2020年初二数学(上)期末复习题

合集下载

(汇总3份试卷)2020年福州市八年级上学期期末考试数学试题

(汇总3份试卷)2020年福州市八年级上学期期末考试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知图中的两个三角形全等,则1∠等于( )A .70︒B .50︒C .60︒D .120︒【答案】C 【分析】根据全等三角形的对应边相等和全等三角形的对应角相等,可得第二个三角形没有标注的边为a ,且a 和c 的夹角为70°,利用三角形的内角和定理即可求出∠1.【详解】解:∵两个三角形全等,∴第二个三角形没有标注的边为a ,且a 和c 的夹角为70°∴∠1=180°-70°-50°=60°故选C .【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等和全等三角形的对应角相等是解决此题的关键.2.已知一个三角形的两边长分别为2和4,则这个三角形的第三边长可能是( )A .2B .4C .6D .8【答案】B【分析】设第三边的长为x ,再由三角形的三边关系即可得出结论.【详解】设第三边的长为x ,∵三角形两边的长分别是2和4,∴4242x -<<+,即26x <<,只有B 满足条件.故选:B .本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.一次函数21y x =--的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】根据一次函数的图象与系数的关系即可解答.【详解】对于一次函数21y x =--,∵k=-2﹤0,∴函数图象经过第二、四象限,又∵b=-1﹤0,∴图象与y 轴的交点在y 轴的负半轴,∴一次函数21y x =--的图象经过第二、三、四象限,不经过第一象限,故选:A .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与系数的关系是解答的关键.4.关于x 的方程1233x k x x -=+--无解,则k 的值为( ) A .±3B .3C .﹣3D .2 【答案】B【详解】解:去分母得:26x x k =-+,由分式方程无解,得到30x -=,即3x ,= 把3x =代入整式方程得:32363k k =⨯-+=,,故选B .5.下列各式计算正确..的是 ( ) A .()257a a = B .22122x x -= C .326428a a a = D .826a a a ÷=【答案】D【解析】试题解析:A. ()2510a a =,故原选项错误; B. 2222x x -=,故原选项错误; C. 3254?28a a a =,故原选项错误;D. 826a a a ÷=,正确.6.禽流感病毒的形状一般为球形,直径大约为0.000 000 102m ,该直径用科学记数法表示为( ) A .71.0210m -⨯B .61.0210m -⨯C .70.10210m -⨯D .81.0210m -⨯【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯(110a ≤<,n 为正整数).与较大数的科学记数法不同的是其所用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】70.000000102 1.0210m m -=⨯故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为( )A .(1,2)B .(2,2)C .(3,2)D .(4,2)【答案】C 【详解】解:设对称点的坐标是x(x,y)则根据题意有,y=2,1132x x -+=⇒= 故符合题意的点是(3,2),故选C【点睛】 本题考查点的坐标,本题属于对点关于直线对称的基本知识的理解和运用.8.若等式(x+6)x+1=1成立,那么满足等式成立的x 的值的个数有( )A .5个B .4个C .3个D .2个【答案】C【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有-1的偶次幂都等于1.【详解】如果(x+6)x+1=1成立,则x+1=0或x+6=1或-1,即x=-1或x=-5或x=-7,当x=-1时,(x+6)0=1,当x=-5时,1-4=1,当x=-7时,(-1)-6=1,故选C .【点睛】本题考查了零指数幂的意义和1的指数幂,关键是熟练掌握零指数幂的意义和1的指数幂.9.下列运算中正确的是( )A .428a a a ⋅=B .5510a a a +=C .()23636a a -=D .()237a a a ⋅= 【答案】D【分析】直接利用合并同类项法则,同底数幂的乘法运算法则和积的乘方运算法则分别计算得出答案.【详解】A 、426a a a ⋅=,故此选项错误;B 、a 5+a 5=2a 5,故此选项错误;C 、(−3a 3)2=9a 6,故此选项错误;D 、(a 3)2a=a 7,故此选项正确;故选:D .【点睛】此题考查合并同类项,同底数幂的乘法,幂的乘方与积的乘方,解题关键在于掌握运算法则. 10.若代数式13x -在实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x≠3D .x =3 【答案】C【分析】分式有意义时,分母x ﹣3≠0,据此求得x 的取值范围.【详解】依题意得:x ﹣3≠0,解得x≠3,故选C .【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.二、填空题11.已知关于x 的方程311x m x x +=--,当m =______时,此方程的解为4x =;当m =______时,此方程无解.【答案】5 -1【分析】分式方程去分母转化为整式方程,将x=4代入计算即可求出m 的值;分式方程无解,将x=1代入即可解答.【详解】解:由原方程,得x+m=3x-3,∴2x=m+3,将x=4代入得m=5;∵分式方程无解,∴此方程有增根x=1将x=1代入得m=-1;故答案为:5,-1;【点睛】本题考查了分式方程的解法和方程的解,以及分式方程无解的问题,理解分式方程无解的条件是解题的关键.12.使分式22x x -+有意义的x 满足的条件是__________________. 【答案】2x ≠-;【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵20x +≠,∴2x ≠-;故答案为:2x ≠-.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.13.对于实数a ,b ,定义运算“⊗”如下:22()()a b a b a b =-⊗++.若(2)(3)30m m +⊗-=,则m =_____.【分析】根据题意列出方程,然后用直接开平方法解一元二次方程.【详解】解:根据题目给的算法列式:()()()()22232330m m m m ++-++--=⎡⎤⎡⎤⎣⎦⎣⎦,整理得:()2221530m -+=, ()2215m -=,21m -=m =. 【点睛】本题考查解一元二次方程,解题的关键是掌握解一元二次方程的方法.14.若2x =-,则x 的取值范围是__________.【答案】2x ≥||a =)及绝对值的性质化简(||a =,00,0.0a a a a a >⎧⎪=⎨⎪-<⎩),即可确定出x 的范围.【详解】解:∵|2|2x x =--=-,∴|2|2x x -=-.∴20x -≥,即2x ≥.故答案为: 2x ≥.【点睛】本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键. 15.已知22139273m ⨯⨯=,求m =__________.【答案】1【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:1.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键. 16.在Rt △ABC 中,∠A =90°,∠C =60°,点P 是直线AB 上不同于A 、B 的一点,且PC =4,∠ACP =30°,则PB 的长为_____.【答案】1或2【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P 在线段AB 上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60°,∠B=30°.∵∠APC=∠B+∠PCB ,∴∠PCB=∠B=30°,∴PB=PC=1.②当点P'在BA的延长线上时.∵∠P'CA=30°,∠ACB=60°,∴∠P'CB=∠P'CA+∠ACB=90°.∵∠B=30°,P'C=1,∴BP'=2P'C=2.故答案为:1或2.【点睛】本题考查了含30°角的直角三角形,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是______________.【答案】三角形的稳定性【分析】用一根木条斜着钉好之后就会出现一个三角形,根据三角形的稳定性即可得到答案.【详解】用一根木条斜着钉好之后就会出现一个三角形,因为三角形具有稳定性,所以门框就会固定了. 故答案为:三角形的稳定性.【点睛】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.三、解答题18.我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?【答案】1分钟【分析】设二班单独整理这批实验器材需要x分钟,则根据甲的工作量+乙的工作量=1,列方程,求出x 的值,再进行检验即可;【详解】解:设二班单独整理这批实验器材需要x分钟,由题意得111515130x x⎛⎫++= ⎪⎝⎭, 解得x=1.经检验,x=1是原分式方程的根.答:二班单独整理这批实验器材需要1分钟;【点睛】本题考查的是分式方程的应用,根据题意列出关于x 的方程是解答此题的关键.19.先化简:2221x x x x +-+÷(211x x --),再从﹣3<x <2的范围内选取一个你最喜欢的整数代入,求值. 【答案】21x x -;取x=-2原式=4-3 【分析】首先将括号里面通分,进而将能因式分解的分子与分母因式分解,即可化简,再利用分式有意的条件得出即可.【详解】解:原式=2x 12x 1[]1x 11x x x x x x +-÷----()()()()=2x 1x+1[]1x 1x x x +÷--()()()=2x 1x 11x+1x x x +-⨯-()()() =21x x - ∵210x+10x 0x -≠≠≠(),,∴取x=-2∴原式=2-4=--213-(2) 【点睛】此题主要考查了分式的化简求值,在分式运算的过程中,要注意对分式的分子、分母进行因式分解,然后简化运算,再运用四则运算法则进行求值计算.20.如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若13a =,3b =.求图②中阴影部分面积;(2)观察图②,写出()2a b +,()2a b -,ab 三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若9a b +=,14ab =,求211a b ⎛⎫- ⎪⎝⎭的值.【答案】(1)100S =阴;(2)()()224a b a b ab +=-+或()()224a b ab a b +-=-,过程见解析;(3)25196【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解;(2)根据完全平方公式的变形即可得到关系式;(3)根据1114b a a b --=,故求出()2222111414b a b a a b --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,代入(2)中的公式即可求解. 【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴100S =阴;(2)结论:()()224a b a b ab +=-+ 或()()224a b ab a b +-=-∵ ()2222a b a ab b +=++,()2222a b a ab b -=-+ ∴()222224242a b ab a ab b ab a ab b -+=-++=++ ∴()()224a b a b ab +=-+或()()224a b ab a b +-=-; (3) ∵11b a a b ab--=,14ab = ∴1114b a a b --= ∴()2222111414b a b a a b --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭由(2)可知()()224b a b a ab -=+- ∴()()222224111414196b a b a ab b a a b -+--⎛⎫⎛⎫-=== ⎪ ⎪⎝⎭⎝⎭∵9a b +=,14ab = ∴()222411941425196196196b a ab a b +--⨯⎛⎫-=== ⎪⎝⎭. 【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.21.先化简再求值:222524(1)244a a a a a a -+-+÷+++,其中2a =+.【分析】先因式分解,再利用分式的除法性质:除以一个分式等于乘以这个分式的倒数,约分、化简,最后代入特殊值解题即可. 【详解】解:原式=2244(2)2(2)(2)a a a a a a -++⨯++- =2(2)222a a a a -+⨯+- =a ﹣2,当a =时,原式=﹣2【点睛】本题考查分式的化简求值,其中涉及因式分解:十字相乘法、平方差公式、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.22.要在某河道建一座水泵站P ,分别向河的同一侧甲村A 和乙村B 送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立直角坐标系(如图),两村的坐标分别为A (1,-2),B (9,-6).(1)若要求水泵站P 距离A 村最近,则P 的坐标为____________;(2)若从节约经费考虑,水泵站P 建在距离大桥O 多远的地方可使所用输水管最短?(3)若水泵站P 建在距离大桥O 多远的地方,可使它到甲乙两村的距离相等?【答案】(1)(1,0);(2)P 点坐标为(3,0)即水泵站P 建在距离大桥O3个单位长度的地方可使所用输水管最短;(3)P 点坐标为(7,0)即水泵站P 建在距离大桥O7个单位长度的地方可使它到甲乙两村的距离相等【分析】(1)依数学原理“点到直线的距离,垂线段最短”分析解题;(2)依数学原理“两点之间线段最短”分析解题;(3)依数学原理“垂直平分线的性质”分析解题.【详解】(1)依数学原理“点到直线的距离,垂线段最短”解题,作AP ⊥x 轴于点P ,即为所求,∵A 点坐标为(1,-2),∴P 点坐标为(1,0);(2)依数学原理“两点之间线段最短”解题,由题可知,即求PA+PB 最短,作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,此时PA+PB 最短距离为A B '的长度.∵A (1,-2),∴A '(1,2),设'=+A B y kx b ,代入A '、B 两点坐标,可得296k b k b +=⎧⎨+=-⎩, 解得-13=⎧⎨=⎩k b , ∴直线A B '的表达式为-3=+y x ,当y=0时,x=3,∴P 点坐标为(3,0)即水泵站P 建在距离大桥O3个单位长度的地方可使所用输水管最短;(3)依数学原理“垂直平分线的性质”解题.作线段AB 的垂直平分线,交x 轴于点P ,此时PA=PB .依中点坐标公式可得线段AB 的中点G 的坐标为(5,-4),由A 、B 两点坐标可得直线AB 的表达式为y=-0.5x-1.5,∵PG ⊥AB ,∴设直线PG 的表达式为y=2x+b ,代入G 点坐标,可得y=2x-14,当y=0时x=7,∴P 点坐标为(7,0)即水泵站P 建在距离大桥O7个单位长度的地方可使它到甲乙两村的距离相等.【点睛】本题主要考查最短路径问题,涉及的知识点主要有:两点之间,线段最短;点到直线的距离;垂直平分线的性质;解这类题型一定要熟练地掌握最短路径所涉及的相关知识点以及对应的运用.23.如图,已知线段a b 、,求作Rt ABC ,使190,,2C AC a AB b ∠=︒== (使用直尺和圆规,并保留作图痕迹).【答案】见解析【分析】作直线m n ⊥,垂足为C ,在直线m 上截取CB=b ,在直线N 上截取线段CD=a ,在CD 上截取CA=12a ,连接AB ,则△ABC 即为所求作.【详解】如图所示:△ABC即为所求【点睛】本题考查作图—复杂作图,线段的垂直平分线的性质,解题的关键是熟练掌握基本知识.24.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD (1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.【答案】(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系. 25.太原市积极开展“举全市之力,创建文明城市”活动,为2020年进人全国文明城市行列莫定基础.某小区物业对面积为3600平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化200平方米,乙园林队每天绿化160平方米,两队共用21天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.【答案】甲园林队工作了6天,乙园林队工作了15天.【解析】设甲园林队工作了x天,乙园林队工作了y天,根据题意列出二元一次方程组即可求解.【详解】设甲园林队工作了x天,乙园林队工作了y天,根据题意得21 2001603600x yx y+=⎧⎨+=⎩解,得615 xy=⎧⎨=⎩,答:甲园林队工作了6天,乙园林队工作了15天.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列方程.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各命题的逆命题是真命题的是( )A .对顶角相等B .若1x =,则21x =C .相等的角是同位角D .若0x =,则20x =【答案】D【分析】先交换原命题的题设和结论部分,得到四个命题的逆命题,然后再分别判断它们是真命题还是假命题.【详解】解: A. “对顶角相等”的逆命题是“相等的角是对顶角”, 因为相等的角有很多种, 不一定是对顶角, 所以逆命题错误, 故逆命题是假命题;B. “若1x =,则21x =”的逆命题是“若21x =,则1x =”错误, 因为由21x =可得1x =±, 故逆命题是假命题;C. “相等的角是同位角”的逆命题是“同位角是相等的角”.因为缺少了两直线平行的条件, 所以逆命题错误, 故逆命题是假命题;D. “若0x =,则20x =”的逆命题是“若20x =,则0x =”正确, 故逆命题是真命题;故选:D.【点睛】本题主要考查了逆命题和真假命题的定义,对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.2.下列多项式能用平方差公式分解因式的是( )A .﹣x 2+y 2B .﹣x 2﹣y 2C .x 2﹣2xy+y 2D .x 2+y 2 【答案】A【解析】试题分析:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.根据平方差公式的特点可得到只有A 可以运用平方差公式分解,故选A .考点:因式分解-运用公式法.3.下列分式中,最简分式是( ) A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 【答案】A【解析】试题分析:选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A.考点:最简分式. 4.在△ABC 中, ∠C=∠B ,与△ABC 全等的三角形有一个角是100°,那么△ABC 中与这个角对应的角是( )A .∠BB .∠AC .∠CD .∠B 或∠C 【答案】B【分析】根据三角形的内角和等于180°可知,∠C 与∠B 不可能为100°,根据全等三角形的性质可得∠A 为所求角.【详解】解:假设=100C B ∠=∠,=200C B ∠+∠,与=180C B A ∠+∠+∠矛盾,∴假设不成立,则100A ∠=,故答案为B.【点睛】本题考查了全等三角形的基本性质和三角形内角和定理,满足内角和定理的前提下找到对应角是解题关键.5.已知α,β是方程2201910x x ++=的两个根,则代数式()()221202112021ααββ++++的值是( ) A .4B .3C .2D .1【答案】A 【分析】根据题意得到2201910αα++=,2201910ββ++=,1c aαβ==,把它们代入代数式去求解.【详解】解:∵α、β是方程2201910x x ++=的根,∴2201910αα++=,2201910ββ++=,1c aαβ==, ()()221202112021ααββ++++ ()()22120192120192αααβββ=++++++()()0202αβ=++4αβ=4=.故选:A .【点睛】本题考查一元二次方程根与系数的关系,解题的关键是抓住一元二次方程根的意义和根与系数的关系. 6.若分式31a +有意义,则a 的取值范围是( ) A .0a =B .1a =C .1a ≠-D .0a ≠【答案】C【分析】根据分式有意义时,即分式的分母不等于零解答即可.【详解】由题意得10a +≠,∴1a ≠-,故选:C .【点睛】此题考查了分式有意义的条件:分式的分母不等于0,正确掌握分式有意义的条件是解题的关键. 7.在t R ABC ∆中,3,5a b ==,则c 的长为( )A .2B .34C .4D .4或34 【答案】D【分析】分b 是斜边、b 是直角边两种情况,根据勾股定理计算即可.【详解】解:当b 是斜边时,c =224b a -=,当b 是直角边时,c =2234b a +=,则c =4或34,故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 1+b 1=c 1. 8.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40°【答案】B 【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】解:∵∠A ′BC=20°,DC BC ⊥,∴∠BA ′C=70°,∴∠DA ′B=110°,∴∠DAB=110°,∵AD //BC ,∴∠ABC=70°,∴∠ABA ′=∠ABC-∠A ′BC=70°-20°=50°,∵∠A ′BD=∠ABD ,∴∠A ′BD=12∠ABA ′=25°. 故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.9.小意是一位密码翻译爱好者,在她的密码手册中,有这样一条信息:-a b ,22x y -,x y -,x y +,22a b -,+a b 分别对应下列六个字:泗、我、大、美、爱、水,现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美B .我爱水C .我爱泗水D .大美泗水 【答案】D【分析】先提取公因式,再利用平方差公式:22()()a b a b a b -=+-进行因式分解,然后根据密码手册即可得.【详解】()()222222x y a x y b ---2222)()(x y a b =--)(()))((a x y x a b b y =+--+由密码手册得,可能的四个字分别为:美、大、水、泗观察四个选项,只有D 选项符合故选:D .【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,因式分解的方法主要包括:提取公因式法、公式法、十字相乘法、换元法等,熟记各方法是解题关键.10.在1x ,12,212x +,3xy π,3x y +中,分式的个数是( ) A .2 B .3 C .4 D .5【答案】A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:1x、3x y共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如AB的式子,A、B都是整式,且B中含有字母.二、填空题11.已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为_____.【答案】115cm1.【解析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图所示,作等腰三角形腰上的高CD,∵∠B=∠ACB=15°,∴∠CAD=30°,∴CD=12AC=12×30=15cm,∴此等腰三角形的面积=12×30×15=115cm1,故答案为:115cm1.【点睛】本题考查的是含30度角的直角三角形的性质、等腰三角形的性质以及三角形外角的性质,熟练运用相关性质定理是解题的关键.12.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.【答案】(2,-3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.【详解】∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,-3).故答案为(2,-3).13.若n边形的内角和是它的外角和的2倍,则n= .【答案】6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360º所以,由题意可得180(n-2)=2×360º 解得:n=614.如图,△ABC 申,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,若∠BAC=82︒,则∠BDC=____.【答案】98【解析】首先过点D 作DF ⊥AB 于E ,DF ⊥AC 于F ,易证得△DEB ≌△DFC (HL ),即可得∠BDC=∠EDF ,又由∠EAF+∠EDF=180°,即可求得答案;【详解】解:过点D 作DE ⊥AB ,交AB 延长线于点E ,DF ⊥AC 于F ,∵AD 是∠BOC 的平分线, ∴DE=DF ,∵DP 是BC 的垂直平分线, ∴BD=CD ,在Rt △DEB 和Rt △DFC 中,DB DCDE DF ⎧⎨⎩==, ∴Rt △DEB ≌Rt △DFC . ∴∠BDE=∠CDF , ∴∠BDC=∠EDF , ∵∠DEB=∠DFC=90°, ∴∠EAF+∠EDF=180゜, ∵∠BAC=82°, ∴∠BDC=∠EDF=98°, 故答案为98°.此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.15在实数范围内有意义,则 x 的取值范围是_______ . 【答案】x≥1【分析】直接利用二次根式的有意义的条件得到关于x 的不等式,解不等式即可得答案. 【详解】由题意可得:x ﹣1≥0, 解得:x≥1, 故答案为x≥1. 【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键. 16.在Rt △ABC 中,90︒∠=C ,13AB =,12AC =,则BC =_____. 【答案】1【分析】在Rt △ABC 中,∠C=90°,则AB 2=AC 2+BC 2,根据题目给出的AB ,AC 的长,则根据勾股定理可以求BC 的长.【详解】∵AB=13,AC=12,∠C=90°,∴==1.故答案为:1. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.17______6(填“”<或“”>号)【答案】>【分析】首先将两个二次根式转换形式,然后比较大小即可. 【详解】由题意,得==∴56>故答案为:>.此题主要考查二次根式的大小比较,熟练掌握,即可解题.三、解答题18.如图,有六个正六边形,在每个正六边形里有六个顶点,要求用两个顶点连线(即正六边形的对角线)将正六方形分成若干块,相邻的两块用黑白两色分开.最后形成轴对称图形,图中已画出三个,请你继续画出三个不同的轴对称图形(至少用两条对角线)【答案】见解析;【解析】根据轴对称的定义和六边形的性质求解可得.【详解】解:如图所示.【点睛】考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及正六边形的性质.19.为了方便广大游客到昆明参观游览,铁道部门临时增开了一列南宁——昆明的直达快车,已知南宁、昆明两站的路程为828千米,一列普通快车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车后出发2小时,而先于普通快车4小时到达昆明,分别求出两车的速度.【答案】慢车46千米/时,快车1千米/时.【解析】设普通快车的平均速度为x千米/时,则直达快车的平均速度为1.5x千米/时,根据“快车用的时间=普通快车用的时间+2+4”,列出分式方程,求解即可得出答案.【详解】解:设普通快车的平均速度为x千米/时,则直达快车的平均速度为1.5x千米/时,根据题意得:82882824=++,1.5x x解得:x=46,经检验,x=46是分式方程的解,1.5x=1.5×46=1.答:普通快车的平均速度为46千米/时,则直达快车的平均速度为1千米/时. 【点睛】此题考查了分式方程的应用,由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,根据等量关系列出方程,解方程时要注意检验.20.先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b)(2a -b),其中a =2,b =1. 【答案】242a ab -,1.【分析】根据整式的除法法则和乘法公式把式子进行化简,再把a 、b 的值代入即可求出结果. 【详解】原式=b 2-2ab+4a 2-b 2=242a ab -, 当a=2,b=1时,原式=4×22-2×2×1=1. 考点:整式的运算.21.我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为: ()()()()()224242222222x y x y x y x y x y x y x y --+=+---=-+-;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题: (1)分解因式:22216x xy y -+-(2)ABC ∆三边a ,b ,c 满足20a ab ac bc --+=,判断ABC ∆的形状. 【答案】(1)()()44x y x y -+--;(2)ABC ∆是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可; (2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a , b ,c 的关系,判断三角形形状即可.【详解】解:(1)22216x xy y -+-()224x y =--=()()44x y x y -+-- (2)∵20a ab ac bc --+= ∴()()0a a b c a b ---= ∴()()0a b a c --= ∴a b =或a c =, ∴ABC ∆是等腰三角形.【点睛】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.22.勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:(1)你能找出它们的规律吗?(填在上面的横线上) (2)你能发现a ,b ,c 之间的关系吗?(3)对于偶数,这个关系 (填“成立”或“不成立”)吗? (4)你能用以上结论解决下题吗?2222201920201009202010091+⨯-⨯+()【答案】(1)21n ,222n n +,2221n n ++;(2)222+=a b c ;(3)成立;(4)0 【分析】(1)根据表中的规律即可得出; (2)由前几组数可得出a ,b ,c 之间的关系; (3)另n=2k 代入a ,b ,c 计算即可得出;(4)根据(2)中的关系式,将2222201920201009202010091+⨯-⨯+()进行合理的拆分,使之符合(2)中的规律即可计算得出.【详解】解:(1)由表中信息可得(1)21a n n n =++=+,22(1)22b n n n n =+=+,22(1)1221c n n n n =++=++,故答案为21n ,222n n +,2221n n ++. (2)由于22(21)441n n n +=++,22432(22)484n n n n n +=++, 22432(221)48841n n n n n n ++=++++。

【期末复习】2020年八年级数学上册 期末复习专题 全等三角形解答题 专练(含答案)

【期末复习】2020年八年级数学上册 期末复习专题 全等三角形解答题 专练(含答案)

【期末复习】2020年八年级数学上册期末复习专题全等三角形解答题专练1.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.2.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.3.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B4.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.5.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=1,求AD的长.6.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.7.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.9.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.11.如图,△ABC中,∠BAC=900,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.12.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.13.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.14.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.15.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.2.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE 所以:AE=CE 所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA 所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB 所以:△AEC≌△AGB所以:EC=BG=DG 所以:BD=2CE3.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD ∴AE=AB∵AD平分∠CAB ∴∠EAD=∠BAD∴AE=AB ∠EAD=∠BAD AD=AD ∴△ADE≌△ADB∴∠E=∠B 且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B4.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。

北京市朝阳区2020-2021学年八年级上学期期末数学试题(含答案解析)

北京市朝阳区2020-2021学年八年级上学期期末数学试题(含答案解析)

北京市朝阳区2020-2021学年八年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.新版《北京市生活垃圾管理条例》于2020年5月1日实施,条例规定生活垃圾应按照厨余垃圾、可回收物、有害垃圾、其他垃圾的分类,分别投入相应标识的收集容器.下图为某小区分类垃圾桶上的标识,其图标部分可以看作轴对称图形的有( )A .1个B .2个C .3个D .4个 2.下列计算正确的是( )A .235a a a ⋅=B .325()a a =C .2336(2)6ab a b =D .223344a a a ÷= 3.一个多边形的内角和等于外角和的两倍,那么这个多边形是( )A .三边形B .四边形C .五边形D .六边形 4.下列因式分解变形正确的是( )A .22242(2)a a a a -=-B .2221(1)a a a -+=-C .24(2)(2)a a a -+=+-D .256(2)(3)a a a a --=-- 5.把分式方程11122x x x--=--化为整式方程正确的是( ) A .1(1)1x --= B .1(1)1x +-=C .1(1)2x x --=-D .1(1)2x x +-=- 6.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC =CD ,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上,可得△ABC ≌△EDC ,这时测得DE 的长就是AB 的长.判定△ABC ≌△EDC 最直接的依据是( )A .HLB .SASC .ASAD .SSS7.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中最多能画出( )个格点三角形与△ABC 成轴对称.A .6个B .5个C .4个D .3个8.n m ,1m n +,1n 都有意义,下列等式①22n n m m=;②111m n m n =++;③22n n m m =;④22n n m m +=+中一定不成立.....的是( ) A .②④B .①④C .①②③④D .②二、填空题9.分解因式:328x x -=______.10.若分式21x +有意义,则x 的取值范围是_________. 11.若20a b -=,且0b ≠,则分式a b a b +-的值为______. 12.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.13.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________14.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.15.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.16.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.三、解答题17.计算:3232()a a a a ⋅+-÷.18.解分式方程:22111x x x =--. 19.解分式方程:31(1)(2)1x x x x +=-+-. 20.已知2277x x -=,求代数式2(23)(3)(21)x x x ---+的值.21.如图,在△ABC 中,AB >AC >BC ,P 为BC 上一点(不与B ,C 重合).在AB 上找一点M ,在AC 上找一点N ,使得△AMN 与△PMN 全等,以下是甲、乙两位同学的作法.甲:连接AP ,作线段AP 的垂直平分线,分别交AB ,AC 于M ,N 两点,则M ,N 两点即为所求;乙:过点P 作PM ∥AC ,交AB 于点M ,过点P 作PN ∥AB ,交AC 于点N ,则M ,N 两点即为所求.(1)对于甲、乙两人的作法,下列判断正确的是 ;A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,补全图形并证明.22.如图,在△ABC 中,AD 平分∠BAC ,BD ⊥AD 于点D ,过点D 作DE ∥AC 交AB 于点E .求证:E 为AB 的中点.23.2020年12月17日,中国研制的嫦娥五号返回器成功携带月球样品着陆地球,在接近大气层时,它的飞行速度接近第二宇宙速度,约为某列高铁全速行驶速度的112倍.如果以第二宇宙速度飞行560千米所用时间比该列高铁全速行驶10千米所用时间少50秒,那么第二宇宙速度是每秒多少千米?24.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.25.在△ABC 中,∠C =90°,AC =BC =2,直线BC 上有一点P ,M ,N 分别为点P 关于直线AB ,AC 的对称点,连接AM ,AN ,BM .(1)如图1,当点P 在线段BC 上时,求∠MAN 和∠MBC 的度数;(2)如图2,当点P 在线段BC 的延长线上时,①依题意补全图2;②探究是否存在点P ,使得3BM BN=,若存在,直接写出满足条件时CP 的长度;若不26.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当AB>AC时,∠C >∠B.该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC中,AD是BC边上的高线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图2,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°-∠B,∠CAD=90°-∠C.∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:参考答案1.B【分析】根据轴对称图形的概念判断即可.【详解】解:厨余垃圾是轴对称图形;可回收物不是轴对称图形,注意箭头;有害垃圾是轴对称图形;其他垃圾不是轴对称图形,注意箭头.所以是轴对称图形的有2个.故选:B .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.A【分析】根据幂的运算法则和整式的除法法则对各选项进行计算,即可作出判断.【详解】A 、232+35=a a a a ⋅=,故本选项正确;B 、32236=()a a a ⨯=,故本选项错误;C 、23336368()2=2ab a b a b =,故本选项错误;D 、223344a a ÷=,故本选项错误; 故选:A【点睛】本题主要考查了同底数幂的乘法,幂的乘方,积的乘方,整式的除法,正确掌握相关运算法则是解题关键.3.D【分析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x ,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n ﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n 边形的内角的和等于: (n - 2)×180°(n 大于等于3且n 为整数);多边形的外角和为360°.4.B【分析】根据提公因式分解因式可得出A 错误;根据完全平方公式可得B 正确;根据平方差公式可得C 错误;根据十字相乘法可判断D 错误.【详解】A 、2242(2)a a a a -=-,故此选项错误;B 、2221(1)a a a -+=-,故此选项正确;C 、24(2)(2)a a a -+=+-,故此选项错误;D 、256(6)(+1)a a a a --=-,故此选项错误.故选:B【点睛】本题主要考查了因式分解,要灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要提取公因式,再考虑运用公式法分解.5.D【分析】两边同时乘以最简公分母2x -即可化为整式方程,再依次判断即可.【详解】解:两边同时乘以2x -得1(1)2+-=-,x x故选:D.【点睛】本题考查解分式方程.注意去分母两边同时乘以最简公分母时两边都要乘,每一项都要乘.6.C【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,再根据已知选择判断方法.【详解】解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,∴能证明△ABC≌△EDC最直接的依据是ASA.故选:C.【点睛】本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.A【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.【详解】解:如图,可以画6个.【点睛】本题考查了轴对称变换,能确定对称轴的位置是解题关键.8.D【分析】根据题意,判断出0m ≠,0n ≠,+0m n ≠,根据分式的性质逐个判断即可.【详解】解:∵ n m ,1m n +,1n都有意义, ∴ 0m ≠,0n ≠,+0m n ≠, ①222=n n n m mm ⎛⎫= ⎪⎝⎭,仅需10n n m m ⎛⎫-= ⎪⎝⎭,即=1n m 时成立; ②111=m n m n++,不成立; ③22n n m m=,(右侧分子分母同时除以2),因此成立; ④22n n m m +=+,()()2=2n m m n ++即2=2n m ,当=n m 时成立; 故仅有②一定不成立,故选D【点睛】本题综合考查了分式的基本性质,解题关键是根据题意得出m 、n 和+m n 的范围. 9.()()222+-x x x【分析】原式提取2x ,再利用平方差公式分解即可.【详解】解:328x x -22(4)x x =-2(2)(2)x x x =+-,故答案为:()()222+-x x x .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【解析】 ∵分式21x +有意义, ∴10x +≠,解得1x ≠-.故答案为1x ≠-.11.3-【分析】由已知2a−b =0,可知b =2a ;将所得结果代入所求的式子中,经过约分、化简即可得到所求的值.【详解】解:∵2a−b =0,∴b =2a ; ∴23=32a b a a a a b a a a++==----. 故答案为−3.【点睛】正确对式子进行变形,化简求值是解决本题的关键.在解题过程中要注意思考已知条件的作用.12.(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.13.80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.14.1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB∴112122OC OB ==⨯= 故答案为:1.【点睛】此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键.15.④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.16.5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h ===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.17.0.【分析】原式先计算积的乘方,再计算同底数幂的乘除法即可.【详解】解:3232()a a a a ⋅+-÷=462a a a -÷=44a a -=0.【点睛】此题主要考查了积的乘方和同底数幂的乘除法,熟练掌握运算法则是解答此题的关键. 18.方程无解.【分析】先两边同乘以(1)(1)x x +-将分式方程化为整式方程,再按照移项、合并同类项、系数化为1的步骤解方程即可得.【详解】 22111x x x =--,即211(1)(1)x x x x =-+-, 方程两边同乘以(1)(1)x x +-化成整式方程,得12x x +=,移项,得21x x -=-,合并同类项,得1x -=-,系数化为1,得1x =,经检验,1x =时,原分式方程的分母等于0,即1x =不是原方程的解,故方程无解.【点睛】本题考查了解分式方程,熟练掌握分式方程的解法是解题关键.19.方程无解【分析】去分母将分式方程化为整式方程,求解并验证根即可.【详解】解:去分母得:3(1)(2)(2)x x x x +-+=+,去括号得:22322x x x x ++-=+,移项合并得:1x -=-,解得:1x =.经检验1x =是该方程的增根,即方程无解.【点睛】本题考查解分式方程.解分式方程的思路就是去分母两边乘以最简公分母,将分式方程化为整式方程求解.解分式方程一定不要忘了验根.20.19【分析】先通过整式的运算法则将代数式化简成22712x x -+,再整体代入求值.【详解】解:原式()()224129263x x x x x =-+-+-- 224129253x x x x =-+-++22712x x =-+∵2277x x -=,∴2277x x -=,∴原式71219=+=.【点睛】本题考查整式的化简求值,解题的关键是掌握整体代入的思想求值.21.A .【分析】(1)如图1,根据线段垂直平分线的性质得到MA=MP,NA=NP,则根据“SSS”可判断△AMN≌△PMN,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形AMPN为平行四边形,则根据平行四边形的性质得到MA=PN,MP=AN,则根据“SSS”可判断△AMN≌△PNM,则可对乙进行判断.(2)根据(1)即可得出证明过程【详解】(1)解:如图1,∵MN垂直平分AP,∴MA=MP,NA=NP,而MN=MN,∴△AMN≌△PMN(SSS),所以甲正确;如图2,∵MN∥AN,PN∥AM,∴四边形AMPN为平行四边形,∴MA=PN,MP=AN,而MN=MN,∴△AMN≌△PNM(SSS),所以乙正确.故选:A.(2)正确做法的证明同(1)【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.22.见解析【分析】证明AE=DE,EB=DE即可解决问题【详解】证明:∵AD平分∠BAC∴∠CAD=∠EAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠EAD=∠ADE,∴DE=AE,∵BD⊥AD,∴∠ADB=90°,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∵∠EAD=∠ADE,∴∠BDE=∠ABD,∴BE=DE,∴AE=BE,∴E是AB的中点.【点睛】本题考查等腰三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.第二宇宙速度是每秒11.2千米.【分析】设第二宇宙速度是每秒xkm,则高铁全速行驶的速度是每秒1112x km,根据第二宇宙速度飞行560千米所用时间+50=该列高铁全速行驶10千米所用时间,列出方程求解即可.【详解】解:设第二宇宙速度是每秒xkm ,则高铁全速行驶的速度是每秒1112x km , 根据题意, 11125601050x x+=, 解得11.2x =,经检验11.2x =是该方程的解.所以,第二宇宙速度是每秒11.2千米.【点睛】本题考查分式方程的应用.能结合题意找出等量关系列出方程是解题关键.不要忘记验根哦. 24.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在. 25.(1)∠MAN =90°,∠MBC =90°;(2)补全图形见解析;(3)存在,CP=1.【分析】(1)连接CN ,AP ,MP ,根据轴对称的性质和等腰三角形三线合一可得∠NAC=∠CAP ,∠PAB=∠MAB ,∠ABC=∠ABM ,再根据等腰直角三角形的性质即可求得∠MAN 和∠MBC ;(2)①依据轴对称图形对应点的连线被对称轴垂直平分补全图即可;②根据垂直平分线的性质可得PB=BM ,PC=CN ,再设BN 长为x ,利用3BM BN和线段的和差列出方程求解即可.【详解】解:(1)如图,连接CN ,AP ,MP ,∵N 、P 关于AC 对称,∴C 为PN 的中点,且AC 为NP 的中垂线,∴AN=AP ,∴△ANP 为等腰三角形,∴∠NAC=∠CAP (三线合一),同理可证∠PAB=∠MAB ,∠ABC=∠ABM ,∵AC=BC=2,∠ACB=90°,∴∠CAB=∠ABC=45°,∴∠MAN=∠NAC+∠CAP+∠PAB+∠BAM=2∠CAB=90°,∠MBC=∠ABC+∠ABM=2∠ABC=90°;(2)①补全图2如下,②由(1)知B 在PM 的中垂线上,A 在PN 的中垂线上,∴PB=BM ,PC=CN ,设BN 长为x ,则BM 的长为3x ,CN 长为2-x ,∴PC=CN=2-x ,∵PB=BM=PC+BC,∴322x x =-+,解得x=1,∴满足条件的P 点存在,且CP=2-1=1.【点睛】本题考查轴对称的性质,作轴对称图形,等腰三角形三线合一,垂直平分线的性质等.理解轴对称图形对应点连线被对称轴垂直平分是解题关键.26.(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD =⎧⎨=⎩∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C . ∵AB >AC ,∴ ∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.。

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选(含答案)

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选(含答案)

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选一.填空题(共30小题)1.(2020春•渝中区校级期末)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.2.(2020春•沙坪坝区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为.3.(2019秋•九龙坡区校级期末)已知△ABC为等腰三角形,AB=AC=10,BC=8,BD为∠ABC的平分线,点P 为线段BD上的一动点,过点P作线段AB的垂线,垂足为点M,连接AP,则PM+P A的最小值为.4.(2020春•沙坪坝区校级期末)如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB 上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.5.(2019秋•渝中区校级期末)如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于.6.(2019秋•渝中区校级期末)在平面直角坐标系中,若点A(a,b)与点B(1,﹣2)关于y轴对称,则a+b=.7.(2019秋•巴南区期末)如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.8.(2019秋•开州区期末)如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=4cm,△ADC的周长为10cm,则△ABC的周长是cm.9.(2019秋•两江新区期末)如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.10.(2019秋•江津区期末)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= 12∠ACB,则∠A的度数是.11.(2019秋•九龙坡区期末)在平面直角坐标系中,点P(1,﹣5)关于x轴对称点的点的坐标是.12.(2019秋•梁平区期末)如图,△ABC是等边三角形,D,E分别是BC,AB的中点,且AD=4cm.F是AD上一动点,则BF+EF的最小值为cm.13.(2019秋•江北区期末)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=7,则CE的长为.14.(2019秋•万州区期末)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.15.(2019秋•长寿区期末)在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是.16.(2019秋•长寿区期末)等腰三角形一边长为4,另一边长为9,则它的周长是.17.(2019春•南岸区期末)如图,在△ABC中,过A作DE∥BC交∠ABC的平分线BD于点D、交∠ACB的平分线CE于点E.若BC=7,DE=9,则△ABC的周长为.18.(2018秋•南岸区期末)如图,在平面直角坐标系中,将△ABC三个顶点的横坐标分别乘以﹣1,而纵坐标保持不变,得到△A′B′C′,则△A′B′C′和△ABC关于对称(横线上填“x轴”、“y轴”或“原点”).19.(2019春•渝中区校级期末)如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=63°,则∠AMB的度数为°.20.(2018秋•渝中区期末)如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.21.(2018秋•合川区期末)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,若BD=3cm,则AD=cm.22.(2018秋•渝北区期末)如图,∠ABC=20°,点D,E分别在射线BC,BA上,且BD=3,BE=3,点M,N 分别是射线BA,BC上的动点,求DM+MN+NE的最小值为.23.(2018秋•巴南区期末)如图,BE、CD分别是等边△ABC的高和角平分线,点O是它们的交点,若∠BOC=m°,则m=.24.(2018秋•江北区期末)在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.25.(2019春•沙坪坝区校级期末)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.26.(2019春•南岸区校级期末)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.27.(2019春•沙坪坝区校级期末)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.28.(2019春•渝中区校级期末)在△ABC中,AB=AC,AC的垂直平分线与AB所在直线相交所得的锐角为40°,∠C=.29.(2019春•渝中区校级期末)如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.30.(2018秋•九龙坡区校级期末)在平面直角坐标系中,点P(﹣2,﹣3)关于x轴对称点的坐标为.参考答案一.填空题(共30小题)1.【解答】解:∵∠ABC =80°,∴∠BMN +∠BNM =100°,∵M 、N 分别在P A 、PC 的中垂线上,∴MA =MP ,NP =NC ,∴∠MP A =∠MAP =12∠BMN ,∠NPC =∠NCP =12∠BNM ,∴∠MP A +∠NPC =12×100°=50°,∴∠APC =180°﹣50°=130°, 故答案为:130°.2.【解答】解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM '=PM ,BM =BM '=1, ∴PN +PM =PN +PM ',当N ,P ,M '在同一直线上,且M 'N ⊥AC 时,PN +PM '的最小值等于垂线段M 'N 的长,此时,∵Rt △AM 'N 中,∠A =30°,∴M 'N =12AM '=12(6﹣1)=52,∴PM +PN 的最小值为52, 故答案为:52.3.【解答】解:如图,过点P 作PK ⊥BC 于K ,过点A 作AH ⊥BC 于H .∵AB =AC =10,AH ⊥BC ,∴BH =CH =4,∴∠AHB =90°,∴AH =√AA 2−AA 2=√102−42=2√21,∵BD 平分∠ABC ,PM ⊥AB ,PK ⊥BC ,∴PM =PK ,∴P A +PM =P A +PK ≥AH ,∴P A +PM ≥2√21,∴P A +PM 的最小值为2√21.4.【解答】解:∵AB =AC ,∠B =50°,∠AED =73°,∴∠EDB =23°,∵当△DEP 是以DE 为腰的等腰三角形,①当点P 在AB 上,∵DE =DP 1,∴∠DP 1E =∠AED =73°,∴∠EDP 1=180°﹣73°﹣73°=34°,②当点P 在AC 上,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,{AA =AA 2AA =AA, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =73°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=134°,③当点P 在AC 上,同理证得Rt △DEG ≌Rt △DPH (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =180°﹣80°=100°,④当点P 在AB 上,EP =ED 时,∠EDP =12(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.5.【解答】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=12AE=12×6cm=3cm,故答案为:3cm.6.【解答】解:∵点A(a,b)与点B(1,﹣2)关于y轴对称,∴a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.7.【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠ABD=∠DBC,∠ACD=∠DCM,设∠ABD=∠DBC=x,∠ACD=∠DCM=y,∵∠A+∠ABC=∠ACM,∴12∠A+12∠ABC=12∠ACM,即30°+x=y,∵∠D+∠DBC=∠DCM,∴∠D+x=y,∴∠D=30°,∵EFD与△EFH关于直线EF对称,∠BEH=84°,∴∠DEG=∠HEG=180°−84°2=48°,∴∠HFG=n°=∠DFG=48°+30°=78°则n=78.故答案为:78.8.【解答】解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×4=8(cm),∵△ADC的周长为10cm,即AD+AC+CD=BD+CD+AC=BC+AC=10cm,∴△ABC的周长为:AB+AC+BC=8+10=18(cm).故答案为:18.9.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.10.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B=20°∴∠A=4x=80°故答案为:80°11.【解答】解:点P(1,﹣5)关于x轴对称点的点的坐标是:(1,5).故答案为:(1,5).12.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CE,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB =∠CEB =90°,在△ADB 和△CEB 中,{∠AAA =∠AAAAAAA =AAAA AA =AA,∴△ADB ≌△CEB (AAS), ∴CE =AD =4cm ,即BF +EF =4cm .故答案为:4.13.【解答】解:∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,{∠AAA =∠AAA AA =AAAA =AA ,∴△BAD ≌△CAE (ASA ),∴BD =CE =7,故答案为:7.14.【解答】解:连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEB =90°,∠ADF =∠ADE , ∴AE =AF ,∵DG 是BC 的垂直平分线,∴CD =BD ,在Rt △CDF 和Rt △BDE 中,{AA =AA AA =AA, ∴Rt △CDF ≌Rt △BDE (HL ),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE , ∵AB =6,AC =3,∴BE =1.5.故答案为:1.5.15.【解答】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;直角三角形不一定是轴对称图形,不符合题意.故成轴对称图形的是:线段、直角、等腰三角形.故答案为:线段、直角、等腰三角形.16.【解答】解:当等腰三角形的三边为:4、4、9时,不符合三角形三边关系,因此这种情况不成立;当等腰三角形的三边为:4、9、9时,符合三角形三边关系,则三角形的周长为:4+9+9=22.因此等腰三角形的周长为22.故填22.17.【解答】解:∵DE∥BC,∴∠E=∠ECB,∠D=∠DBC,∵CE平分∠ACB,BD平分∠ABC,∴∠ECB=∠ACE,∠DBC=∠ABD,∴∠E=∠ACE,∠D=∠ABD,∴AE=AC,AB=AD,∵AB+AC=AD+AE=DE=9,BC=7,∴△ABC的周长为AB+AC+BC=DE+BC=9+7=16.故答案为16.18.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故答案为:y轴.19.【解答】解:∵BD为AC边上的高,∴BD⊥AC,∴∠BDF=90°,∵∠AFG=63°,∴∠DBF=90°﹣63°=27°,∵BF平分∠CBD交CE于点G,∴∠CBD=2∠DBF=54°,∴∠ACB=90°﹣∠CBD=36°,∵AC=BC,∴∠CAB=∠CBA=12(180°﹣36°)=72°,∴∠ABD=72°﹣54°=18°,∴∠ABG=27°+18°=45°,∵CE为△ABC的中线,∴CE⊥AB,∴CE垂直平分AB,∴AG=BG,∴∠GAB=∠GBA=45°,∴∠AMB=180°﹣45°﹣18°=117°,故答案为:117.20.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.21.【解答】解:∵在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,BD=3cm,∴BC=2CD,可得:BC2﹣CD2=4CD2﹣CD2=9,解得:CD=√3cm,∴BC=2√3cm,∴AC=AA√3=2cm,∴AB=4cm,∴AD=4﹣3=1cm.故答案为:122.【解答】解:如图所示:作点D关于AB的对称点G,作点E关于BC的对称点H,连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3,∠GBE=∠DBE=20°,BH=BE=3,∠HBD=∠EBD=20°,∴∠GBH=60°,∴△BGH是等边三角形,∴GH=GB=HB=3,∴DM+MN+NE的最小值为3.故答案为3.23.【解答】解:∵BE、CD分别是等边△ABC的高和角平分线,∴∠ODB=90°,∠ABE=30°,∴∠BOC=∠ODB+∠DBE=90°+30°=120°,故答案为:12024.【解答】解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.25.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.26.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=12EC,∴AE=12EC,∴AE=13AC=4,在Rt△ADE中,∠A=30°,∴DE=12AE=2,故答案为:2.27.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴AAAA=AAAA,∴1617=AA 15,∴PE =24017, 故答案为:24017.28.【解答】解:当△ABC 为锐角三角形时,如图1,设AC 的垂直平分线交线段AB 于点D ,交AC 于点E ,∵∠ADE =40°,DE ⊥AC ,∴∠A =90°﹣40°=50°,∵AB =AC ,∴∠C =12(180°﹣∠A )=65°;当△ABC 为钝角三角形时,如图2,设AC 的垂直平分线交AC 于点E ,交AB 于点D ,∵∠ADE =40°,DE ⊥AC ,∴∠DAC =50°,∵AB =AC ,∴∠B =∠C ,∵∠B +∠C =∠DAB ,∴∠C =25°;综上可知∠C 的度数为65°或25°,故答案为:65°或25°.29.【解答】解:过B 作BF ⊥AC 于F ,交CD 于E , 则BF 的长即为AE +EF 的最小值,∵AC =BC =5,CD 为△ABC 的中线,∴AD =12AB =3,∵S △ABC =12AB •CD =12AC •BF ,∴BF =6×45=245, ∴AE +EF 的最小值为245, 故答案为:245.30.【解答】解:点P (﹣2,﹣3)关于x 轴对称点的坐标为:(﹣2,3). 故答案为:(﹣2,3).。

重庆市垫江县2020—2021学年初二上期末数学试卷含答案解析

重庆市垫江县2020—2021学年初二上期末数学试卷含答案解析

重庆市垫江县2020—2021学年初二上期末数学试卷含答案解析一、选择题:本大题共12小题,每小题4分,共48分.1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A.B.C.D.2.下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形的一条中线将三角形分成两个面积相等的三角形C.两边和其中一边的对角分别相等的两个三角形全等D.三角形的三条高都在三角形内部3.下列运算正确的是()A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=34.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1 B.2x2C.(x+2)(x﹣2)=x2﹣4 D.x2﹣6x+9=(x﹣3)25.运算所得正确结果()A. B.1 C.D.﹣16.一个正多边形的每个外角差不多上36°,那个正多边形的边数是()A.9 B.10 C.11 D.127.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm9.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=210.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48° B.55° C.65° D.以上都不对11.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D12.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6个小题,每小题4分,共24分。

北师大版2020-2021学年度八年级数学上册期末综合复习基础训练题(附答案)

北师大版2020-2021学年度八年级数学上册期末综合复习基础训练题(附答案)

北师大版2020-2021学年度八年级数学上册期末综合复习基础训练题(附答案)一、单选题1.某班9名同学的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是( ).A .59,63B .59,61C .59,59D .57,612.已知一次函数y =(a -1)x -1+3a ,当x ≤2时,y ≥0,则a 的取值范围为( ) A .a ≤35 B .a <1 C .35≤a <1 D .35≤a ≤1 3.如图所示,14∠=∠,再从①//AB CD ;②12∠=∠;③34∠=∠;④BAD CDA ∠=∠中选取一个条件就可以得出23∠∠=,这个条件可以是( )A .仅①B .仅④C .仅①④D .①②③④ 4.估计48的立方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 5.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3% ,96.1% , 94.3% ,91.7% ,93.5%.关于这组数据,下列说法正确的是( )A .平均数是93.96%B .方差是0C .中位数是93.5%D .众数是94.3%6.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的( )A .众数B .方差C .平均数D .频数7.如图,3,11在数轴上的对应点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是( )8.如果23x y -+和()22310x y +-互为相反数,那么,x y 的值是( ) A .117167x y ⎧=⎪⎪⎨⎪=⎪⎩ B .167117x y ⎧=⎪⎪⎨⎪=⎪⎩ C .167117x y ⎧=-⎪⎪⎨⎪=-⎪⎩ D .117167x y ⎧=-⎪⎪⎨⎪=-⎪⎩9.64的值是( )A .4B .±4C .8D .±810.初二年级在小学段期间外出游学,同学们所乘的客车先在公路上匀速行驶,在服务区休息一段时间后,进入高速路继续匀速行驶,已知客车行驶的路程s(千米)与行驶的时间r(小时)的函数关系的图象如图所示,则客车在高速路上行驶的速度为( )A .60千米/小时B .75千米/小时C .80千米/小时D .90千米/小时 11.函数y 11x -+中,自变量x 的取值范围是( ) A .x ≥–1B .x >2C .x ≥–1且x ≠2D .x >–1且x ≠2二、填空题12123_____. 13.冷冻一个25℃的物体,如果它每小时下降2℃,则物体的温度T (单位:℃)与冷冻时间t (单位:时)之间的关系式是__________.14.己知点P 1与P 2,P 2与P 3分别关于y 轴和x 轴对称,若点P 1在第一象限,则点P 3在第____象限.15.已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米,该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式)为________.16.将正比例函数y=﹣2x 的图象向上平移3个单位,则平移后所得图象的解析式是_____.17.在ABC △中,若A B C ∠=∠-∠,则ABC △是____三角形.18.如果021=-++b a ,那么ab = .19.若实数x 与y 满足320x y -++=,则点P (x ,y )在第______ 象限.20.已知|2x +y ﹣6|+(x ﹣y +3)2=0,则x =_____,y =_____.21.计算:()26-8=______.22.若25x y =⎧⎨=⎩是方程kx -2y =2的一个解,则k 的值为____. 23.若一组数据7,3,5,x ,2,9的众数为7,则这组数据的中位数是__________.三、解答题24.在某城市中,市民中心在火车站以西8 000 m 再往北4 000 m 处,盛华公司在火车站以西6 000 m 再往南4 000 m 处,传媒大楼在火车站以南6 000 m 再往东4 000 m 处.请建立适当的平面直角坐标系,分别写出各地点的坐标.25.已知338y x x =-+-+,求32x y + 的平方根.(5分)26.如图,在下列解答中,填写适当的理由或数学式:(1)∵EB ∥DC , (已知)∴∠DAE =∠__. ( ___________________________________)(2)∵∠BCF +∠AFC =180°,(已知)∴ ____∥___. ( ___________________________________)(3)∵ ____∥___, (已知)∴∠EF A =∠ECB . ( ___________________________________)27.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值;(2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)28.如图是某市部分地区的示意图,请你建立适当的直角坐标系,并写出图中各地点相应的坐标(图中小正方形的边长均为1).29.计算:(1)(3+2)﹣2(2)5(5+5)+364-﹣|﹣81|30.如图是学校的平面示意图,已知旗杆的位置是()2,3-,实验室的位置是()1,4.(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、宿舍楼和大门的位置;(2)已知办公楼的位置是()2,1-,教学楼的位置是()2,2,在图中标出办公楼和教学楼的位置.(2)1 (83)642+⨯-32.(1)27-26-18⨯(2)()223-24+33.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.34x y-x y2xyx y+++( x y≠)35.水资源越来越缺乏,全球提倡节约用水,水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,有关数据如下表:月用水量(m3)10 13 14 17 18户数 2 2 3 2 1如果该小区有500户家庭,根据上面的统计结果,估计该小区居民每月需要用水多少立方米?(写出解答过程).参考答案1.B【解析】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.试题解析:从小到大排列此数据为:57、59、59、59、61、63、65、67、70,数据59出现了三次最多为众数,61处在第5位为中位数.所以本题这组数据的中位数是61,众数是59.故选B .考点:1.众数;2.中位数.2.C【解析】【分析】由x ≤2时,y ≥0,知y 随x 的增大而减小,则a -1<0,取x =2时,y ≥0,求解不等式组即可解决问题.【详解】∵当x ≤2时,0y ≥,∴y 随x 的增大而减小,∴10a -<,即1a <,当2x =时,()21130y a a =--+≥,解得:35a ≥, ∴a 的取值范围为315a ≤<. 故选:C .【点睛】本题考查了一次函数图象和系数的关系,一次函数图象上点的坐标特征,能够准确理解题意是解题的关键.3.C【解析】【分析】根据平行线的判定和性质进行分析即可.【详解】解:①∵//AB CD ,∴∠CDA=∠BAD ,∵∠1=∠4,∴∠2=∠3;②∵12∠=∠,14∠=∠,则24∠∠=,不能得出23∠∠=;③∵34∠=∠,14∠=∠,则13∠=∠,不能得出23∠∠=;④∵BAD CDA ∠=∠,14∠=∠,∴23∠∠=.故选C.【点睛】本题考查了平行线的判定和性质,解题的关键是结合条件进行论证,难度不大.4.B【解析】【分析】即可得出答案.【详解】∴34,即48的立方根的大小在3与4之间,故选:B .【点睛】5.D【解析】【分析】根据中位数、平均数、众数、方差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:91.7% ,93.5%,94.3%,94.3% ,96.1% . 则中位数为:94.3%,故选项C 错误; 平均数是:91.7%93.5%94.3%94.3%96.1%398%9.5=++++,故选项A 错误;方差是反映一组数据的波动大小的一个量,因为数据有波动,所以方差不可能为0,故选项B错误;94.3%出现两次,出现次数最多,故众数是94.3%,选项D正确;故选:D.【点睛】本题考查了平均数、众数、中位数以及方差,掌握计算方法是解题的关键.6.B【解析】分析:根据众数、平均数、频数、方差的概念分析.详解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:B.点睛:此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.D【解析】【分析】点C是AB的中点,设A表示的数是a,根据AC=CB,求出a的值即可.【详解】设A表示的数是a,∵点C是AB的中点,∴AC=CB,∴33-=-,a解得:6a=-故选D.【点睛】此题主要考查了实数与数轴的特征,以及两点间的距离的求法,要熟练掌握.8.A【解析】【分析】利用互为相反数的两数之和为0列出关系式,再根据非负数的性质求出x 与y 的值即可.【详解】 ∵23x y -+和()22310x y +-互为相反数, ∴()22323100-+++-=x y x y , 又∵230-+≥x y ,()223100+-≥x y , ∴230-+=x y 且()223100+-=x y , 即232310x y x y -=-⎧⎨+=⎩①② 由②−①×2得:716=y , 解得:167y =, 将167y =代入①得:16237-⨯=-x , 解得:117x =, ∴方程组的解为117167x y ⎧=⎪⎪⎨⎪=⎪⎩, 故选:A .【点睛】此题主要考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键. 9.C【解析】【分析】根据算术平方根的定义解答即可.【详解】8,故选:C .【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.10.C【解析】【分析】根据函数图象中的数据用路程除以时间可以求得客车在高速路上行驶的速度.【详解】解:由题意可得,客车在高速路上行驶的速度为:(300−60)÷(5−2)=80(千米/小时),故选:C .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.C【解析】分析:根据分式及二次根式有意义的条件进行求解即可.详解:由题意得,1020x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠2,故选C .点睛:此题考查了分式及二次根式有意义的条件.注意:分式有意义的条件是分母不等于零,分式无意义的条件是分母等于零.二次根式有意义的条件是被开方数大于或等于零.12.6【解析】试题分析:先将二次根式化为最简,然后再进行二次根式的乘法运算即可.试题解析:原式.【考点】二次根式的乘除法.13.252T t =-【解析】直接利用原温度减去降下的温度进而列式,即可得出答案.【详解】由题可得物体温度T (单位:℃)与冷冻时间t (单位:时)之间的关系式是252T t =-. 故答案为:252T t =-.【点睛】本题考查了函数关系式,解决本题的关键是根据题意列出函数关系式.14.第三象限.【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点得到点P 3在第三象限.【详解】若P 1在第一象限,则根据P 1与P 2关于y 轴对称,P 2在第二象限;再根据P 2与P 3关于x 轴对称,则P 3在第三象限.故答案为:第三象限.【点睛】此题考查轴对称的概念,解题关键在于依次分析它们的位置.15.70S a= 【解析】【分析】根据油箱的总量固定不变,利用每千米耗油0.1升乘以700千米即可得到油箱的总量,故可求解.【详解】依题意得油箱的总量为:每千米耗油0.1升乘以700千米=70升∴轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式)为70S a =故答案为:70S a=. 【点睛】此题主要考查列函数关系式,解题的关键是根据题意找到等量关系列出关系式.16.y=-2x+3【分析】根据一次函数图象平移的规律即可得出结论.【详解】解:正比例函数y=-2x 的图象向上平移3个单位,则平移后所得图象的解析式是:y=-2x+3, 故答案为y=-2x+3.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键. 17.直角.【解析】【分析】根据三角形内角和定理求解即可.【详解】解:根据三角形内角和定理知°+180A B C ∠+∠∠=A B C ∠=∠-∠∴°2180B ∠=°90B ∴∠=故ABC △是直角三角形故答案为:直角.【点睛】主要考查了三角形的内角和定理,注意运用等量代换的方法求得∠B 的值.18.-2【解析】根据题意,可得1+a =0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2. 试题分析:因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即1+a =0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.考点:几个非负数的和为零,要求每一项都为零.【解析】试题解析:∵(x-3)2+|y+2|=0,∴x-3=0,y+2=0,∴x=3,y=-2,∴A 点的坐标为(3,-2),∴点A 在第四象限.20.1 4【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值即可.【详解】解:2|26|(3)0x y x y +-+-+=,∴263x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,把1x =代入①得:4y =,则1x =,4y =,故答案为:1;4.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.2【解析】【分析】将根号下化成()()22236-8=8=2=2,即可得出答案.【详解】=,故答案为2.【点睛】开根号运算,可先将根号下的式子先化简,再根据情况灵活计算.22.6【解析】【分析】根据二元一次方程解的定义,将x,y的值代入方程即可得到关于k的一元一次方程再解答即可.【详解】解:∵25xy=⎧⎨=⎩是方程kx-2y=2的一个解,∴2k-2×5=2解得:k=6故答案为:6.【点睛】本题考查了已知二元一次方程的解求方程中的参数,解题的关键是熟知二元一次方程解的概念.23.6【解析】【分析】根据众数为7可得x=7,然后根据中位数的概念求解.【详解】解:∵这组数据众数为7,∴x=7,这组数据按照从小到大的顺序排列为:2,3,5,7,7,9,则中位数为:5762+=,故答案为:6.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.24.火车站(0,0)、市民中心(-8 000,4 000)、盛华公司(-6 000,-4 000)、传媒大楼(4 000,-6 000).【解析】试题分析:由题意知,每个地点的位置都是以火车站为中心;由此,可以以火车站为坐标原点,分别以正东,正北方向为x 轴、y 轴的正方向建立平面直角坐标系;然后根据火车站的坐标确定其它地方的坐标.解:以火车站为原点,以正东方向为x 轴正方向,以正北方向为y 轴正方向,以2 000 m 为单位长度,建立平面直角坐标系,图略.各地点的坐标分别为:火车站(0,0)、市民中心(-8 000,4 000)、盛华公司(-6 000,-4 000)、传媒大楼(4 000,-6 000).25.±5【解析】试题分析:由二次根式的意义知被开方数大于等于0,可求得x 与y ,再代入求值. 试题解析:由题意可知:x=3 y=8则32x y +=3×3+2×8=25所以32x y +的平方根为±5考点:二次根式的意义26.(1)D ,两直线平行,内错角相等;(2)AD ,BC ,同旁内角互补,两直线平行;(3)AD , BC ,两直线平行,同位角相等.【解析】【分析】根据平行线的判定,以及证明题的书写规则解题即可【详解】解:(1)∵EB∥DC,(已知)∴∠DAE=∠D .(两直线平行,内错角相等)(2)∵∠BCF+∠AFC=180°,(已知)∴AD∥BC . (同旁内角互补,两直线平行);(3)∵AD∥BC(已知)∴∠EF A=∠ECB .(两直线平行,同位角相等)【点睛】此题考查平行线的判定,注意熟练区分内错角、同位角和同旁内角27.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.28.见解析(答案不唯一).【解析】分析:首先选择合适的位置作为坐标原点建立平面直角坐标系,然后根据点的位置得出坐标.详解:答案不唯一,如建立如图所示的直角坐标系,则各地点相应的坐标为:教育局(-2,3),苏果超市(-1,1),怡景湾酒店(-4,-2),同仁医院(2,-3).点睛:本题主要考查的是平面直角坐标系的实际应用,属于基础题型.选择坐标原点是解决这个问题的关键.原点的位置可以自由进行选择.29.(13;(2)﹣7.【解析】【分析】(1)先去括号,然后合并同类二次根式即可得出答案;(2)直接利用二次根式的乘法运算法则、立方根的性质分别化简得出答案.【详解】(1)(+)﹣=+﹣=;(2)(+)+﹣|﹣|=5+1﹣4﹣9=﹣7.【点睛】此题主要考查了二次根式的混合运算及立方根的化简,熟练掌握二次根式的运算法则是解题关键.30.(1)坐标系见解析,食堂(-5,5)、宿舍楼(-6,2)、大门(0,0);(2)见解析.【解析】【分析】(1)直接利用旗杆的位置是(-2,3),得出原点的位置进而得出答案;(2)利用(1)中原点位置即可得出答案.【详解】解:(1)如图所示:食堂(-5,5)、宿舍楼(-6,2)、大门(0,0);(2)如图所示:办公楼和教学楼的位置即为所求.【点睛】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.31.(1)1(2)432【解析】【分析】(1)根据平方差公式即可求解;(2)根据二次根式的混合运算法则即可求解.【详解】(1)=3-2=1(2)==【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.32.(1(2)5【解析】【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)根据完全平方公式和二次根式的减法法则运算.【详解】解:(1)原式===+-=.(2)原式235【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.33.(1) AP=13cm,OA=5cm (2) OP=12cm【解析】【分析】(1)、设AP=a,OA=b,根据图一和图二列出二元一次方程组,从而得出答案;(2)、根据Rt△OAP的勾股定理得出答案.【详解】(1)设AP=a,OA=b,由题意818a ba b-=⎛+=⎝,解得135ab=⎛=⎝,∴AP=13cm,OA=5cm.(2)当OA⊥OP时,在Rt△PAO中,,∴OP=12cm.点睛:本题主要考查的是二元一次方程组的应用以及勾股定理的实际应用,属于基础题型.根据题意列出方程组是解决这个问题的关键.34.0【解析】【分析】把22x-y=-,22x+y=+,不难发现分子上可用公式因式分解,再约分化简即可. 【详解】解:2222-++2+=-=0【点睛】此题考查的是二次根式的化简,要学会把平方差公式和完全平方公式用在此题是解决此题的关键.35.7000.【解析】试题分析:先根据样本求出10户家庭的平均用水量,再乘以该小区的总户数即可.试题解析:根据题意得:(立方米),14×500=7000(立方米),答:该小区居民每月需要用水7000立方米.考点:1.用样本估计总体;2.加权平均数.。

2019-2020人教版八年级数学上学期期末单元复习第12章全等三角形解析版

2019-2020人教版八年级数学上学期期末单元复习第12章全等三角形解析版

第12章全等三角形一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.AC=CA C.∠B=∠D D.BC=DC4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.38.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.59.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.2812.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点二.填空题(共4小题)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F°.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE =3.则PF=.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.三.解答题(共5小题)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.参考答案与试题解析一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两个图形能够完全重合,故本选项正确.B、圆内两条相交的线段不能完全重合,故本选项错误;C、两个正方形的边长不相等,不能完全重合,故本选项错误;D、两只眼睛下面的嘴巴不能完全重合,故本选项错误;故选:A.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、全等图形是指形状相同、大小相等的两个图形,故本选项错误;B、全等三角形是指能够完全重合的两个三角形,故本选项错误;C、等边三角形的形状相同、但是大小不一定相等,所以不一定都是全等三角形,故本选项错误;D、全等图形的周长、面积相等,故本选项正确;故选:D.3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.AC=CA C.∠B=∠D D.BC=DC【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.【解答】解:∵△ABC≌△CDA,∴∠1=∠2,AC=CA,∠B=∠D,BC=AD,故只有选项D,BC=DC错误.故选:D.4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°【分析】直接利用全等三角形的性质得出AB=AD,∠B=∠ADE,进而利用已知得出答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠B=∠ADB,∴∠BDA=∠ADE,∵∠EDC=70°,∴∠BDA=∠ADE=×(180°﹣70°)=55°.故选:B.5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 【分析】根据全等三角形的判定方法即可一一判断.【解答】解:A、SSA无法判断三角形全等,故本选项符合题意;B、根据ASA即可判断△ACO≌△BDO,得OC=OD,OA=OB,再用SAS可得三角形全等,故本选项不符合题意;C、根据AAS即可判断三角形全等,故本选项不符合题意;D、根据AAS即可判断三角形全等,故本选项不符合题意;故选:A.6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:A.7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3【分析】证明△ABC≌△EFD可得DE=AC=10,根据AD=AE﹣DE可求解.【解答】解:∵AB∥EF,∴∠A=∠E.又AB=EF,∠B=∠F,∴△ABC≌△EFD(ASA).∴AC=DE=10.∴AD=AE﹣DE=10﹣7=3.故选:D.8.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.5【分析】证明△ABE≌△ECD得到CE值,则BE可求.【解答】解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.9.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm【分析】根据垂直的定义得到∠C=∠ADE=90°,利用AAS定理证明△ACE≌△ADE,根据全等三角形的性质计算即可.【解答】解:∵AC⊥BC,ED⊥AB,∴∠C=∠ADE=90°,在△ACE和△ADE中,,∴△ACE≌△ADE(AAS),∴AD=AC=3cm,∴BD=AB﹣AD=4cm,故选:B.10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS【分析】根据全等三角形的判断方法解答.【解答】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.28【分析】根据角平分线的性质得出DE=CD=2,根据三角形的面积公式求出即可.【解答】解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.12.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点【分析】根据角平分线的性质解答即可.【解答】解:∵三角形角平分线上的点到角两边的距离相等,∴亭的位置应选在三角形三条角平分线的交点上.故选:A.二.填空题(共4小题)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE= 5 cm.【分析】由△ABD≌△ACE可得AD=AE,AC=AB,因为BE=AE﹣AB,即可AE的长度.【解答】解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F=35 °.【分析】利用三角形内角和定理可得∠ACB,再根据全等三角形的性质可得∠F=∠ACB =35°.【解答】解:∵∠A=80°,∠B=65°,∴∠ACB=180°﹣80°﹣65°=35°,∵△ABC≌△DEF,∴∠F=∠ACB=35°,故答案为:=35.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE =3.则PF= 3 .【分析】根据角平分线的性质直接写出结论即可.【解答】解:∵点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,∴PE=PF,∵PE=3,∴PF=PE=3,故答案为:3.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69 cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.三.解答题(共5小题)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明△ACD≌△CAB,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,AC=CA,∴△ACD≌△CAB,∴∠ACD=∠CAB,∴AB∥CD.18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.【分析】首先根据△ACO≌△BDO得到CO=OD,AO=OB,进而得到OE=OF,再证明△COE ≌△DOF,即可得到结论.【解答】解:∵△ACO≌△BDO,∴CO=OD,AO=OB,∵AE=BF,∴OE=OF,∴△COE≌△DOF,∴CE=DF.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.【分析】根据垂直的定义可得∠BDC=∠CEB=90°,根据等腰三角形的性质可得∠ABC =∠ACB,再有公共边BC,利用AAS可得△BCD≌△CBE,据此可得BD=CE.【解答】证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCD和△CBE中,∠BDC=∠CEB,∠DBC=∠ECB,BC=CB,∴△BCD≌△CBE(AAS),∴BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【分析】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【解答】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.【分析】(1)由角边角可证明△ABC和△DEF全等;(2)证明△BFC和△ECF全等,可得∠BFC=∠ECF,继而可得BF∥EC.【解答】证:(1)∵AB∥DE,∴∠A=∠D∵AF=CD,∴AF+FC=CD+FC即AC=DF∵∠AFE=∠BCD,∴∠DFE=∠ACB在△ABC和△DEF中,∴△ABC≌△DEF(ASA)(2)∵△ABC≌△DEF∴BC=EF在△BCF和△EFC中,∴△BCF≌△EFC(SAS)∴∠BFC=∠ECF∴BF∥EC。

《三角形中的边角关系、命题与证明》填空题精选 2020年沪科版八年级上册期末复习(含答案)

《三角形中的边角关系、命题与证明》填空题精选 2020年沪科版八年级上册期末复习(含答案)

2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习第13章《三角形中的边角关系、命题与证明》填空题精选一.填空题(共30小题)1.(2020春•铜陵期末)在平面直角坐标系中,三角形ABC的三个顶点的坐标分别是A(2,3),B(0,4),C(0,﹣2),则三角形ABC的面积为.2.(2020春•蜀山区期末)将一副直角三角板如图放置,点E在AC边上,且ED∥BC,∠C=30°,∠F =∠DEF=45°,则∠AEF=度.3.(2020春•芜湖期末)已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C 的坐标为.4.(2019秋•东至县期末)如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.若∠B=38°,∠C=70°,则∠DAE=.5.(2019秋•当涂县期末)设三角形三边之长分别为2,9,5+a,则a的取值范围为.6.(2019秋•蜀山区期末)写出命题“如果mn=1,那么m、n互为倒数”的逆命题:.7.(2019秋•蜀山区期末)如图,一个直角三角形纸片ABC,∠BAC=90°,D是边BC上一点,沿线段AD 折叠,使点B落在点E处(E、B在直线AC的两侧),当∠EAC=50°时,则∠CAD=°.8.(2019秋•肥东县期末)如图,在△ABC中,BD,BE将∠ABC分成三个相等的角,CD,CE将∠ACB 分成三个相等的角.若∠A=105°,则∠D等于度.9.(2019秋•潜山市期末)△ABC的两边长分别是2和5,且第三边为奇数,则第三边长为.10.(2019秋•当涂县期末)如图,若△ABC和△DEF的面积分别为S1、S2,则S1与S2的数量关系为.11.(2019秋•裕安区期末)如图,在平面直角坐标系中,O为坐标原点,点A(0,3)和点B(2,0)是坐标轴上两点,点C(m,n)(m≠n)为坐标轴上一点,若三角形ABC的面积为3,则C点坐标为.12.(2019秋•裕安区期末)如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F,若∠C=35°,∠DEF=15°,则∠B的度数为.13.(2019秋•包河区期末)命题“两直线平行,同位角相等”的逆命题是命题.(填“真”或“假”)14.(2019秋•裕安区期末)若△ABC的三边的长AB=5,BC=2a+1,AC=3a﹣1,则a的取值范围为.15.(2018秋•濉溪县期末)命题“如果∠A=∠B,那么∠A的余角与∠B的余角相等”的条件是,结论是.16.(2018秋•义安区期末)△ABC的两条角平分线BP、CP相交于点P,若∠A=80°,则∠BPC=.17.(2018秋•砀山县期末)下列命题中,真命题为.①如果一个三角形的三边长分别为√5,3,√14,那么这个三角形是直角三角形②如果两个一次函数的图象平行,那么它们表达式中的k相同③三角形的一个外角等于两个内角的和18.(2018秋•长丰县期末)命题“如果|a|=|b|,那么a2=b2”的逆命题是,此命题是(选填“真“或“假”)命题.19.(2018秋•安庆期末)设三角形三边之长分别为3,7,1+a,则a的取值范围为.20.(2018秋•瑶海区期末)已知点A(4,0)、B(0,5),点C在x轴上,且△BOC的面积是△ABC的面积的3倍,那么点C的坐标为.21.(2017秋•蚌埠期末)如图,D是线段AC上一点,连BD,用不等号“<”表示∠A,∠1的大小关系为.22.(2017秋•蜀山区期末)如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=70°,则∠BOC =.23.(2017秋•埇桥区期末)一个三角形的最大角不会小于度.24.(2017秋•颍上县期末)“对顶角相等”这个命题的逆命题是,它是一个命题(填“真”或“假”).25.(2017秋•怀远县期末)请给假命题“两个锐角的和是钝角”举一个反例.26.(2017秋•瑶海区期末)命题“两组对边分别平行的四边形是平行四边形”的逆命题,是命题.(填“真”或“假”)27.(2017秋•望江县期末)三角形三边长分别为3,1﹣2a,8,则a的取值范围是.28.(2017秋•埇桥区期末)把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是.29.(2017秋•固镇县期末)命题“有两边相等的三角形是等腰三角形”它的题设是,结论是,它的逆命题是.30.(2017秋•临泉县期末)如图所示,△ABC中,BD,CD分别平分∠ABC和外角∠ACE,若∠D=24°,则∠A=度.2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》填空题精选参考答案与试题解析一.填空题(共30小题)1.【解答】解:如图,BC=4+2=6.所以S△ABC=12BC•x A=12×6×2=6.故答案是:2.2.【解答】解:∵ED∥BC,∠C=30°∴∠DEC=∠C=30°,∵∠DEF=45°,∴∠CEF=∠DEF﹣∠DEC=45°﹣30°=15°.∴∠AEF=180°﹣∠CEF=165°,故答案为:165.3.【解答】解:如右图所示,设C点的坐标是(0,x),∵S△ABC=12,∴12×AB×OC=12×6•|x|=12,∴|x|=4,故点C的坐标是(0,4)或(0,﹣4).故答案为(0,4)或(0,﹣4).4.【解答】解:∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°,故答案为16°.5.【解答】解:由题意得9﹣2<5+a<9+2,解得2<a<6.故答案为:2<a <6.6.【解答】解:命题“如果mn =1,那么m 、n 互为倒数”的逆命题是如果m 、n 互为倒数,那么mn =1, 故答案为:如果m 、n 互为倒数,那么mn =1.7.【解答】解:设∠CAD =x .∵∠DAE =∠DAB ,∴50°+x =90°﹣x ,解得x =20°,∴∠CAD =20°,故答案为20.8.【解答】解:∵∠A =105°,∴∠ABC +∠ACB =180°﹣105°=75°,∵BD ,BE 将∠ABC 分成三个相等的角,CD ,CE 将∠ACB 分成三个相等的角,∴∠DBC +∠DCB =23×75°=50°, ∴∠D =180°﹣(∠DBC +∠DCB )=130°,故答案为130.9.【解答】解:∵5﹣2=3,5+2=7,∴3<第三边<7,∵第三边为奇数,∴第三边长为5.故选:5.10.【解答】解:过A 点作AG ⊥BC 于G ,过D 点作DH ⊥EF 于H .在Rt △ABG 中,AG =AB •sin40°=5sin40°,∠DEH =180°﹣140°=40°,在Rt △DHE 中,DH =DE •sin40°=8sin40°,S 1=8×5sin40°÷2=20sin40°,S 2=5×8sin40°÷2=20sin40°.则S 1=S 2.故答案为:S 1=S 2.11.【解答】解:∵点C (m ,n )(m ≠n )为坐标轴上一点,∴S △ABC =12×3×|m ﹣2|=3或S △ABC =12×2×|n ﹣3|=3,解得:m =4或0,n =6或0,∴C 点坐标为(4,0)或(0,6),故答案为:(4,0)或(0,6).12.【解答】解:∵EF ⊥BC ,∠DEF =15°,∴∠ADB =90°﹣15°=75°.∵∠C =35°,∴∠CAD =75°﹣35°=40°.∵AD 是∠BAC 的平分线,∴∠BAC =2∠CAD =80°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣80°﹣35°=65°.故答案为:65°.13.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行,正确,为真命题,故答案为:真.14.【解答】解:∵△ABC 的三边的长AB =5,BC =2a +1,AC =3a ﹣1,∴①{(3a −1)+(2a +1)>5(3a −1)−(2a +1)<5, 解得1<a <7;②{(3a −1)+(2a +1)>5(2a +1)−(3a −1)<5, 解得a >1,则2a +1<3a ﹣1.∴1<a <7.故答案为:1<a <7.15.【解答】解:命题“如果∠A =∠B ,那么∠A 的余角与∠B 的余角相等”的条件是∠A =∠B ,结论是∠A 的余角与∠B 的余角相等,故答案为:∠A =∠B ;∠A 的余角与∠B 的余角相等.16.【解答】解:如图,∵BP 、CP 分别是△ABC 的角平分线∴∠ABP =∠CBP ,∠ACP =∠PCB ;∵∠A +∠ABC +∠ACB =180°,∴∠A +2∠CBP +2∠PCB =180°;∵∠A =80°,∴∠CBP +∠PCB =50°;在△BPC 中,又∵∠BPC +∠CBP +∠PCB =180°,∴∠BPC =130°.17.【解答】解:①如果一个三角形的三边长分别为√5,3,√14,∵(√5)2+32=(√14)2,∴这个三角形是直角三角形,是真命题,符合题意;②如果两个一次函数的图象平行,那么它们表达式中的k 相同,是真命题;③三角形的一个外角等于两个不相邻内角的和,故原说法错误.故答案为:①②.18.【解答】解:根据题意得:命题“如果|a |=|b |,那么a 2=b 2”的条件是如果|a |=|b |,结论是a 2=b 2”,故逆命题是如果a 2=b 2,那么|a |=|b |,该命题是真命题.故答案为:如果a 2=b 2,那么|a |=|b |;真.19.【解答】解:由题意,得{a +1>7−3a +1<7+3, 解得:3<a <9,故答案为:3<a <9.20.【解答】解:∵点A(4,0)、B(0,5),∴OA=4,OB=5,设OC=a(a≥0),有三种情况:①当C在x轴的负半轴上时,∵△BOC的面积是△ABC的面积的3倍,∴12×a×5=3×12×(4+a)×5,解得:a=﹣6,不符合a≥0,舍去;②当C在x轴的正半轴上,且在点A的右边时,∵△BOC的面积是△ABC的面积的3倍,∴12×a×5=3×12×(a﹣4)×5,解得:a=6,此时点C的坐标是(6,0),③当C点在O、A之间时,∵△BOC的面积是△ABC的面积的3倍,∴12×a×5=3×12×(4﹣a)×5,解得:a=3,此时点C的坐标是(3,0),所以点C的坐标为(3,0)或(6,0),故答案为:(3,0)或(6,0).21.【解答】解:∵∠1是△ABD的一个外角,∴∠A<∠1,故答案为:∠A<∠1.22.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠CBO,∠BCO=∠ACO,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=12(180°﹣70°)=55°,∴在△BOC中,∠BOC=180°﹣55°=125°.故答案为:125°.23.【解答】解:由分析可知:如果三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾.所以三角形的最大角不小于60度;故答案为:60.24.【解答】解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,∴逆命题是:相等的角是对顶角,它是假命题,故答案为:相等的角是对顶角,假25.【解答】解:例如α=30°,β=40°,α+β<90°,故答案为:α=30°,β=40°,α+β=70°<90°,26.【解答】解:命题“两组对边分别平行的四边形是平行四边形”的逆命题是平行四边形的两组对边分别平行;该命题是真命题.故答案为:平行四边形的两组对边分别平行,真.27.【解答】解:∵三角形三边长分别为3,1﹣2a,8,∴8﹣3<1﹣2a<8+3,解得﹣5<a<﹣2.故答案为:﹣5<a<﹣2.28.【解答】解:把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是:如果两个角都是直角,那么这两个角相等,故答案为:如果两个角都是直角,那么这两个角相等.29.【解答】解:命题“有两边相等的三角形是等腰三角形”它的条件是“有两边相等的三角形”,结论是“这个三角形是等腰三角形”,故题设是有两边相等的三角形,结论是“这个三角形是等腰三角形”,它的逆命题是“等腰三角形的两腰相等”.30.【解答】解:∵∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBC=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D=48°.。

-天津市河西区2020-2021学年八年级上学期期末数学试卷(word解析版)

-天津市河西区2020-2021学年八年级上学期期末数学试卷(word解析版)

2020-2021学年天津市河西区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣82.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3 3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.107.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣310.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=.12.(3分)已知等腰三角形的一个内角为50°,则顶角为度.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于.15.(3分)已知﹣=3,则分式的值为.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).18.(6分)解方程﹣3=.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.2020-2021学年天津市河西区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3【分析】根据同底数幂的乘法、幂的乘方与积的乘方法则,分别进行各选项的判断即可.【解答】解:A、a3与a2不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、(a3)2=a6,计算正确,故本选项正确;D、(3a)3=27a3,原式计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方,解答本题的关键是掌握各部分的运算法则.3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.【解答】解:原式===a﹣3,当a=1时,原式=1﹣3=﹣2,故选:B.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.7.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变【分析】根据分式的基本性质,可得答案.【解答】解:把分式中的x和y的值都扩大为原来的3倍,得==3×,故选:A.【点评】本题考查了分式的基本性质,能够正确利用分式的基本性质变形是解题的关键.8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.【分析】要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“提前5天交货”;等量关系为:原来所用的时间﹣实际所用的时间=5.【解答】解:原来所用的时间为:,实际所用的时间为:,所列方程为:﹣=5.故选:D.【点评】本题考查了由实际问题抽象出分式方程,关键是时间做为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣3【分析】由已知得a=b+3,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.【点评】本题考查了完全平方公式的运用,关键是利用换元法消去所求代数式中的a.10.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab【分析】设小正方形边长为x,表示出大正方形的边长,由大正方形面积减去四个小正方形面积表示出阴影部分面积即可.【解答】解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,可得x=,大正方形边长为a﹣==,则阴影部分面积为()2﹣4()2=﹣==ab,故选:A.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=2a(x﹣3y)2.【分析】先提公因式2a,然后利用公式法分解因式.【解答】解:原式=2a(x2﹣6xy+9y2)=2a(x﹣3y)2.故答案为2a(x﹣3y)2.【点评】本题考查了提公因式法与公式法的综合运用,提取公因式后还能运用完全平方公式继续分解因式.12.(3分)已知等腰三角形的一个内角为50°,则顶角为50或80度.【分析】有两种情况(顶角是50°和底角是50°时),用三角形的内角和定理即可求出顶角的度数.【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故答案为50或80【点评】本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是6.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于8.【分析】作PE⊥OA于E,根据角平分线的性质求出PE,根据直角三角形的性质和平行线的性质解答即可.【解答】解:作PE⊥OA于E,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∴PE=PD=4,∵OP平分∠AOB,∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ECP=∠AOB=30°,∴PC=2PE=8,故答案为:8.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.(3分)已知﹣=3,则分式的值为.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.【点评】本题主要考查了分式的基本性质及求分式的值的方法,把﹣=3作为一个整体代入,可使运算简便.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点N、M,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).【分析】(Ⅰ)原式利用完全平方公式计算即可求出值;(Ⅱ)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(Ⅰ)原式=4a2﹣12ab+9b2;(Ⅱ)原式=•=•=2(a﹣2)=2a﹣4.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握公式及运算法则是解本题的关键.18.(6分)解方程﹣3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【解答】解:去分母得:x﹣1﹣3x+6=1,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.【分析】由于D是BC的中点,那么BD=CD,而BE=CF,DE⊥AB,DF⊥AC,利用HL易证Rt△BDE≌Rt△CDF,得DE=DF,利用角平分线的判定定理可知点D在∠BAC 的平分线上,即AD平分∠BAC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴点D在∠BAC的平分线上,∴AD平分∠BAC,∴∠BAD=∠CAD.【点评】本题考查了角平分线的判定定理、全等三角形的判定和性质.解题的关键是证明Rt△BDE≌Rt△CDF.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.【分析】作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则点P 即为所求.【解答】解:如图所示,作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则BP=B'P,∴AP+BP=AP+B'P=AB',∴P A+PB的值最小等于线段AB'的长,【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.【分析】(1)时间=路程÷速度;速度=路程÷时间.(2)等量关系为:骑自行车同学所用时间=坐汽车同学所用时间+.【解答】解:(Ⅰ)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车2x10(Ⅱ)∵骑自行车先走20分钟,即=小时,∴=+,解得:x=15,经检验,x=15是原方程的根.答:骑车同学的速度为每小时15千米.【点评】本题考查分式方程的应用,注意找好等量关系方可列出方程.求解后要注意检验,要满足两个方面:①要满足方程②要满足实际问题.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.【分析】根据等边三角形的性质,可得AB与BC的关系,BD、BE、DE的关系,根据三角形全等的判定,可得△ABE与△CBD的关系,根据全等三角形的性质,可得对应边相等,根据线段的和差,等量代换,可得证明结果.【解答】证明:△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD=DE(等边三角形的边相等),∠ABC=∠EBD=60°(等边三角形的角是60°).∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD(等式的性质),在△ABE和△CBD中,,∴△ABE≌△CBD(SAS)∴AE=DC(全等三角形的对应边相等).∵AD﹣DE=AE(线段的和差)∴AD﹣BD=DC(等量代换).【点评】本题考查了全等三角形的判定与性质,先证明三角形全等,再证明全等三角形的对应边相等,最后等量代换.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PF A=∠FP A=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【解答】(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PF A=∠FP A=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.【点评】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.。

(汇总3份试卷)2020年上海市虹口区八年级上学期期末复习能力测试数学试题

(汇总3份试卷)2020年上海市虹口区八年级上学期期末复习能力测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于A .60°B .70°C .80°D .90°【答案】C 【详解】根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B ,∴∠A=∠ACD ﹣∠B=120°﹣40°=80°.故选C .2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ).A .5B .6C .12D .16【答案】C【分析】设此三角形第三边长为x ,根据三角形的三边关系求出x 的取值范围,找到符合条件的x 值即可.【详解】设此三角形第三边长为x ,则10-4﹤x ﹤10+4,即6﹤x ﹤14,四个选项中只有12符合条件,故选:C .【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键.3.如图,ABC 中,DE 是AC 的垂直平分线,5AE =,ABD △的周长为16,则ABC 的周长为( )A .18B .21C .24D .26【答案】D 【分析】先根据垂直平分线的性质可得1,2AD CD AE CE AC ===,再根据三角形的周长公式即可得. 【详解】DE 是AC 的垂直平分线 1,2AD CD AE CE AC ∴=== ABD ∆的周长为16ABD C AB BD AD ∆=++=,5AE =ABC ∆∴的周长为ABC C AB BC AC ∆=++()2AB BD CD AE =+++2AB BD AD AE =+++2ABD C AE ∆=+162526=+⨯=故选:D .【点睛】本题考查了垂直平分线的性质,是一道基础题,熟记垂直平分线的性质是解题关键.4.在2、0.3•、227-中,无理数的个数有( ) A .1个B .2个C .3个D .4个 【答案】A【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.•0.3、227-2是无理数; •0.3循环小数,是有理数;227-是分数,是有理数;,是整数,是有理数;所以无理数共1个.故选:A .【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.5.若a x =3,a y =2,则a 2x+y 等于( )A .18B .8C .7D .6【答案】A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【详解】解:∵a x =3,a y =2,∴a 2x+y =(a x )2×a y =32×2=1.故选:A .【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.6.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3【答案】D 【分析】过点D 作DF AC ⊥于F ,然后利用ABC ∆的面积公式列式计算即可得解.【详解】解:过点D 作DF AC ⊥于F , AD 是ABC ∆的角平分线,DE AB ⊥,2DE DF ∴==, 11422722ABC S AC ,解得3AC =.故选:D .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.7.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( )A .4种B .3种C .2种D .1种【答案】C【分析】设有鸡x 只,有鸭y 只,根据收入共660元列方程,然后根据鸡鸭只数是正整数分析求解.【详解】设有鸡x 只,鸭y 只,根据题意,得 10080660x y +=,整理,得:5433x y +=, ∴335 4x y -=, ∵x 、y 必须是正整数, ∴3354x -≥,且335x -必须是偶数,即x 为奇数,∴2905x ≤≤,且x 为奇数, 则x =1,3,5,当1x =时,7y =,符合题意;当3x =时,184y =,不是整数,不符合题意,舍去. 当5x =时,2y =,符合题意.所以,这背鸡鸭只数可能的方案有2种.故选:C .【点睛】本题综合考查了二元一次方程的应用,能够根据不等式求得未知数的取值范围,从而分析得到所有的情况. 8.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,304ADB AB ∠︒=,=,则OC 等于 ( )A .5B .4C .3.5D .3【答案】B 【解析】试题解析:∵四边形ABCD 是矩形,,,90AC BD OA OC BAD ∴==∠=,30ADB ∠=,∴AC=BD=2AB=8, 142OC AC ∴==; 故选B. 点睛:平行四边形的对角线互相平分.9.如图,在△ABC 中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB .下列四个结论:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC 是等腰直角三角形.你认为正确的序号是( )A .①②③B .①③④C .②③④D .①②③④【答案】C 【分析】①根据AD ⊥BC ,若∠ABC=45°则∠BAD=45°,而∠BAC=45°,很明显不成立;②③可以通过证明△AEH 与△CEB 全等得到;④CE ⊥AB ,∠BAC=45°,所以是等腰直角三角形.【详解】①∵CE ⊥AB ,EH =EB ,∴∠EBH =45°,∴∠ABC >45°,故①错误;∵CE ⊥AB ,∠BAC =45°,∴AE =EC ,在△AEH 和△CEB 中,90AE EC AEC BEC EH EB ⎧⎪∠∠︒⎨⎪⎩====,∴△AEH ≌△CEB (SAS ),∴AH =BC ,故选项②正确;又EC =EH +CH ,∴AE =BE +CH ,故选项③正确.∵AE =CE ,CE ⊥AB ,所以△AEC 是等腰直角三角形,故选项④正确.∴②③④正确.故选B .【点睛】本题主要利用全等三角形的对应边相等进行证明,找出相等的对应边后,注意线段之间的和差关系. 10.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D 【分析】根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误.故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.二、填空题11.如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB 的长度等于____________.【答案】422+【解析】根据角平分线的性质可知2CD DE ==,由于∠C=90°,故45B BDE ∠=∠=︒,BDE ∆是等腰直角三角形,由勾股定理可得BD,AC 的值.由Rt △ACD 和Rt △AED 全等,可得AC=AE ,进而得出AB 的值.【详解】∵AD 是△ABC 的角平分线,DC ⊥AC,DE ⊥AB,∴DE=CD=2,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∠B=∠BDE=45°,∴BE=DE=2.在等腰直角三角形BDE 中,由勾股定理得,22BD =, ∴AC=BC=CD+BD=222+.在Rt △ACD 和Rt △AED 中,AD AD CD ED =⎧⎨=⎩∴Rt △ACD ≌Rt △AED (HL ).∴AC=AE=222+,∴AB=BE+AE=2222422++=+,故答案为422+..【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质,比较简单.12.如图,四边形ABCD ,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD 的面积为___________.【答案】36【分析】连接BD ,先根据勾股定理求出BD 的长,再根据勾股定理的逆定理判断出△BCD 的形状,根据S ABCD 四边形=ABD+BCD S S ∆∆即可得出结论.【详解】连接BD.∵∠A=90°,AB=3,DA=4,∴2234+在△BCD 中,∵BD=5,CD=12,BC=13, 2225+12=13,即222+CD =BC BD ,∴△BCD 是直角三角形,∴S ABCD 四边形=ABD+BCD S S ∆∆=1134+512=6+30=3622⨯⨯⨯⨯, 故答案为:36. 【点睛】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.13.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是_____.【答案】7.5【分析】根据中位数的定义先把数据从小到大的顺序排列,找出最中间的数即可得出答案.【详解】解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是872+=7.5(环). 故答案为:7.5.【点睛】此题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.14.比较大小:15“>”、“<”或“=”填空).【答案】>【分析】先把416 【详解】416,= 1615,>415∴>故填:>.【点睛】本题考查实数比较大小,属于基础题型.15.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为_____.【答案】1【分析】利用三角形的面积公式求出BC 即可解决问题.【详解】∵AE ⊥BC ,AE =4,△ABC 的面积为12, ∴12×BC×AE =12, ∴12×BC×4=12, ∴BC =6,∵AD 是△ABC 的中线,∴CD =12BC =1, 故答案为1.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题. 16.已知218a =,23b =,则212a b -+的值为__________.【答案】1【分析】直接利用同底数幂的乘除运算法则将原式变形进而得出答案.【详解】:∵2a =18,2b =3,∴2a-2b+1=2a ÷(2b )2×2=18÷32×2=1.故答案为:1.【点睛】此题主要考查了同底数幂的乘除运算,解题关键是将原式进行正确变形.17.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.【答案】3300元【分析】设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于3人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x个同学,航空组有y个同学,依题意得x+2x-3+y=18解得x=213y -∵航空组的同学不少于3人但不超过9人,x,y为正整数,故方程的解为63xy=⎧⎨=⎩,56xy=⎧⎨=⎩,49xy=⎧⎨=⎩设为无人机组的每位同学购买a个无人机模型,当63xy=⎧⎨=⎩时,依题意得6a×165+2×9×75+3×3×98=6114解得a=647165,不符合题意;当63xy=⎧⎨=⎩时,依题意得5a×165+2×7×75+6×3×98=6114解得a=4,符合题意,故购买无人机模型的费用是3300元;当49xy=⎧⎨=⎩时,依题意得4a×165+2×5×75+9×3×98=6114解得a=453110,不符合题意;综上,答案为3300元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.三、解答题18.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,若S△ABD=12,求DF的长.【答案】DF=1.【分析】根据角平分线性质得出DE=DF,根据三角形的面积公式求出DE的长,即可得出DF的长度.【详解】解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABD=12,AB=6,16122DE ∴⨯⨯=, ∴DE=1.∴DF=1.【点睛】本题考查了角平分线定义的应用,能根据角平分线性质得出DE=DF 是解此题的关键.19.计算:(1)()()22x y x y x --- (2)2344(1)11x x x x x ++-+÷++. 【答案】(1)223x -3xy+y ;(2)22x x -+. 【分析】(1)先进行整式的完全平方和乘法运算,然后在合并同类项即可;(2)先通分,然后把除法变成乘法进行约分,然后整理即可.【详解】解:(1)原式=222x -2xy+y -xy+2x=223x -3xy+y ;(2)原式=231x+11(2)x x x x --+⨯++()(1) =223111(2)x x x x -++⨯++ =2(2)(2)11(2)x x x x x -++⨯++ =22x x -+ 【点睛】本题是对整式乘法和分式除法的考查,熟练掌握整式乘法公式和分式的运算是解决本题的关键,难度不大,注意计算的准确性.20.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点,E F 在AC 上,且AF CE =.求证:BE DF =.【答案】见解析【解析】根据平行四边形的性质得出AB CD =和AB CD ∥,再利用平行线的性质以及等量代换证出CDF ABE ∆∆≌,即可得出答案.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,∴BAE DCF ∠=∠∵AF CE =∴AF EF CE EF -=-即AE CF =∴CDF ABE ∆∆≌∴BE DF =.【点睛】本题考查的是平行四边形和全等三角形,需要熟练掌握平行四边形的性质以及全等三角形的判定和性质. 21.如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于点E ,点F 是AC 上的动点,BD=DF(1)求证:BE=FC ;(2)若∠B=30°,DC=2,此时23AC =ACB 的面积.【答案】(1)证明见解析;(2)3【分析】(1)根据角平分线的性质可得DC=DE ,利用HL 可证明△DCF ≌△DEB ,可得BE=FC ;(2)根据含30°角的直角三角形的性质可求出BD 的长,即可求出BC 的长,利用三角形面积公式即可得答案.【详解】(1)∵AD 平分,,90,BAC DE AB C DC AC ∠⊥∠=⊥,∴90,C DEB DC DE ∠=∠=︒=,在Rt DCF △和Rt DEB 中,DC DE DF DB=⎧⎨=⎩, ∴DCF DEB ≌(HL ),∴BE=FC . (2)AD 平分∠BAC ,DE ⊥AB ,∠C=90°,∴2DC DE ==,∵∠B=30°,DE ⊥AB ,∴BD=2DE=4,∴BC=CD+BD=6,∵AC=23, ∴ACB △的面积116236322AC BC =⨯⨯=⨯⨯=. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质及含30°角的直角三角形的性质,角平分线上的点到角两边的距离相等;30°角所对的直角边等于斜边的一半;熟练掌握相关判定定理及性质是解题关键. 22.如图,在Rt △ABC 中,∠ACB=90°,D 是AB 上一点,且∠ACD=∠B ,求证:CD ⊥AB .【答案】证明过程见解析【解析】试题分析:由ACB 90∠=︒可得B A 90∠∠+=︒, 由ACD B ∠∠=,根据等量代换可得ACD A 90∠∠+=︒,从而ADC 90∠=︒,接下来,依据垂线的定义可得到AB 和CD 的位置关系. 证明:在Rt ABC 中,90ACB ∠=︒,∴90B A ∠+∠=︒,又∵ACD B ∠=∠,∴90ACD A ∠+∠=︒,∴90ADC ∠=︒,∴CD AB ⊥.点睛:本题主要就是依据三角形的内角和定理和垂线的定义求解的. 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.23.在日常生活中,取款、上网等都需要密码.有一种用“因式分解”法设计的密码.原理是:如:多项式44x y -因式分解的结果是()()()22x y x y x y -++,若取6,2x y ==时,则各个因式的值是:224,8,40x y x y x y -=+=+=,将3个数字按从小到大的顺序排列,于是可以把“400804”作为一个六位数的密码.对于多项式322019a a a -+,当20a =时,写出用上述方法产生的密码,并说明理由.【答案】011920,理由见解析.【分析】先将多项式322019a a a -+通过提公因式法和公式法进行因式分解后,再将20a =代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】解:3222019(2019)(19)(1)a a a a a a a a a -+=-+=--当20a =时,191a -=,119a -=∴这个密码是:011920.【点睛】本题考查的知识点是多项式的因式分解,掌握两种常用的提公因式法和公式法的要点是解题的关键. 24.如图,正比例函数y =34x 与一次函数y =ax+7的图象相交于点P (4,n ),过点A (2,0)作x 轴的垂线,交一次函数的图象于点B ,连接OB .(1)求a 值;(2)求△OBP 的面积;(3)在坐标轴的正半轴上存在点Q ,使△POQ 是以OP 为腰的等腰三角形,请直接写出Q 点的坐标.【答案】(1)a=-1;(2)7;(3)点Q 的坐标为(5,0)或(8,0)或(0,5)或(0,6)【分析】(1)先由点P 在正比例函数图象上求得n 的值,再把点P 坐标代入一次函数的解析式即可求出结果;(2)易求点B 坐标,设直线AB 与OP 交于点C ,如图,则点C 坐标可得,然后利用△OBP 的面积=S △BCO +S △BCP 代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP 的长,再分两种情况:当OP=OQ 时,以O 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 1、Q 2,如图2,则点Q 1、Q 2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ 时,以P 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 4、Q 3,如图3,则点Q 4、Q 3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】解:(1)把点P (4,n )代入y =34x ,得:n =34×4=3,∴P (4,3), 把P (4,3)代入y =ax+7得,3=4a+7,∴a =﹣1;(2)∵A (2,0),AB ⊥x 轴,∴B 点的横坐标为2,∵点B 在y =﹣x+7上,∴B (2,5),设直线AB 与OP 交于点C ,如图1,当x=2时,33242y =⨯=,∴C (2,32), ∴△OBP 的面积=S △BCO +S △BCP =12⨯2×(5﹣32)+12⨯(4﹣2)×(5﹣32)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴22OP=+=,345当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.25.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系之后,△ABC的顶点均在格点上,点C的坐标为(5,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)连接OB 、OC ,直接写出△OBC 的面积.【答案】(1)图见解析,C 1(﹣5,1);(2)7【分析】(1)利用图形轴对称的特点进行画图;(2)直角坐标系中不规则三角形面积利用“割补法”来计算.【详解】解:(1)如图所示,111A B C △即为所求,点C 1的坐标为(﹣5,1);(2)111351315241587222OBC S =⨯-⨯⨯-⨯⨯-⨯⨯=-=. 【点睛】掌握直角坐标系图形对称的特点及不规则图形求面积的方法为本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.用反证法证明命题:“如图,如果AB ∥CD ,AB ∥EF ,那么CD ∥EF”,证明的第一个步骤是( )A .假定CD ∥EFB .假定CD 不平行于EFC .已知AB ∥EFD .假定AB 不平行于EF【答案】B 【解析】根据要证CD ∥EF ,直接假设CD 不平行于EF 即可得出.【详解】解:∵用反证法证明命题:如果AB ∥CD ,AB ∥EF ,那么CD ∥EF .∴证明的第一步应是:从结论反面出发,假设CD 不平行于EF .故选B .点评:此题主要考查了反证法的第一步,根据题意得出命题结论的反例是解决问题的关键. 2.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩【答案】B 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B .【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.3.下面计算正确的是( )A.B C D2-【答案】B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A选项错误;B. ===3,故B选项正确;C. ==C选项错误;D.2-==,故D选项错误;(2)2故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.4.下列说法正确的是()A.真命题的逆命题都是真命题B.无限小数都是无理数C.0.720精确到了百分位D的算术平方根是2【答案】D【分析】根据真命题的定义、无理数的判定、算术平方根、精确度等知识一一判断即可.【详解】A、真命题的逆命题不一定都是真命题,本选项不符合题意;B、无限小数都是无理数,错误,无限循环小数是无限小数,是有理数,本选项不符合题意;C、0.720精确到了千分位,本选项不符合题意;D的算术平方根是2,正确;故选D.【点睛】本题考查真命题的定义、无理数的判定、算术平方根、精确度等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.下列根式中,最简二次根式是()A B C D【答案】B【解析】直接利用最简二次根式的定义分析得出答案.【详解】解:A=B 不能再化简,故选项正确;C 3,故选项错误;D =故选B.【点睛】本题考查最简二次根式的定义,根据最简二次根式的定义进行判断是解题的关键.6.命题“邻补角的和为180︒”的条件是( )A .两个角的和是180︒B .和为180︒的两角为邻补角C .两个角是邻补角D .邻补角的和是180︒【答案】C【分析】根据命题“邻补角的和为180︒”的条件是:两个角是邻补角,即可得到答案.【详解】命题“邻补角的和为180︒”的条件是:两个角是邻补角,故选C .【点睛】本题主要考查命题的条件和结论,学会区分命题的条件与结论,是解题的关键.7.下列各式中,是分式的有( ) 3x y -,21a x -,1x π+,﹣3a b ,12x y +,12x y +,2x x -. A .5个B .4个C .3个D .2个 【答案】B 【解析】3x y -是多项式,是整式;21a x -是分式;1x π+是整式;3a b 是分式;12x y +是分式;12x y +,是整式;2x x -是分式,所以分式共有4个, 故选B.8.一个圆柱形容器的容积为32Vm ,开始用一个小水管向容积内注水,水面高度达到容积的一半后,改用一根口径(直径)为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t min .设小水管的注水速度3m /min x ,则下列方程正确的是( )A .2V V t x x +=B .4V V t x x +=C .24V V t x x +=D .24V V t x x+= 【答案】B【分析】根据大水管的直径是小水管的2倍,即可得出大水管的横截面积是小水管的4倍,从而得出大水管的注水速度为小水管的4倍,然后根据“小水管的注水时间+大水管的注水时间=t ”列方程即可.【详解】解:∵大水管的直径是小水管的2倍∴大水管的横截面积是小水管的4倍即大水管的注水速度为小水管的4倍 根据题意可得:4V V t x x+= 故选B .【点睛】此题考查的是分式方程的应用,掌握两个圆的面积之比等于直径比的平方和实际问题中的等量关系是解决此题的关键.9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度【答案】C【详解】A .根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B .根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C .根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D .在4至8秒内甲的速度都大于乙的速度,正确;故选C .10.如图,已知ABC ∆,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF CA =;连接DE 、EF 、FD ,得DEF ∆.若ABC ∆的面积为k ,则DEF ∆的面积为( )A .10kB .15kC .18kD .20k【答案】C【分析】如图所示:连接AE、CD,要求△DEF的面积,可以分三部分来计算,利用高一定时,三角形的面积与高对应的底成正比的关系进行计算;利用已知△ABC的面积k计算与它同高的三角形的面积,然后把所求各个面积相加即可得出答案.【详解】如图所示:连接AE、CD∵BD=AB∴S△ABC=S△BCD=k则S△ACD=2 k∵AF=3AC∴FC=4AC∴S△FCD=4S△ACD=4×2k=8k同理求得:S△ACE=2S△ABC=2kS△FCE=4S△ACE=4×2k=8kS△DCE=2S△BCD=2×k=2k∴S△DEF=S△FCD+S△FCE+S△DCE=8k+8k+2k=18 k故选:C【点睛】本题主要考查三角形的面积与底的正比关系的知识点:当高相同时,三角形的面积与高对应的底成正比的关系,掌握这一知识点是解题的关键.二、填空题11.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.【答案】5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,在△ABC 中,∠BAC =50°,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,则∠DEF =______.【答案】25°【解析】试题分析:首先根据四边形的内角和我360°求出∠EDF=130°,则∠DEF+∠DFE=50°,根据题意得:∠EAD=∠FAD ,∠AED=∠AFD=90°,AD=AD ,则△ADE ≌△ADF ,∴DE=DF ,则说明△DEF 为等腰三角形,则∠DEF=∠DFE=25°.考点:三角形全等的判定和性质.13.计算:()0452019π--+- =__________【答案】-1【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=1−5+1=−3+1=−1.故答案为:-1【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.14.已知:如图,∠1=∠2=∠3=50°则∠4的度数是 __.【答案】130°【分析】:根据平行线的判定得出这两条直线平行,根据平行线的性质求出∠4=180°-∠3,求出∠4即可.【详解】解:由题意可知,∠1的对顶角为50°=∠3∴两直线平行,所以∠3的同位角与∠4是邻补角,∴∠4=180°-∠3=130°故答案为:130°【点睛】本题考查平行线的判定和性质,难度不大.15.将8.20682用四舍五入法精确到0.01为__________.【答案】8.1【分析】精确到哪位,就是对它后边的一位进行四舍五入,这里对千分位的6进行四舍五入,即可得出答案.【详解】8.20682用四舍五入法精确到0.01为8.1.故答案为:8.1.【点睛】本题考查了近似数和有效数字.精确到哪一位,即对下一位的数字进行四舍五入.16.如图AB ∥CD ,∠B =72°,EF 平分∠BEC ,EG ⊥EF ,则∠DEG =______°.【答案】1【解析】直接利用平行线的性质得出∠BEC =108°,再利用角平分线的定义得出答案.【详解】解:∵AB ∥CD ,∠B =72°,∴∠BEC =108°,∵EF 平分∠BEC ,∴∠BEF =∠CEF =54°,∵∠GEF =90°,∴∠GED =90°﹣∠FEC =1°.故答案为:1.【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出∠BEC 的度数是解题关键.17.将一次函数y=-2x-1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为______ .【答案】y=-1x+1【分析】注意平移时k 的值不变,只有b 发生变化.向上平移3个单位,b 加上3即可.【详解】解:原直线的k=-1,b=-1;向上平移3个单位长度得到了新直线,那么新直线的k=-1,b=-1+3=1.因此新直线的解析式为y=-1x+1.故答案为y=-1x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k 值不变.三、解答题18.如图,在平面直角坐标系中,(1,5)A -、(1,0)B -、(4,3)C -(1)描点画出这个三角形(2)计算出这个三角形的面积.【答案】(1)见详解;(2)152. 【分析】(1)在平面直角坐标系中找到相应的A,B,C 点,然后顺次连接A,B,C 即可画出这个三角形; (2)直接利用三角形的面积公式12S ah =即可得出答案. 【详解】(1)如图(2)111553222S AB h ==⨯⨯= 【点睛】 本题主要考查平面直角坐标系中描点画三角形及三角形的面积,掌握三角形的面积公式及点在平面直角坐标系中的位置是解题的关键.19.如图,小区有一块四边形空地ABCD ,其中AB AC ⊥.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A 作了垂直于BC 的小路AE .经测量,4AB CD m ==,9BC m =,7AD m =.(1)求这块空地ABCD 的面积;(2)求小路AE 的长.(答案可含根号)【答案】(1)(65)m 2;(2)4659【分析】(1)根据AB 和BC 算出AC 的长,再由AD 和CD 的长得出△ACD 是直角三角形,分别算出△ABC 和△ACD 的面积即可;(2)利用三角形面积的两种不同表示方法,即12×AB×AC=12×BC×AE 可得AE 的长. 【详解】解:(1)∵AB ⊥AC ,AB=4,BC=9,∴在△ABC 中, 22AC BC AB -2294-65∵CD=4,AD=7,22247=65+, 即:222=AD CD AC +,∴空地ABCD 的面积=S △ABC +S △ADC =12×AB×AC+12×AD×CD=(65)m 2; (2)在△ABC 中,S △ABC =12×AB×AC=12×BC×AE , 可得AB×AC= BC×AE ,即65解得465. 答:小路AE 465【点睛】本题考查了勾股定理及其逆定理,用勾股定理求出直角三角形第三边长,用逆定理判定三角形为直角三角形是解题的关键,同时会利用三角形面积算法求直角三角形斜边上的高.20.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a 、b 与斜边c 满足关系式222+=a b c .称为勾股定理.。

2020北京朝阳初二(上)期末数学含答案

2020北京朝阳初二(上)期末数学含答案

2020北京朝阳初二(上)期末数 学 2020.1一、 选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.若分式5-x x有意义,则实数x 的取值范围是 (A )x =0 (B )x =5 (C )x≠0 (D )x≠5 2.2019年被称为中国的5G 元年,如果运用5G 技术,下载一个2.4M 的短视频大约只需要0.000 048秒,将数字0.000 048用科学记数法表示应为(A )41048.0-⨯ (B )5108.4-⨯ (C )4108.4-⨯ (D )61048-⨯ 3.下列交通标志中,轴对称图形的个数为(A )4个 (B )3个 (C ) 2个 (D )1个 4.下列计算正确的是(A )523m m m m =⋅⋅ (B )734)(m m = (C ) 224)2(m m =- (D )00=m5.正五边形ABCDE 中,∠BEC 的度数为(A )18º (B )30º (C ) 36º (D )72º 6.△ABC 中,AB =3,AC =2,BC =a ,下列数轴中表示的a 的取值范围,正确的是(A ) (B )(C)(D)7.已知等边三角形ABC. 如图,1的长为半径作(1)分别以点A,B为圆心,大于AB2弧,两弧相交于M,N两点;(2)作直线MN交AB于点D;1的长为半径作(2)分别以点A,C为圆心,大于AC2弧,两弧相交于H,L两点;(3)作直线HL交AC于点E;(4)直线MN与直线HL相交于点O;(5)连接OA,OB,OC.根据以上作图过程及所作图形,下列结论:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120º,正确的是(A)①②③④(B)①③④(C)①②③(D)③④8.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为(A)m≥4 (B)m≤6 (C)4<m<6 (D)4≤m≤6二、填空题(本题共18分,第9-14题,每小题2分,第15-16题,每小题3分)9.如图,图中以BC为边的三角形的个数为.(第9题) (第11题)10.5=x a ,3=y a ,则=-y x a .11.如图,利用图①和图②的阴影面积相等,写出一个正确的等式 . 12.分解因式:3632++x x = .13.若a =2019,b =2020,则[]222)()2(b b a a b a a ÷--- 的值为 . 14.如图,AB=AC ,BD ⊥AC ,∠CBD=α ,则∠A= (用含α的式子表示).(第14题) (第15题)15.如图,D 是△ABC 内部的一点,AD =CD ,∠BAD=∠BCD ,下列结论中,①∠DAC=∠DCA ;②AB=AC ;③BD ⊥AC ;④BD 平分∠ABC. 所有正确结论的序号是 . 16.如图,∠ABC=60º,AB=3,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,设点P 的运动时间为t 秒,当△ABP 是钝角三角形时,t 满足的条件是 .(第16题)三、解答题(本题共66分,第17题4分,第18-19题,每小题5分,第20-24题,每小题6分,第25-26题,每小题7分,第27题8分)解答应写出文字说明、演算步骤或证明过程.17.依据右侧流程图计算221m m n m n--+需要经历的路径是 (只填写序号),输出的运算结果是 .18.计算:)4()2)(2(n m m n m n m +--+++.19.解方程 122121+=+-x x x .20. 如图,点B ,F ,C ,E 在一条直线上BF=CE ,AC=DF .(1)在下列条件 ①∠B=∠E ;②∠ACB=∠DFE ;③AB=DE ;④AC ∥DF 中,只添加一个条件就可以证得△ABC ≌△DEF ,则所有正确条件的序号是 .(2)根据已知及(1)中添加的一个条件证明∠A=∠D .21.如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在网格线的交点上,点B 关于y 轴的对称点的坐标为(2,0),点C 关于x 轴的对称点的坐标为(―1,―2).(1)根据上述条件,在网格中建立平面直角坐标系xO y ; (2)画出△ABC 分别关于y 轴的对称图形△A 1B 1C 1; (3)写出点A 关于x 轴的对称点的坐标.22.证明:如果两个三角形有两个角及它们的夹边的高分别相等,那么这两个三角形全等.23. 阅读下面材料:数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点E 在AC 上,BE 交AD 于点F ,AE=EF .求证:AC=BF . 经过讨论,同学们得到以下两种思路:完成下面问题:(1) ① 思路一的辅助线的作法是: ;② 思路一的辅助线的作法是: .(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).24.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).思路一 如图①,添加辅助线后依据SAS 可证得△ADC ≌△GDB ,再利用 AE=EF 可以进一步证得∠G=∠FAE =∠AFE =∠BFG ,从而证明结论.图①思路二 如图②,添加辅助线后并利 用AE=EF 可证得∠G=∠BFG= ∠AFE =∠FAE ,再依据AAS 可以进 一步证得△ADC ≌△GDB ,从而证明 结论.图②25.如图,△ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.26.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45º,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.27.在平面直角坐标系xO y中,点A(t―1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m 上存在点P,△ABD上存在点K,满足PK= ,直接写出的取值范围.2020北京朝阳初二(上)期末数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共18分,第9-14题,每小题2分,第15-16题,每小题3分) 9. 4 10.35 11. 答案不惟一. 如:2(2)(2)4a a a +-=- 12. 2)1(3+x 13. 2019- 14. 2α 15. ①③④ 16. 230<<t 或6>t 三、解答题(本题共66分,第17题4分,第18-19题,每小题5分,第20-24题,每小题6分,第25-26题,每小题7分,第27题8分)17.解:②④ …………………………………………………………………………………………..2分n m -1…………………………………………………………………………………………..4分18.解:)4()2)(2(n m m n m n m +--+++mn m n m 44)(22---+= ……………………………………………………………………..2分mn m n mn m 442222---++= …………………………………………………………..4分22 4.n mn =-- ………………………………………………………………………………..5分19.122121+=+-x xx . 解:方程两边乘 )12)(2(+-x x ,得(21)(2)(21)2(2)x x x x x ++-+=-…………………………………………………1分解得 .31=x …………………………………………………………3分 检验:当13x =时,(2)(21)0.x x -+≠………………………………………………………4分 所以,原分式方程的解为1.3x =……………………………………………………………5分 20. (1)②③④ …………………………………………………………………………………………3分(2)答案不惟一. 如添加条件②∠ACB =∠DFE . 证明:∵BF=EC ,∴BF+CF=EC+CF .∴BC=EF .……………………………………………………………………………………4分 ∵AC=DF ,∠ACB=∠DFE ,∴△A B C ≌△D E F . ………………………………………………………………………5分 ∴∠A=∠D . …………………………………………………………………………………6分21. 解:(1)建立平面直角坐标系xOy . ………………………………………………………2分(2)画出△A 111. ……………………………………………………………………………4分(3)(-4,-4). …………………………………………………………………………………6分22. 已知:如图,在△ABC 和△'''C B A 中,'B B ∠=∠, 'C C ∠=∠,AD ,''D A 分别是BC ,''C B 边上的高,''D A AD =. …………………………………………………………………1分求证:△ABC ≌△'''C B A . ……………………………………………………………………2分……………………3分证明:∵AD ⊥BC ,''D A ⊥''C B ,∴∠ADB =∠'''B D A =90°. ∵'B B ∠=∠,''D A AD =, ∴△ABD ≌△'''D B A . ∴''B A AB =. ∵'C C ∠=∠,∴△ABC ≌△'''C B A . ………………………………………………………………6分23. 解:(1)①延长AD 至点G ,使DG =AD ,连接BG . ……………………………………2分 ②作BG =BF 交AD 的延长线于点G . ……………………………………………………………3分(2)答案不惟一. ……………………………………………………………………………………5分补图. …………………………………………………………………………………………6分 24. 解:设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件.………………………………………1分. …………………………………………………3分解得 84x =. ………………………………………………………………4分 经检验,84x =是原方程的解. ………………………………………………………5分 ∵∴每天只需要安排6名工人就可以完成分拣工作. ………………………………6分25. 结论:C E =2A D . ………………………………………………………………………1分 证明:延长AD 至点N 使DN =AD ,AN 交CE 于点M ,连接CN. …………………………2分∵∠DAB =∠AEC ,∴MA =ME . ………………………………………3分 ∵AB =AC ,AD ⊥BC ,∴∠CAD =∠DAB ,BD =CD ,∠1=∠2=90°. ∴△ABD ≌△NCD . ………………………………4分 ∴∠N =∠DAB . ∴CN ∥AE .∴∠3=∠AEC .∴∠3=∠N .∴MC =MN . …………………………………………………………………………6分∴CE =MC +ME=MN +MA=AN=2AD . ……………………………………………………………………………7分26.(1)补全图形,如图…………………………………………2分(2)①如图,连接BD ,P 为BD 与AE 的交点.…………………………………………………4分②证明:连接DE ,DF.∵△ABC ,△ADC 是等边三角形,∴AC =AD ,∠ACB =∠CAD =60°.∵AE ⊥CD , ∴∠CAE =21∠CAD =30°. ∴∠CEA =∠ACB -∠CAE =30°.∴∠CAE =∠CEA.∴CA =CE .∴CD 垂直平分AE .∴DA =DE .∵EF ⊥AF ,∠EAF =45°,∴∠FEA=45°.∴∠FEA=∠EAF.∴FA=FE.∴△FAD≌△FED.∴∠AFD=∠EFD.点D到AF,EF的距离相等. ………………………………………………………7分27.解:(1)①(3,1);……………………………………………………………………1分②1;………………………………………………………………………………………………2分③t≥2或t≤-2.…………………………………………………………………………………4分(2)当点D在A B上方时,0≤b≤3;…………………………………………………………6分当点D在AB下方时,-1≤b≤2. ……………………………………………………8分。

2020-2021年秋季八年级上学期期末考试数学试题(含答案) (12)

2020-2021年秋季八年级上学期期末考试数学试题(含答案)  (12)

2020-2021年秋季八年级上学期期末考试数学试题数学试题一、选择题(本大题共10小题,共30分)1.下列运算正确的是()A. a2+a2=a4B. (-b2)3=-b6C. 2x•2x2=2x3D. (m-n)2=m2-n22.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A. 1B. -1C. 2D. -23.如图,在△ABC中,∠C = 90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA = 2 :1,则∠A为()A. 20°B. 25°C. 22.5°D. 30°4.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BACB. AE=BEC.AE=ECD. ∠EBC=∠ABE5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A. 4B. 16C.D. 4或6.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高A. 8AD为()B. 9C. D. 107.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°8.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A. 200元B. 250元C. 300元D. 3509.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A. 0.1B. 0.2C. 0.3D. 0.410.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A. 12B. 10C. 8D. 6二、填空题(本大题共5小题,共15分)11.计算:|-2|-=______.12.如图,以数轴的单位长度线段为边长作一个正方形,以表示数2 的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_____________.13.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.14.实数,-2,π,,中,其中无理数出现的频数是______.15.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.三、解答题(本大题共9小题,共75分)16.(8分)已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.17.(8分)计算(1)(3x-2)(2x+3)-(x-1)2(2).18.(9分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF的长.19.(9分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积20.(9分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有1200名学生,请你估计该校约有______名学生最喜爱足球活动.21.(10分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.(10分)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?23.(12分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.参考答案1.B2.B3.C4.A5.D6.C7.D8.C9.A 10.B11.0 12.2-13.5 14.2 15.1016.解:由题意得:,………………………………………….2分∴a=5,b=2.……………………………………………………………………….4分∵9<13<16,∴3<<4.∴c=3.………………………………………………………………………………5分∴a+2b-c=6.…………………………………………………………………………7分∴a+2b-c的平方根是±.………………………………………………………….8分17.解:(1)(3x-2)(2x+3)-(x-1)2=6x2+9x-4x-6-x2+2x-1………………………………………………………………..2分=5x2+7x-7;…………………………………………………………………………4分(2)原式=x2-4y2-2xy+4y2+2xy……………………………………………………………6分=x2.………………………………………………………………………8分18.解:(1)AD⊥BD,∠BAD=45°,∴AD=BD,…………………………………………………1分∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,…………………………………………..2分在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),………………………………..4分∴BF=AC;……………………………………………….5分(2)连接CF,…………………………………………………………6分∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.……………………………………………..7分∵CD=1,CF=∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,………………………………………………………………8分∴AF=.………………………………………………………………9分19解:(1)连接AC,…………………………………………………1分∵∠B=90°,∴AC2=BA2+BC2=400+225=625,………………………2分∵DA2+CD2=242+72=625,…………………………………3分∴AC2=DA2+DC2,…………………………………………4分∴△ADC是直角三角形,即∠D是直角;…………………5分(2)∵S四边形ABCD=S△ABC+S△ADC,………………………………6分∴…………………….7分…………………………………………….8分=234.……………………………………………………………………9分20.(1)150 ;…………………………………………………………2分(2)“足球“的人数=150×20%=30人,……………………………..4分补全上面的条形统计图如图所示;…………5分(3)36°;…………………………………………………………………………7分(4)240…………………………………………………………………………….9分21.解:(1)根据题意得△ABE是直角三角形……………………1分AB2=BE2+AE2…………………………………………………………………………………2分∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.……………….4分答:此时梯子顶端离地面24米;……………………………5分(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24-4)=20米,……………….7分∴BD+BE=DE===15,………………………………………………8分∴DE=15-7=8(米),即下端滑行了8米.……………………………………………….9分答:梯子底端将向左滑动了8米.………………………………………………………..10分22.解:超速.…………………………………………………………………………….1分理由如下:在Rt△ABC中,AC=60m,AB=100m,……………………………………………………3分由勾股定理可得BC===80m,……………………………………6分∴汽车速度为80÷4=20m/s=72km/h,……………………………………………………….8分∵72>60,……………………………………………………………………………………..9分∴这辆小汽车超速了.………………………………………………………………………10分23.(1)解:(1)BQ=2×2=4cm,……………………………………………………….1分BP=AB-AP=8-2×1=6cm,…………………………………………………………………..2分∵∠B=90°,=2(cm);………………………………………………4分(2)解:根据题意得:BQ=BP,…………………………………………………………5分即2t=8-t,……………………………………………………………………………………6分解得:;…………………………………………………………………………………7分即出发时间为秒时,△PQB是等腰三角形;………………………………………………8分(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5∴BC+CQ=11,∴t=11÷2=5.5秒.…………………………………………9分②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.………………………………………10分③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则(cm)∴(cm),∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.……………………………………………..11分由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.…………….12分。

浙教版2020-2021学年八年级上册数学期末复习试题3(含答案)

浙教版2020-2021学年八年级上册数学期末复习试题3(含答案)

2020-2021学年浙教新版八年级上册数学期末复习试题一.选择题1.在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是()A.(﹣2,﹣1)B.(﹣5,﹣4)C.(1,﹣4)D.(﹣2,﹣7)2.直线y=﹣2x+6与两坐标轴围成的三角形的面积是()A.8B.6C.9D.23.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.4.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480B.90×3+2x≤480C.90×3+2x<480D.90×3+2x>4805.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°6.点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()A.5B.3C.﹣3D.﹣17.若不等式组的解集为x<﹣a,则下列各式中正确的是()A.a+b≤0B.a+b≥0C.a﹣b<0D.a﹣b>08.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换,你认为在滑动对称变换过程中,对应点不在变换直线上的两个对应三角形的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定跑260米时,快者比慢者少用多少秒()A.6秒B.6.5秒C.7秒D.7.5秒10.下列命题中是真命题的有()①面积相等的两个三角形全等;②平方根是它本身的数有1和0;③10的平方根是;④在数轴上可以找到表示的点;⑤已知直角三角形中两边长为3和4,则第三边长为5;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy.A.1个B.2个C.3个D.4个二.填空题11.请写出适合不等式x<﹣1的一个整数解.12.将点A(2,1)变换到点B(2,﹣1),写出一种轴对称或平移方法:.13.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠C=40°,则∠CDO+∠CFO的度数为.14.已知一次函数y=kx﹣3的图象与x轴的交点坐标为(x0,0),且2≤x0≤3,则k的取值范围是.15.如图,在△ABC中,AB=AC,∠A=50°,EF垂直平分AB,则∠FBC的度数为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.三.解答题17.已知不等式组的解集为﹣1<x<1,求(a+1)(b﹣1)的值.18.已知∠O及其两边上点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边距离相等,且到点A,B的距离也相等,并保证其距离最短.(不写作法,保留作图痕迹)19.如图,每个小正方形的边长为1,△ABC经过平移得到△A′B′C′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)△ABC的面积为.20.若直线y1=k1x+b1(k1≠0),y2=k2x+b2(k2≠0),则称直线y=(k1+k2)x+b1b2为这两条直线的友好直线.(1)直线y=3x+2与y=﹣4x+3的友好直线为.(2)已知直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,且直线l经过第一、三、四象限.①求m的取值范围;②若直线l经过点(3,12),求m的值.21.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连结CD,AD.若△ABD为“方倍三角形”,且AP=,求△PDC的面积.22.已知一次函数y1=2x+m(m为常数)和y2=﹣x+1.(1)当m=2时,若y1>y2,求x的取值范围;(2)当x1>1时,y1>y2;当x1<1时,y1<y2,则m的值是.(3)判断函数y=y1•y2的图象与x轴的交点个数情况,并说明理由.23.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.参考答案与试题解析一.选择题1.解:将点(﹣2,﹣4)向下平移3个单位长度,所得到的点的坐标是(﹣2,﹣7),故选:D.2.解:在直线y=﹣2x+6中,当x=0时,y=6;当y=0时,x=3;∴直线y=﹣2x+6与坐标轴交于(0,6),(3,0)两点,∴直线y=﹣2x+6与两坐标轴围成的三角形面积=×6×3=9.故选:C.3.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.4.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x≥480,故选:A.5.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.6.解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a﹣b=﹣2.∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3故选:C.7.解:∵不等式组的解集为x<﹣a,∴﹣a≤b,∴a+b≥0.故选:B.8.解:两个对应三角形的对应点所具有的性质是对应点连线被对称轴平分.故选:B.9.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),快者跑260米所用的时间为(m/s),慢者跑260米所用的时间为(m/s),∴快者比慢者少用的时间为(秒).故选:D.10.解:①面积相等的两个三角形全等,是假命题;②平方根是它本身的数有1和0,是假命题;③10的平方根是,是真命题;④在数轴上可以找到表示的点,是真命题;⑤已知直角三角形中两边长为3和4,则第三边长为5,是假命题;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy,是真命题.真命题共3个,故选:C.二.填空题11.解:适合不等式x<﹣1的一个整数解为﹣2(答案不唯一),故答案为:﹣2.12.解:将点A(2,1)向下平移2个单位得到点B(2,﹣1),点A关于x轴的对称点为B(2,﹣1),故答案为向下平移2个单位或关于x轴对称13.解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B,∵∠A+∠B+∠C=180°,∴∠A+B=180°﹣∠C,∵∠DOF=∠C+∠CDO+∠CFO=180°﹣∠C,∴∠CDO+∠CFO+40°=180°﹣40°,∴∠CDO+∠CFO=100°,故答案为:100°.14.解:将(2,0)代入y=kx﹣3得:0=2k﹣3,∴k=.将(3,0)代入y=kx﹣3得:0=3k﹣3∴k=1.∵一次函数y=kx﹣3过定点(0,﹣3),函数图象与x轴的交点坐标为(x0,0),且2≤x0≤3,∴1≤k≤.故答案为:1≤k≤.15.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵EF垂直平分AB,∴AF=BF,∴∠ABF=∠A=50°.∴∠FBC=∠ABC﹣∠ABF=65°﹣50°=15°.故答案为:15°.16.解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).三.解答题17.解:由2x﹣a<1得:x<由x﹣2b>3得:x>3+2b∴不等式组的解集为:3+2b<x<又∵﹣1<x<1∴∴,∴(a+1)(b﹣1)=(1+1)(﹣2﹣1)=﹣6.18.解:如图,点P即为所求.19.解:(1)如图,△A′B′C′即为所求.(2)如图线段CD即为所求.(3)如图,线段AE即为所求.=×4×4=8.(4)S△ABC故答案为8.20.解:(1)直线y=3x+2与y=﹣4x+3的友好直线为:y=(3﹣4)x+2×3=﹣x+6,故答案为:y=﹣x+6;(2)①∵直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,∴直线l的解析式为:y=(﹣2+3m)x﹣6m,∵直线l经过第一、三、四象限,∴,解得;②∵直线l经过点(3,12),∴3(﹣2+3m)﹣6m=12,∴m=6.21.解:(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;故选A.故答案为:A;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得,则Rt△ABC的面积为:;故答案为:;(3)由题意可知:△ABP≌△DBP,∴BA=BD,∠ABP=∠DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,∠BAD=60°,∴∠ABP=∠DBP=30°,∴∠PBC=90°,∵∠CPB=45°,∴∠APB=180°﹣45°=135°,∴∠DPC=90°,∵∠ABC=120°,∠ACB=45°,∴∠BAC=15°,∴∠CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=,∴AD=2,延长BP交AD于点E,如图,∵∠ABP=∠PBD,∴BE⊥AD,PE=AD=AE=1,∴BE===,∴PB=BE﹣PE=﹣1,∵∠CPB=∠PCB=45°,∴△PBC为等腰直角三角形,∴PC=PB=﹣,=PC•PD=(﹣)×=﹣1.∴S△PDC22.解:(1)当m=2时,y1=2x+2,∵y1>y2,y2=﹣x+1,∴2x+2>﹣x+1,解得x>﹣;(2)如果y1>y2,那么2x+m>﹣x+1,解得x>,如果y1<y2,那么2x+m<﹣x+1,解得x<,∵当x1>1时,y1>y2;当x1<1时,y1<y2,∴=1,解得m=﹣2.故答案为:﹣2;(3)y=y1•y2=(2x+m)(﹣x+1),令y=0,则(2x+m)(﹣x+1)=0,解得x1=﹣,x2=1,当﹣=1,即m=﹣2时,该方程有两个相等的实数根,则函数图象与x轴只有一个交点;当﹣≠1,即m≠﹣2时,该方程有两个不相等的实数根,则函数图象与x轴有两个交点.23.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.。

2020年天津市初二数学上期末试题及答案

2020年天津市初二数学上期末试题及答案

2020年天津市初二数学上期末试题及答案一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 2.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50° 3.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 4.计算:(4x 3﹣2x )÷(﹣2x )的结果是( ) A .2x 2﹣1 B .﹣2x 2﹣1 C .﹣2x 2+1 D .﹣2x 25.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

A .9B .7C .5D .3 6.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 7.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°8.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形9.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .6 10.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°11.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 2 12.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠4二、填空题13.如果24x kx ++是一个完全平方式,那么k 的值是__________.14.已知:如图△ABC 中,∠B =50°,∠C =90°,在射线BA 上找一点D ,使△ACD 为等腰三角形,则∠ACD 的度数为_____.15.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.16.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.17.已知等腰三角形的两边长分别为4和6,则它的周长等于_______18.因式分解:3x3﹣12x=_____.19.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;20.正六边形的每个内角等于______________°.三、解答题21.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE =18°,求∠C的度数.22.如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)试说明AE=CD;(2)若AC=10cm,求BD的长.23.如图,ABO与CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.24.如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,BEF ∠的平分线交CD 于点G ,若72EFG ∠=,求EGF ∠的度数.25.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE ,根据等腰三角形的性质得到AF=EF ,求得AD=ED ,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.3.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.4.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.5.A解析:A【解析】【分析】根据题意画出图形,分别以OA、OB、AB为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.【详解】如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解. 6.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.7.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.8.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.9.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DF=DE=2,∴1•124242BCDS BC DF=⨯=⨯⨯=;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.10.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD,易证ABD、CBD都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD∠的度数.【详解】ABC是等边三角形,BCAC AB∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒ 00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 11.B解析:B【解析】图(4)中,∵S 正方形=a 2-2b (a-b )-b 2=a 2-2ab+b 2=(a-b )2,∴(a-b )2=a 2-2ab+b 2.故选B12.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.二、填空题13.±4【解析】【分析】这里首末两项是x 和2的平方那么中间项为加上或减去x 和2的乘积的2倍也就是kx 由此对应求得k 的数值即可【详解】∵是一个多项式的完全平方∴kx=±2×2⋅x ∴k=±4故答案为:±4【解析:±4.【解析】【分析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可.【详解】∵24x kx ++是一个多项式的完全平方,∴kx=±2×2⋅x , ∴k=±4.故答案为:±4.【点睛】此题考查完全平方式,解题关键在于掌握计算公式.14.70°或40°或20°【解析】【分析】分三种情况:①当AC=AD时②当CD′=AD ′时③当AC=AD″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B=50°∠C=90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC=AD时,②当CD′=AD′时,③当AC=AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B=50°,∠C=90°,∴∠BAC=90°-50°=40°,如图,有三种情况:①当AC=AD时,∠ACD=1180402=70°;②当CD′=AD′时,∠ACD′=∠BAC=40°;③当AC=AD″时,∠ACD″=12∠BAC=20°,故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.16.40°【解析】试题分析:延长DE 交BC 于F 点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.17.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.18.3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x 然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x (x2﹣4)=3x (x+2)(x ﹣2)故答案为3x (x+2)(x ﹣2)【点睛】本题考查解析:3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.20.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.三、解答题21.∠C=78°.【解析】【分析】由AD是BC边上的高,∠B=42°,可得∠BAD=48°,在由∠DAE=18°,可得∠BAE=∠BAD-∠DAE=30°,然后根据AE是∠BAC的平分线,可得∠BAC=2∠BAE=60°,最后根据三角形内角和定理即可推出∠C的度数.【详解】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD-∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°-∠B-∠BAC=78°.考点:1.三角形内角和定理;2.三角形的角平分线、3.中线和高.22.(1)见解析;(2)5cm【解析】【详解】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,∴Rt△CDB≌Rt△AEC(HL)∴BD=EC=12BC=12AC,且AC=10cm.∴BD=5cm.【点睛】熟悉证明三角形全等的条件,并且能够灵活运用,具有多方面看问题的数学思维. 23.详见解析【解析】【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出△DOF≌△BOE即可.【详解】证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.∵在△DOF和△BOE中,OB ODDOF BOEOF OE=⎧⎪∠=∠⎨⎪=⎩,∴△DOF≌△BOE(SAS).∴FD=BE.24.54【解析】【分析】利用平行线的性质和角平分线的定义进行求解即可.【详解】解:∵AB//CD,∠EFG=72° (已知) ,∴∠BEF=180°-∠EFG=108°(两直线平行,同旁内角互补) ,∵EG平分∠BEF,∴∠BEG=12∠BEF=54° (角平分线定义) ,∵AB//CD,∴∠EGF=∠BEG=54°(两直线平行,内错角相等).【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.25.(1)小张跑步的平均速度为210米/分钟.(2)小张不能在演唱会开始前赶到奥体中心.【解析】试题分析:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.试题解析:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:252025201.5x x- =4,解得:x=210,经检验,x=210是原方程组的解,答:小张跑步的平均速度为210米/分钟;(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.。

辽宁省鞍山市2020-2021学年八年级(上)期末数学试卷 解析版

辽宁省鞍山市2020-2021学年八年级(上)期末数学试卷  解析版

2020-2021学年辽宁省鞍山市八年级(上)期末数学试卷一、选择题:(每题2分,共20分)1.2﹣3的值是()A.﹣6B.﹣8C.D.﹣2.下面各图形中,对称轴最多的是()A.长方形B.正方形C.等边三角形D.等腰三角形3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6 5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 6.下列各分式中,最简分式是()A.B.C.D.7.下列因式分解正确的是()A.﹣3x2n﹣6x n=﹣3x n(x2+2)B.x2+x+1=(x+1)2C.2x2﹣=2(x+)(x﹣)D.4x2﹣16=(2x+4)(2x﹣4)8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 10.在平面直角坐标系中,点A,B的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C,使△ABC是等腰直角三角形,则下列C点坐标不符合题意的是()A.(﹣8,﹣3)B.(﹣5,﹣8)C.(2,3)D.(5,﹣3)二、填空题:(每题2分,共16分)11.(﹣)2020•(1.5)2021=.12.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是.13.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=.14.若一个多边形外角和与内角和相等,则这个多边形是边形.15.已知x+y=6,xy=7,则x2y+xy2的值是.16.甲、乙两个港口之间的海上行程为skm,一艘轮船以akm/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.17.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使P A+PB最短,则点P应选点(C或D).18.如图,在△ABC中,若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,过点C作CE⊥AP,则∠ACB的度数是.三、解答题:(本题共44分)19.计算:(1)4xy2z÷(﹣2x﹣2yz﹣1)2;(2)(m+2+)•.20.先化简,再求值:(a2b﹣2ab﹣b2)÷b﹣(a+b)(a﹣b),其中a=0.5,b=﹣1.21.如图,在等腰直角三角形ABC中,∠ACB=90°,点M是边AB上任意一点,连接CM,过点A,B分别作AE⊥CM,BF⊥CM,垂足分别为E,F,若BF=2.6cm,AE=0.9cm,分别求出CF,EF的长.22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.23.观察下列各式:12+32+42=2×(12+32+3)22+32+52=2×(22+32+6)32+62+92=2×(32+62+18)…(1)请用a,b,c表示左边由小到大的三个底数,并写出它们之间的关系;(2)请用字母a,b写出上述等式的规律,并加以证明.四、综合题:(本题共20分)24.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?25.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系2020-2021学年辽宁省鞍山市八年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.2﹣3的值是()A.﹣6B.﹣8C.D.﹣【分析】直接利用负整数指数幂的性质分析得出答案.【解答】解:2﹣3==.故选:C.2.下面各图形中,对称轴最多的是()A.长方形B.正方形C.等边三角形D.等腰三角形【分析】利用轴对称图形的性质分别判断各选项的对称轴条数,进而得出答案.【解答】解:∵长方形有两条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,∴对称轴最多的是:正方形.故选:B.3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.4.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6【分析】根据幂的乘方和积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵a3•a4=a7,∴选项A不符合题意;∵(m3)2=m6,∴选项B不符合题意;∵x3+x3=2x3,∴选项C不符合题意;∵(﹣a2)3=﹣a6,∴选项D符合题意.故选:D.5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.6.下列各分式中,最简分式是()A.B.C.D.【分析】利用最简分式定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==x+y,不符合题意;C、原式==,不符合题意;D、原式==,不符合题意.故选:A.7.下列因式分解正确的是()A.﹣3x2n﹣6x n=﹣3x n(x2+2)B.x2+x+1=(x+1)2C.2x2﹣=2(x+)(x﹣)D.4x2﹣16=(2x+4)(2x﹣4)【分析】运用提取公因式法,完全平方公式和平方差公式进行因式分解,并作出正确的判断.【解答】解:A、﹣3x2n﹣6x n=﹣3x n(x n+2),故本选项计算错误.B、x2+x+1≠(x+1)2,故本选项计算错误.C、2x2﹣=2(x+)(x﹣),故本选项计算正确.D、4x2﹣16=4(x+2)(x﹣2),故本选项计算错误.故选:C.8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 【分析】根据全等三角形的判定和性质解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF ⊥AB,垂足为点F,∴DC=DF,故A正确,在Rt△DCE与Rt△DFB中,,∴Rt△DCE≌Rt△DFB(HL),∴CE=BF,故B错误,在Rt△ADC与Rt△ADF中,,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF,故C正确,∴AB=AF+BF=AC+CE,故D正确,故选:B.10.在平面直角坐标系中,点A,B的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C,使△ABC是等腰直角三角形,则下列C点坐标不符合题意的是()A.(﹣8,﹣3)B.(﹣5,﹣8)C.(2,3)D.(5,﹣3)【分析】根据由全等三角形的判定和性质可求点C坐标.【解答】解:∵A(﹣3,0),B(0,﹣5),∴OA=3,OB=5,∵△ABC是等腰直角三角形,∴点C的坐标为(﹣8,﹣3),(﹣5,﹣8),(2,3),(5,﹣2),故选:D.二.填空题11.(﹣)2020•(1.5)2021=.【分析】积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.【解答】解:(﹣)2020•(1.5)2021=(﹣)2020•(1.5)2020×=(﹣)2020•()2020×====.故答案为:.12.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是3<c<7.【分析】根据三角形三边关系定理可得5﹣2<c<5+2,进而求解即可.【解答】解:由题意,得5﹣2<c<5+2,即3<c<7.故答案为:3<c<7.13.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=50°.【分析】根据角平分线的定义和三角形内角和解答即可.【解答】解:∵CD平分∠ACB,∠BCD=31°,∴∠ACB=2∠BCD=62°,∵∠A=68°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣62°﹣68°=50°,故答案为:50°.14.若一个多边形外角和与内角和相等,则这个多边形是四边形.【分析】利用多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=360°,解得n=4.故答案为:四.15.已知x+y=6,xy=7,则x2y+xy2的值是42.【分析】将所求式子因式分解,然后将x+y=6,xy=7代入,即可解答本题.【解答】解:∵x+y=6,xy=7,∴x2y+xy2=xy(x+y)=7×6=42,故答案为:42.16.甲、乙两个港口之间的海上行程为skm,一艘轮船以akm/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.【分析】用航行的路程除以逆水航行的速度即可得到时间.【解答】解:∵甲港顺水以akm/h的航速航行到乙港,已知水流的速度为xkm/h,∴逆水航行的速度为(a﹣2x)km/h,∴返回时的时间为:h.故答案是:.17.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使P A+PB最短,则点P应选C点(C或D).【分析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.【解答】解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a 的交点,即为点P,此时P A+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.18.如图,在△ABC中,若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,过点C作CE⊥AP,则∠ACB的度数是75°.【分析】根据直角三角形的性质和三角形的内角和解答即可.【解答】解:连接BE,在Rt△CEP中,∠PCE=90°﹣∠APC=90°﹣60°=30°,∴PE=PC,∵PC=2PB,∴PE=PB,∴∠PBE=∠PEB,∵∠PBE+∠PEB=∠APC=60°,∴∠PBE=∠PEB=30°,∵∠ABE=∠ABC﹣∠PBE,∠ABC=45°,∴∠ABE=45°﹣30°=15°,∴∠ABE=∠BAE,∴EB=EA,∵∠EBP=30°,∠PCE=30°,∴∠EBP=∠PCE,∴EB=EC,∴EA=EC,∴∠EAC=∠ECA,∵CE⊥AP,∴∠AEC=90°,∴∠EAC+∠ECA=90°,∴∠ECA=45°,∴∠ACB=∠ECA+∠PCE=45°+30°=75°,故答案为:75°.三.解答题19.计算:(1)4xy2z÷(﹣2x﹣2yz﹣1)2;(2)(m+2+)•.【分析】(1)先进行乘方运算,然后进行同底数幂的除法运算;(2)先把括号内通分,再把分子分母因式分解,然后约分即可.【解答】解:(1)原式=4xy2z÷(4x﹣4y2z﹣2)=x5z3;(2)原式=•=﹣•=﹣2(m+3)=﹣2m﹣6.20.先化简,再求值:(a2b﹣2ab﹣b2)÷b﹣(a+b)(a﹣b),其中a=0.5,b=﹣1.【分析】直接利用整式的混合运算法则化简,进而把a,b的值代入得出答案.【解答】解:原式=a2﹣2a﹣b﹣(a2﹣b2)=a2﹣2a﹣b﹣a2+b2=﹣2a﹣b+b2,当a=0.5,b=﹣1时,原式=﹣2×0.5﹣(﹣1)+(﹣1)2=﹣1+1+1=1.21.如图,在等腰直角三角形ABC中,∠ACB=90°,点M是边AB上任意一点,连接CM,过点A,B分别作AE⊥CM,BF⊥CM,垂足分别为E,F,若BF=2.6cm,AE=0.9cm,分别求出CF,EF的长.【分析】由AE⊥CM.BF⊥CM,推出∠AEC=∠BFC=∠ACB=90°,推出∠CAE+∠ACE=90°,∠ACE+∠BCF=90°,可得∠CAE=∠BCF,根据AAS即可证△ACE≌△CBF,可得AE=CF=0.9cm,BF=CE=2.6cm,即可求解.【解答】证明:∵AE⊥CM.BF⊥CM,∴∠AEC=∠BFC=∠ACB=90°,∴∠CAE+∠ACE=90°,∠ACE+∠BCF=90°,∴∠CAE=∠BCF,在△ACE和△CBF中,,∴△ACE≌△CBF(AAS),∴AE=CF=0.9(cm),BF=CE=2.6(cm),∴EF=CE﹣CF=1.7(cm).22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.【分析】(1)根据对称性即可画出一个格点△MB1C1,使它与△ABC全等且A与M是对应点;(2)根据对称性即可以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.【解答】解:(1)如图,△MB1C1即为所求;(2)如图,△A2B2C2即为所求.23.观察下列各式:12+32+42=2×(12+32+3)22+32+52=2×(22+32+6)32+62+92=2×(32+62+18)…(1)请用a,b,c表示左边由小到大的三个底数,并写出它们之间的关系;(2)请用字母a,b写出上述等式的规律,并加以证明.【分析】(1)根据题目中的等式,可以写出用a,b,c表示左边由小到大的三个底数对应的等式,然后即可写出它们之间的关系;(2)根据(1)中结果,可以用a、b表示出相应的等式,然后证明即可.【解答】解:(1)∵12+32+42=2×(12+32+3),22+32+52=2×(22+32+6),32+62+92=2×(32+62+18),…,∴用a,b,c表示左边由小到大的三个底数,这个式子是a2+b2+c2=2×(a2+b2+ab),它们之间的关系是c=a+b;(2)a2+b2+(a+b)2=2(a2+b2+ab),证明:∵a2+b2+(a+b)2=a2+b2+a2+2ab+b2=2a2+2b2+2ab=2(a2+b2+ab),∴a2+b2+(a+b)2=2(a2+b2+ab)成立.24.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?【分析】(1)设大车速度为x千米/时,则小车速度为1.4x千米/时,根据“小车比大车早一个小时到达”列出方程并解答.(2)设原速度为a千米/时,小车后来提速到原来得m倍,根据两车行驶时间相等列出方程并解答.【解答】解:(1)设大车速度为x千米/时,由题意,得,解得x=40,经检验x=40是方程的解,∴1.4x=56(千米/时).∴大车得速度是40千米/时,小车得速度是56千米/时;(2)设原速度为a千米/时,小车后来提速到原来得m倍,则,解得m=2.5,且符合题意.答:应提速到原来的2.5倍.25.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是BE=CD;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系【分析】(1)①证△ABE≌△ADC(SAS),即可得出结论;(2)连接AN,由①得:△ABE≌△ADC(SAS),则BE=CD,∠ABE=∠ADC,再证△ADN≌△ABM(SAS),得AN=AM,∠DAN=∠BAM,然后证∠MAN=∠BAD=60°,得△AMN为等边三角形,即可得出∠AMN=60°;(3)过A作AM⊥CD于M,AN⊥BE于N,同(2)得:△ABE≌△ADC(SAS),△ADM ≌△ABN(SAS),则∠AEB=∠ACD,AM=AN,证出P A平分∠DPE,得∠APE=∠DPE,再证∠EPC=∠CAE=α,得∠DPE=180°﹣α,则∠APE=90°﹣α,即可得出结论.【解答】解:(1)①BE=CD,理由如下:∵△ABD和△ACE是等边三角形,∴AB=AD,∠BAD=∠CAE=60°,AC=AE,∴∠CAE+∠BAC=∠BAD+∠BAC,即∠BAE=∠DAC,∴△ABE≌△ADC(SAS),∴BE=CD,故答案为:BE=CD;(2)连接AN,如图①所示:由①得:△ABE≌△ADC(SAS),∴BE=CD,∠ABE=∠ADC,∵点M,N分别是BE和CD的中点,∴BM=DN,又∵AD=AB,∴△ADN≌△ABM(SAS),∴AN=AM,∠DAN=∠BAM,∴∠BAM+∠BAN=∠DAN+∠BAN,即∠MAN=∠BAD=60°,∴△AMN为等边三角形,∴∠AMN=60°;(3)∠APC=,理由如下:过A作AM⊥CD于M,AN⊥BE于N,如图②所示:同(2)得:△ABE≌△ADC(SAS),△ADM≌△ABN(SAS),∴∠AEB=∠ACD,AM=AN,∵AM⊥CD,AN⊥BE,∴P A平分∠DPE,∴∠APE=∠DPE,又∵∠EPC+∠ACD=∠CAE+∠AEB,∴∠EPC=∠CAE=α,∴∠DPE=180°﹣α,∴∠APE=(180°﹣α)=90°﹣α,∴∠APC=∠APE+∠EPC=90°﹣α+α=90°+α.。

2020年初二数学上期末试卷带答案

2020年初二数学上期末试卷带答案

2020年初二数学上期末试卷带答案一、选择题1.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .82.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个3.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-44.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab = 5.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个 6.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣37.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( )A .30B .30或150C .60或150D .60或120 8.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠D .设OD m =,AE AF n +=,则12AEF S mn ∆= 9.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .210.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24° 11.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 12.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题13.已知23a b =,则a b a b -+=__________.14.若分式11x x --的值为零,则x 的值为______. 15.如图,在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,若AB=20,则BD 的长是 .16.因式分解:3x 3﹣12x=_____.17.因式分解:3a 2﹣27b 2=_____.18.如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=12,CF=3,则AC = .19.计算(3-2)(3+2)的结果是______.20.若分式的值为零,则x 的值为________. 三、解答题21.如图,已知在△ABC 中,∠BAC 的平分线与线段BC 的垂直平分线PQ 相交于点P,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,BN 和CM 有什么数量关系?请说明理由.22.解分式方程2212323x x x +=-+. 23.如图,ABC 是等腰三角形,AB AC =,点D 是AB 上一点,过点D 作DE BC ⊥交BC 于点E ,交CA 延长线于点F .(1)证明:ADF 是等腰三角形;(2)若60B ∠=︒,4BD =,2AD =,求EC 的长.24.先化简代数式1﹣1x x -÷2212x x x-+,并从﹣1,0,1,3中选取一个合适的代入求值. 25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF.小华的想法对吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.A解析:A【解析】【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数.【详解】解:当AB 为底时,作AB 的垂直平分线,可找出格点C 的个数有5个,当AB 为腰时,分别以A 、B 点为顶点,以AB 为半径作弧,可找出格点C 的个数有3个; ∴这样的顶点C 有8个.故选:A .【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.3.D解析:D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .4.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.5.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB 5AC =3,BC 2,GD 5DE 2,GE =3,DI =3,EI 5G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.6.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.7.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD 是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD 是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.8.C解析:C【解析】【分析】利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.【详解】∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12∠A ∴∠BOC=180°-(∠OBC+∠OCB )=90°+12∠A ,故C 错误; ∵∠EBO=∠CBO ,∠FCO=∠BCO ,//EF BC ∴∠EBO=∠EOB ,∠FCO=∠FOC ,∴BE=OE ,CF=OF∴EF=EO+OF=BE+CF ,故A 正确;由已知,得点O 是ABC ∆的内心,到ABC ∆各边的距离相等,故B 正确;作OM ⊥AB ,交AB 于M ,连接OA ,如图所示:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴OM=OD m = ∴()11112222AEF AOE AOF S S S AE OM AF OD OD AE AF mn =+=⋅+⋅=⋅+=△△△,故D 选项正确;故选:C.【点睛】此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用. 9.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.C解析:C【解析】【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选C.12.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题13.【解析】【分析】由已知设a=2t 则b=3t 代入所求代数式化简即可得答案【详解】设a=2t ∵∴b=3t ∴==故答案为:【点睛】本题考查了代数式的求值把a=b代入后计算比较麻烦采用参数的方法使运算简便灵解析:1 5 -【解析】【分析】由已知设a=2t,则b=3t,代入所求代数式化简即可得答案.【详解】设a=2t,∵23ab=,∴b=3t,∴a ba b-+=2323t tt t-+=15-.故答案为:1 5 -【点睛】本题考查了代数式的求值,把a=23b代入后,计算比较麻烦,采用参数的方法,使运算简便,灵活运用参数方法是解题关键.14.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件解析:-1【解析】【分析】【详解】试题分析:因为当10{-10-=≠xx时分式11xx--的值为零,解得1x=±且1x≠,所以x=-1.考点:分式的值为零的条件.15.5【解析】【分析】【详解】试题分析:根据同角的余角相等知∠BCD=∠A=30°所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD解:∵在直角△ABC中∠ACB=90°解析:5【解析】【分析】【详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB ∴∠BCD=∠A=30°,∵AB=20,∴BC=12AB=20×12=10,∴BD=12BC=10×12=5.故答案为5.考点:含30度角的直角三角形.16.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x (x+2)(x﹣2)【点睛】本题考查解析:3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.15【解析】试题分析:因为EF是AB的垂直平分线所以AF=BF因为BF=12CF=3所以AF=BF=12所以AC=AF+FC=12+3=15考点:线段垂直平分线的性质解析:15【解析】试题分析:因为EF是AB的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12,所以AC =AF+FC=12+3=15.考点:线段垂直平分线的性质19.-1【解析】【分析】由于式子复合平方差公式的特点则由平方差公式展开可得()-2即可解答【详解】由平方差公式得()-2由二次根式的性质得3-2计算得-1【点睛】此题考查平方差公式的性质解题关键在于利用解析:-1【解析】【分析】由于式子复合平方差公式的特点,则由平方差公式展开可得 )2-22即可解答【详解】由平方差公式,得2-22由二次根式的性质,得3-22计算,得-1【点睛】此题考查平方差公式的性质,解题关键在于利用平方差公式的性质进行计算20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.BN=CM,理由见解析.【解析】【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.【详解】解:BN=CM,理由如下:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,PC PB PM PN=⎧⎨=⎩,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.【点睛】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,能正确地添加辅助线是解题的关键.22.x=7.5【解析】【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x﹣3)(2x+3),得4x+6+4x2﹣6x=4x2﹣9,解得:x=7.5,经检验x=7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.23.(1)见详解(2)4【解析】【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】证明:(1)∵AB=AC∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,又∵∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2∵AB=AC∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC-BE=4【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等,根据余角性质求得相等的角是解题关键.24.-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.25.对,理由见解析.【解析】【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【详解】解:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中CO FOCOB EOF EO BO=⎧⎪∠=∠⎨⎪=⎩,∴△COB≌△FOE(SAS)∴BC=EF,∠BCO=∠F∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),【点睛】本题考查了三角形的全等的判定和性质;做题时用了两直线平行内错角相等,同旁内角互补等知识,要学会综合运用这些知识.。

2020年北师大版八年级上册数学期末复习《勾股定理》(含答案)

2020年北师大版八年级上册数学期末复习《勾股定理》(含答案)

北师大版八上数学期末复习《勾股定理》一、选择题1.下列各组线段能构成直角三角形的一组是()A.7,12,13B.30,40,50C.5,9,12D.3,4,62.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是( )A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.下列各组数中,能构成直角三角形的是( )A.4,5,6 B.1,1, C.6,8,11 D.5,12,234.满足下列条件的△ABC,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=9:12:15 C.∠C=∠A﹣∠B D.b2﹣a2=c25.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).A.1个B.2个C.3个D.4个6.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1B.C.D.27.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.108.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是( )A. B.﹣ C.D.﹣9.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对10.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )11.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4π C.8π D.812.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cmD.9cm二、填空题13.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是.14.小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm、6cm、8cm、10cm的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是____________;15.如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.16.若直角三角形的两小边为5、12,则第三边为.17.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是.18.如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是m.三、解答题19.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD=10m,求这块草地的面积.20.如图,在△ABC中,CD是AB边上高,若AD=16,CD=12,BD=9.(1)求△ABC的周长.(2)判断△ABC的形状并加以证明.21.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?22.操场上有一根竖直立在地面上的旗杆,绳子自然下垂到地面还剩余2米,当把绳子拉开8米后,绳子刚好斜着拉直下端接触地面(如图①)(1)请根据你的阅读理解,将题目的条件补充完整:如图②,Rt△ABC中,∠C=90°,BC=8米,AB比AC长2米,求AC的长.根据(1)中的条件,求出旗杆的高度.23.一个长为10m的梯子斜靠在墙上,梯子底端距墙底6m.(1)若梯子的底端水平向外滑动1m,梯子的顶端下滑多少米?(2)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?24.如图,长方体的底面是边长为1cm 的正方形,高为3cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请计算所用细线最短需要 cm?(2)如果从点A开始经过4个侧面缠绕3圈到达点B,那么所用细线最短需要 cm.参考答案1.B.2.B3.答案为:B.4.答案为:B.5.B.6.D7.C8.D9.答案为:C.10.答案为:B.11.A.12.B.13.答案为:120 cm2.14.答案为:6cm、8cm、10cm.15.答案为:17;16.答案为:13.17.答案为:15°.18.答案为:8.19.150m2.提示:延长BC,AD交于E.20.解:(1)∵CD是AB边上高,∴∠CDA=∠CDB=90°,∴AC===20,BC===15,∵AB=AD+BD=25,∴△ABC的周长=AB+BC+AC=25+20+15=60;(2)△ABC是直角三角形,理由如下:202+152=252,即AC2+BC2=AB2,∴△ABC是直角三角形.21.解:根据图中数据,运用勾股定理求得:AB===480m,答:该河流的宽度为480m.22.解:(1)补充条件:AB比BC大2. 设AC=x,则BC=x+2,在Rt△ABC,∠ACB=90°.∵AC2+BC2=AB2,∴x2+82=(x+2)2,解得x=15.答:旗杆高15米.23.24.。

2020北京海淀初二(上)期末数学含答案

2020北京海淀初二(上)期末数学含答案

2020北京海淀初二(上)期末数 学考生须知:1.本试卷满分100分。

2.在试卷和答题卡上准确填写学校、班级、姓名和学号。

3.试题答案一律填写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题须用2B 铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。

5.考试结束时,将本试卷、答题卡一并交回。

一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是A. B. C. D.2.2019年被称为“5G 元年”.据媒体报道,5G 网络的理论下载速度为1.25GB/s ,这就意味着我们下载一张2.5M 的照片只需要0.002s ,将0.002用科学记数法表示为 A .2210-⨯B .3210-⨯C .20.210-⨯D .30.210-⨯3.下列运算结果为6a 的是 A .32a a ⋅B .93a a -C .()32aD .183a a ÷4.在下列因式分解的过程中,分解因式正确的是 A .()22242x x x ++=+B .24(4)(4)x x x -=+- C .()22442x x x -+=-D .()2242x x +=+5.如图,经过直线AB 外一点C 作这条直线的垂线,作法如下: (1)任意取一点K ,使点K 和点C 在AB 的两旁.(2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和E .(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F . (4)作直线CF .则直线CF 就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定...是等腰三角形的为 A .△CDFB .△CDKC .△CDED .△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为A .12B .1C .()12a b +D .a b +7.如图,在△ABC 中,AB =AC ,D 是BC 边上的动点(点D 与B ,C 不重合),△ABD 和△ACD 的面积分别表示为S 1和S 2,下列条件不能..说明AD 是△ABC 角平分线的是A.BD =CDB.∠ADB =∠ADCC.S 1=S 2D.AD =12BC 8.如图,左边为参加2019年国庆70周年阅兵的武警摩托车礼宾护卫队,如果将每位队员看成一个点,队形可近似看成由右边所示的若干个正方形拼成的图形,其中与△ABC 全等的三角形是 A .△AEG B .△ADF C .△DFG D .△CEGKFEDCBAD CB A2(a+b )aba 2ab b 2B CFGDE9.若4ab =-,其中a b >,以下分式中一定比ba大的是 A.22b a B.2b aC.2a -D.+2b a10.已知长方形ABCD 可以按图示方式分成九部分,在a ,b 变化的过程中,下面说法正确的有 ①图中存在三部分的周长之和恰好等于长方形ABCD 的周长②长方形ABCD 的长宽之比可能为2③当长方形ABCD 为正方形时,九部分都为正方形 ④当长方形ABCD 的周长为60时,它的面积可能为100 A .①② B .①③ C .②③④ D .①③④ 二、填空题(本大题共16分,每小题2分)11.请写出一个只含有字母x 的分式,当x =3时分式的值为0,你写的分式是 . 12.计算:()()3422a a a ⋅-÷=.13.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC =CD ,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上.若想知道两点A ,B 的距离,只需要测量出线段即可.14.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最大值是 . 15.平面直角坐标系xOy 中,点A (4,3),点B (3,0),点C (5,3),点E 在x 轴上.当CE=AB 时,点E 的坐标为 .16.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从草桥和北京站出发赶往机场乘坐飞机,出行方式及所经过的站点与路程如下表所示:出行方式 途径站点路程 地铁草桥—大兴新城—大兴机场全程约43公里bb a aba CDBxyCOA BBCA.若设公交的平均速度为x 公里/时,根据题意可列方程: .17.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为 .18.如图,已知MON ∠,在边ON 上顺次取点1P ,3P ,5P …,在边OM 上顺次取点2P ,4P ,6P …,使得112233445===OP PP P P P P P P =…,得到等腰△12OPP ,△123P P P ,△234P P P ,△345P P P … (1)若MON ∠=30°,可以得到的最后一个等腰三角形是 ;(2)若按照上述方式操作,得到的最后一个等腰三角形是△345P P P ,则MON ∠的度数α的取值范围是 .三、解答题(本大题共54分,第19题8分,20~22题每题5分,第23~26每题6分,第27题7分)19.(1)计算:()18613333π-⎛⎫--÷+ ⎪⎝⎭(2)因式分解:22312x y -20.如图,已知AB=AC ,E 为AB 上一点,ED ∥AC ,ED=AE .求证:BD=CD .BP 5P 4P 3P 2P 1ONM21.已知2220a ab b -+=,求代数式()()()422a a b a b a b --+-的值.22.如图,AB ⊥AC ,AB =AC ,过点B ,C 分别向射线AD 作垂线,垂足分别为E ,F . (1)依题意补全图形; (2)求证:BE=EF+FC .23.已知+2x a b =-,222+y ab a b -=. (1)用x 表示y ;(2)求代数式44()2x x x y x -⋅++的值.24.如图所示,将两个含30°角的三角尺摆放在一起,可以证得△ABD 是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 交换命题的条件和结论,得到下面的命题: 在直角△ABC 中,∠ACB =90°,如果12CB AB =,那么∠BAC =30°. 请判断此命题的真假,若为真命题,请给出证明;若为假命题,请说明理由.ACBAD25.对于代数式,不同的表达形式能表现出它的不同性质.例如代数式245A x x =-+,若将其写成()221A x =-+的形式,就能看出不论字母x 取何值,它都表示正数;若将它写成()2=12(1)2A x x ---+的形式,就能与代数式B=222x x -+建立联系.下面我们改变x 的值,研究一下A ,B 两个代数式取值的规律:((2)观察表格可以发现:若x =m 时,222=B x x n =-+,则x =m +1时,245A x x n =-+=.我们把这种现象称为代数式A 参照代数式B 取值延后,此时延后值为1.①若代数式D 参照代数式B 取值延后,相应的延后值为2,求代数式D ;②已知代数式210ax x b -+参照代数式234x x c -+取值延后,请直接写出b-c 的值:_____________.26.如图,在△ABC 中,AB=AC ,∠BAC =90°,点D 是边BC 上的动点,连接AD ,点C 关于直线AD 的对称点为点E ,射线BE 与射线AD 交于点F . (1)在图1中,依题意补全图形;(2)记DAC α∠=(45α<︒),求ABF ∠的大小;(用含α的式子表示) (3)若△ACE 是等边三角形,猜想EF 和BC 的数量关系,并证明.CB A图1 备用图27.在平面直角坐标系xOy 中,直线l 为一、三象限角平分线.点P 关于y 轴的对称点称为P 的一次反射点,记作1P ;1P 关于直线l 的对称点称为点P 的二次反射点,记作2P .例如,点(2,5)-的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为_____________,二次反射点为_______________;(2)当点A 在第一象限时,点(3,1)M ,(3,1)N -,(1,3)Q --中可以是点A 的二次反射点的是______________; (3)若点A 在第二象限,点1A ,2A 分别是点A 的一次、二次反射点,△12OA A 为等边三角形,求射线OA 与x 轴所夹锐角的度数.附加问题:(本问3分,可计入总分,但全卷总分不超过100分)若点A 在y 轴左侧,点1A ,2A 分别是点A 的一次、二次反射点,△12AA A 是等腰直角三角形,请直接写出点A 在平面直角坐标系xOy 中的位置.AACB2020北京海淀初二(上)期末数学参考答案一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.11.3x x-(答案不唯一) 12. 58a 13.DE 14.a b + 15.(4,0)或(6,0) 16.5443122x x -= 17. 1018. (1)△123PP P ;(2)1822.5α︒≤<︒三、解答题(本大题共54分,第19题8分,20~22题每题5分,第23~26每题6分,第27题7分)19.(1)解:原式2133=-+ ………………………3分193=-+5=- ………………………4分(2)解:原式223(4)x y =- ………………………2分3(2)(2)x y x y =+- ………………………4分20.证明:∵ED ∥AC ,∴∠EDA =∠DAC , ………………………1分 ∵ED=AE ,∴∠EAD =∠EDA . ………………………2分∴∠EAD =∠DAC . ………………………3分在△ADB 和△ADC 中,,,,AB AC DAB DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△ADC (SAS ). ………………………4分 ∴BD=CD . ………………………5分21. 解:∵2220a ab b -+=,∴2()0a b -=. ………………………1分 ∴a b =.…………………3分…………………4分∴原式=()0b b a -= . …………………5分22.(1)………………………1分(2)证明:∵AB ⊥AC ,BE ⊥AD ,CF ⊥AD ,∴∠BAE +∠CAF =90°,∠BAE +∠B =90°,∠CFA =∠AEB =90°.………………………2分∴∠CAF =∠B . ………………………3分 在△ABE 和△CAF 中, ,,,B CAF AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ). ………………………4分 ∴BE=AF ,AE=CF . ∵AF=AE+EF ,∴BE=EF+CF . ………………………5分()()()2222422(4)(4)a a b a b a b a ab a b b ab--+-=---=-FEDCBA222244244=(2)2(2)(2)4(2)22422221x x x y x x x x x x x x x x x x x x x x x -=⋅++-⋅+++-+=⋅+++-=++++=+=23.解:(1)∵+2x a b =-,222+y ab a b -=,∴+2a b x =+,2222+()y a ab b a b =+=+. ………………………1分 ∴2(2)y x =+. ………………………2分(2)由题意可知:原式 ………………………3分………………………4分………………………5分 ………………………6分24. 解:此命题是真命题. ………………………1分证明:延长BC 至点D ,使得CD=BC , ………………………2分∵∠ACB =90°,CD=BC∴AC 是线段BD 的垂直平分线,∴AB=AD . ………………………3分∵12CB AB =, ∴BD=AB .∴△ABD 是等边三角形. ………………………4分∴∠BAD =60°. ………………………5分 ∵AC BD ⊥∴12BAC BAD ∠=∠=30°. ………………………6分25.解(1)2;2,1,2. ………………………2分(2)①∵代数式D 参照代数式B 取值延后,相应的延后值为2,∴22(2)2(2)2610D x x x x =---+=-+. …………………4分② 7 ………………………6分DCBA26. (1)………………………1分(2)连接AE由题意可知,,EAD CAD α∠=∠= AC =AE , ∴902,BAE α∠=︒- ∵AB=AC ,∴AB=AE , ∴,ABE AEB ∠=∠ ∴180452BAEABF α︒-∠∠==︒+.………………………3分(3)12EF BC =, 证明:由(2)可知45,AEB ABE α∠=∠=︒+∴.CBF α∠= ………………………4分 ∵点C 关于直线AD 的对称点为点E , ∴135,ACF AEF α∠=∠=︒- ∴90,BCF α∠=︒-∵90,CBF BCF ∠+∠=︒ ………………………5分 ∴△BCF 是直角三角形. ∵△ACE 是等边三角形,∴30.α=︒ ∴30CBF ∠=︒ ∴1.2EF CF BC ==………………………6分 27. 解:(1)(2,5)-,(5,2)-; ………………………2分(2)N 点; ………………………3分 (3)∵点A 在第二象限,FF∴点12,A A 均在第一象限.∵△12OA A 为等边三角形,12,A A 关于OB 对称,∴1230AOB A OB ∠=∠=︒ 分类讨论:①若点1A 位于直线l 的上方,如图1所示,此时115,AOC AOC ∠=∠=︒ 因此射线OA 与x 轴所夹锐角为75︒; ………………………5分 ②若点1A 位于直线l 的上下方,如图2所示,此时175,AOC AOC ∠=∠=︒ 因此射线OA 与x 轴所夹锐角为15︒; ………………………7分 综上所述,射线OA 与x 轴所夹锐角为75︒或15︒.图1 图2附加题:x 轴负半轴或第三象限的角平分线 …………2分(不含点O ).…………3分说明:附加题得分可计入总分,但全卷总分不超过100分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第10题)
初二数学(上)期末复习题
(本试卷满分:120分,考试时间:100分钟)
姓名: 学号: 班级: 分数: 一、选择题(每小题3分,总计30分): 1、有六个数:0.125125…, 0.3030003000003, -π, 711-, 25.2,3
5
其中无理数有 ( )个 A 2 B 3 C 4 D 5
2、下列说法中正确的是…………………………………………( )
A .矩形的对角线互相垂直
B .菱形的对角线相等
C .正方形的对角线相等且互相平分
D .等腰梯形的对角线互相平分 3、如下左图,所列图形是旋转对称图形的有( )个.
A .3个
B .4个
C .5
D .6个 第8题图 4、下列语句正确的有( )个
① -1是1的平方根 ② 带根号的数都是无理数 ③ -1的立方根是-1 ④4的算术平方根是2 A 1 B 2 C 3 D 4
5、在平行四边形ABCD 中,∠B-∠A=30°,则∠A 、∠B 、∠C 、∠D 的度数分别是( ) A. 95°,85°,95°,85° B. 85°,95°,85°, 95° C. 105°,75°,105°,75° D. 75°,105°,75°,105
6、下列运算正确的是( )
A.1243x x x =•
B.12
4
3)(x x = C.326x x x =÷ D.743x x x =+
7、把多项式)2()2(2
a m a m -+-分解因式等于(

A 、))(2(2
m m a +- B 、))(2(2
m m a --C 、m(a-2)(m-1) D 、m(a-2)(m+1)
8、在5×5方格纸中将图①中的图形N 平移后的位置如图②所示,如上图,那么下面平移中正确的是( )
A.先向下移动1格,再向左移动1格
B.先向下移动1格,再向左移动2格
C.先向下移动2格,再向左移动1格
D.先向下移动2格,再向左移动2格 9、如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )
A. –3
B. 3
C. 0
D. 1
10、右图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家
赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形,如果大正方形的面积是13,
小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )2
的值是 ( )
A .13
B .19
C .25
D .169 二、填空题(每小题3分,总计15分):
11、81的平方根是 ;27的立方根是 12、若,482
2
=-y x x+y=6,则3x-3y=__________
13、已知,如图2,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 ; 14、一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那
么它所行的最短路线的长是 15、如图,把一个长方形纸片沿EF 折叠后,
点D 、C 分别在D ′、C ′位置,若∠EFB=65°, 则∠AED ′=_________.
(第14题图)
三、解答题(本大题总计75分): 16、计算(每小题3分): (1)48532+-
(2)x 2•(x 3)3÷x 5
(3)()()y x y x 44--+- (4)(x+3)(x-4)-(x-1)2
17、因式分解(每小题3分):
(1)4x 4-4x 3+x 2 (2)4x 3-16xy 2 (3) 2224)1(a a -+
A
B
第15题
18、先化简,再求值:()()()()2
2
4171131x x x x +--++-,(其中1
2
x =-)(6分)
19、求黑色部分(长方形)的面积(5分)
20、如图,在平行四边形ABCD 中,已知AC 、BD 相交于点O ,两条对角线的和为26厘米,CD 的长为8厘米,求△ABO 的周长.(6分)
21、平移方格纸中的△ABC ,使点A 平移到点D 处,画出平移后 的△DB 1
C 1
,然后在将平移后的三角形按顺时针方向绕点D 旋转 900
,再画出旋转后的三角形(6分)
22、如图,折叠长方形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕为DG ,若AB=4,BC=3,求AG 。

(6分)
23、一个正方形的边长为xcm,当它的边长增加3cm 后,得到的新正方形的面积比原正方形的面积增加了45cm 2
,
求原正方形的边长。

(5分)
24、如图AB ∥CD ,AD ∥CE,且∠ACB=90°,E 为AB 的中点. ①试说明DE 与AC 互相平分; ②探究:当四边形AECD 是正方形时,求∠B 的度数?
③探究:当四边形ABCD 是等腰梯形,求∠B 的度数?(6分)
25、两位同学将同一个二次三项式因式分解,一位同学因看错了一次项系数而分解成)9)(1x --x (,另一位同学因看错了常数项而分解成)4)(2(--x x ,试求出次二次三项,并将它因式分解(6分)
26、附加题(8分):
如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22 -02 ,12=42
-22 20=62 -42
因此4,12,20这三个数都是神秘数. (1)28和2012这两个数是神秘数吗?为什么?
(2)设两个连续偶数为2k+2和2k(其中取k 非负整数).由这两个连续偶数构成的神秘数是4的倍数吗?为什么?。

相关文档
最新文档