第二讲B 同位素分析实验技术_质谱

生物质谱技术在蛋白质组学中的应用

生物质谱技术在蛋白质组学中的应用(北京大学药学院 杨春晖 学号:10389071) 一、 前言[1,2] 基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻译后加工和修饰的情况、以及它们的亚细胞分布等等,因此在整体水平上研究蛋白质表达及其功能变得日益显得重要。这些在基因组中不能解决的问题可望在蛋白质组研究中找到答案。蛋白质组研究的数据与基因组数据的整合,将会在后基因组研究中发挥重要作用。 目前蛋白质组研究采用的主要技术是双向凝胶电泳和质谱方法。双向凝胶电泳的基本原理是蛋白质首先根据其等电点,第一向在pH梯度胶内等电聚焦,然后转90度按他们的分子量大小进行第二向的SDS-PAGE分离。质谱在90年代得到了长足的发展,生物质谱当上了主角,蛋白质组学又为生物质谱提供了一个大舞台。他们中首选的是MALDI-TOF,其分析容量大,单电荷为主的测定分子量高达30万,干扰因素少,适合蛋白质组的大规模分析。其次ESI为主的LC-MS 联机适于精细的研究。本文将简介几种常用的生物质谱技术,并着重介绍生物质谱技术在蛋白质组学各领域的应用。 二、 生物质谱技术[3,4] 1.电喷雾质谱技术(ESI)[5] 电喷雾质谱技术( Electrospray Ionization Mass Spectrometry , ESI - MS) 是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子, 使质量电荷比(m/ z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展了分子量的分析范围,离子的真实分子质量也可以根据质荷比及电荷数算出。 2.基质辅助激光解吸附质谱技术(MOLDI)[5-7] 基质辅助激光解析电离(MOLDI)是由德国科学家Karas和Hillenkamp发现的。将微量蛋白质与过量的小分子基体的混合液体点到样品靶上,经加热或风吹烘干形成共结晶,放入离子源内。当激光照射到靶点上时,基体吸收了激光的能力跃迁到激发态,导致蛋白质电离和汽化,电离的结果通常是基体的质子转移到蛋白质上。然后由高电压将电离的蛋白质从离子源转送到质量分析器内,再经离子检测器和数据处理得到质谱图。TOF质量分析器被认为是与MALDI的最佳搭配,因为二者都是脉冲工作方式,在质量分析过程中离子损失很少,可以获得很高的灵敏度。TOF质量分析器结果简单,容易换算,蛋白质离子在飞行管内的飞行速度仅与他的(m/z)-1/2成正比,因此容易通过计算蛋白质离子在飞行管内的飞

浅谈质谱技术及其应用word精品

浅谈质谱技术及其应用 摘要:质谱分析灵敏度高,分析速度快,被广泛应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。 关键词:质谱仪应用发展 1质谱技术 质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。 1.1质谱原理 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 1.2质谱技术的发展 1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。第一台质谱仪是英国科学家弗朗西斯阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础 1.3质谱技术的分类

质谱讲义(AB)

质谱(MS) mass spectrometry 质谱法是将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离的分析技术;质谱仪是实现上述分离分析技术,从而测定物质的质量与含量及其结构的仪器。质谱分析法是一种快速,有效的分析方法,利用质谱仪可进行同位素分析,化合物分析,气体成分分析以及金属和非金属固体样品的超纯痕量分析。在有机混合物的分析研究中证明了质谱分析法比化学分析法和光学分析法具有更加卓越的优越性,其中有机化合物质谱分析在质谱学中占最大的比重,全世界几乎有3/4仪器从事有机分析, 现在的有机质谱法,不仅可以进行小分子的分析,而且可以直接分析糖,核酸,蛋白质等生物大分子,在生物化学和生物医学上的研究成为当前的热点,生物质谱学的时代已经到来,当代研究有机化合物已经离不开质谱仪。 一.仪器概述 1.基本结构 质谱仪由以下几部分组成 供电系统 ┏━━━━━┳━━━━━━╋━━━━━━━┳━━━━━━┓ 进样系统离子源质量分析器检测接收器数据系统 ┗━━━━━┻━━┳━━━┻━━━━━━━┛ 真空系统 (1)进样系统:把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。 (2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。 EI(Electron Impact Ionization):电子轰击电离——最经典常规的方式,其他均属软电离,EI使用面广,峰重现性好,碎片离子多。缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。 CI(Chemical Ionization):化学电离——核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的[M+H]+或[M-H]+等‘准’分子离子。得到碎片少,谱图简单,但结构信息少一些。与EI 法同样,样品需要汽化,对难挥发性的化合物不太适合。

生物质谱技术

生命科学被誉为21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。 1.质谱技术 质谱(MassSPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。质谱仪主要由分析系统、电学系统和真空系统组成。 质谱分析的基本原理 用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。 质谱技术的发展 质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。

DART实时直接分析质谱离子源技术

DART实时直接分析质谱离子源技术------升级你的LC/MS 2005年美国PITTCON金奖,及R&D 100金奖产品 DART SVP System 自2005年发明以来,直接实时分析-质谱(DART-MS)作为一种崭新的质谱分析技术被快速广泛地应用于药物发现与开发(ADME)、食品药品安全检测、司法鉴定、材料分析及相关化学和生物化学分析等领域,跨国制药公司(如Roche,Merck, Amgen, GSK, Pfizer,Eli Lilly)、国家执法部门(如FBI,FDA,EPA)等相继采用。 相比于现行通用的液-质联用(LC-MS)技术,DART-MS 分析将不再需要繁杂的样品制备和耗时的色谱分离。作为一种“绿色”分析检测技术,DART-MS 将急剧缩短样品分析周期,极大地减少对化学溶剂的消耗和对固定资产及人员的投资。 DART(direct analysis in real time)工作原理: DART 是一种非表面接触型解析/离子化质谱分析离子源技术。其原理是在大气压条件下,中性或惰性气体(如氮气或氦气)经放电产生激发态原子,对该激发态原子进行快速加热和电场加速,使其解析并瞬间离子化待测样品表面的标志性化合物或待测化合物,进行质谱或串联质谱检测,从而实现样品的实时直接分析。 DART主要功能: 快速--DART能在几秒钟内分析存在于气体、液体、固体或材料表面的化合物,从而对样品无损耗定性和定量分析。 简便--样品再也无需冗繁的样品处理和制备。对块状样品和形状怪异的固体样本的分析特别有效,再无需关注样本的几何形状。 高效--在沥青、混凝土、玻璃、塑料、人皮肤、水果、蔬菜、衣服以及名片信用卡表面的化学战剂、爆炸物、毒品药物、体液(血液、唾液以及尿) 、代谢物、肽、低聚糖、高分子材料 以及金属有机化合物等均可以进行实时、无接触检测。 DART适用性: 用于离子检测的质谱仪可以是各种类型的质谱仪(如TOF,离子阱,四极杆或各类串接或杂合质谱)。 DART 可以与所有质谱厂商的各型号的液质联用仪联机。这些厂家包括但不限于:AB-SCIEX,Agilent, Bruker, JOEL, ThermoFisher, Waters等。

对质谱分析技术的理解

对质谱分析技术的理解 袁媛 (天津师范大学物理与电子信息学院物理一班 09506042) 摘要:着重从以下几个方面阐明质谱分析技术:(1)质谱分析技术的定义;(2)质谱分析技术的特点;(3)质谱分析技术的基本过程;(4)质谱仪的发展;(5)质谱仪的分类;(6)质谱仪的系统组成;(7)质谱仪工作过程及基本原理;(8)质谱分析技术的应用。 关键词:质谱质谱仪离子质量分子 作者简介:天津师范大学 物理与电子信息学院 天津 300387 引言: 在《原子与亚原子物理》中,简单学习了质谱分析方法,它是是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。这里将从多层面,多角度对质谱分析技术进行理解。 正文: 一、质谱分析技术的定义 质谱分析法(Mass Spectrometry, MS)是在高真空系统中测定样品的分子离子及碎片离子质量,以确定样品相对分子质量及分子结构的方法。化合物分子受到电子流冲击后,形成的带正电荷分子离子及碎片离子,按照其质量m和电荷z的比值m/z(质荷比)大小依次排列而被记录下来的图谱,称为质谱。在质谱分析过程中,被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。 二、质谱分析法的特点 1.应用范围广。测定样品可以是无机物,也可以是有机物。应用上可做化合物的结构分析、测定原子量与相对分子量、同位素分析、生产过程监测、环境监测、热力学与反应动力学、空间探测等。被分析的样品可以是气体和液体,也可以是固体。

2.灵敏度高,样品用量少。目前有机质谱仪的绝对灵敏度可达50pg(pg为10?1 2 g),无机质谱仪绝对灵敏度可达10?14 。用微克级样品即可得到满意的分析结果。 3.分析速度快,并可实现多组分同时测定。 4.与其它仪器相比,仪器结构复杂,价格昂贵,使用及维修比较困难。对样品有破坏性。 三、质谱分析的基本过程 质谱仪是一种测量带电粒子质荷比的装置。它利用带点粒子在电场和磁场中的运动行为(偏转、漂移、振荡)进行分离和测量。在离子源中样品粒子被电离和解离,电离后成为带电单位电荷的分子离子。其解离后则生成一系列的碎片,这些碎片可能形成带正电荷的碎片离子,或带负电荷或呈中性。 将分子离子和碎片离子引入到一个强的正电场中,使之加速,加速电位通常为6~8kV,此时,所有带单位正电荷的离子都将获得动能。由于动能达数千电子伏,可以认为此时各种带单位正电荷的离子都有近似相同的动能。但是不同质荷比的离子则具有不同的速度,利用离子不同的质荷比及其速度差异、质量分析可将其分离,然后由检测器测量其强度记录后获得一张以质荷比为横坐标、以相对强度为纵坐标的质谱图。(质荷比:m/z ,其中m为离子的质量数,z为离子携带电荷数。) 质谱分析的基本过程可以概括为以下四个环节: 1、通过合适的进样装置将样品引入并进行汽化; 2、汽化后的样品引入到离子源进行电离,即离子化过程; 3、电离后的离子经过适当的加速后进入质量分析器,按不同的质荷比进行分离; 4、经检测、记录,获得一张质谱图。 根据质谱图提供的信息,可以进行无机物和有机物定性和定量分析、复杂化合物的结构分析、样品中同位素比的测定以及固定表面的结构和组成的分析等。 四、质谱仪的发展 从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大

质谱知识总结

第四章:质谱法 第一节经验 1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。2)正离子模式下,样品还会出现M-1(M-H), M-15(M-CH3), M-18(M-H2O), M-20(M-HF), M-31(M-OCH3)等的峰。分子离子峰应具有合理的质量丢失.也即在比分子离子质量差在4-13,21-26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键.如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位. 3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。 如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。 基峰

研究高质量端离子峰, 确定化合物中的取代基 M-15(CH3); M-16(O, NH2 M-17(OH, NH3); M-18(H2O); M-19(F); M-26(C2H2); M-27(HCN, C2H3); M-28(CO, C2H M-29(CHO, C2H5); M-30(NO); M-31(CH2OH, OCH3); M-32(S, CH M-35(Cl); M-42(CH2CO, CH M-43(CH3CO, C3H7); M-44(CO2, CS (.CH3) M-27 (O) M-28 第二节: 基本原理 2.1基本原理 质谱是唯一可以确定分子式的方法。而分子式对推测结构是至关重要的。质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。 具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。由此可见质谱最简单形式的三项基本功能是: (1)气化挥发度范围很广的化合物; (2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物); (3)根据质荷比(m/z e)将它们分开,并进行检测、记录。由于多电荷离子产生的比例比单电荷离子要

稳定同位素技术的发展及其应用

核技术与核安全课程作业 稳 定 同 位 素 技 术 的 发 展 及 其 应 用

原子核内质子数相同而中子数不同的一类原子称为同位素,它们处在周期表上的同一位置,可分为稳定性同位素和放射性同位素。放射性同位素的原子核是不稳定的,它通过自发的放出粒子而衰变成另一种同位素。而不具有放射性的同位素称为稳定同位素,其中一部分是由放射性同位素通过衰变后形成的稳定产物,称为放射成因同位素;另一部分是天然的稳定同位素,是核合成以来就保持稳定,迄今为止还未发现它们能够自发衰变形成其他同位素。自然界中共有1700余种同位素,其中稳定同位素有270余种。有的元素由很多的稳定同位素组成,如第50号元素锡含有10个稳定同位素;而有的稳定同位素却仅仅只有一个稳定同位素,如元素氟、钠等。 稳定同位素较放射性同位素具有安全、无污染、易控制的优点,在地质、生态、医药、农业等领域研究中得到广泛应用。 1.稳定同位素技术的发展过程 稳定同位素的发现比放射性同位素要晚一些,1912年汤姆孙用电磁分析器(近代质谱计的雏形)才第一次确定了氖-20和氖-22的存在;1927年发现了氧的稳定同位素O 17和O 18 ;1932年发现了重氢(D )。1936年尤里等用精馏法从水中富集了O 18,随后又用化学交换法富集了Li 8,C 13,N 15和S 34,不但证实了早年发表过的有关分离的计算理论,同时也发现了化学交换法对大量分离轻同位素很合适的。与此同时也采取了几种物理方法分离了若干种同位素。 在1930-1941年期间稳定同位素分离还处于探索阶段,此时尚无工业规模的生产,少量分离物只是提供研究同位素本身的核性质以及作为示踪原子用。到20世纪50年代后期,由于科学技术的进步及稳定同位素特殊性质的逐步显示,才使之得以迅速发展。我国稳定同位素的研制工作起步于50年代中,60年代首先在农业上获得应用。之后,在医药学中的应用也取得初步成果。目前,我国已有一支稳定同位素的研究、生产机应用的技术队伍,个别产品进入了国际市场。 2.稳定同位素分析技术 稳定同位素分析是分离研究、生产和应用的前提,它是稳定同位素科学技术中不可缺少的组成部分。其中最重要的方法是质谱分析,它用于同位素分析已有70年历史,是经典、常用,准确的方法,适用于各种元素同位素质量和浓度测定以及物质成分和结构分析。近来在样品引入、离子源、分析器以及检出系统等四个主要方面都有重大的改进。在样品引入部分加上气相色谱,构成色质联用仪器,可以分析复杂混合物样品而不必转化为简单气体。此外,现在又出现高压液相色谱与质谱联用的更新技术。在离子化方面出现了许多新型离子化型式,如化学离子化,在离子源中产生的离子基本上是分子离子,谱线要比普通的电子轰击离子化单纯得多,大大提高了检测灵敏度。又如场致离子化和场解吸离子化,它们都是不直接轰击样品分子,是一种软离子化技术,不出现离子碎片,基本上没有同位素效应的干扰问题,可以直接分析多成分的混合物样品,而且不必像GC-MS 那样需要引入适合于气相色谱的诱导体,所以操作更为简单。这对多重标记物的分析十分有利,能测定稀释了一百万倍的样品,最小检测量可低到fs(1510 g)。此外,还有激光离子化、大气压离子化和多点场离子化等。在分析器方面,除了磁场偏转形式外,还有一种简便的四重极质量过滤器,它是用四根圆棒电极(最好是双曲线断面型式)代替了笨重的磁铁。对角线上两根电极互成一对,分别加上高

稳定同位素比例质谱仪(IRMS)的原理和应用

稳定同位素比例质谱仪(IRMS)的原理和应用 祁彪,崔杰华 (中国科学院沈阳应用生态研究所农产品安全与环境质量检测中心,沈阳,110016)同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。有些问题还只能通过利用稳定同位素技术来解决。现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。 一、有关同位素的基本概念 1、同位素(Isotope) 由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。 2、稳定同位素(Stable isotope) 同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。 凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。 无可测放射性的同位素是稳定同位素。其中一部分是放射性同位素衰变的最终稳定产物。例如206Pb 和87Sr等。另一大部分是天然的稳定同位素,即自核合成以来就保持稳定的同位素,例如12C和13C、18O 和16O等。与质子相比,含有太多或太少中子均会导致同位素的不稳定性,如14C。这些不稳定的“放射性同位素”将会衰变成稳定同位素。 3、同位素丰度(Isotope abundance)

质谱基本原理

质谱基本原理 质谱法是将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离的分析技术;质谱仪是实现上述分离分析技术,从而测定物质的质量与含量及其结构的仪器。质谱分析法是一种快速,有效的分析方法,利用质谱仪可进行同位素分析,化合物分析,气体成分分析以及金属和非金属固体样品的超纯痕量分析。在有机混合物的分析研究中证明了质谱分析法比化学分析法和光学分析法具有更加卓越的优越性,其中有机化合物质谱分析在质谱学中占最大的比重,全世界几乎有3/4仪器从事有机分析, 现在的有机质谱法,不仅可以进行小分子的分析,而且可以直接分析糖,核酸,蛋白质等生物大分子,在生物化学和生物医学上的研究成为当前的热点,生物质谱学的时代已经到来,当代研究有机化合物已经离不开质谱仪。 一.仪器概述 1.基本结构 质谱仪由以下几部分组成 供电系统 ┏━━━━━┳━━━━━━╋━━━━━━━┳━━━━━━┓ 进样系统离子源质量分析器检测接收器数据系统┗━━━━━┻━━┳━━━┻━━━━━━━┛ 真空系统 (1)进样系统:把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。 (2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。 EI(Electron Impact Ionization):电子轰击电离——最经典常规的方式,其他均属软电离,EI 使用面广,峰重现性好,碎片离子多。缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。 CI(Chemical Ionization):化学电离——核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的[M+H]+或[M-H]+等‘准’分子离子。得到碎片少,谱图简单,但结构信息少一些。与EI法同样,样品需要汽化,对难挥发性的化合物不太适合。 原理R + e-→R+·+ 2e-(电子电离)反应气为含H的 R为反应气体分子R+·+ R →RH+ + (R-H)·分子,例如异丁 M为样品分子RH+ + M →R + (M+H)+ (质子转移)烷,甲烷,氨气, R浓度>>M浓度R+·+ M →R + M+·(电荷交换)甲醇气等 R+·+ M →(R+M)+·(加合离子) FD(Field Desorption):场解吸——大部分只有一根峰, 适用于难挥发极性化合物,例如糖,应用较困难,目前基本被FAB取代。 FAB(Fast Atom Bombardment):快原子轰击——利用氩,氙,80年代初发明,或者铯离子枪(LSIMS,液体二次离子质谱),高速中性原子或离子对溶解在基质中的样品溶液进行轰击,在产生“爆发性”汽化的同时,发生离子-分子反应,从而引发质子转移,最终实现样品离子化。适用于热不稳定以及极性化合物等。FAB法的关键之一是,选择适当的(基质)底物,从而可以进行从较低极性到高极性的范围较广的有机化合物测定,是目前应用比较广的电离技术。不但得到分子量还能提供大量碎片信息。产生的谱介于EI与ESI之间,接近硬电离技术。生成的准分子离子,一般常见[M+H]+和[M+底物]+。另外:还有根据底物脱氢以及分解反应产生的[M-H]_ 容易提供电子的芳烃化合物产生M+

世界著名的质谱方面网站清单

世界著名的质谱方面网站清单 质谱技术在蛋白鉴定等实验中具有不可忽视的作用,但是,目前的应用还不是特别广泛。那么,有问题了怎么解决呢?本文收集整理了相关的网站,包括世界著名的质谱学会、质谱研究组、质谱软件等。 美国质谱学会(ASMS, American Association for Mass Spectrometry) https://www.360docs.net/doc/2711907907.html,/ 南非质谱协会(SAAMS) http://www.saams.up.ac.za/ 欧洲质谱学会(ESMS) https://www.360docs.net/doc/2711907907.html,/esms/ 岛津公司:Koichi Tanaka (2002年诺贝尔化学奖获得者) https://www.360docs.net/doc/2711907907.html,/about/nobel/ ***高纯度化学研究所 http://www1m.mesh.ne.jp/kojundo/e/index.htm ***质谱学会(MSSJ) http://www.mssj.jp/ 瑞典质谱学会(SMSS) http://www.smss.uu.se/ 瑞士质谱组(SGMS) http://www.sgms.ch/ 生物技术中的质谱仪器相关资源 https://www.360docs.net/doc/2711907907.html,/ 以色列巴依兰大学:化学系 http://www.biu.ac.il/ESC/ch/ 印度质谱学会(ISMAS) https://www.360docs.net/doc/2711907907.html,/ 英国表面分析论坛 https://www.360docs.net/doc/2711907907.html, 英国伦敦大学比克贝克学院生物与化学学院:分析科学研究小组 https://www.360docs.net/doc/2711907907.html,/~chm_tgc/ 英国曼彻斯特理工大学化学系:J. Philip Day的研究小组 https://www.360docs.net/doc/2711907907.html,/people/academic/jpd.html 英国质谱学会(BMSS) https://www.360docs.net/doc/2711907907.html,/index.html 质谱:Mass Spectrometry Database,American Academy of Forensic Sciences (免费) http://www.ualberta.ca/~gjones/mslib.htm

质谱 内标等知识

质谱定量的原则内标的选择 LC-MS 2009-11-01 19:44:11 阅读178 评论2 字号:大中小订阅 <3>质谱定量的原则04——系列讲座 内标 在做MS定量时应该使用内标。选择一个合适的内标,将能减少因为样品提取、HPLC进样和离子化的多样性造成的差异。在复杂基质的分析中,在SRM积分图上,在标准曲线的低端,常会见到:两个不同的浓度水平,会给出近乎一致的响应。只有当使用一种内标时,这两个点才能被区分。一些研究者试图在实验中不用内标去做标准曲线,但成功率不高。我们在标准曲线上每个浓度水平都重复进样3次。没有内标的情况下,重现性%RSD常常会高于20%;而当使用内标时,%RSD能降 低到近2%。 我要如何选择一个内标? 最好的内标是待定量的化合物的同位素内标。同位素标记的内标将和待测物有相似的回收率、ESI离子化响应,和相似的色谱保留时间。如果你运行的不是临床药代动力学定量,可能很难判断上述说法,因为特殊的合成一个同位素标记的内标,是非常昂贵和耗时的。 通常,如果你和一个医学的化学家工作,他们会有一个化合物相似物库,可以被用作内标。这些类似物,在化合物合成中被测试,和该化合物性质相似可以被用户定量内标,而且更重要的是,这些类似物和该化

合物的母离子质量有微小的差异。 尽量不要使用去甲基化(-14)或者是氧化的(+16)的类似物作内标,因为待测化合物的母离子常会发生同样的代谢。 常见的做内标的类似物是氯代的化合物。氯代的化合物类似物会和待测化合物有相似的色谱保留时间,这是内标的一个重要特性。我们已经发现内标物的一个最重要的特性是它和待测化合物共流出。 我该如何使用内标? 首先,内标添加需在样品测试方法的开始阶段,典型的,应在血浆crash 或固相萃取之前。内标应用同一浓度水平添加(包括标样)。内标应给出可靠的质谱响应。应该注意的是:内标的量应添加得合适,应高于定量限,但不能过高,因为过高的内标响应会抑制被分析物的离子化。“我应该添加多少量的内标?”这是一个重要的问题。通过做一些试分析:早、中、晚的时间点,也许一个或两个标准点,你应该知道你的样品中化合物的大概量。这些信息非常有价值,可以帮助建立一个合适的标准曲线,并知道应添加多少量的内标。举例来说:如果待定量的样品浓度范围是100 fg ~25 pg,检测限是100 fg,你应该添加5~10 pg的内标。一个好的经验法则是:内标物的量大概是标准工作曲线浓度最高点的1/3。这将给出一个比较不错的响应,并且不会抑制和干扰待测样品 的离子化。见图1

质谱技术在抗体药物分析中的应用

质谱技术在抗体药物分析中的应用 摘要:质谱技术是抗体药物分析最重要的技术手段之一。本文简述了抗体药物 的发展和质谱技术的原理。对于质谱技术在抗体药物的分析中应用进行了归类整理,主要分为在一级结构和高级结构分析中的应用。一级结构的分析包括:精确 分子量的测定、抗体药物偶联比、肽指纹图谱等,高级结构的分析包括:氢/氘交换质谱、二硫键的分析等。质谱法相对于其他分析方法可以提供更为准确的数据,并可以得到多水平的分析结果。 关键词:抗体药物质谱一级结构高级结构 单克隆抗体药物的发展起源于1975年,Kohler 和Milstein 创立杂交瘤技术, 为大量制备鼠源单克隆抗体提供了技术条件,开创了大规模制备单克隆抗体时代。抗体类药物是指含有抗体片段的蛋白类药物,可以和靶抗原特异性结合,并且更 加安全有效,所以在恶性肿瘤、自身免疫性疾病、心血管疾病、感染和器官移植 排斥等重大疾病上得到了快速的发展,是当前生物药物领域增长最快的一类药物。 [1] 1.抗体药物发展新趋势 在生物药物领域,抗体药物占据着越来越重要的地位,2015年全球销售排名 前10 位的药物中有6 个为抗体药物,分别是humira、enbrel、remicade、rituxan、avastin和Herceptin。抗体药物按来源分类可以分为:鼠源单克隆抗体、人鼠嵌合抗体、人源化抗体和全人源抗体。鼠源单克隆抗体是第一代的抗体药物,经过不 断改造过渡到全人源单抗。目前,FDA 批准的单克隆抗体药物中,人源化单抗和 全人源单抗数量已占据72%[2] 1.1抗体药物偶联物(ADC) 抗体药物偶联物(ADC)由单克隆抗体和小分子化合物两部分组成,小分子 化合物通常是毒性很强的抗肿瘤小分子药物。通过抗体的靶向作用,ADC 的抗体 部分和肿瘤细胞表面抗原特异性识别并结合,通过细胞内吞作用,将抗体和小分 子化合物一起带进肿瘤细胞内部,并在细胞内部发生水解反应,释放出小分子化 合物,从而杀死肿瘤细胞。[3]这样既可以降低小分子药物的毒性,同时具有靶向 结合的作用。已经上市的两个ADC是Kadyla和Adcetris。 1.2双特异性抗体(BsAb) 双特异性抗体(BsAb)是含有两种特异性抗原结合位点的人工抗体,能在靶 细胞和功能分子(细胞)之间架起桥梁,激发具有导向性的免疫反应,现已成为 抗体工程领域的热点。由于基因工程的发展,目前双特异性抗体已经研发出多种 类型[4],主要类型有三功能双特异性抗体、IgG-scFv、三价双特异性分子、串联 单链抗体(串联scFv) 、DVD-Ig 等多种形式。2014年第一个双特异性抗体Blinatumomab获FDA批准,靶向位点是CD19和CD3。 2.质谱技术 近年来质谱仪性能的显著改进主要基于开发出的两种离子化技术:一种是介 质辅助的激光解吸/离子化(matrix-assisted laser desorption/ionization.MALDI) [5]技术。另一种是电喷雾离子化(Electrospray ionization,ESI)[6]技术。由于这两种 电离技术的出现,使原本只能检测小分支的质谱技术,可以运用于检测生物大分子。 MALDI和ESI两种离子化方法都是软性离子化法,能够使生物大分子在离子 化过程中的保持完整性,分析灵敏度都极高,对低浓度的生物大分子样本也有很

DART实时直接分析质谱离子源介绍

DART实时直接分析质谱离子源介绍 字体: 小中大|打印|L发布: 2010-8-09 17:45 作者: webmaster 来源: 华质泰科查看: 26088次 实时直接分析(Direct Analysis in Real Time)简称DART,是一种热解析和离子化技术。 DART操作简单,样品置放于DART源出口和一台LC-MS质谱仪的离子采样口,便可进行分析。 适用于分析液、固、气态的各类型样品 由美国J. Laramee和R. Cody(美JEOL公司)于2005年发明,现由IonSense公司商品化生产、制造和销售。获得2005年Pittcon大奖。 DART已广泛应用于药物发现与开发(ADME)、食品药品安全控制与检测、司法鉴定、临床检验、材料分析、天然产品品质鉴定、及相关化学和生物化学等领域。

相比于现行通用的液质联用(LC-MS)技术,DART-MS分析将不再需要繁杂的样品制备和耗时的色谱分离。作为一种“绿色”分析检测技术,DART-MS将不需要化学溶剂的消耗,急剧缩短样品分析周期,和极大地减少对固定资产及人员的投资。 该技术在美欧等国的研究与应用已成燎原之势,并在著名大学(如Purdue,Rice,George Washington,U Maryland)、研究院(如Los Almos NL,NRCC Canada,US Army)、跨国制药公司(如Roche,Merck,Amgen,GSK,Pfizer,Eli Lilly)、国家执法部门(如FBI,FDA,EPA)等相继采用。 DART主要功能 DART能在几秒钟内分析存在于气体、液体、固体或材料表面的化合物,从而对样品无损耗

质谱原理简介

质谱原理简介: 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。 常见术语: 质荷比:离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z. 峰:质谱图中的离子信号通常称为离子峰或简称峰离子丰度:检测器检测到的离子信号强度. 基峰:在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子总离子流图: 在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图. 质量色谱图指定某一质量(或质荷比)的离子其强度对时间所作的图. 利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是 LC/MS测定中最有用的方式。当样品浓度很低时LC/MS的TIC上往 往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在 LC/MS上都能反映出来,确定LC条件是否合适,以后进行MRM等 其他扫描方式的测定时可作为参考。 1.0 指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常 见的准分子离子峰是[M+H]+或[M-H]-. 在ESI中,往往生成质量大于分子量的离子如

M+1,M+23,M+39,M+18......称准分子离子,表示为:[M+H]+,[M+Na]+ 等碎片离子: 准分子离子经过一级或多级裂解生成的产物离子碎片峰的数目及其丰度则与分子结构有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。 Ep hedri ne, MW = 165 多电荷离子: 指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构 -如共轭体系结构-才会形成多电荷离子.它的存在说明样品是较稳定 的?采用电喷雾的离子化技术, 可产生带很多电荷的离子,最后经计算机自动换算成单质/荷 比离子。 同位素离子由元素的重同位素构成的离子称为同位素离子各种元素的同位素,基本上按照其在自然界的丰度比出现在质谱中,这对于利用质谱确定化合物及碎片的元素组成有很大方便,还可利用稳定同位素合成标记化合物,如:氘等标记化合物,再用质谱法检出这些化合物,在质谱图外貌上无变化,只是质量数的位移,从而说明化合物结构,反应历程等 如何看质谱图: (1)确定分子离子,即确定分子量 氮规则:含偶数个氮原子的分子,其质量数是偶数,含奇数个氮原子 的分子,其质量数是奇数。与高质量碎片离子有合理的质量差,凡质量差在3~8和10~13,21~25之间均不可能,则说明是碎片或杂质。

质谱技术在现代生物科学领域中的应用

质谱技术在现代生物科学领域中的应用 (学院:生命科学与技术学院系别:生物工程专业班级:0902 姓名:刘佳) 【摘要】随着科技的进步,现代生物学成为了科学家们的研究热点,研究的重心也由最初的细胞水平转移到蛋白质、分子、基因水平。因此质谱技术成为了现代生物学领域必不可少的研究手段。本文简要综述了质谱技术在蛋白质结构鉴定、蛋白质组学、后基因时代、抗原表位等研究中的应用。 【关键词】质谱技术蛋白质组学抗原表位 Application of Mass-Spectrometric Technique in Modern Biological Terms (ACADEMY: Life Science and TechnologyDEPARTMENT: BioengineeringCLASS: 0902 NAME: Jia Liu) 【Abstract】With the progress of technology, modern biological has been a research hotspot, it now focuses on protein level, molecular level and genetic level from original cellular level. Thus, Mass-Spectrometric Technique becomes a requisite research measure in modern biological. This paper makes a brief summary of application of Mass-Spectrometric Technique in protein structure identification, proteomics, postgenomic era, epitope etc. 【Key words】Mass-Spectrometry proteomics epitope 1.1引言 众所周知,21世纪被科学家及众多学者称为生命科学的世纪,随着科技的 不断进步,在生物学领域不断的深入研究,人们看到了生物学对于人类社会以及整个生物界的影响都是巨大的,因此各国也加快了对生物学领域的研究。随着研究的不断深入,更多的先进技术被应用到生物学中,质谱技术便是这些先进技术中不可缺少的一项技术手段。质谱是带电粒子按质荷比大小顺序排列的图谱,最初主要用来测定元素或同位素的原子量,随着高性能质谱仪器的出现,质谱被越来越多地应用于生命科学研究的许多领域。以基质辅助激光解吸咐飞行时间质谱(MALDITOF)和电喷雾质谱(ESI)为代表的现代生物质谱技术,为蛋白质等生物大分子的研究提供了必要的技术手段。 1.2质谱技术在蛋白质结构研究中的应用 1.2.1 肽指纹图(peptide mass fingerprinting PMF)的测定 PMF测定是将未知蛋白质以特定的蛋白酶或化学水解的方法将蛋白质切成小的

稳定同位素质谱仪的应用

稳定同位素质谱仪的应用 一、地质地球化学:稳定同位素质谱仪的最早应用 主要研究轻元素(CHONS)的稳定同位素在自然界(岩石圈、土壤圈、水圈、大气圈)的丰度及其变化机理、在各种天然过程中的化学行为,并以此为指导研究天然和环境物质的来源、迁移过程以及经历过的物理和化学反应。 研究领域: 固体地球学科:地球动力学、地质构造学、岩石学、矿床学、矿物学、沉积学。 其他:海洋学、水文学、冰川学、古气候学、天体学、天体化学、考古学、石油/石油相关。 二、农业、林业(起步也比较早) 稳定同位素技术在农业研究中的应用包括:科学施肥、作物营养代谢、生物固氮、土壤呼吸、农用化学物质对环境影响、饲料配方、水产养殖、林木果树、药材等。 ●肥料的利用/转化途径和利用效率(13C,15N)。 ●氮素的硝化、反硝化过程(2H,15N,18O)。 ●光合作用及同化产物的传导和分布研究 ●利用稳定同位素展开的固氮研究。 ●农业残留、代谢及降解研究。 ●土壤碳氮循环研究:有机质年龄及周转率的测定、土壤细根年龄测算、土壤呼吸 等。 三、生态 稳定同位素技术加深了对生态过程的研究,可以探讨一些其他方法无法研究的问题。 1. 植物生理生态学 稳定同位素(2H、13C、15N和18O)可对生源元素的吸收、水分来源、水分平衡和利用效率等进行测定,从而研究植物的光合作用途径; ●植物水分胁迫程度; ●植物水分利用效率:植物13C组成能够在时间尺度上反映植物的水分利用效率。 ●植物水通量检测:通过植物中水2H和18O组成,判定植物对表层水和深层水的依 赖程度。 ●确定植物的分布区域(15N,18O,2H) ●光合作用、呼吸作用研究:对生态系统CO2交换的相对贡献(13C,18O) ●蒸发和升腾作用研究:对生态系统水交换或蒸散(ET)的相对贡献(2H,18O) ●树木年轮同位素环境响应:通过年轮同位素比值变化,分析过去环境变化(湿度、 旱涝、气候特征)。 2. 生态系统生态学 稳定同位素技术可用来研究生态系统的气体交换、生态系统功能及对全球变化的响应

相关文档
最新文档