龙门吊计算书
100t龙门吊基础承载力计算书
100T龙门吊基础底承载力计算书
一、计算说明
1、根据“100t龙门吊基础图”典型断面图计算。
2、采用双层C30钢筋混凝土基础。
二、示意图
基础类型:条基计算形式:验算截面尺寸
剖面:
100t龙门吊基础截面
三、基本参数
1.依据规范
《建筑地基基础设计规范》(GB 50007-2011)
2.几何参数:
已知尺寸:
B1 = 800 mm,B2 =800mm
H1 = 500 mm,H2 = 800 mm
无偏心:
3.荷载值:
①基础砼:g1=7×1.58m3×26 kN /m3=287.56 kN
②钢轨:g2=7×43×10N /kg=3。
01 kN
③龙门吊轮压:g3=2×27×10N/kg=540 kN
作用在基础底部的基本组合荷载
F k = g2+ g3=543KN
G k = g1=287。
56KN
4.材料信息:
混凝土: C30 钢筋:HPB300
5.基础几何特性:
底面积:A =(B1+B2)×L = 1。
6×7= 11。
2 m2
四、计算过程
轴心荷载作用下地基承载力验算
按《建筑地基基础设计规范》(GB 50007-2002)下列公式验算:
p k = (F k+G k)/A = 74。
2 kPa
结论:移梁滑道基础底面的地基承载力大于74.2 kPa即满足设计要求。
100龙门吊计算书
中铁十局沈铁公路桥梁合同段100t龙门吊基础计算书
一、基本计算参数
1、起吊梁板时龙门吊单边荷载
以龙门吊将T梁横移到单边时为最不利受力考虑,则每台龙门吊每边最大承载g1=980/2=490KN。
因此龙门吊在纵向边缘上T梁梁板承载最大,承载为g1=490KN。
2、龙门吊自重(一台)按800KN计,则龙门吊单边轨道梁承载g2=800/2=400KN。
3、轨道和轨道基础偏安全取每延米自重
g3=1×(1.0×0.6+0.3×0.5)×2.5×10=18.75KN/m
二、、轨道梁地基承载力验算
轨道基础采用C30钢筋混凝土,台阶式设置,上部为宽50cm,高30cm,下部宽100cm,高60cm,龙门吊脚宽按7m计,轨道应力扩散只考虑两个脚间距离,砼应力不考虑扩散则:
轨道梁受压力验算:
P=g1+g2+g3=490+400+7×18.75=908.75KN
轨道基础砼应力为:
σ=γ0P/A=1.4×908.75/7=0.182MPa<[σ]=30MPa
轨道基础地基承载力验算
地基应力计算:
σ=( g1+g2+g3)/A= 908.75÷7÷1=181.75KPa
预制场地经换填山皮土碾压之后,承载力标准值为f k=250KPa,可见:σ=181.75KPa<f k=250KPa,轨道基础地基承载力满足要求。
四、龙门吊基础详见附图
附图:中铁十局沈铁公路桥梁合同段预制场100t龙门吊轨道基础示意图计算:复核:。
龙门吊受力计算书
龙门吊受力计算书
四合同梁板预制厂的梁板浇筑及搬运采用两台龙门吊,龙门吊跨径21m,横梁由7片321型贝雷片组成;竖杆高9m,由3片321型
贝雷片组成;采用单轨移动,移动轮间距7m。
1、龙门吊内力计算:
龙门吊内力计算按照静定平面钢架进行计算,此
钢架为一简支钢架支座反力只有2个,考虑钢架
的整体平衡
∑X=0
∑M A=0
∑Y=0 V A=V B=F/2
当龙门吊搬运16m板时所承受的集中荷载F=170.04KN
V A=V B=85.02KN
弯距计算:根据内力计算法则,各杆端弯距为
M AC=669.53KN.m(右侧受拉) M CA=669.53KN.m(左侧受拉)M CD=669.53KN.m(上侧受拉) M DC=669.53KN.m(上侧受拉)M DB=669.53KN.m(右侧受拉) M BD=669.53KN.m(左侧受拉)M E=223.18 KN.m(下侧受拉)
剪力计算:根据内力计算法则,各杆端剪力为
Q AC=0 Q CA=0
Q CD=85.02KN Q DC=85.02KN
Q DB=0 Q BD=0
Q E=170.04KN
321型贝雷片允许弯距M0=975 KN.m,允许剪应力Q0=3978 KN 满足要求。
2、抗倾覆计算: P
H=9。
0m
L=7。
0m
P=98.52KN
对A点取距
抗倾覆力矩由竖向力P产生,则
M抗=P*L/2=344.82KN.m
倾覆力矩由风力或其他力F产生, 则
M倾=F*H=9F
当M抗= M倾时F最大Fmax=38.31KN
3
吊不使用时,
(见图)。
钢轨。
(完整版)龙门吊计算书.doc
下赶场沟大桥预制场74T龙门吊设计计算书下赶场沟大桥74T 龙门吊计算书一、概述本预制场龙门吊横梁由贝雷片拼成,门柱由钢管和型钢组成;计算跨径为 24m。
1、门柱一个门柱用 2 根Φ 325mm、δ =10mm 的钢管作主立柱,立柱上采用2根[25b 槽钢作斜撑。
立柱顶上设置2 根[30b 槽钢作横梁,贝雷片直接作用于[30b 槽钢上。
立柱底部通过20mm 厚A3 钢板与单轨平车连接。
每个门柱两个平车,一个主动,一个被动。
两个平车之间用2 根 14#槽钢拼焊成箱形前后焊联。
钢管与钢横梁采用焊接连接加固。
2、横梁一组横梁用 6 排 9 片贝雷片,设置上下加强弦杆。
两端头用 4 片(90-115-90)× 118cm 支撑架连接。
中间接头均用90×118cm 支撑架连接。
同时横梁的上下面均用支撑架连接加固,除两端头上表面用(90-115-90)× 118cm 支撑架外,其余用 90×118cm 支撑架。
横梁一边通过吊带悬挂 28#工字钢设 10T 电动葫芦,用于模板安装及砼浇筑,吊带距离间隔为1m。
横梁与门柱用桁架螺栓连接,再用Φ20U 型螺栓加固。
3.天车在横梁上安放枕木、铁轨、 1.6m 主动平车。
枕木间距为60cm,5T 慢速卷扬机放平车上,用 5 门滑车组吊装 ,钢丝绳采用直径为25mm 的。
4.操作台操作台设在门柱上,两套门吊的操作台相邻设置,以便于联系,统一协调操作。
各种电缆按规定布设,保证安全,便捷。
二、横梁计算对本龙门吊可进行如下简化计算,横梁拟用简支梁进行计算,脚架按受压格构柱进行计算,斜撑起稳定作用不作受力计算。
1、荷载计算横梁自重: q=11.7 KN/m天平及滑轮自重: P1=25KN起吊重量: P2=740/2=370KN2、计算简图(横梁)3、内力计算(1)最大弯矩当集中荷载作用于横梁的跨中位置,产生跨中最大弯矩,此时A、B支点也产生最大的负弯矩。
10T龙门吊计算书
1 相关计算书1.1 工程概况配置1台10t-17m门式起重机,起重机满载总重37t,均匀分布在4个轮上,理论计算轮压:f=mg/4=37*1.8/4=90.65kN为确保安全起见,按1.5系数将轮压设计值提高到140kN进行设计。
基础梁拟采用500mm*1200mm矩形截面钢筋混凝土条形基础梁,长度根据现场实际情况施工,轨道梁设置在场地持力层上,混凝土强度等级为C25。
基础设计中不考虑轨道与基础的共同受力作用,忽略钢轨承载能力不计,按半无限弹性地基梁进行设计。
1.2 梁的截面特性混凝土梁采用C25混凝土,抗压强度25MPa。
设计采用条形基础,如图所示,轴线至梁底距离:y1=d2=0.52=0.25my2=d−y1=0.5−0.25=0.25m图1.2-1 基础梁截面简图梁的截面惯性矩:I=1/3(by23+by13)=0.0125m4梁的截面抵抗矩:W=Id−y1=0.01250.4−0.25=0.083m3混凝土的弹性模量:E c=2.80×104KN/m2截面刚度:E c I=0.0125∗2.8∗104=350KN/m21.3 按反梁法计算地基的净反力和基础梁的截面弯矩假定基底反力均匀分布,如图所示,每米长度基底反力值为:p =∑F L ⁄=4∗14020∗2+30=8.0KN/m 若根据脚架荷载和基底均布反力,按静定梁计算截面弯矩,则结果表明梁不受脚架端约束可以自有挠曲的情况。
反梁法则把基础梁当成以脚架端为不动支座的三跨不等跨连续梁,当底面作用以均布反力p=8.0kN/m 时,支座反力等于支座左右截面剪力绝对值之和,查《建筑施工计算手册》附表2-16得:l 1=20 q =8.0KN/mn =l 2/l 1=30/20=1.521*ql M φ= 1*ql V φ=////右左V V R +=表1.3-1 三跨不等跨连续梁的弯矩、剪力计算系数表由计算结果可见,支座反力与轮压荷载相比产生不均匀力,将支座不均匀力分布于支座两侧各1/3跨度范围,最终反梁法得到的各截面弯矩小于第一次分配弯矩,故采用Mb 最大值进行配筋验算。
龙门吊计算书
计算书目录第1章计算书 (1)1.1 龙门吊轨道基础、车挡设计验算 (1)1.1.1 龙门吊走行轨钢轨型号选择计算 (1)1.1.2 龙门吊轨道基础承载力验算 (2)1.1.3 龙门吊轨道基础地基承载力验算 (2)1.2 吊装设备及吊具验算 (3)1.2.1 汽车吊选型思路 (3)1.2.2 汽车吊负荷计算 (4)1.2.3 汽车吊选型 (4)1.2.4 钢丝绳选择校核 (5)1.2.5 卸扣的选择校核 (5)1.2.6 绳卡的选择校核 (6)1.3 汽车吊抗倾覆验算 (7)1.4 地基承载力验算 (7)第1章计算书1.1 龙门吊轨道基础、车挡设计验算MG85-39-11龙门吊,龙门吊跨径改装修整为37m,每台最大起吊能力为85T。
上纵梁为三角桁架,整机运行速度6m/min,小车运行速度5m/min,整机重量60T。
1#梁场最大梁重137T,设置两台MG85龙门吊,最大起吊能力170T,可以满足使用要求。
本方案地基基础梁总计受力:M=137+60×2=257TF=M*g=257T×9.8N/kg=2519kN2台龙门吊共计有8个支点,则每个支点受力:P=F/8=315kN85T满负荷运转(吊装170T)时,Pmax=(85+60)T×9.8N/kg/4=355kN。
1.1.1 龙门吊走行轨钢轨型号选择计算确定龙门吊走行轨上的钢轨,计算方式有两种,二者取较大值:方式一:根据《路桥施工计算手册》计算:g1=2P+v/8=2×315+(6×60/1000/8)=630kN/m方式二:根据《吊车轨道联结及车挡(适用于混凝土结构)》中“总说明4.3公式(1)”计算:P d=1.05×1.4×1.15×315=533kN/m;满负荷运转时:g1max=2×355+(20×60/1000/8)=710kN/m;P d max=1.05×1.4×1.15×355=600kN。
龙门吊计算书
龙门吊计算书-CAL-FENGHAI.-(YICAI)-Company One1计算书目录第1章计算书................................................................ 错误!未定义书签。
龙门吊轨道基础、车挡设计验算......................... 错误!未定义书签。
龙门吊走行轨钢轨型号选择计算..................... 错误!未定义书签。
龙门吊轨道基础承载力验算......................... 错误!未定义书签。
龙门吊轨道基础地基承载力验算..................... 错误!未定义书签。
吊装设备及吊具验算................................... 错误!未定义书签。
汽车吊选型思路................................... 错误!未定义书签。
汽车吊负荷计算................................... 错误!未定义书签。
汽车吊选型....................................... 错误!未定义书签。
钢丝绳选择校核................................... 错误!未定义书签。
卸扣的选择校核................................... 错误!未定义书签。
绳卡的选择校核................................... 错误!未定义书签。
汽车吊抗倾覆验算..................................... 错误!未定义书签。
地基承载力验算....................................... 错误!未定义书签。
第1章计算书1.1 龙门吊轨道基础、车挡设计验算MG85-39-11龙门吊,龙门吊跨径改装修整为37m,每台最大起吊能力为85T。
龙门吊基础计算书003
龙门吊基础计算书00350t 龙门吊基础计算书1、荷载咨询龙门吊生产产家,50t 龙门吊一侧2组小车,一组小车2个轮子,轮子间距1.5m ,两小车中心距9.5~10m (未确定),计算时取9.5m ,最大轮压291kN ,荷载如下图所示:图一荷载示意图2、基础相关参数(见混凝土结构设计规范)基础梁采用C25混凝土,截面如下图所示:图二基础梁截面示意图基础梁底宽b=1.3m ,高h=0.7m ,面积S=0.665m 2,截面矩I x =0.02439m 4,弹性模量E=2.8×107kN/m 2,抗压强度设计值f c =11.9×103kN/m 2。
钢筋为Ⅱ级钢筋,f y =3×105kN/m 2。
291kN 291kN291kN 291kN 单位以cm计3、计算(1)地基承载力计算轮压按45°扩散到基础底部,L=2*0.7tan45°=1.4m,可不考虑轮压的应力叠加,考虑钢轨的扩散作用:基底净反力P净=2*291/[1.4*(1.5+1.4)]=143.35kPa基础埋深0.7m,则地基承载力特征值:(见扩展条形基础设计:二、基础底面积计算)据公式:A>F/(f-vd)f ak≥143.35+20*0.7=157.35kPa故要求地基强夯后承载力达到180kPa才能满足要求,安全系数K=180/157.35=1.144。
(2)配筋计算内力计算按倒梁法计算,以轮子作用点为支座,地基反力作为荷载,跨度取轮子长度加 1.4m,既0.7+1.5+0.7=2.9m,荷载q=143.35*1.4=200.7kN/m,如图所示:利用结构力学求解器求得,在q1=159.89*1.3=208kN/m作用下:M max=49.17kN·mQ max=150.53kN由于倒梁法计算内力只考虑支座间的局部弯曲,忽略了基础的整体弯曲,所得的不利截面上的弯矩绝对值一般较小。
龙门吊基础计算书
龙门吊基础计算书
龙门吊基础计算书
工程概况:
福州市轨道交通6号线2标3工区盾构始发井场地,需要
安装1台MG50门式起重机,以供盾构施工时器材的垂直运输。
因盾构区间较短,暂定安装1台50t龙门吊进行作业。
龙门吊检算:
1、设计依据:龙门吊使用以及受力要求、施工场地布置
要求、地铁施工规范。
2、设计参数:
2.1、材料性能指标:C30砼、f=1
3.8MPa、轴心抗压强度:c=4、弹性模量:Ec=3.0×10^7 MPa;R235钢筋:fsd=195MPa;HRB335钢筋:fsd=280MPa。
2.2、基础截面的拟定及钢筋的配置:基础截面采用倒T 形,钢筋布置如图
3.3-1所示,下侧受拉钢采用10根B16钢筋,上侧受压钢筋采用3根B16钢筋。
根据基础抗冲剪破坏公式进行计算,考虑到钢轨的作用,龙门吊轮压荷载P应简化成一段均布荷载作用在倒T型轨道基础上。
最大轮压为382KN,每两个轮为一组。
根据侧立面图,进行冲切验算。
龙门吊基础计算书
龙门吊基础计算书钢筋场龙门吊基础计算书1、龙门吊基础设计⽅案该龙门吊起吊能⼒为5T 的门吊,门吊⾃重按6T 计算。
基础采⽤条形基础,每隔10m 设置⼀道2cm 宽的沉降缝,宽1.0m,⾼35cm,基础采⽤C20砼,纵向受⼒钢筋采⽤两层共六根HPB235A 12mm 光圆钢筋,箍筋采⽤HPB235A 10mm 光圆钢筋,箍筋间距为200mm ,具体尺⼨如图1-1,1-2所⽰。
图1-2 基础钢筋砼梁侧⾯图2、基底地质情况基底为较软弱的粉质粘⼟,采⽤换填的⽅法提⾼地基承载⼒,基底换填0.5m 厚的碎⽯⼟,未压实,按松散考虑,地基基本承载⼒为σ0为200~200kPa ,取200Kp 。
查《路桥施⼯计算⼿册》中碎⽯⼟的变形模量E 0=29~65MPa ,粉质粘⼟16~39MPa,为安全起见,取碎⽯⼟的变形莫量E 0=29 MPa ,粉质粘⼟16MPa 。
3、建模计算3.1、⼒学模型简化基础内⼒计算按弹性地基梁计算,⽤有限元软件Midas Civil2010进⾏模拟计算。
即把钢筋砼梁看成梁单元,将地基看成弹性⽀承。
龙门吊⾃重按6T 计算,总重11T ,两个受⼒点,单点受集中⼒5.5T ,基础梁按10m 长计算。
具体见图3-3。
图3-1 ⼒学简化模型3.2、弹性⽀撑刚度推导根据《路桥施⼯计算⼿册》可知,荷载板下应⼒P 与沉降量S 存在如下关系:230(1)10cr P b E s ωυ-=-?其中:E0-----------地基⼟的变形模量,MPa ;ω-----------沉降量系数,刚性正⽅形板荷载板ω=0.88;刚性圆形荷载板ω=0.79;ν-----------地基⼟的泊松⽐,为有侧涨竖向压缩⼟的侧向应变与竖向压缩应变的⽐值;Pcr-----------p-s 曲线直线终点所对应的应⼒,MPa ;s-------------与直线段终点所对应的沉降量,mm ;b-------------承压板宽度或直径,mm ;不妨假定地基的变形⼀直处在直线段,这样考虑是⽐较保守也是可⾏的。
龙门吊计算书
龙门吊计算书假定计算参数:1、龙门用万能杆件拼装。
2、龙门净高16m,净宽42m,计算荷载1988KN。
3、龙门采用双层横梁拼装。
4、截面弹性模量E取2.1x105MPa。
一、求解截面特性现拟定横梁与立柱截面形式如下:由万能杆件标准图得:A=559.2cm2I y=I y1+A1d2+I y2+A2d2=2×(7896+279.6×1002)=5607792cm4W y=I y/z0=56077.92cm3I z=I z0+I z1+A1d2+I z2+A2d2=5264+2×(5264+186.4×2002)=14927792cm4 W z=I z/y0=74638.96cm3②立柱截面形式A=372.8cm2I x=I x1+A1d2+I x2+A2d2=2×(5264+186.4×1002)=3738528cm4W x=I x/z0=37385.28cm3I z=I z1+A1d2+I z2+A2d2=2×(5264+186.4×1002)=3738528cm4W z=I z/x0=37385.28cm3二、求解钢构内力与挠度根据龙门受力情况,可把龙门简化为钢构模型进行计算,荷载值P=1988KN(钢构件重)+420KN(横梁自重)=2408KN,考虑到单龙门受力将力分配如下图所示:VSES3.2 译码文件窗口界限尺寸(X,Y):60.000 35.116计算类型(静力1,模态2,动力响应3,屈曲4):1节点总数:6单元类型(桁架元1,刚架元2,三角形平面元3,四边形平面元4,空间元5,矩形板元6,板壳元7,梁-板壳组合8,杆-实体组合):2是否计入剪切变形(仅对梁单元):中间铰个数(仅对梁单元):虚拟单元数(仅对梁单元):单元总数:5单元特性种类:2材料种类:1有约束的节点数:6有支座位移的节点数:加荷载的节点数:2加荷载的单元数:是否计入重力:False重力因子(GX,GY,GZ):0 0 0节点号及节点坐标(X,Y,Z):1 2.000000e+00 2.000000e+00 0.000000e+002 2.000000e+00 1.800000e+01 0.000000e+003 1.600000e+01 1.800000e+01 0.000000e+004 3.000000e+01 1.800000e+01 0.000000e+005 4.400000e+01 1.800000e+01 0.000000e+006 4.400000e+01 2.000000e+00 0.000000e+00单元特性号及特性值:1 5.600000e-02 1.000000e+02 1.000000e+02 1.490000e-01 1.000000e+001.000000e+002 3.730000e-02 1.000000e+02 1.000000e+02 3.740000e-02 1.000000e+00 1.000000e+00材料特性号及特性值:1 7.800000e+04 2.100000e+11 3.000000e-01单元号及节点号,单元特性号,材料特性号:1 12 002 0012 23 001 0013 5 6 002 0014 3 4 001 0015 4 5 001 001约束节点号及约束值:1 1 1 1 0 0 02 0 0 1 1 1 03 0 0 1 1 1 04 0 0 1 1 1 05 0 0 1 1 1 06 1 1 1 0 0 0节点荷载所在的节点号及荷载分量值(PX,PY,PZ,MX,MY,MZ):3 0.000000e+00 -1.240000e+06 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+004 0.000000e+00 -1.240000e+06 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00弹簧单元数:集中质量节点数:VSES3.2计算结果文件计算类型:1节点号及节点位移 (m):1 0.00000e+00 0.00000e+00 0.00000e+002 6.38744e-04 -2.53287e-03 0.00000e+003 2.12913e-04 -5.73020e-02 0.00000e+004 -2.12917e-04 -5.73020e-02 0.00000e+005 -6.38748e-04 -2.53287e-03 0.00000e+006 0.00000e+00 0.00000e+00 0.00000e+00单元号及单元内力(局部坐标下的N1,MY1,MZ1,N2,MY2,MZ2):1 1.24000e+06 0.00000e+00 -2.50000e-01 -1.24000e+06 0.00000e+00 5.72316e+062 3.57698e+05 0.00000e+00 5.72316e+06 -3.57698e+05 0.00000e+00 1.16368e+073 1.24000e+06 0.00000e+00 5.72316e+06 -1.24000e+06 0.00000e+00 -2.50000e-014 3.57698e+05 0.00000e+00 -1.16368e+07 -3.57698e+05 0.00000e+00 1.16368e+075 3.57698e+05 0.00000e+00 -1.16368e+07 -3.57698e+05 0.00000e+00 -5.72316e+06单元号及单元剪力(局部坐标下的QY1,QZ1,QY2,QZ2):1 3.57698e+05 0.00000e+00 -3.57698e+05 0.00000e+002 1.24000e+06 0.00000e+00 -1.24000e+06 0.00000e+003 3.57698e+05 0.00000e+00 -3.57698e+05 0.00000e+004 -2.50000e-01 0.00000e+00 2.50000e-01 0.00000e+005 -1.24000e+06 0.00000e+00 1.24000e+06 0.00000e+00单元号及单元应力 (局部坐标下的max1,min1,max2,min2):1 -3.32440e+07 -3.32440e+07 -2.75208e+07 -3.89671e+072 -6.64297e+05 -1.21106e+07 5.24938e+06 -1.80243e+073 -2.75208e+07 -3.89671e+07 -3.32440e+07 -3.32440e+074 5.24938e+06 -1.80243e+07 5.24938e+06 -1.80243e+075 5.24938e+06 -1.80243e+07 -6.64296e+05 -1.21106e+07综合上面分析跨中最大挠度Δd=5.7302e-02m(钢构模型)<44/600=7.33333e-2满足钢结构设计规范要求。
龙门吊基础计算书
龙门吊基础计算书一、 工程概况二、 龙门吊检算1、设计依据龙门吊主要部件尺寸及重量序号 部件名称 尺寸单件重量(t)备注总重/t1主梁21450*1120*150012.082件24.16 2端梁3950*1012*1100 1.422件 2.84 3马鞍8190*1000*1030 2.142件 4.28 4支腿9818*1712*2166 4.4318件35.448 5地梁11300*920*800 3.632件7.266台车(移动部件)1900*1465*1500 2.54件107小车(移动部件)4290*5236*2437 19.621件19.628司机室2250*1300*2300 1.21件1.2 9电气室3000*1600*22002.21件 2.2 10配重 6.25件3111渣土罐(移动部件)401件40合计178.12、设计参数:1、从安全角度出发,按g=10N/kg计算。
2、45吨龙门吊自重: G4=108.4×1000×10=1084KN;3、45吨龙门吊载重: G5=(10+19.62+40)×1000×10=696.20KN;4、根据结构力学影响线原理:当起重机移至悬臂梁端头处,吊车支腿承受荷载最大。
即移动荷载下支座反力FR’=(1+9.306/11.6)×696.2=1254.72KN自重荷载下支座反力FR’’=1084/2=542KN故,吊车一侧支腿传递至轮子最大反力FR=1254.72+542=1796.42KN 考虑安全系数1.2,故最大反力设计值为2155.70KN。
45吨龙门吊4个支腿,每个支腿下1个轮子,每个轮子的最大承重标准值:G6=1794.42/2=898.21KN5、混凝土强度:普通混凝土强度C30,C=14.3MPa6、钢板垫块面积:0.40×0.15=0.06 m27、5吨龙门吊边轮间距:L:9.36m3、受力分析与强度验算:45吨龙门吊受力图如下:龙门吊受力分析图冠梁配筋图 门吊基础梁预埋螺栓位置图3.1、根据受力图,两条钢轨完全作用于其下面的混凝土结构上的钢块,钢块镶嵌在混凝土上,故而进行混凝土强度验证:假设:(1)整个钢轨及其基础结构完全刚性(安装完成后的钢轨及其结构是不可随便移动的)。
龙门吊基础计算书
龙门吊基础计算书一、工程概况和16T龙门吊共用同一轨道。
二、龙门吊检算1、设计依据①龙门吊使用以及受力要求②施工场地布置要求③地铁施工规范2、设计参数:①从安全角度出发,按g=10N/kg计算。
② 16吨龙门吊自重:59吨, G1=59×1000×10=590KN;16吨龙门吊载重:16吨, G2=16×1000×10=160KN;16吨龙门吊4个轮子每个轮子的最大承重:G3=(590000/2+160000)/2=227.5KN③ 45吨龙门吊自重:133吨, G4=13.3×1000×10=1330KN;45吨龙门吊载重:45吨, G5=45×1000×10=450KN;45吨龙门吊8个轮子每个轮子的最大承重:G6=(1330000/2+450000)/4=278.75KN④混凝土强度:普通混凝土强度C30,C=2×1000=2000KPa⑤钢板垫块面积:0.20×0.25=0.05 m2⑥ 16吨龙门吊边轮间距:L1:7.5m⑦ 45吨龙门吊边轮间距:L2:8.892m3、受力分析与强度验算:只用45吨龙门吊进行受力分析,因为其单个轮子的荷载大于16吨龙门吊的单个轮子荷载,一旦其受力分析和强度验算能够满足,16吨龙门吊的也能满足。
45吨龙门吊受力图如下:龙门吊受力分析图3.1、按照规范要求,全部使用16吨龙门吊和45吨龙门吊使用说明推荐的P43大车钢轨。
3.2、根据受力图,两条钢轨完全作用于其下面的混凝土结构上的钢块,钢块镶嵌在混凝土上,故而进行混凝土强度验证:假设:(1)整个钢轨及其基础结构完全刚性(安装完成后的钢轨及其结构是不可随便移动的)。
(2)每台龙门吊完全作用在它的边轮间距内(事实上由于整个钢轨极其基础是刚性的,所以单个龙门吊作用的长度应该长于龙门吊边轮间距)。
即:龙门吊作用在钢轨上的距离是:L1=7.5m ,L2=8.892m根据压力压强计算公式:压强=压力/面积,转换得:面积=压力/压强要使得龙门吊对地基混凝土的压强小于2MPa才能达到安全要求。
龙门吊基础计算说明书
龙门吊混凝土基础计算说明书混凝土基础下采用含有大小碎石的山皮土1. 计算承载力1)安装钢箱梁最不利位置考虑龙门吊自重110t(计算取120t),运梁小车自重8t(计算取10t),两小车间距为60cm,梁最重一端72t按荷载最不利位置考虑,考虑受力最大支腿P1=(10+72×1.1)×(44-10)/44+60=128.927t 取130吨考虑平均分布到四个轮上,轮压P=130÷4=32.5t2)安装钢拱最不利位置考虑P1=(10+45×1.1)×(44-3)/44+60=115.443t 取120吨考虑平均分布到四个轮上,轮压P=120÷4=30t安装钢箱梁轮压最大,为最不利条件,下面按照安装这种情况考虑混凝土基础。
2.基础截面设计1)采用截面1000×500mm现初拟弹性地基梁矩形截面尺寸为1000×500mm,长为240m。
A、受力分析采用河卵石和砂砾土组合地基,按弹性半无限理论进行计算现取河卵石和砂皮土地基E0=30MP a混凝土采用C25 E h=28.5GPa2l=240m l=120m 集中力P=32.5t=325kNC25 E=0.8E h=0.8*28.5=22.85GP a=22.8*103MP a计算柔度系数 t≈10 E0(l/h)3/E=10*30/(22.8*103)*(120/0.5)3=181894.737>10为长梁L≈l*(π/2t)1/3=120*[3.1416/(2*181894.737)]1/3=2.4622L=4.924m因为在集中力作用下,t >10时,所以按长梁计算集中荷载距梁端采用5m>2L=4.924m 采用无限长梁计算 所以按无限长梁受集中荷载计算查表在荷载作用点x=0m 处时 M=38 p=38 Q=50 在x=0.6m 处 ξ=x/L=0.6/2.462=0.244查表用插入法得 M=15 p=30 Q=29在9.5m 处 ξ=3.859 查表 M=0 P=0四个轮的荷载只有两个距离0.6m 的两个轮的荷载叠加影响 在x 1=ξL =2.2*2.462=5.416m 和在x 2=ξL =2.443*2.462=6.016m M=-5M +max =0.01MPl=0.01×(38+15)×325×2.462=424.08kN.mp max =0.01Pp/l=0.01×(38+30)×325/2.462=89.764kN/mQ=0.01QP=0.01×(50+29)×325=256.75 kNM -min =0.01×(-5-5)×325×2.462=-80.015KN.mB 、正弯矩截面设计设受拉钢筋40a mm =,受压钢筋35a mm '=截面有效高度050040460h h a mm =-=-=则单筋矩形截面的最大正截面承载能力为:所以不需采用双筋截面。
龙门吊基础计算书(最终)
广东省龙川至怀集公路TJ31标钢筋加工厂龙门吊基础计算书1、龙门吊基础设计方案我项目钢筋加工厂龙门吊为24m宽,有效起重重量为10T,龙门吊为MH-10-24型,该龙门吊起吊能力为10T的门吊,门吊自重按12T计算。
基础采用条形基础,每隔10m设置一道2cm宽的沉降缝,宽100cm,高50cm,基础采用C20砼,纵向受力钢筋采用两层共六根Φ12mm带肋钢筋,箍筋采用Φ10mm光圆钢筋,箍筋间距为200mm,具体尺寸如图1-1,1-2所示。
图1-2 龙门吊轨道基础断面图2、基底地质情况基底为较软弱的红粘土,经实测地基承载力为160~180Kpa ,采用换填的方法提高地基承载力,基底换填0.3m 厚的碎石渣,未压实,按松散考虑,地基基本承载力为σ0为180kPa ,在承载力计算时取最小值160Kp 。
查《路桥施工计算手册》中碎石渣的变形模量E 0=29~65MPa ,红粘土的变形模量E 016~39MPa,为安全起见,取碎石渣的变形模量E 0=29 MPa ,红粘粘土16MPa 。
3、建模计算3.1、力学模型简化基础内力计算按弹性地基梁计算,用有限元软件Midas Civil2010进行模拟计算。
即把钢筋砼梁看成梁单元,将地基看成弹性支承。
龙门吊自重按12T 计算,总重22T ,两个受力点,单点受集中力11T ,基础梁按10m 长计算。
具体见图3-3。
图3-1 力学简化模型3.2、弹性支撑刚度推导根据《路桥施工计算手册》可知,荷载板下应力P 与沉降量S 存在如下关系:230(1)10cr P b E s ωυ-=-⨯其中:E0-----------地基土的变形模量,MPa ;ω-----------沉降量系数,刚性正方形板荷载板ω=0.88;刚性圆形荷载板ω=0.79;ν-----------地基土的泊松比,为有侧涨竖向压缩土的侧向应变与竖向压缩应变的比值;Pcr-----------p-s 曲线直线终点所对应的应力,MPa ;s-------------与直线段终点所对应的沉降量,mm ;b-------------承压板宽度或直径,mm ;不妨假定地基的变形一直处在直线段,这样考虑是比较保守也是可行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QM5t-14m(+3m)龙门起重机计算书
一、概述
QM5t-14m(+3m)门式起重机是用于杭州九堡大桥南接线1标钢筋场的小型起重设备,根据实际情况和现场条件采用跨度14米,单边悬臂3米,采用三角形桁架,加工字钢Ⅰ28a主梁组合,小车可沿主梁纵向行走,整机由2组单轨驱动台车支撑,可沿铺设在地面的专用。
本设计主梁跨中按5t(起重量)×14米跨度的规格进行控制设计,悬臂端也为3t(起重量)的规格进行控制,并充分考虑到外部环境对结构的冲击性,拼装的便利性,使用中的特殊要求等。
本设计完全遵循GB3811-2008《起重机设计规范》及其他相关的机械技术条件进行设计计算,所选用的零部件及电气元件等亦完全按照相关的国家标准、部门标准、行业标准、企业标准等要求执行设计。
二、计算依据
1、设计参数
1)、额定轻重量5t
2)、额定起升速度 1.05m/min
3)、跨度14米
4)、起升高度6米
5)、有效悬臂3米
6)、小车运行速度1~7 m/min 重载
7)整机装机功率
8)起重机工作等级
2、规范及参考文献
1)《起重机设计规范》GB3811-2008
2)《起重机试验规范和程序》GB9505-86
3)《起重机机械安全规程》GB6067-85
4)钢结构设计规范GB50017-2003
5)钢结构施工及验收规范GB50205-95
6)通用门吊起重机GB/T14406-93
7)钢结构焊缝外形尺寸GB10854-89
8)电气装置安装工程施工及验收规范GB50017-2003
9)起重设备安装工程施工及验收规范GB50278-98
3、材料选择
主材均选用Q235,主横梁下纵梁采用工字钢Ⅰ28a,上纵梁采用工字钢Ⅰ12a,竖杆、斜杆均采用角钢L75×6,竖杆间距、高度均为1米,考虑1.5倍安全系数后其性能如下:
1)抗拉、抗压和抗弯强度:[σ]=156Mpa
2)抗剪强度:[σ]=90Mpa
3)绕度[f]=L/400=14000/400=35mm。
支腿采用两边各采用2根[20a槽钢支撑,高度9米,上口1宽,下口6米宽,支腿槽钢之间才L60*6mm角钢连接,间距约40cm,上口采用3根[20a槽钢作为连杆,下口采用双拼[25a槽钢连接。
三、总体计算
1 、主梁计算
1)最不利荷载的选定:
跨中起吊5t时,主梁的总弯矩:
M中=5×10×14/4=175 kN·m
悬臂端起吊3t时,主梁的总弯矩:
M悬=3×30=90 kN·m
M中> M悬,因此将小车位于主梁跨中时起吊额定荷载为最不利荷载位置,现通过midas软件分析,分别验算主梁结构的强度与刚度稳定性2)主梁结构形式及边界条件
1.1主梁结构图及边界条件
3)弯曲应力计算
当小车位于跨中时,按跨中承受额定荷载5 t,即50KN的集中力为工况1,并考虑桁架主梁整体自重荷载工况2,组合荷载=工况1+工况2,组合荷载作用下验算分析结果如下:
1.2主梁弯矩图
1.3主梁弯曲应力图
通过midas分析计算得出:
最大弯曲应力σmax=103.5MPa<[σ]=156Mpa
主梁满足抗弯要求。
4)剪切应力计算
1.4 主梁剪应力图
通过计算可得最大剪应力σmax =37.3Mpa<[σ]=90Mpa
主梁满足抗剪要求
5)刚度位移计算:
在最不利工况组合荷载的情况下,通过midas分析计算主梁位移变化情况,计算结果图如下:
1.5 主梁纵向位移图
通过计算结果图可知主梁最大位移位于跨中,最大位移值:f跨中=7.3mm<L/400=14000/400=35mm
主梁刚度满足要求。
2、悬臂端负载的纵向稳定性计算
2.1 受力分析示意图
悬臂端负载的纵向稳定性计算模型
图中:L=14m,a=3m
工况:小车位于悬臂端,满载下降制动,侧向风叠加,风压按杭州50年一遇0.45kN /m2。
a、负载下降时产生的荷载(制动时间1.5s)
P=Q+Q惯=(1+0.012)Q=30360 N
b、风荷载
主梁风荷载:P梁风=2520 N
支腿风荷载:P腿风=4320 N
下横梁风荷载:P下风=1575 N
c、倾覆力矩:
M倾= P *a+ P梁风*H梁+ P腿风*H腿+ P下风*H下
= 30360*3+2520*9+4320*4+1575*0.5
=131828N*m
d、稳定力矩:M稳=G*L/2=213500 N*m
e、稳定系数:λ纵= M稳/ M倾=1.62>λ需=1.35
满足悬臂端负载的纵向稳定性要求。
3、支腿屈曲稳定性分析
当小车位于支腿正下方时,支腿承受压力最大,故支腿最不利工况:为小车满载作用于支腿+主梁结构自重荷载组合。
1)支腿结构形式与边界条件
结构尺寸:上口宽1米,下口宽6米,高度9米
3.1支腿结构形式图
2)在最不利组合荷载工况下,为验算支腿的整体稳定性,采用midas软件对龙门吊支腿进行整体屈曲分析,一阶模态的分析结果如
下图所示:
3.2现浇支架屈曲分析图
由上图可知,临界荷载系数为5.1>3.5,所以龙门吊支腿的整体稳定性满足要求。
四、结论
对龙门吊主梁、支腿等主结构进行了全面的受力分析,其强度、刚度、稳定性均满足相关规范要求,说明结构安全可靠,能够满足正
常的使用要求。