二次函数七大综合专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数七大综合专题
二次函数与三角形的综合题
函数中因动点产生的相似三角形问题一般有三个解题途径
①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。(2016•益阳第21题)如图,顶点为(3,1)
A的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
x y
考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1)∵抛物线顶点为(3,1)A ,
设抛物线对应的二次函数的表达式为2(3)1y a x =-+,
将原点坐标(0,0)代入表达式,得1
3a =-.
∴抛物线对应的二次函数的表达式为:2123
3y x =-+.
(2)将0y = 代入2123
3y x x =-中,得B 点坐标为:(23,0),
设直线OA 对应的一次函数的表达式为y kx =, 将3,1)A 代入表达式y kx =中,得3
k =
, ∴直线OA 对应的一次函数的表达式为3
y =.
∵BD ∥AO ,设直线BD 对应的一次函数的表达式为3
y b =+, 将B 3,0)代入3
y b =
+中,得2b =- , ∴直线BD 对应的一次函数的表达式为3
2y x -.
由23
21233y y x ⎧=
-⎪⎪⎨⎪=-+⎪⎩
得交点D 的坐标为(3,3)-, 将0x =代入3
2y -中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , 23OB OD ==.
在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪
=⎨⎪=⎩
, ∴△OAB ≌△OCD .
(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD
的周长最小.
过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆.
∴
PO C O DQ C Q '=',25
3=,∴23
PO , ∴ 点P 的坐标为23
(5
. 二次函数与平行四边形的综合题
例1:如图,对称轴为直线x=
2
7
的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
【考点】二次函数综合题.
【专题】压轴题.
【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
【解答】解:(1)因为抛物线的对称轴是x=,
设解析式为y=a(x﹣)2+k.
把A,B两点坐标代入上式,得,
解得a=,k=﹣.
故抛物线解析式为y=(x﹣)2﹣,顶点为(,﹣).
(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x﹣)2﹣,
∴y<0,
即﹣y>0,﹣y表示点E到OA的距离.
∵OA是OEAF的对角线,
∴S=2S△OAE=2××OA•|y|=﹣6y=﹣4(x﹣)2+25.
因为抛物线与x轴的两个交点是(1,0)和(6,0),
所以自变量x的取值范围是1<x<6.
①根据题意,当S=24时,即﹣4(x﹣)2+25=24.
化简,得(x﹣)2=.
解得x1=3,x2=4.
故所求的点E有两个,
分别为E1(3,﹣4),E2(4,﹣4),
点E1(3,﹣4)满足OE=AE,
所以平行四边形OEAF是菱形;
点E2(4,﹣4)不满足OE=AE,
所以平行四边形OEAF不是菱形;
②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,
此时点E的坐标只能是(3,﹣3),
而坐标为(3,﹣3)的点不在抛物线上,
故不存在这样的点E,使平行四边形OEAF为正方形.
【点评】本题主要考查了二次函数解析式的确定、图形面积的求法、平行四边形的性质、菱形和正方形的判定等知识.综合性强,难度适中.
(2016•泰安第28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.