点不平衡

应变式称重传感器设计

太原理工大学现代科技学院《传感器原理与应用》课程设计 设计名称应变式称重传感器设计 专业班级测控11-2 学号 71 姓名李玉堃 同组人王鑫王海平

设计日期 2015年1月 太原理工大学现代科技学院

注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。

应变式称重传感器设计 摘要 粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。 在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。 称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。 关键词:传感器,电阻应变式,称重

电阻应变式称重传感器原理

电阻应变式称重传感器原理 电阻应变式称重传感器原理 电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。 一、电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R = ρL/S(Ω)(2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2) 用式(2--1)去除式(2--2)得到 ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3) 另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以 ΔS/S = 2Δr/r (2—4) 从材料力学我们知道 Δr/r = -μΔL/L (2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有 ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L =(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L = K *ΔL/L (2--6) 其中 K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)(2--7) 式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。 需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在 1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。 在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便

压力变送器的应用及选型

压力变送器的应用及选型 一、概述 在诸类仪表中,变送器的应用最为广泛、普遍,变送器大体分为压力变送器和差压变送器。变送器常用来测量压力、差压、真空、液位、流量和密度等。变送器有两线制和四线制之分,两线制变送器尤多;有智能和非智能之分,智能变送器渐多;有气动和电动之分,电动变送器居多;另外,按应用场合有本安型(本质安全型)和隔爆型之分;按应用工况,变送器的主要种类如下: 低(微)压/低(微)差压变送器;中压/中差压变送器;高压/高差压变送器;绝压/真空/负压差压变送器;高温/压力、差压变送器;耐腐蚀/压力、差压变送器;易结晶/压力、差压变送器。 变送器的选型通常根据安装条件、环境条件、仪表性能、经济性和使用介质等方面考虑。实际应用中分为直接测量和间接测量两种;其用途有过程测量、过程控制和装置连锁等。常见的变送器有普通压力变送器、差压变送器、单发兰变送器、双发兰变送器、插入式发兰变送器等。 二、压力/差压变送器介绍 压力变送器和差压变送器单从名称上讲测量的是压力和差压(两个压力的差),但它们可以间接测量的量却很多。如压力变送器,除可以测量压力外,还可以测量设备内的液位。在常压容器内测量液位时,需要一台压力变送器即可。当测量受压容器的液位时,可考虑用两台压力/差压变送器,即测量下限一台,测量上限一台,它们的输出信号进行减法运算,即可测出液位,这时一般选用差压变送器。在容器内液位与压力值不变的情况下它还可以用来测量介质的密度。压力变送器的测量范围可以做的很宽,从绝压0开始可以到一百多兆帕(一般情况)。 差压变送器除了测量两个被测量压力的差压值外,它还可以配合各种节流元件来测量介质流体的流量,可以直接测量受压容器的液位和常压容器的液位以及压力和负压。 2.1 制作 从压力/差压变送器制作的结构上来分有普通型和隔离型。普通型压力/差压变送器的测量膜盒为一个,它直接感受被测介质的压力或差压;隔离型的测量膜盒接受到的是一种稳定液(一般为硅油)的压力,而这种稳定液是被密封在两个膜片中间,直接接受被测压力的膜片为外膜片,原普通型膜盒的膜片为内膜片,当外膜片上接受压力信号时通过硅油的传递原封不动的将外膜片的压力传递到了普通膜盒上,从而可以测出外膜片所感受到的压力。

应变式称重传感器)

成绩评定: 传感器技术 课程设计 题目称重传感器 1

目录 摘要 (1) 设计任务书................................ (1) 第一章德普施应变传感器 (2) 1.1工作原理 (2) 1.2 电阻应变片 (2) 第二章测量电路 (2) 2.1测量电桥 (2) 2.2运算放大器LF356 (3) 2.3 放大电路 (3) 2.3.1 一级放大电路 (4) 2.3.2 调零电路 (5) 2.3.3 可调二级放大电路 (5) 第三章误差分析 (6) 第四章个人小结 (6) 参考文献 (6)

摘要 传感器技术是利用各种功能材料实现信息检测的一门综合技术学科,是现今科学领域中实现信息化的基础技术之一。现代测量、控制与自动化技术的飞速发展,特别是电子信息科学的发展,极大的促进了现代传感器的发展。同时我们也看到,传感器在日常生活中的应用越来越广泛,可以说它已成为测试测量不可或缺的环节。因此学习、研究并在实践中不断应用传感器技术具有重大意义。 鉴于此,本次课程设计力图通过对常用传感器的设计运用使我们加深对传感器的认识和理解并逐步将课本上学习到的理论知识转换为实际生产力,以培养我们学以致用的求学质量。 称重传感器是用来将重量信号或压力信号转化为电信号的装置,称重传感器采用金属电阻应变计组成测量桥路,利用金属电阻丝在拉力作用下伸长变细,电阻增加的原理,既金属电阻随所受应变变化而变化的效应而制成的。本次课程设计中的传感器共由以下几部分组 成:应变梁、全桥电路、差动放大电路、调零电路和最后的放大标定电路。 关键词:电阻、放大器、应变片、应变式传感器。 1

压变式传感器课程设计

电控学院 传感器原理及应用课程设计 题目:电阻应变式称重报警器 院(系):电气与控制工程学院 专业班级:自动化xxxx班 姓名:xxx 学号:xxxxxxxx 指导教师:王党树 201x年x月xx日

1、前言 称重传感器是知识密集、技术密集和技巧密集型的高技术产品。研制和生产所涉及的内容多、离散大,技术密集程度高,边缘学科色彩浓,是多种学科相互交叉、相互渗透的结晶。称重传感器是一种将质量信号转变为可测量的电信号输出的装置。用传感器先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器。目前,称重传感器几乎运用到了所有的称重领域。 电阻应变式称重传感器,是通过把一种被测量(质量)转换成另外一种被测量(输出)来测量质量的力传感器,其工作原理是:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 2、方案设计 2.1方案比较 直接放大:将传感器输出信号直接通过放大器放大。电路设计简单,受温度影响大。 差分放大:将传感器输出信号通过差分放大电路放大。电路设计较复杂,受温度影响小,有效抑制零点漂移。 直接输出电压:易将报警电路烧毁。 电压比较器:准确调节报警电压。

电阻应变式称重传感器的原理和应变片技术

电阻应变式称重传感器的原理和应变片技术 2012/7/26阅 随着科学技术与经济的发展进步,电子衡器作为百姓日常生活中一种贸易结算的手段,已经被广泛使用。无论小到几公斤的电子计价秤,还是大到100多吨的电子汽车衡都是由称重传感器这一主要部件实现质量与电量的转换的。因此对称重传感器的结构组成,工作原理及相关知识的阿了解,对于从事检定和修理方面的工作人员来说尤为重要。下面就从几个方面对电阻应变式称重传感器作以具体介绍。 一、电阻应变式称重传感器的工作原理和结构 电阻应变式称重传感器之所以能作为质量——电量的转换元件,是基于金属丝在受拉或受压后会发生弹性形变,其电阻值也随之产生相应的变化这一物理特性实现的。当电阻应变片内金属丝受到外力作用发生弹性形变时,它的长度L,横截面s及电阻率P均会发生相应的变化。电阻相对变化为 电阻相对变化公式 称重传感器接线图 在钢制的弹性体上,成对地在纵向和横向上贴有R1,R2,R3,R4共4个电阻应变片,它们组成一个全桥式测量电路,如图所示。图中A,c两点接人激励电压u,一般使用交流或直流电源供电,B,D两点为输出端,工作时将输出电压信号u。这种桥式测量电路,可以灵敏

地测量极微小的电阻变化。当弹性体受物体的作用时,弹性体便产生弹性形变,粘在其表面的电阻应变片随其同步地变形,因而改变了它们的电阻值。电阻应变片的长度L,截面积S,电阻率P均随之发生变化。由于电阻应变片组成的桥式电路是平衡的,电阻应变片的电阻变化会引起电桥的不平衡,从而输出电压信号,该信号与物体的质量()成正比。 根据上述原理制成的应变式称重传感器主要由三部分组成,即弹性元件,电阻应变片和测量电路,用专门、十分严格的粘贴技术并通过连接线将这三者联系起来,就可以实现质量——电量信号之间的线性变换。 二,电阻应变片的主要技术特性 1.灵敏度。金属丝的灵敏度系数(Ko)是表示金属丝受力后,电阻的相对变化与轴向长度的相对变化之间的关系。当金属丝制成应变片后,应变片的灵敏系数K就是一个新的量值了,而且K恒小于Ko。这是由于胶基对力传递变形失真外,主要还有横向效应,而且K还是温度的函数,所以对K的要求是稳定性。 2.线性度。弹性体上的应变敏感元件,其电阻的相对变化AK/K理论上呈线性关系。实际上,当施加到弹性体上的力超过一定范围时,就会出现非线性关系。 3,横向效应。粘贴在弹性体上的应变片,其敏感栅有许多条直线及圆角部分组成。当受到纵向应力之后,直线段的电阻将增加,圆角部分的电阻将减小,其综合效应是使应变片的灵敏度下降,这种现象称为应变片的横向效应。在工程上采用箔式应变片可减小横向效应。4.机械滞后和热滞后。当对贴有应变片的弹性体循环加载和卸载时,应变片的AR/R与AL /L之间的特性曲线的不重合程度称为机械滞后。把加载和卸载特性曲线的最大差异值称为应变片的机械滞后值。它的物理意义是,保持外界条件不变,对弹性体循环加载、卸载过程中,对同一载荷,应变片输出的差值即为机械机械滞后值。当弹性体受到恒定外力时环境温度改变时应变片的电阻值也要变化。在循环改变温度时,应变片在同一温度下电阻的差值称为应变片的热滞后值。 5.零漂和蠕动。在恒温条件下,贴有应变片的弹性体不承受任何载荷,应变片的阻值随时间变化的情况称为应变片的零漂。 在恒温条件下,加到贴有应变片的弹性体上的载荷力恒定,应变片的应变输出随时问变化的情况称为应变片的蠕动。 6应变极限。粘贴在弹性体上的应变片所能测量的最大载荷力称为应变极限。在恒温条件下,缓慢均匀地施加载荷力,当应变片的输出大于机械应变的10%时,就认为应变片已接近破坏状态,此时的应变值就称为应变极限值。

电阻应变式称重传感器的设计

电阻应变式称重传感器的设计与计算 理查德·富兰克林[美国] 这篇文章深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。此篇文章还介绍了各种误差来源及设计建议。此篇文章的形成是基于对称重传感器设计者能有所帮助。 粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。 通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。在批量制造称重传感器前,应制造几个样机进行组装、测试和标定,并了解称重传感器的原理。 在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。 称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。 有关称重传感器设计的附加内容见参考文献[2](a)和[2](b)。这份小册子及计算机程序比较完整,可以从制造商那里获得。 在过去十年中,计算机技术的发展改变了称重传感器的设计、制造与记录方式,例如在电阻应变计被安装后,所有的称重传感器都有一个原始的不平衡(当没有载荷作用时,也有输出信号存在)。通常零点调整电阻被应用于商业称重传感器,以便消除这种不平衡。运用计算机程序,零点不平衡

基于电阻应变片的压力传感器设计

前言 随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。

应变式称重传感器技术的现状和发展趋势

应变式称重传感器技术的现状和发展趋势

应变式称重传感器技术的现状和发展趋势 一、应变式称重传感器的发展与技术创新 1938年美国加利福尼亚理工学院教授 E.Simmons(西蒙斯)和麻省理工学院教授A.Ruge(鲁奇)分别同时研制出纸基丝绕式电阻应变计,以他们名字的字头和各有二位助手命名为SR-4型,由美国BLH公司专利生产。为研制应变式负荷传感器奠定了理论和物质基础。 1940年美国BLH公司和Revere公司总工程师A.Thurston(瑟斯顿)利用SR一4型电阻应变计研制出圆柱结构的应变式负荷传感器,用于工程测力和称重计量,成为应变式负荷传感器的创始者。1942年在美国应变式负荷传感器已经大量生产,至今已有60多年的历史。 前30多年,是利用正应力(拉伸、压缩、弯曲应力)的柱、筒、环、梁式结构负荷传感器的一统天下。在此时期内,英国学者杰克逊研制出金属箔式电阻应变计,为负荷传感器提供了较理想的转换元件,并创造了用热固胶粘贴电阻应变计的新工艺。美国BLH公司和Revere公司经过多年实践创造了负荷传感器电路补偿与调整

工艺,提高了负荷传感器的准确度和稳定性,使准确度由40年代的百分之几量级提高到70年代初的0.05量级。但在应用过程中出现的问题也很突出,主要是:加力点变化会引起比较大的灵敏度变化;同时进行拉、压循环加载时灵敏度偏差大;抗偏心和侧向载荷能力差;不能进行小载荷测量。上述缺点严重制约了负荷传感器的发展。 后30多年,经历了70年代的切应力负荷传感器和铝合金小量程负荷传感器两大技术突破;80年代称重传感器与测力传感器彻底分离,制定R60国际建议和研发出数字式智能称重传感器两项重大变革;90年代在结构设计和制造工艺中不断纳入高新技术迎接新挑战,加速了称重传感器技术的发展。 1973年美国学者霍格斯特姆为克服正应力负荷传感器的固有缺点,提出不利用正应力,而利用与弯矩无关的切应力设计负荷传感器的理论,并设计出圆截工字形截面悬臂剪切梁型负荷传感器。打破了正应力负荷传感器的一统天下,形

电阻应变式称重传感器的设计

电阻应变式称重传感器的设计《自动检测技术及仪表》课程设计 题目:电阻应变式称重传感器的设计 学院: 专业: 年级: 姓名: 学号: 目录 摘要 (2) 一、称重传感器 (2) 1、简介 (2) 2、种类 (3) 二、电阻应变式称重传感器及其设计 (3) 1、电阻应变式称重传感器简介及工作原理 (3) 2、传感器的设计概述 (5) 3、设计传感器的工作原理 (6) 4、传感器弹性元件结构 (7) 5、传感器测量电路 (8) 6、传感器的特性 (9) 7、称重传感器常用技术参数 (11) 8、传感器设计相关参数选择 (13) 9、应用技术及应用领域 (16)

三、总结 (17) 四、参考资料 (17) 1 摘要 称重传感器是电子衡器的核心部件,随着称重传感器技术不断发展和应用领域不断扩大,传感器越来越为人们所关注。本文通过对传感器工作原理、分类及应用等的分析,介绍了一种基于双孔梁称重的电阻应变式传感器。它可称量被试木材在某一时刻的重量,以计算该试材在该时刻的含水率。该方法的准确度和稳定性不受木材材性影响,且与木材含水率不均性无关。 一、称重传感器 1、简介 称重传感器是知识密集、技术密集和技巧密集型的高技术产品。研制和生产所涉及的内容多、离散大,技术密集程度高,边缘学科色彩浓,是多种学科相互交叉、相互渗透的结晶。称重传感器是一种将质量信号转变为可测量的电信号输出的装置。用传感器先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重 2

应变式称重传感器设计

- 太原理工大学现代科技学院《传感器原理与应用》课程设计 设计名称应变式称重传感器设计 专业班级测控11-2 学号2011101471 姓名李玉堃 同组人王鑫王海平 总结.

设计日期2015年1月 太原理工大学现代科技学院

课程设计任务书 注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 应变式称重传感器设计

摘要 粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。 在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。 称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。 关键词:传感器,电阻应变式,称重

相关文档
最新文档