18圆轴扭转的强度和刚度计算

合集下载

11圆轴扭转变形与刚度计算

11圆轴扭转变形与刚度计算
§7.5
圆轴扭转变形与刚度计算
m m

d T dx GI p
1
一、圆轴扭转变形公式

m
m

T ( x )dx 满足平面假设的圆轴: GI p ( x ) l Tl T=Const,等截面圆轴: GI p
GIp-抗扭刚度
d T dx GI p
Ti l i Ti,Ipi在各段内为常数的轴: i 1 GI pi
or
T 180 [ ] GI p max
/ m
等截面圆轴扭转的刚度条件为:
Tmax [ ] (rad/m) GI p
or
Tmax 180 [ ] GI p
/ m
4
【例题1】
传动轴图所示。主动轮A输入功率 PA=36kw , 从 动 轮 B 、 C 、 D 输 出 功 率 分 别 为 PB=PC=11kW , PD=14kW ,轴的转速为 n=300r/min , 许用切应力为[]=50MPa,切变模量为G=80GPa,单 位长度许用扭转角为[]=0.5()/m。试确定: 实心圆截面轴的直径d0;
l
x
12
三、圆轴扭转静不定问题
【例题3】 设有 A 、 B 两个凸缘的圆轴,在扭力矩 m 的作用下发生了变形。这时把一个薄壁圆筒与轴的 凸缘焊接在一起,然后解除m。设轴和圆筒的抗扭 刚度分别是 G1Ip1 和 G2Ip2 ,试求轴内和筒内的扭矩。
m
m
A
B
13
解:由于筒与轴的凸缘焊接在一起,外加扭力矩 m解 除后,圆轴必然力图恢复其扭转变形,而圆筒则阻抗 其恢复。这就使得在轴内和筒内分别出现扭矩T1和T2。 设想用横截面把轴与筒切开,因这时已无外力偶矩作 用,平衡方程为 T1-T2=0 一度静不定问题,应在寻求一个变形协调方程。

第6章 圆轴的扭转(5)

第6章  圆轴的扭转(5)

4、变形后,半径仍为直线且转过了角度 j ,说明半 径上各点的剪应变不同,圆心处剪应变为零,离圆心越 远,剪应变越大。
扭转剪应力公式推导
R
几何关系
dj 是前后两个端面的相对转角。
g 是外表面沿轴线方向上的剪应变。
在外表面处的剪应变 在离轴心ρ 处的剪应变
变形前位置 变形后位置 g( r) γ(ρ ) ρr dj g A A dx dx
WP
16M A ×103 16×150 = = = 81.26 MPa <[τ] 4 4 d 1 π ×243 - 18 3 1 πD 1 1 24 D1 16 M C 16× 100×10 3 = = 86.9 MPa 4 4 18 d2 3 3 π × 22 1 2 1 22 D2
正的扭矩
负的扭矩
通常,扭转圆轴各横截面上的扭矩是不同的,为 了形象地表达扭矩沿轴线的变化情况,我们仿照作轴 力图的方法,作出扭矩图。
例1: 如图(a)所示传动轴,已 知转速 n=250r/min,主动轮A的 输入功率PA=80kW,三个从动轮B、 C、D输出功率分别为25kW、 30kW和25kW,试画出传动轴 的扭矩图。
6.3 扭矩与扭矩图
下面用截面法研究圆轴横截面上的内力:
m
m
由平衡条件 ∑M=0,有 T-M=0,得T=M 若取右段研究,求得的扭矩与上面求得的扭矩大 小相同,转向相反。
为了使不论取左段或右段求得的扭矩大小、符号都一致, 对扭矩的正负号规定如下:按照右手的螺旋法则,用右手的 四个手指沿扭矩方向环绕,若大拇指的指向与外向法线一致, 则扭矩为正;反之为负。
的误差不超过4.52%,是足够精确的。

工程力学第八章圆轴的扭转详解

工程力学第八章圆轴的扭转详解

轴AB间的相对扭转角为:AB=TL/GIP
单位长度的扭转角为:q =AB/L=T/GIP
扭转刚度条件则为: qmax[q ] ---许用扭转角 机械设计手册建议:[q ]=0.25~0.5/m; 精度高的轴;
[q ]=0.5~1.0/m; 一般传动轴。
整理课件
32
3.扭转圆轴的设计
强度条件: t max T /WT [t ]
Mo
Mo
假想切面
取左边部分
Mo
外力偶
T 内力偶
由平衡方程: T M o 整理课件
平衡
4
返回主目录
Mo
Mo
T
取左边部分
Mo 假想切面
外力偶
扭矩
由平衡方程:
平衡
Mo
TMo T
取右边部分 T
T 和T 是同一截面上的内力, 应当有相同的大小和正负。
整理课件
扭矩
外力偶
平衡
5
扭矩的符号规定:
Mo
T

Mo
T
1)已知二轴长度及所受外力矩完全相同。若二轴截 面尺寸不同,其扭矩图相同否? 相同 若二轴材料不同、截面尺寸相同, 各段应力是否相同?相同 变形是否相同? 不同
2)下列圆轴扭转的切应力分布图是否正确?
T
o
o
o
o
T
T
T
整理课件
24
8.3.3 扭转圆轴任一点的应力状态
研究两横截面相距dx的任一A处单位厚度微元,左 右两边为横截面,上下两边为过轴线的径向面。
3) 计算扭转角AC
AC
TAB l AB GIPAB
+ T BC lBC GIPBC
整理课件

主轴强度刚度等计算公式汇总及实例

主轴强度刚度等计算公式汇总及实例

320185280177a b c 17078248500.921.121.122.9574.993.9926.51.35140269.39538.7814.801.0202.731.960.910.60.680.214.3253.664.31OK 12022C截面弯矩 M C =3.99×106Nmm解得:圆柱滚子轴承支反力:FA=22.96KN 调心滚子轴承支反力:Fc=75.0KN 转子部分的磁极重约为0.92KN 轴伸处飞轮重约为1.12KN额定转矩(扭矩)T N =1100Nm=1.1×106N㎜外1)调心滚子轴承支承中点C截面一、选材 某种型号电机1.轴的结构设计和受力分析轴的结构尺寸参见WYJ133-20-3受力分析:轴伸端上轴的最大载荷为50KN 弯曲疲劳极限τ-1≮185MPb 许用静应力[σ+]≮280MPa许用疲劳应力[σ-1]=177~213MPa 二、轴的强度计算40Cr HB284~322抗拉强度σb ≮700MP b 抗扭断面系数 W P =πd 3/16=538.78㎝3弯曲应力幅σa =M C /W=14.81MP a 切应力幅τm =τa =T N /(2W P )=1.02MP a 对称循环弯曲应力的平均应力 σm =0屈服点σb ≮500MP b 弯曲疲劳极限σ-1≮320MPb 2.轴的C截面强度校算 (截面直径)抗弯断面系数 W =πd 3/32=269.39㎝3E截面弯矩M E =1.35×106N㎜2)轴伸端支承中点E截面弯矩, (E至受力点距离)S σ=σ-1/[K σσa /(βεσ)+ψσσm ]=4.32只考虑扭矩作用时的安全系数正应力有效应力集中系数K σ=2.73切应力有效应力集中系数K τ=1.96表面质量系数β=0.91尺寸系数εσ=0.6,3.轴的E截面强度校算 (截面直径,键槽宽,高, )S τ=τ-1/[K ττa /(βετ)+ψττm ]=53.70ετ=0.68C截面安全系数 S=S σS τ/√S σ2+S τ2=4.31 >[S]=1.3~2.5即C截面是足够安全的平均应力折算系数ψτ=0.21只考虑弯矩作用时的安全系数168.74338.398.531.6302.731.960.910.60.70.217.5034.637.33OK8.1d1140l1101d2120l269.54.74E-07OKd1d2d3d4d5d6d76074120120152140140l1l2l3l4l5l6l715.51943432326.551.5M0M1M2M3M4M5M60 3.567.9217.7928.0633.6839.87M 0'M 1'M 2'M 3'M 4'M 5'M 6'08.4318.7742.1722.5712.082.挠度计算各轴段的直径和长度: ㎜各轴段弯矩: ×105N㎜在B处加单位力不从1N时引起轴上各段的弯矩:N㎜在D处加单位力不从1N时引起轴上各段的弯矩:N㎜>[S]=1.3~2.5即E截面是足够安全的三、轴的钢度计算1.扭转变形材料的切变模量 G=8.1×108MPa 轴受转矩作用的长度和外直径: ㎜扭转角: T×10+6 ,G×10+8,抗弯断面系数 W =πd 3/32-bt(d-t)2/d=151.2㎝3抗扭断面系数 W P =πd 3/16-bt(d-t)2/d=320.9㎝3弯曲应力幅σa =M E /W=8.931MPa 只考虑扭矩作用时的安全系数S τ=τ-1/[K ττa /(βετ)+ψττm ]=53.70E截面安全系数 S=S σS τ/√S σ2+S τ2=4.31S σ=σ-1/[K σσa /(βεσ)+ψσσm ]=4.32切应力幅τm =τa =T N /(2W P )=1.71MPa 对称循环弯曲应力的平均应力 σm =0正应力有效应力集中系数K σ=2.73切应力有效应力集中系数K τ=1.96表面质量系数β=0.91尺寸系数εσ=0.6,ετ=0.7平均应力折算系数ψτ=0.21只考虑弯矩作用时的安全系数[]6/0.25/~1/m m m φ<=M 00'M 01'M 02'M 03'M 04'M 05'M 06'07.1115.8335.5655.2965.8478'1+M '2'2+M '14. 2M 1+M 28.4335.6479.71106.9057.2124.165. 2M '2+M '116.8745.98103.1187.3046.7312.087. Ii*105 6.3614.72101.79101.79262.03188.578. (l i /I i )105 2.44E-05 1.29E-05 4.22E-06 4.22E-068.78E-07 1.41E-069.M 1×(4.)(8.)0.00E+00 1.64E+02 2.67E+028.03E+02 1.41E+02 1.14E+0210.M 2×(5.)(8.) 1.46E+02 4.70E+027.75E+02 1.03E+03 1.38E+02 6.77E+0111.=9.+10. 1.46E+026.34E+02 1.04E+03 1.84E+032.79E+021.82E+0212.=Σ11 4.12E+0313.y=Σ11/6E0.0032703750.034结论OK4. 2M '01+M '027.1130.0567.22126.41176.42209.685. 2M '02+M '0114.2238.7786.95146.14186.97221.847. Ii*105 6.3614.72101.79101.79262.03188.578. (l i /I i )105 2.44E-05 1.29E-05 4.22E-06 4.22E-068.78E-07 1.41E-069.M 1×(4.)(8.)0.00E+001.38E+022.25E+029.50E+024.34E+029.92E+0210.M 2×(5.)(8.) 1.23E+02 3.96E+02 6.53E+02 1.73E+03 5.53E+02 1.24E+0311.=9.+10. 1.23E+02 5.34E+028.78E+02 2.68E+039.87E+02 2.24E+0312.=Σ11 1.01E+0413.y=Σ11/6E 0.0080154660.034结论OKM 10'M 11'M 12'M 13'M 14'M 15'M 16'材料的弹性模量 E=2.1×105MPa 截面的惯性矩 I=πd 4/64,单位㎜4 D处挠度3.轴上调心滚子轴承支承中点C截面的偏转角计算在C截面处加单位力矩1N㎜时引起轴上各段的弯矩: N㎜4. 2M'11+M'120.090.390.86 1.62 2.26 2.695. 2M'12+M'110.180.50 1.11 1.87 2.40 2.847. Ii*105 6.3614.72101.79101.79262.03188.578. (l i/I i)105 2.44E-05 1.29E-05 4.22E-06 4.22E-068.78E-07 1.41E-069.M1×(4.)(8.)0.00E+00 1.77E+00 2.88E+00 1.22E+01 5.57E+00 1.27E+0110.M2×(5.)(8.) 1.58E+00 5.08E+008.38E+00 2.22E+017.09E+00 1.59E+0111.=9.+10. 1.58E+00 6.85E+00 1.13E+01 3.44E+01 1.27E+01 2.87E+0112.=Σ119.54E+0113.θC=Σ11/6E7.57078E-05rad0.05结论OK四、轴的临界转速(本电机转速低,可以不验算临界转速)五、键的强度计算假设压力在键的接触长度内均匀分布,则根据挤压强度或耐磨性的条件性计算,求得联接所能传递的转矩静联接 键盘秘能伟递的力矩 T= 1/2 h'l'd〔σp〕MpaWYJ133WYJ103键规格22×1432×18h'67l'3948d120120〔σp〕8080T11232001612800T N11000002200000OK NO转子中点至左端面77.58d8120l826.5M7M813.550B 3A0D610.5441180.4558821AM07'M08'0.45882426.5021000018857410 8.433824182.5053.00131.0026.50188.57101.792.73E-06 2.60E-061.99E+03 1.87E+024.85E+020.00E+002.47E+03 1.87E+021。

11圆轴扭转变形与刚度计算

11圆轴扭转变形与刚度计算
§7.5
圆轴扭转变形与刚度计算
m m

d T dx GI p
1
一、圆轴扭转变形公式

m
m

T ( x )dx 满足平面假设的圆轴: GI p ( x ) l Tl T=Const,等截面圆轴: GI p
GIp-抗扭刚度
d T dx GI p
Ti l i Ti,Ipi在各段内为常数的轴: i 1 GI pi
6
2. 用截面法求 各段内的扭矩
mB+T1=0
T1 350N m
mB+ mC+ T2=0 T2 700N m
-mD+ T3=0 T3 446N m 3. 作扭矩图
7
4. 确定最大扭矩
T max T2 700N m
5. 强度设计
max
d0
T
max
m d2 x l
10
d1
解:设距左端为 x 的任 意横截面的直径为 d(x) , 按比例关系可得 d2
d1 d 2 x d d2 1 d2 l
x
l
m
d1
此横截面的极惯性矩为
d1 d 2 x Ip 1 32 32 d2 l
d
4
d2
or
T 180 [ ] GI p max
/ m
等截面圆轴扭转的刚度条件为:
Tmax [ ] (rad/m) GI p
or
Tmax 180 [ ] GI p
/ m
4
【例题1】
传动轴图所示。主动轮A输入功率 PA=36kw , 从 动 轮 B 、 C 、 D 输 出 功 率 分 别 为 PB=PC=11kW , PD=14kW ,轴的转速为 n=300r/min , 许用切应力为[]=50MPa,切变模量为G=80GPa,单 位长度许用扭转角为[]=0.5()/m。试确定: 实心圆截面轴的直径d0;

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 一、扭转的概念 复习 Me
mA
阻抗力 偶
主动力 偶
me
受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 主要发生扭转变形的杆——轴。
Mx 16M x 16 1.5kN m 103 max= = 3 = =50.9MPa 3 4 -3 4 WP πD 1 π 90mm 10 1 0.9传动轴的强度是安全的。
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 2.确定实心轴的直径 根据实心轴与空心轴具有同样数值的最大剪应力的要求, 实心轴横截面上的最大剪应力也必须等于 50.9MPa 。若设实 心轴直径为d1,则有
b b
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 T 一、 扭转强度计算 变截面圆轴: max W [ ] 1、强度条件: p
max
max
对脆性材料 [ ] 对韧性材料 [ ]
b
nb

18圆轴扭转的强度和刚度计算

18圆轴扭转的强度和刚度计算
圆轴扭转刚度条件 上两式中, max 的单位为rad/m,而工程上单位长度许
用扭转角的单位一般用给出,因此,应用时要注意单位的 统一。考虑和的单位换算,则得:
maxTGmPIax180[]
对于一般传动轴[, ] 为0.5/m~1/m,对于精密
机器和仪表中的轴,[ ] 值可根据有关设计标准和规范
确定。
15
圆轴扭转变形时校核
扭 转 角:
Tl
GI P
强度条件:
max
Tmax[]
Wp
刚度条件: maxTGmIapx[]
归纳总结
16
实例分析
【例1】一等截面圆轴,以转速n=300r/min,传递功率 P=331kW,若圆轴材料的许用切应力为40MPa,单位 长度许用扭转角为0.5o/m,材料的切变模量G=80GPa。 试计算圆轴最小直径。
21
巩固练习
【练习2】如图所示,切蔗机主轴由电动机经三角 皮带轮带动。已知电动机功率P=35kW,主轴转速 n=580r/min,主轴直径d=120mm,轴的许用切应 力为:[]40MP,a 试校核主轴强度(不考虑传动 损耗)。
22
任务归纳
任务归纳
掌握两种校核 —— 强度和刚度 会求一种应力 —— 截面切应力
13
Байду номын сангаас
刚度条件
圆轴扭转刚度条件
一般来说,对于有精度要求和限制振动的机械,都需 要考虑轴的刚度满足要求。在扭转问题中,通常是限制最 大的单位长度扭转角不得超过单位长度许用扭转角。应此, 对于等截面圆轴,其扭转刚度条件为:
T
max
max
GIP
[ ]
对于变截面圆轴:
maxGTPI

工程力学第8章 变形及刚度计算

工程力学第8章 变形及刚度计算
第8章 变形及刚度计算
结构构件在满足强度要求条件下,若其变形过大, 会影响正常使用。本章将学习杆件的变 形及刚度计算。
1
8.1 轴向拉压杆的变形
杆件在发生轴向拉伸或轴向压缩变形时,其纵向尺 寸和横向尺寸一般都会发生改变,现分别予以讨论。 8.1.1 轴向变形 图8.1所示一等直圆杆,变形前原长为l,横向直径 为d;变形后长度为l′,横向直径为d′,则称
8.8 题8.8图所示一直径为d的圆轴,长度为l,A端 固定,B端自由,在长度方向受分布力偶m 作用发生扭 转变形。已知材料的切变模量为G,试求B端的转角。
56
8.9 某传动轴,转速 n=150 r/min,传递的功率 P =60 kW,材料的切变模量为 G =80GPa,轴的单位长度 许用扭转角[θ]=0.5(°)/m,试设计轴的直径。
30
例 8.9 简支梁受力如图 8.11所示
31
8.4 简单超静定问题
8.4.1 超静定问题的概念 前面几章所研究的杆或杆系结构,其支座反力和内 力仅仅用静力平衡条件即可全部求解出来,这类问题称 为静定问题(staticallydeterminateproblem)。例如,图 8.12所示各结构皆为静定问题。在工程实际中,有时为 了提高强度或控制位移,常常采取增加约束的方式,使 静定问题变成了超静定问题或静不定问题 (staticallyindeterminateproblem)。超静定问题的特点 是,独立未知力的数目大于有效静力平衡方程式的数目, 仅仅利用静力平衡条件不能求出全部的支座反力和内力。
52
8.5 高为l的圆截面锥形杆直立于地面上,如题8.5图 所示。已知材料的重度γ和弹性模量E,试求杆在自重作 用下的轴向变形Δl。
53
54

工程力学-圆轴扭转变形分析

工程力学-圆轴扭转变形分析

P=7.5kW,轴的转速n=80r/min。试选择实心圆轴的直径d和空心圆轴的外
径d 2。己知空心圆轴的内外径之比=d 1/d 2=0.8,许用扭转切应力 [τ]=40MPa。
解:(1)外力偶矩为
M e 9550 7.5 N m 895 .3 N m 80
(2)扭矩为 T = Me = 895.3N· m (3)实心圆轴直径 根据强度条件
各点切应力的大小与该点到圆心的距离成正比,其分布 规律如图
圆轴扭转时,最大切应力 max 发生在圆轴表面。当ρ=R 时,其值为:
TR T max Ip IP / R
令 Wp
Ip R
max
T Wp
Wp称为扭转截面系数,它表示截面抵抗扭转破坏的能 力,单位是(mm)3。
工程中承受扭转的圆轴通常采用实心圆轴和空心圆轴两种形
max
T 16T 3 Wp πd
16 T 3 16 895.3 d 3 m 0.048m 48mm 6 [ ] 3.14 40 10
(4)空心圆轴外径
根据强度条件
max
T 16T 3 4 Wp πd 2 (1 )
16 T 16 895.3 3 d2 m 4 6 4 [ ](1 ) 3.14 40 10 (1 0.8 )
3
0.058m 58m m
内径d 1=α×d 2= 0.8×58 mm = 46.4mm
(5)比较重量
在长度相等、材料相同的情况下,空心圆轴与实心圆 轴重量之比等于横截面面积之比,即
四、圆轴扭转时的强度 计算
圆轴的扭转的强度条件
max
Tmax Wp

第六章圆轴的扭转

第六章圆轴的扭转

第五节 圆轴扭转时变形和刚度计算
圆轴扭转时的变形由两横截面间相对扭转角 来度量:

MTl
GI p
GIp反映了截面抵抗扭转变形的能力,称为截面的抗扭刚度。
二、圆轴扭转时的刚度条件:单位长度的扭转角不超过许用 单位扭转角[ ],即
max
MT GI p
(rad/m)

max
MT 180
2. 轴向无伸缩; 3. 纵向线变形后仍为平行,转过相同的角度γ 。
圆轴扭转的平面假设:
圆轴扭转变形前原为平面的横截面,变形后仍保持为平 面,形状和大小不变,半径仍保持为直线;且相邻两截面间 的距离不变。
结论: 1. 扭转变形的实质是剪切变形;
2. 横截面上只有垂直于半径方向的剪应力τ ,没有正应力σ。
第二节 剪切——剪切胡克定律
一.剪切的概念
剪切变形的受力特点是:作用在构件两侧面上外力的 合力大小相等、方向相反、作用线平行且相距很近。
常见的剪切变形
键 轴

F
mn
Fm
F
n
F
(a)
(b)
实用计算中,通常假设剪切应力τ在剪切面上是 均匀分布的,如图d。则:
Q
A
不发生剪切破坏的条件,即抗剪强度条件为:
几何量,单位:mm3或m3。
第四节 圆轴扭转时的强度计算
圆轴扭转的强度条件是:轴的危险截面(即 产生最大扭转剪切应力的截面)上的最大剪切应 力τmax不超过材料的许用剪切应力[τ]即
max
M T max W
许用剪切应力[τ]值由相应材料试验测定并考 虑安全系数后加以确定。
圆轴扭转的强度计算可解决三类强度问题
采用空心传动轴能有效节省材料,减轻自重,提高承受 能力。空心轴受扭在力学上的合理性,可以从扭转剪切应 力在横截面上的分布图得到说明。但空心圆轴的环形壁厚 尺寸也不能过小。另外,只有截面闭合的空心圆轴才有较 高的抗扭强度,开口圆管的抗扭能力是很低的。

杆件的刚度计算

杆件的刚度计算

梁的变形及刚度计算
2、梁的挠曲线微分方程
假设梁的挠曲线方程为:
y f x
第六章推导弯曲正应力公式时已知
纯弯曲 1


M EI
不计剪力对变形的影响,上式可以推广到非纯弯曲的情况
非纯弯曲
1
( x )

M ( x ) EI
17
第二节
1
梁的变形及刚度计算
M ( x ) EI
( x )
ds ( x ) d , 且 1
L∕5 3L∕5 L∕5
B
M 0
qL2/8
M qL2/40
x
x
qL2/50
0 qL2/50
33
第三节 提高构件抵抗变形能力和 强度能力的主要措施 三、合理选择梁的截面形状
对于平面弯曲梁,从弯曲正应力强度考虑,比较合 理的截面形状是在截面面积A一定的前提下,使截面具有
尽可能大的弯曲截面系数WZ ,比值WZ/A越大,截面越经
20
第二节
梁的变形及刚度计算
(b )
EI y Pl Px
(3) 积分
EI y Plx
Pl 2
P 2
x C
2
(c )
EIy
x
2
P 6
x Cx D
3
(d )
(4)代入边界条件,确定积分常数 在 x = 0 处: A y A 0
yA 0
y
M
( x ) dx C
M
( x ) dx C dx D

积分常数 或 y 1 M ( x ) dxdx Cx D EI C和D的值可 用数学语言描述:它 通过梁支承处已知的变形条件来 们是弯矩M(x)的函数 确定,这个条件称为边界条件。

材料力学课件 第四章扭转

材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?

材料力学-圆杆扭转时的变形及刚度条件

材料力学-圆杆扭转时的变形及刚度条件

扭转剪应力公式是圆轴在弹性范围内导出的,其适用条件是:
1. 必须是圆轴,否则横截面将不再保持平面,变形协调公式
将不再成立。
d
dx
2. 材料必须满足胡克定律,而且必须在弹性范围内加载,只有
这样,剪应力和剪应变的正比关系才成立:
G
d
dx
二者结合才会得到剪应力沿半径方向线性分布的结
何斌
Page 28
材料力学
第4章 圆轴扭转
连接件强度计算的工程意义
两个或多个构件相连 —— 1. 用 钉子、铆钉等联结 2. 焊接 3. 其它
联接件体系(联接件、被联接构件)的受力特点: 力在一条轴线上传递中有所偏离(与拉压情况不同)
问题:1. 力传递的偏离引起什么新的力学现象? 2. 如何计算联接件、被联接构件的强度?
何斌
Page 12
材料力学
例 题1
第4章 圆轴扭转
θ M x θ =1.5 =1.5 π rad / m
GIp
2m 2 180
I
=π D4 p 32
1-α 4
,α= d D
轴所能承受的最大扭矩为
M x
θ
GI
=1.5 p2
π 180
rad/m G
π D4 32
1-α 4
1.5π
受扭圆轴的相对扭转角
圆杆受扭矩作用时,dx微段的两截面绕轴线相对转动 的角度称为相对扭转角
d M x dx
GIP沿轴线方向积分,得到源自d M x dxl
l GIp
何斌
Page 6
材料力学
第4章 圆轴扭转
圆杆扭转时的变形及刚度条件
受扭圆轴的相对扭转角
对于两端承受集中扭矩的等截面圆轴,两端面的相

圆轴扭转时的变形、刚度计算

圆轴扭转时的变形、刚度计算

功率分别为 剪切弹性模
N A =10 kW,N B G=80GPa,若
=12 kW,N D=18
=50MPa,
kW。材料的
=0.3º/m,
试按强度条件和刚度条件设计此轴的直径。
解(1)求外力偶矩
MA MB
MC
d
M M
A B
9549 9549
NA
n NB
n
9549 10 318(N m) 300
工程力学
圆轴扭转时的变形、刚度计算
一、变形:(相对扭转角)
MT
GIP
d
dx
d
dx
MT GIP
d MT dx
GIP
MT dx L GIP —— T T (x) MT L
GIP —— T=常量
单位:弧度(rad)。 GIP——抗扭刚度。
MT L
GIP
——T=常量,且分段。
注意: “MT” 代入其“+、-”号
AB
MT 3 M D 573(N·m)
(Nm) MT
d
MC
MD
(a)
C
D
573 N∙m
x
MT max 700N m
318 N∙m
(b)
(3)按强度条件设计轴的直径:由强度条件 700N∙m
max
MT ,max Wp
[ ]
Wp
d 3
16

d 3 16M n max
16 700103 3
9549 12 382(N m) 300
A
B
C
MC
9549
NC n
9549 40 300
1273(N m)
MD

机械零件的承载能力计算

机械零件的承载能力计算

机械零件的承载能力计算一、零件的强度和刚度条件(一)拉(压)杆的强度计算在进行强度计算中,为确保轴向拉伸(压缩)杆件有足够的强度,把许用应力作为杆件实际工作应力的最高限度,即要求工作应力不超过材料的许用应力。

于是,强度条件为:≤(3-19)应用强度条件进行强度计算时会遇到以下三类问题。

一是校核强度。

已知构件横截面面积,材料的许用应力以及所受载荷,校核(3-31)式是否满足,从而检验构件是否安全。

二是设计截面。

已知载荷及许用应力?,根据强度条件设计截面尺寸。

三是确定许可载荷。

已知截面面积和许用应力,根据强度条件确定许可载荷。

例3-6? 某冷镦机的曲柄滑块机构如图3-49(a)所示。

连杆接近水平位置时,镦压力=3.78MN( l MN=106N)。

连杆横截面为矩形,高与宽之比(图3-49(b)所示),材料为45号钢,许用应力=90MPa,试设计截面尺寸和。

解? 由于镦压时连杆AB近于水平,连杆所受压力近似等于镦压力,轴力=3.78MN。

根据强度条件可得:A≥(mm2)以上运算中将力的单位换算为,应力的单位为MPa或N/mm2,故得到的面积单位就是(mm2)注意到连杆截面为矩形,且,故(mm2)=173.2(mm),=1.4=242(mm)所求得的尺寸应圆整为整数,取=175mm,h=245mm。

1.某张紧器(图3-50)工作时可能出现的最大张力=30kN ( lkN=103N),套筒和拉杆的材料均为钢,=160MPa,试校核其强度。

解? 此张紧器的套筒与拉杆均受拉伸,轴力=30kN。

由于截面面积有变化。

必须找出最小截面。

对拉杆,20螺纹内径=19.29mm,=292mm2,对套筒,内径=30mm,外径=40mm,故=550mm2 。

最大拉应力为:故强度足够。

例3-7? 某悬臂起重机如图3-51(a)所示。

撑杆为空心钢管,外径105mm,内径95mm。

钢索1和2互相平行,且钢索1可作为相当于直径=25mm的圆杆计算。

杆件的刚度计算

杆件的刚度计算

G
d dx
G
d dx
T A dA d A G dA dx
2
τp
d T dx GI p
dA

O
d 2 G A dA dx
2
第一节
圆轴扭转时的变形及刚度计算
1、扭转角公式:


d
l
T GI P
dx
d
l


T GI P
4
12
1 . 27 10
12
6
(m )
4
4
32 3 . 14 30 10
4
d
0 . 08 10 2 . 5 10
9 3
6
(m ) 1 . 4 ( /m)
0
1
2
32 180
T1 GI
P1

180

32 180 3 . 14 180 3 . 14
A
L∕2 L∕2
F
B
x
L-2X
x
F/2
F/2
M 0
FL/4
x x
M 0
L-2X
x x
31
FX/2
第三节 提高构件抵抗变形能力和 强度能力的主要措施
T
T2
T3
T
T2
A
B
C
T3
x
T
T3 T
x
T2 B T
T3 C
A
32
第三节 提高构件抵抗变形能力和 强度能力的主要措施 二、合理布置梁的支撑
q A
L
q B A
q 8 . 04 N/cm ( 80 . 4 kgf/m ) I 32240 cm

圆轴扭转

圆轴扭转

d1
A
1.外力 解: 外力 1.
M e2 =
C
M e2
d2
B
M e3
M e1
M e1 = 9549
160 M e1 400
P 400 1 = 9549 × = 7640 N ⋅ m n 500 240 = 3060 N ⋅ m M e3 = M e1 = 4580 N ⋅ m 400
38
§6-5、圆轴扭转时的强度条件 刚度条件
7
§6-2、外力偶矩 扭矩和扭矩图
1.外力偶矩 1.外力偶矩 直接计算
8
二、外力偶矩 扭矩和扭矩图
§6-2、外力偶矩 扭矩和扭矩图
按输入功率和转速计算
已知 轴转速- 轴转速-n 转/分钟 输出功率- 输出功率-Pk 千瓦 求:力偶矩Me
P k
P k
在确定外力偶矩的方向时, 注意输入功率的齿轮、 在确定外力偶矩的方向时,应注意输入功率的齿轮、皮带轮作用的力偶矩为主 输入功率的齿轮 动力矩,方向与轴的转向一致;输出功率的齿轮、 动力矩,方向与轴的转向一致;输出功率的齿轮、皮带轮作用的力偶矩为阻力 矩,方向与轴的转向相反。 方向与轴的转向相反。
34
五、圆轴扭转时的强 刚度设计
§6-5、圆轴扭转时的强度条件 刚度条件
单位长度扭转角
扭转刚度条件
许用单位扭转角
35
§6-5、圆轴扭转时的强度条件 刚度条件 扭转强度条件
•已知T 、D 和[τ],校核强度 已知 τ], •已知T 和[τ], 已知 τ], 设计截面 •已知D 和[τ],确定许可载荷 已知 τ],
τ max
Mn = Wn
W — 抗扭截面系数(抗扭截面模量), 几何量,单位:mm3或m3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T
max
WP
[ ]
此时 T max 作用截面即为轴的危险截面;而对于变 截面圆轴,则要求:
max
T W P
[ ] max
此时,由于圆轴各段的抗扭截面系数不同,最大扭 矩作用截面不一定是危险截面。需要综合考虑扭矩和抗 扭截面系数的大小,判断可产生最大切应力的各横截面。 上面两式称为圆轴扭转强度条件。 11
17
巩固练习
18
巩固练习
【练习1】在例1中,若将该传动轴设计为空心轴,已
= 知:
di 0.9 ,试设计圆轴直径,并比较重量。 D
19
巩固练习
20
归纳总结 在在工程实际中,空心轴得到了广泛的应用,这主要是由 扭转切应力的分布规律决定的。 实心圆轴横截面上的扭转切应力分布如图(a)所示,当截面 周边处的切应力达到许用切应力时,圆心附近各点处的切应力 仍很小,这部分材料就没有充分发挥作用。所以,为了合理利 用材料,宜将材料放置在离圆心较远的部位,作成空心轴,此 时切应力分布规律如图(b)所示,其切应力和内力的力臂都将增 大,轴的抗扭能力将大大增强。
WP
D 3
16
d/D
IP 单位:mm4, WP单位:mm3
实例分析
扭转实验结果
4
任务十八 圆轴扭转时的强度和 刚度计算
教学目标
教学目标: (1)掌握基本概念; ( 2)掌握扭转变形时强度和刚度计算方法。 重点: (1)扭转变形时强度条件和刚度条件理解。 难点: (1)强度和刚度的计算方法应用。
扭转极限应力
由此可见,对于受扭 轴,塑性材料失效的标志 是屈服,试件屈服时横截 面上的最大切应力,即为 材料的扭转屈服应力,可 用 s 表示;脆性材料失效 的标志是断裂,试件断裂 时横截面上的最大切应力 即为材料的扭转强度极限, 用来 b 表示。
8
基本概念
扭转极限应力
扭转屈服应力和扭转 强度极限又统称为材料的 扭转极限应力,并用 u 来表示。Fra bibliotek基本概念
实验分析
扭转试验是用圆柱试 件在扭转试验机上进行的。 试验表明:塑性材料试件 在受扭过程中,先是发生 屈服(见图(a)),如果继 续增大扭转力矩,试件最 后沿横截面被剪断(见图 (b))。脆性材料试件受扭 时,变形始终很小,最后 在与轴线成45°倾角的螺 旋面发生断裂(见图(c))
7
基本概念
9
强度条件
圆轴扭转强度条件 用材料的扭转极限应力除以安全系数,得 材料的扭转许用应力为:
n 因此,为了保证圆轴工作时不发生破坏, 则要使轴内最大扭转切应力不得超过材料的扭 转许用切应力,对于等截面圆轴,则要求:
[ ]
u
max
T
max
WP
[ ]
10
强度条件
圆轴扭转强度条件
max
15
归纳总结
圆轴扭转变形时校核 扭 转 角:
Tl GI P
max
max
Tmax [ ] Wp Tmax [ ] GIp
16
强度条件:
刚度条件:
实例分析
【例1】一等截面圆轴,以转速n=300r/min,传递功率 P=331kW,若圆轴材料的许用切应力为40MPa,单位 长度许用扭转角为0.5o/m,材料的切变模量G=80GPa。 试计算圆轴最小直径。
会求一种应力
作业题:教材P121分析计算题8、9、10

习:梁的内力及内力图
23
13
刚度条件
圆轴扭转刚度条件
一般来说,对于有精度要求和限制振动的机械,都需 要考虑轴的刚度满足要求。在扭转问题中,通常是限制最 大的单位长度扭转角不得超过单位长度许用扭转角。应此, 对于等截面圆轴,其扭转刚度条件为:
max
T max GIP
[ ]
对于变截面圆轴:
max
T GI P
工程力学
授课人 王伟
机械与汽车工程学院机械设计教研室
复 问
复问:圆轴扭转变形时的应力大小该如何计算? 答案:

max
T IP
T WP
复 问
极惯性矩和抗扭截面模量的计算
实心圆截面:
IP
IP
D 4
32
D 4
32
WP
(1 4 )
(1 4 )
D3
16
空心圆截面:
[ ] max
14
刚度条件
圆轴扭转刚度条件
max 的单位为rad/m,而工程上单位长度许 上两式中, 用扭转角的单位一般用给出,因此,应用时要注意单位的 统一。考虑和的单位换算,则得:
max
T
max
GI P

180

[ ]
[ ] 为0.5 / m ~ 1 / m ,对于精密 对于一般传动轴, 机器和仪表中的轴,[ ] 值可根据有关设计标准和规范 确定。
21
巩固练习
【练习2】如图所示,切蔗机主轴由电动机经三角 皮带轮带动。已知电动机功率P=35kW,主轴转速 n=580r/min,主轴直径d=120mm,轴的许用切应 [ ] 40MPa ,试校核主轴强度(不考虑传动 力为: 损耗)。
22
任务归纳
任务归纳
掌握两种校核 —— 强度和刚度 —— 截面切应力
强度条件
圆轴扭转强度条件
理论和试验表明,材料的扭转许用切应力与许用应 力之间存在下列关系: 塑性材料: 脆性材料:
[ ] (0.5 ~ 0.577)[ ]
[ ] (0.8 ~ 1.0)[ l ]
12
刚度条件
圆轴扭转刚度条件
工程中的有些轴,为了能正常工作,除要求满足强度 条件外,还要求轴不能产生过大的变形,即要求轴具有一 定的刚度。例如机床主轴的扭转角过大会影响加工精度, 高速运转轴的扭转角过大会引起强烈的振动。
相关文档
最新文档