微积分第六章-定积分的应用

合集下载

定积分的应用

定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。

本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。

1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。

通过使用定积分,可以轻松解决这个问题。

以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。

这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。

2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。

例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。

同样地,在力学中,定积分可以用于计算物体所受的力的功。

这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。

3. 经济学中的应用经济学也是定积分的应用领域之一。

在经济学中,我们经常需要计算一段时间内的总收益或总成本。

通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。

这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。

4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。

在概率密度函数中,曲线下的面积表示了该事件发生的概率。

通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。

这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。

综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。

无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。

通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。

微积分第六章定积分

微积分第六章定积分

第六章 定积分定积分的有关理论是从17世纪开始出现和发展起来的,人们对几何与力学中某些问题的研究是导致定积分理论出现的主要背景.尽管其中某些问题早在公元前就被古希腊人研究过,但直到17世纪有了牛顿(Newton)和莱布尼兹(Leibnitz)的微分思想后,才使这些问题统一到一起,并且与求不定积分的问题联系起来.下面我们先从几何与力学问题出发引进定积分的定义,然后讨论它的性质、计算方法及其应用.第一节 定积分概念一、 定积分问题举例 1. 曲边梯形的面积设f (x )是定义在区间[a ,b ]上的非负连续函数,由曲线y =f (x )及直线x =a ,x =b 和y =0所围成的图形称为曲边梯形,下面我们讨论如何求这个曲边梯形的面积.图6-1为了利用已知图形(比如说矩形)的面积公式,可以先在[a ,b ]内任意插入n 个分点a =x 0<x 1<x 2<…<x n =b .这样整个曲边梯形就相应地被直线x =x i (i =1,2,…,n -1)分成n 个小曲边梯形,区间[a ,b ]分成n 个小区间[x 0,x 1],[x 1,x 2],…,[x n -1,x n ],第i 个小区间的长度为Δx i =x i -x i -1(i =1,2,…,n ).对于第i 个小曲边梯形来说,当其底边长Δx i 足够小时,其高度的变化也是非常小的,这时它的面积可以用某个小矩形的面积来近似.若任取ξi ∈[x i -1,x i ],用f (ξi )作为第i 个小矩形的高(图6-1),则第i 个小曲边梯形面积的近似值为ΔA i ≈f (ξi )Δx i .这样,整个曲边梯形面积的近似值就是11()n ni i i i i A A f x ξ===∆=∆∑∑.从几何直观上看,当分点越密时,小矩形的面积与小曲边梯形的面积就会越接近,因而和式1()niii f xξ=∆∑与整个曲边梯形的面积也会越接近,记{}1max i i nx λ≤≤=∆,当λ→0时,和式1()niii f xξ=∆∑ 的极限如果存在,则这个极限值即为曲边梯形的面积A ,即1lim ()ni i i A f x λξ→==∆∑.2. 变速直线运动的路程设某物体作直线运动,已知速度v =v (t )是时间间隔[T1,T2]上t 的连续函数,且v (t )≣0,计算在这段时间内物体所经过的路程s . 我们知道,对于匀速直线运动,有公式:路程=速度×时间.但是在我们的问题中,速度不是常量而是随时间变化着的变量,因此所求路程s 不能直接按匀速直线运动的路程公式来计算.然而,物体运动的速度函数v =v (t )是连续变化的,在很短的时间内,速度的变化很小.因此如果把时间间隔分小,在小段时间内,以等速运动近似代替变速运动,那么就可算出各部分路程的近似值,再求和得到整个路程的近似值.最后,通过对时间间隔无限细分的极限过程,求得物体在时间间隔[T1,T2]内的路程.对于这一问题的数学描述可以类似于上述求曲边梯形面积的做法进行,具体描述为:在区间[T1,T2]内任意插入n -1个分点T1=t 0<t 1<t 2<…<t n -1<t n =T 2,把区间[T1,T2]分成n 个小区间[t 0,t 1],[t 1,t 2],…,[t n -1,t n ],各小区间的长度依次为Δt 1,Δt 2,…,Δt n ,在时间段[t i -1,t i ]上的路程的近似值为v (τi )Δt i (i =1,2,…,n ),(其中τi 为[t i -1,t i ]上的任意一点.)整个时间段[T1,T2]上路程的近似值为s ≈v (τ1)Δt 1+v (τ2)Δt 2+…+v (τn )Δt n1()ni i i v t τ==∆∑ .当分点越密时,1()niii v tτ=∆∑就会与s 越接近,因此记{}1max i i nt λ≤≤=∆,当λ→0时,和式1()niii v tτ=∆∑的极限如果存在,则这个极限值即为物体在时间间隔[T1,T2]内所走过的路程.即1lim ()ni i i s v t λτ→==∆∑.二、 定积分定义从上面的两个例子可以看到,尽管所要计算的量,即曲边梯形的面积A 及变速直线运动的路程s 的实际意义不同,前者是几何量,后者是物理量,但计算这些量的方法与步骤都是相同的,它们都可归结为具有相同结构的一种特定和的极限,如面积01lim()niii A f x λξ→==∆∑,路程01lim()niii s v tλτ→==∆∑.抛开这些问题的具体意义,抓住它们在数量上共同的本质与特性加以概括,我们可以抽象出下述定积分的概念.定义 设函数f (x )在[a ,b ]上有界,在[a ,b ]中任意插入n -1个分点a =x 0<x 1<x 2<…<x n =b ,把区间[a ,b ]分成n 个小区间[x 0,x 1],[x 1,x 2],…,[x n -1,x n ],各小区间的长度依次为Δx 1=x 1-x 0,Δx 2=x 2-x 1,…,Δx n =x n -x n -1,在每个小区间[x i -1,x i ]上任取一点ξi ,作乘积f (ξi )Δx i (i =1,2,…,n ),再作和式lim ()i i S f x λξ→=∆. (6-1-1)记λ=max {Δx 1,Δx 2,…,Δx n },如果不论[a ,b ]怎样分法,也不论[x i -1,x i ]上点ξi 怎样取法,当λ→0时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x )在区间[a ,b ]上的定积分(简称积分),记作()d baf x x ⎰,即()d lim ()bi i af x x f x I λξ→=∆=⎰, (6-1-2)其中f (x )叫做被积函数,f (x )d x 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,[a ,b ]叫做积分区间.注 当和式1()niii f x ξ=∆∑的极限存在时,其极限值仅与被积函数f (x )及积分区间[a ,b ]有关,而与积分变量所用字母无关,即()d ()d ()d bb baaaf x x f t t f u u ==⎰⎰⎰.读者容易由定积分的定义或下面介绍的定积分的几何意义得到这一结论.如果f (x )在[a ,b ]上的定积分存在,我们就说f (x )在[a ,b ]上可积.由于这个定义是由黎曼(Riemann)首先给出的,所以这里的可积也称为黎曼可积,相应的积分和式1()niii f x ξ=∆∑也称为黎曼和.对于定积分,有这样一个重要问题:函数f (x )在[a ,b ]上满足怎样的条件,f (x )在[a ,b ] 上一定可积?这个问题我们不作深入讨论,而只给出以下两个充分条件.定理1 设f (x )在区间[a ,b ]上连续,则f (x )在[a ,b ]上可积.定理2 设f (x )在区间[a ,b ]上有界,且只有有限个间断点,则f (x )在[a ,b ]上可积. 利用定积分的定义,前面所讨论的实际问题可以分别表述如下: 曲线y =f (x ) (f (x )≣0)、x 轴及两条直线x =a 、x =b 所围成的曲边梯形的面积A 等于函数f (x )在区间[a ,b ]上的定积分.即()d baA f x x =⎰.物体以变速v =v (t )[v (t )≣0]作直线运动,从时刻t =T 1到时刻t =T 2,这物体经过的路程 s 等于函数v (t )在区间[T1,T2]上的定积分,即12()d T T s v t t =⎰.三、 定积分的几何意义在[a ,b ]上f (x )≣0时,我们已经知道,定积分()d baf x x ⎰在几何上表示曲线y =f (x )、两条直线x =a 、x =b 与x 轴所围成的曲边梯形的面积;在[a ,b ]上f (x )≢0时,由曲线y =f (x )、两条直线x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,定积分图6-2()d baf x x ⎰在几何上表示上述曲边梯形面积的负值;在[a ,b ]上f (x )既取得正值又取得负值时,函数f (x )的图形某些部分在x 轴上方,而其他部分在x 轴的下方(图6-2).如果我们对面积赋以正负号,在x 轴上方的图形面积赋以正号,在x 轴下方的图形面积赋以负号,则在一般情形下,定积分()d baf x x ⎰的几何意义为:它是介于x 轴、函数f (x )的图形及两条直线x =a 、x =b 之间的各部分面积的代数和.图6-3例1 利用定积分的几何意义,计算x ⎰.解 显然,根据定积分的定义来求解是比较困难的,根据定积分的几何意义知,x ⎰就是图6-3所示半径为1的圆在第一象限部分的面积,所以2144x ππ=⋅=⎰.四、 定积分的性质为了以后计算及应用方便起见,我们先对定积分作以下两点补充规定:(1) 当a =b 时,()d baf x x ⎰=0;(2) 当a >b 时,()d baf x x ⎰= -()d abf x x ⎰.由上式可知,交换定积分的上下限时,绝对值不变而符号相反.下面我们讨论定积分的性质.下列各性质中积分上下限的大小,如不特别指明,均不加限制;并假定各性质中所列出的定积分都是存在的.性质1 函数的和(差)的定积分等于它们的定积分的和(差),即[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.证1[()()]d lim [()()]nbiiiai f x g x x f g x λξξ→=±=±∆∑⎰ 0011lim ()lim ()nni i i i i i f x g x λλξξ→→===∆±∆∑∑()d ()d bbaaf x xg x x =±⎰⎰.性质1对于任意有限个函数都是成立的.类似地,可以证明:性质2 被积函数的常数因子可以提到积分号外面,即()d ()d bbaakf x x k f x x =⎰⎰ (k 是常数).性质3 如果将积分区间分成两部分,则在整个区间上的定积分等于这两部分区间上定积分之和,即设a <C <b ,则()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.证 因为函数f (x )在区间[a ,b ]上可积,所以不论把[a ,b ]怎样分,积分和的极限总是不变的.因此,我们在分区间时,可以使c 永远是个分点.那末,[a ,b ]上的积分和等于[a ,c ]上的积分和加[c ,b ]上的积分和,记为[,][,][,]()()()iiiiiia b a c c b f x f x f x ξξξ∆=∆+∆∑∑∑.令λ→0,上式两端同时取极限,即得()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.这个性质表明定积分对于积分区间具有可加性.按定积分的补充规定,不论a ,b ,c 的相对位置如何,总有等式()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰成立.例如,当a <b <c 时,由于()d ()d ()d c b caabf x x f x x f x x =+⎰⎰⎰,()d ()d ()d bc caa bf x x f x x f x x =-⎰⎰⎰()d ()d cbacf x x f x x =+⎰⎰.性质4 如果在区间[a ,b ]上f (x )≡1,则1d d bbaax x b a ==-⎰⎰.这个性质的证明请读者自己完成.性质5 如果在区间[a ,b ]上,f (x )≣0,则()d 0baf x x ≥⎰(a <b ).证 因为f (x )≣0,所以f (ξi )≣0(i =1,2,…,n ).又由于Δx i ≣0(i =1,2,…,n ),因此1()niii f x ξ=∆∑≣0,令λ=max {Δx 1,…,Δx n }→0,便得到要证的不等式.推论1 如果在区间[a ,b ]上,f (x )≢g (x ),则()d ()d bbaaf x xg x x ≤⎰⎰ (a <b ).证 因为g (x )-f (x )≣0,由性质5得[()()]d baf xg x x -⎰≣0.再利用性质1,便得到要证的不等式.推论2()d ()d bbaaf x x f x x ≤⎰⎰ (a <b ).证 因为-︱f (x )︱≢f (x )≢︱f (x )︱,所以由推论1及性质2可得()d ()d ()d b b baaaf x x f x x f x x -≤≤⎰⎰⎰,即()d ()d bbaaf x x f x x ≤⎰⎰.注 ︱f (x )︱在[a ,b ]上的可积性可由f (x )在[a ,b ]上的可积性推出,这里我们不作证明.性质6 设M 及m 分别是函数f (x )在区间[a ,b ]上的最大值及最小值,则m (b -a )≢()d baf x x ⎰≢M (b -a ) (a <b ).证 因为m ≢f (x )≢M ,所以由性质5推论1得d ()d d bbbaaam x f x x M x ≤≤⎰⎰⎰.再由性质2及性质4,即得到所要证的不等式.这个性质说明,由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范例2 估计定积分221d +1xx x ⎰的值. 解 因f (x )=2+1xx 在[1,2]上连续,所以在[1,2]上可积,又因为 2221()0(+1)x f x x -'=≤ (1≢x ≢2),所以f (x )在[1,2]上单调减少,从而有21()52f x ≤≤, 于是由性质6有2121()d 52f x x ≤≤⎰. 性质7 (定积分中值定理)如果函数f (x )在闭区间[a ,b ]上连续,则在积分区间[a ,b ]上至少存在一点ξ,使下式成立:()d ()()baf x x f b a ξ=-⎰(a ≢ξ≢b ). 这个公式叫做积分中值公式.证 把性质6中的不等式各除以b -a 得1()d bam f x x M b a ≤≤-⎰.这表明,确定的数值1()d ba f x xb a-⎰介于函数f (x )的最小值m 及最大值M 之间.根据闭区间上连续函数的介值定理,在[a ,b ]上至少存在一点ξ,使得函数f (x )在点ξ处的值与这个确定的数值相等,即应有1()d ()baf x x f b a ξ=-⎰ (a ≢ξ≢b ).两端各乘以b -a ,即得所要证的等式.图6-4积分中值公式有如下的几何解释:在区间[a ,b ]上至少存在一点ξ,使得以区间[a ,b ]为底边、以曲线y =f (x )为曲边的曲边梯形的面积等于同一底边而高为f (ξ)的一个矩形的面积(图6-4).显然,积分中值公式()d ()()baf x x f b a ξ=-⎰(ξ在a 与b 之间)不论a <b 或a >b 都是成立的.例3求10limn n x →+∞⎰.解 由于当0≢x ≢1/2时,有n ≢x n ,所以≢120n x ⎰≢120d n x x ⎰.又由积分中值定理,有121limd lim02n nn n x x ξ→+∞→+∞==⎰(0≢ξ≢1/2), 故10lim0n n x →+∞=⎰.习题6-11. 利用定积分定义计算由抛物线y =x 2+1,直线x =a ,x =b 及x 轴所围成的图形的面积. 2. 利用定积分的几何意义求定积分: (1)102d x x ⎰;(2) 0x ⎰(a >0). 3. 根据定积分的性质,比较积分值的大小: (1)120d x x ⎰与130d x x ⎰; (2)1e d x x ⎰与1(1)d x x +⎰.4. 估计下列各积分值的范围: (1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d x x x -⎰.第二节 微积分基本公式在第一节中,我们介绍了定积分的定义和性质,但并未给出一个有效的计算方法,当被积函数较复杂时,难以利用定积分直接计算.为了解决这个问题,自本节开始将介绍一些求定积分的方法. 一、 积分上限函数设函数f (t )在[a ,b ]上可积,对于x ∈[a ,b ],则函数f (t )在[a ,x ]上可积.定积分()d xaf t t⎰对每一个取定的x 值都有一个对应值,记为F (x )=()d xaf t t ⎰, a ≢x ≢b ,F (x )是积分上限x 的函数,称为积分上限函数,或称变上限函数或变上限积分.积分上限函数具有下述重要性质.定理1(原函数存在定理) 设函数f (x )在[a ,b ]上连续,则积分上限函数()()d xaF x f t t=⎰就是f (x )在[a ,b ]上的一个原函数,即d ()()d ()d xaF x f t t f x x '==⎰,a ≢x ≢b .证 我们只对x ∈(a ,b )来证明(x =a 处的右导数与x =b 处的左导数也可类似证明). 取|Δx |充分小,使x +Δx ∈(a ,b ),则ΔF =F (x +Δx )-F (x )=()d ()d x xxaaf t t f t t +∆-⎰⎰()d ()d ()d x x xxaxaf t t f t t f t t -∆=+-⎰⎰⎰()d x xxf t t -∆=⎰.因f (x )在[a ,b ]上连续,由积分中值定理,有ΔF =f (ξ)Δx ,ξ在x 与x +Δx 之间,即ΔF/Δx =f (ξ).由于Δx →0时,ξ→x ,而f (x )是连续函数,上式两边取极限有00limlim ()lim ()()x x x Ff f f x x ξξξ∆→∆→→∆===∆,即F ′(x )=f (x ).另外,若f (x )在[a ,b ]上可积,则称函数ψ(x ) ()d bxf t t =⎰, x ∈[a ,b ]为f (x )在[a ,b ]上的积分下限函数,它的有关性质及运算可直接通过关系式()d ()d bxxbf t t f t t =-⎰⎰转化为积分上限函数而获得.例1 设f (x )∈C ((-∞,+∞)),且满足方程1618120()d ()d 89xx x f t t t f t t =++⎰⎰,求f (x ).解 在方程两端对变量x 求导得21517()()22f x x f x x x =-++,即 (1+x 2)f (x )=2x 15(1+x 2), 故f (x )=2x 15.例2 计算下列导数:(1)sin 0d ()d d x f t t x ⎰; (2) 32d e d d x tx t x -⎰. 解 (1) ()sin sin 00d d dsin ()d ()d d dsin d x x xf t t f t t x x x=⎰⎰ (sin )cos f x x = .(2) 332200d de d e d e d d d x x t t tx x t t t x x ---⎛⎫=+ ⎪⎝⎭⎰⎰⎰ 2300d de d e d d d x x t tt t x x --=-+⎰⎰232e 2e 3x x x x --=-+ 2322e 3e x x x x --=-+.对于一般情形,我们有下述结论:设f (x )∈C ([a ,b ]),u (x )和v (x )为可导函数,且u (x )∈[a ,b ],v (x )∈[a ,b ],则有()()d ()d (())()(())()d u x v x f t t f u x u x f v x v x x''=-⎰. 读者可利用复合函数求导法则证明此结论. 例3 求21cos 2e d limt xx t x-→⎰.解 易知这是一个型的未定式,我们用洛必达法则来计算 ()22cos 11cos 22e d e d limlim()xt t xxx x ttxx --→→'-='⎰⎰2cos 0e sin 1lim 22ex x x x -→==. 例4 求02()()d limxx f t x t t x →-⎰,其中f (x )是(-∞,+∞)内的连续函数.解 由于()()d ()d ()d xxxf t x t t x f t t tf t t -=-⎰⎰⎰,且 00lim()d 0xx f t t →=⎰故 ()22()d ()d ()()d limlim()xxxxx x x f t t tf t tf t x t t xx →→'--='⎰⎰⎰()d ()()lim2xx f t t xf x xf x x→+-=⎰()d ()1limlim(0)222xx x f t t f x f x→→===⎰. 二、 微积分基本公式现在我们用定理1来证明一个重要定理,它给出了用原函数计算定积分的公式. 定理2设函数f (x )在[a ,b ]上连续,F (x )是f (x )在[a ,b ]上的一个原函数,则()d ()()baf x x F b F a =-⎰. (6-2-1)证 因为F (x )与()d xaf t t ⎰都是f (x )在[a ,b ]上的原函数,所以它们只能相差一个常数C ,即()d ()xaf t t F x C =-⎰.令x =a ,由于()d 0aaf t t =⎰,得C = -F (a ),因此()d ()()xaf t t F x F a =-⎰.在上式中令x =b ,得()d ()()baf t t F b F a =-⎰.为方便起见,以后把F (b )-F (a )记成()bF x a,于是(6-2-1)式又可写成 ()d ()babf x x F x a=⎰.通常称公式(6-2-1)为微积分基本公式或牛顿-莱布尼茨公式,它表明:一个连续函数在[a ,b ]上的定积分等于它的任意一个原函数在[a ,b ]上的改变量.这个公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系,给定积分提供了一个有效而简便的计算方法.下面我们举几个应用公式(6-2-1)来计算定积分的简单例子.例5 计算120d x x ⎰.解 由于313x 是x 2的一个原函数,故由公式(6-2-1)有112311d 33x x x ==⎰. 例6 计算. 解x x =20sin cos d x x x π=-⎰2204(sin cos )d (sin cos )d x x x x x x πππ=-+-⎰⎰2404(sin cos )(sin cos )x x x x πππ=++--2=.习题6-21. 求下列导数:(1)20d d x t x ⎰; (2) 53ln 2d e d d x t t t x-⎰; (3) cos 2sin cos()d x x t t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22d sin d d x t t x tπ⎰ (x >0). 2. 求下列极限:(1) 02arctan d limxx t t x→⎰; (2) 2020sin 3d lime d x xx tt t t t→-⎰⎰; (3)()22220e d lime d xt xx t t t t→⎰⎰.3. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数y =y (x )的导数.4. 当x 为何值时,I (x )= 2e d xt t t -⎰有极值?5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩(4){}222max 1,d x x -⎰.6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u t x →⎡⎤⎢⎥⎣⎦-⎰⎰. 第三节 定积分的换元法由上节知道,计算定积分()d baf x x ⎰的简便方法是把它转化为求f (x )的原函数的增量,在第五章中,我们知道用换元法可以求出一些函数的原函数.因此,在一定条件下,可以用换元法来计算定积分.我们有下面的定理.定理 假设f (x )在[a ,b ]上连续,函数x =φ(t )满足条件: (1) 当t ∈[α,β]时,a ≢φ(t )≢b ,且φ(α)=a ,φ(β)=b , (2) φ(t )在[α,β]上具有连续导数,则有()d (())()d baf x x f t t t βαϕϕ'=⎰⎰. (6-3-1)公式(6-3-1)叫做定积分的换元公式.证 由假设知,上式两边的被积函数都是连续的,因此不仅上式两端的定积分都存在,而且由上节定理1知,被积函数的原函数也都存在.所以(6-3-1)式两边的定积分都可用牛顿莱布尼茨公式计算.现假设F (x )是f (x )的一个原函数,则()d ()()baf x x F b F a =-⎰,又由复合函数的求导法则知Φ(t )=F (φ(t ))(t ∈(α,β))是f (φ(t ))φ′(t )的一个原函数,所以(())()d (())(())()()f t t t F F F b F a βαϕϕϕβϕα'=-=-⎰,故()d (())()d baf x x f t t t βαϕϕ'=⎰⎰.这就证明了换元公式.应用换元公式时有两点值得注意:(1) 用x =φ(t )把原来变量x 代换成新变量t 时,原积分限也要换成相应于新变量t 的积分限;(2) 求出f (φ(t ))φ′(t )的一个原函数Φ(t )后,不必像计算不定积分那样把Φ(t )变换成原来变量x 的函数,而只要把新变量t 的上、下限分别 代入Φ(t )中,然后相减就行了.例1计算x ⎰(a >0). 解 设x =a sin t ,则d x =a cos t d t ,且 当x =0时,t =0;当x =a 时,t =2π. 于是222220cos d (1cos 2)d 2a x at t t t ππ==+⎰⎰⎰22201sin 2224a at t ππ⎡⎤=+=⎢⎥⎣⎦.换元公式也可反过来使用.为使用方便起见,把换元公式中左右两边对调位置,同时把t 改记为x ,而x 改记为t ,得(())()d ()d f x x x f t t ββααϕϕ'=⎰⎰.于是,我们可用t =φ(x )来引入新变量t ,而α=φ(a ),β=φ(b ).例2计算4x ⎰. 解 设t,则x =212t x -=,d x =t d t ,且当x =0时,t =1;当x =4时,t =3,于是343210111(3)d (3)223tx t t t =+=+⎰⎰127122(9)(3)2333⎡⎤=+-+=⎢⎥⎣⎦. 例3 计算520cos sin d x x x π⎰.解 设t =cos x ,则d t = -sin x d x ,且当x =0时,t =1;当x =2π时,t =0,于是1601555201001cos sin d d d 66t x x x t t t t π⎡⎤=-===⎢⎥⎣⎦⎰⎰⎰.在例3中,如果我们不明显地写出新变量t ,那末定积分的上、下限就不要变更.55220cos sin d cos d(cos )x x x x x ππ=-⎰⎰260cos 11(0)666x π⎡⎤=-=--=⎢⎥⎣⎦. 例4设f (x )∈C ([-a ,a ]),试证: (1)[]0()d ()()d aaaf x x f x f x x -=--⎰⎰;(2) 当f (x )为奇函数时,()d 0aaf x x -=⎰;(3) 当f (x )为偶函数时,0()d 2()d aa af x x f x x -=⎰⎰.证 (1) 由于()d ()d ()d aaaaf x x f x x f x x --=+⎰⎰⎰,在()d af x x -⎰中,设x = -t ,则()d ()d ()d a aaf x x f t t f x x -=--=⎰⎰⎰.故[]0()d ()d ()d ()()d aaaaaf x x f x x f x x f x f x x -=-+=-+-⎰⎰⎰⎰.(2) 当f (x )是奇函数时,f (-x )+f (x )=0,因此()d 0aaf x x -=⎰.(3)当f (x )是偶函数时,f (-x )+f (x )=2f (x ),因此()d 2()d a aaf x x f x x -=⎰⎰.利用例4的结论,常可简化在对称区间上的定积分的计算.例5 求下列定积分44d 1sin xxππ-+⎰.解 由于被积函数为非奇非偶函数,由例4(1)知402444004d 11()d 2sec d 2tan 21sin 1sin 1sin x x x x xx x xπππππ-=+===+-+⎰⎰⎰.例6 设函数f (x )在[0,1]上连续,试证(1)2200(sin )d (cos )d f x x f x x ππ=⎰⎰;特别地,220sin d cos d nn x x x x ππ=⎰⎰ (n 为非负整数);(2)00(sin )d (sin )d 2xf x x f x x πππ=⎰⎰,并由此计算20sin d 1cos x x x x π+⎰. 证 (1) 设x =2t π-,则d x = -d t ,且当x =0时,t =2π; x =2π时,t = 0,于是0202(sin )d (sin())d 2f x x f t t πππ=--⎰⎰220(cos )d (cos )d f t t f x x ππ==⎰⎰.特别地,取f (x )=x n 在[0,1]上连续,由上述证明有220sin d cos d nn x x x x ππ=⎰⎰.(2) 设x =π-t ,则d x = -d t ,且当x =0时,t =π;x =π时,t =0;于是(sin )d ()(sin())d ()(sin )d xf x x t f t t t f t t πππ=-π-π-=π-⎰⎰⎰(sin )d (sin )d (sin )d (sin )d f t t tf t t f x x xf x x ππππ=π-=π-⎰⎰⎰⎰.因此0(sin )d (sin )d 2xf x x f x x πππ=⎰⎰.利用结论(2)得222000sin sin d cos d d 1cos 21cos 21cos x x x xx x x x xπππππ==-+++⎰⎰⎰ 20arctan(cos )24x πππ=-=. 例7 设f (x )是(-∞,+∞)内的连续函数,且满足()d 1cos xtf x t t x -=-⎰,求f (x ).解 由u =x -t ,故t =x -u ,d t = -d u ,且当t = 0时,u = x ;t = x 时,u =0.于是00()d ()()d ()()d xxxtf x t t x u f u u x u f u u -=--=-⎰⎰⎰()d ()d x xx f u u uf u u =-⎰⎰,因此f (x )满足()d ()d 1cos x xx f u u uf u u x -=-⎰⎰.上式两边对x 求导,得()d sin xf u u x =⎰.两边对x 求导,得f (x )=cos x .例8 设函数f (x )= 21,101cos e ,0x x x x x -⎧-≤≤⎪+⎨⎪≥⎩,求41(2)d f x x -⎰.解 设u =x -2,则当x =1时,u =-1;当x =4时,u =2.于是4211(2)d ()d f x x f u u --=⎰⎰20210d e d 1cos u uu u u --=++⎰⎰2024101111tan e tan e 22222u u ---=-=-+. 习题 6-31. 计算下列积分: (1)3sin()d x x πππ+3⎰; (2) 32d (115)x x 1-+⎰;(3)1x -⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos d u u ππ6⎰; (6)2e 1⎰(7)1; (8)x ;(9)ln 3ln 2d e e x xx --⎰; (10) 322d 2xx x +-⎰;(11)1x ⎰; (12) 22x ππ-⎰.2. 利用被积函数的奇偶性计算下列积分值:(1)ln(aa x x -+⎰(a 为正常数);(2) 325425sin d 21x xx x x -++⎰; (3) 4224cos d θθππ-⎰.3. 证明下列等式: (1)23211()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正整数);(2)证明:11221d d 11xx x x x x =++⎰⎰ (x >0); (3) 设f (x )是定义在(-∞,+∞)上的周期为T 的连续函数,则对任意a ∈[-∞,+∞),有()d ()d a TTaf x x f x x +=⎰⎰.4. 若f (t )是连续函数且为奇函数,证明()d xf t t ⎰是偶函数;若f (t )是连续函数且为偶函数,证明()d xf t t ⎰是奇函数.5. 设f (x )在(-∞,+∞)内连续,且F (x )= 0(2)()d xx -t f t t ⎰,试证:若f (x )单调不减,则F (x )单调不增.第四节 定积分的分部积分法利用不定积分的分部积分法及牛顿莱布尼茨公式,即可得出定积分的分部积分公式.设函数u =u (x ),v =v (x )在区间[a ,b ]上具有连续导数u ′(x ),v ′(x ),则有(uv )′=u ′v +uv ′.分别求等式两端在[a ,b ]上的定积分,并注意到()d bb a auv x uv '=⎰,便得d d b bb aaa uvu v x uv x ''=+⎰⎰,移项,就有d d bbb a aauv x uv vu x ''=-⎰⎰,或简写为 d d b bb a aau v uv v u =-⎰⎰.这就是定积分的分部积分公式.例1 计算120arcsin d x x ⎰.解1201120arcsin d arcsin x x x xx =-⎰⎰112222011(1)d(1)262x x -π=+--⎰12011212ππ==. 例2 计算2e 2eln d (1)xx x -⎰. 解2222e e e e e 2eee l n 1l n dd l n d ()(1)11(1)x x x x x x x x x x =-=-+----⎰⎰⎰ 2e e 111d e +11x x x ⎛⎫=+- ⎪-⎝⎭⎰ []2e e1ln(1)ln e +1x x =+--1ln(e +1)1e +1=+-. 例3计算x 1⎰.解 先用换元法.令t则x =t 2,d x =2t d t ,且当x =0时,t =0;当x =1时,t =1,于是02e d t x t t 11=⎰⎰.再用分部积分法计算上式右端的积分:1100e d de e e d e e 1t t t t tt t t t t 111==-=-=⎰⎰⎰.因此2e d 212t x t t 11==⨯=⎰⎰.例4 设f (x )在[a ,b ]上可导,且f (a )=f (b )=0, 2()d 1baf x x =⎰,试求()()d baxf x f x x '⎰.解[]21()()d ()d ()d ()2bbb aaa xf x f x x xf x f x x f x '⎡⎤==⎣⎦⎰⎰⎰ 2211()()d 22b b a axf x f x x =-⎰ 110122=-⨯=-.例5 证明220sin d cos d nnx x x x ππ=⎰⎰;并求20sin d n n I x x π=⎰.证 令x =2t π-,则当x =0时,t =2π;当x =2π时,t =0.故 022002sin d sin ()d cos d 2nnn x x t t x x ππππ=--=⎰⎰⎰.1220sin d sin d cos nn n I x x x x ππ-==-⎰⎰201220sincos cos (1)sin cos d n n x xx n x x x ππ--=-+-⎰2220(1)sin (1sin )d n n x x x π-=--⎰2(1)(1)n n n I n I -=---,由此得到递推公式:21n n n I I n--=. 又易求得200d 2I x ππ==⎰,210sin d 1I x x π==⎰,故当n 为偶数时13312422n n n I n n --π=- , 当n 为奇数时1342253n n n I n n --=- . 习题6-41. 利用分部积分公式证明:()()()d ()d d xxuf u x u u f x x u -=⎰⎰⎰.2. 计算下列定积分:(1)10e d xx x -⎰; (2)e1ln d x x x ⎰;(3)41x ⎰; (4) 324d sin xx xππ⎰; (5) 220e cos d xx x π⎰; (6) 221log d x x x ⎰;(7)π2(sin )d x x x ⎰; (8) e1sin(ln )d x x ⎰;(9)230e d x x ; (10)1201lnd 1xx x x+-⎰. 3. 已知f (2)= 12,f ′(2)=0, 20()d 1f x x =⎰,求220()d x f x x ''⎰.第五节 定积分的应用本节中,我们将运用前面学过的定积分理论来分析和解决一些实际问题.一、 建立定积分数学模型的微元法由定积分定义可知,若f (x )在[a ,b ]上可积,则对于[a ,b ]的任一划分a =x 0<x 1<…<x n =b 及[x i -1,x i ]中任一点ξi ,有1()d lim ()nbi i ai f x x f x λξ→==∆∑⎰, (6-5-1)这里Δx i =x i -x i -1(i =1,2,…,n ),λ={}1max i i nx ≤≤∆,此式表明定积分的本质就是某一特定和式的极限.基于此,我们可以将一些实际问题中有关量的计算问题归结为定积分的计算.例如,前面我们所介绍过的曲边梯形面积的计算问题就是归结为定积分来计算的,其归结过程概括地说就是“划分作近似,求和取极限”,也就是将整体化成局部之和,利用整体上变化的量局部上近似于不变这一辩证关系,局部上以“不变”代表“变”,这就是我们建立定积分数学模型的基本方法,也是我们利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中的所求量Q 符合下列条件:(1) 建立适当的坐标系和选择与Q 有关的变量x 后,Q 是一个与定义在某一区间[a ,b ]上的可积函数q (x )有关的量;(2) Q 对于区间[a ,b ]具有可加性,即如果把区间[a ,b ]任意分成n 个部分区间[x i -1,x i ](i =1,2,…,n ),则Q 相应地分成n 个部分量ΔQ i ,而Q =1nii Q ∆=∑.(3) 部分量ΔQ i 可近似表示为q (ξi )Δx i (ξi ∈[x i -1,x i ]),且ΔQ i -q (ξi )Δx i =o (Δx i ). 那么,我们即可获得所求量Q 的定积分数学模型:1lim ()()d nbi i ai Q q x q x x λξ∆→===∑⎰,其中λ={}1max i i nx ≤≤∆,Δx i =x i -x i -1.而在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间[x i -1,x i ]略去下标,记作[x ,x +Δx ],称其为典型小区间,然后求出相应于这个小区间的部分量ΔQ 的近似值.如果ΔQ 能近似地表示成[a ,b ]上一个可积函数在x 处的值q (x )与Δx 的积,且ΔQ =q (x )Δx +o (Δx ), (6-5-2)就把q (x )Δx 称为Q 的微元(或称元素),记作d Q =q (x )Δx . (6-5-3)事实上,对任意x ∈[a ,b ],若用Q (x )记为区间[a ,x ]所对应的部分量,则Q (a )=0,Q (b )=Q ,且[x ,x +Δx ]所对应的部分量为ΔQ =Q (x +Δx )-Q (x ). (6-5-4)由(6-5-2)式与(6-5-4)式表明(6-5-3)式右端q (x )Δx 即为Q (x )的微分,从而Q=Q(b )-Q (a ) ()()d =()d Q b bQ a aQ q x x =⎰⎰. (6-5-5)对自变量x 来说,注意到我们有d x =Δx 的规定,因此,习惯上我们将[x ,x +d x ]作为典型小区间.上述建立定积分数学模型的方法称为微元法.值得注意的是,在利用上述微元法建模的过程中,证明ΔQ-q (x )Δx =o (Δx )是十分关键的.但对于一些初等问题,这一事实往往比较明显,因此也就常常省去了这一步.下面,我们利用微元法来解决一些实际问题. 二、 定积分的几何应用1. 平面图形的面积 由定积分的几何意义我们知道:若f (x )∈C ([a ,b ])且对任意x ∈[a ,b ]有f (x )≣0,则()d baf x x⎰表示由曲线y =f (x ),直线x =a 和x =b 及x 轴所围曲边梯形的面积.一般地,由平面曲线所围平面图形的面积,在边界曲线为已知时,均可用定积分来求得.图6-5设一平面图形由连续曲线y =f (x ),y =g (x )及直线x =a 和x =b (a <b )所围(图6-5).为了求该平面图形的面积A ,我们在[a ,b ]上取典型小区间[x ,x +d x ],相应于典型小区间的面积部分量ΔA 近似地等于高为︱f (x )-g (x )︱,宽为d x 的窄矩形的面积(图6-5),从而得到面积微元d A =︱f (x )-g (x )︱d x , 所以 =()()d baA f x g x x -⎰. (6-5-6)类似地,若平面图形由连续曲线x =ψ(y ),x =φ(y )及直线y =c 和y =d (c <d )所围成(图6-6),则其面积A 为=()()d dcA y y x ψϕ-⎰. (6-5-7)图6-6我们看到(6-5-6)式的积分是以x 为积分变量,(6-5-7)式的积分是以y 为积分变量. 例1 计算由抛物线y =-x 2+1与y =x 2-x 所围图形的面积A .图6-7解 两抛物线交点由221,y x y x x⎧=-+⎨=-⎩ 解得13(,)24-及(1,0),于是图形位于直线x = 12-与x =1之间(图6-7).取x 为积分变量,由(6-5-6)式得12212(1)()d A x x x x =-+--⎰1212(21)d x x x =-++⎰3211221()32x x x -=-++=98. 例2 计算抛物线y 2=2x 与直线y =x -4所围图形的面积A . 解 两线交点由22,4y x y x ⎧=⎨=-⎩图6-8解得为(2,-2)及(8,4).这时宜取y 为积分变量,因图形(图6-8)位于直线y = -2和y =4之间,于是由(6-5-7)式得22344224d (4)18226y y y A y y y --=+-=+-=⎰.例3 求由曲线y =sin x ,y =cos x 及直线x =0, 2x π=所围图形的面积A .图6-9解 两线交点由sin ,cos y x y x =⎧⎨=⎩解得(4π,如图6-9所示. 取x 为积分变量,由(6-5-6)式有4204(cos sin )d (cos sin )d A x x x x x x πππ=-+-⎰⎰424(sin cos )(cos sin )x x x x πππ=++--=1).例4 求椭圆22221x y a b+=所围图形的面积A .图6-10解 因为椭圆关于两坐标轴对称(图6-10),所以椭圆所围图形的面积是第一象限内那部分面积的4倍,再由(6-5-6)式,即有4A x =⎰. 应用定积分换元法,令x =a cos t (0≢t ≢π2), 则 y =b sin t , d x =-a sin t d t . 当x =0时,t =2π;当x =2π时,t =0.于是 024sin (sin )d A b t a t t π=-⎰2204sin d 44abt t ab ab ππ===π⎰.2. 旋转体的体积V图6-11考虑介于过x 轴上点x =a 及x =b 且垂直于x 轴的两平行平面之间的立体(图6-11),设在x (a ≢x ≢b )处垂直于x 轴的截面面积可以用x 的连续函数A (x )来表示.为了求其体积,我们在[a ,b ]内取典型小区间[x ,x +d x ],用以底面积为A (x ),高为d x 的柱体体积近似于典型小区间[x ,x +d x ]对应的体积部分量,则得体积元素d V=A (x )d x , 从而 ()d baV A x x =⎰(6-5-8)类似地,对于介于过y 轴上点y =c 及y =d 且垂直于y 轴的两平行平面之间的立体,若在y (c ≢y ≢d )处垂直于y 轴的截面面积可以用y 的连续函数B (y )来表示,则其体积为()d dcV B y y =⎰. (6-5-9)图6-12现在考虑旋转体,所谓旋转体就是由一平面图形绕这平面内一条定直线旋转一周而成的 立体.如图6-12所示,设旋转体是由曲线y =f (x ),直线x =a ,x =b (a <b )和x 轴所围成的曲边梯形绕x 轴旋转一周而成的,则对任意x ∈[a ,b ],相应于x 处垂直于x 轴的截面是一个圆盘,其面积为πf 2(x ),从而由(6-5-8)式知其体积2()d bx aV f x x =π⎰. (6-5-10)类似地,若旋转体是由曲线x =φ(y ),直线y =c ,y =d (c <d )和y 轴所围成的曲边梯形绕y 轴旋转一周而成的,则其体积为2()d dy cV y y ϕ=π⎰. (6-5-11)例5计算由椭圆22221x y a b+=所围图形绕x 轴旋转而成的旋转体(称为旋转椭球体,见图6-13)的体积.解 这个旋转体实际上就是半个椭圆y =x 轴所围曲边梯形绕x 轴旋转而成的立体,于是由公式(6-5-10)得2223222222022204()d 2()d 2()33aa ax a b b b x V a x x a x x a x ab a a a -=π-=π-=π-=π⎰⎰ 特别地,当a =b 时就得到半径为a 的球的体积343a π.图6-13 图6-14例6 求由曲线y =2x -x 2和x 轴所围图形绕y 轴旋转一周所得旋转体的体积.解 如图6-14所示,y =2x -x 2的反函数分为两支,1x = (0≢y ≢1)和1x = (0≢y ≢1).由(6-5-11)式,所得旋转体的体积为((22111d 1d y V y y =π-π⎰⎰((221011d y ⎡⎤=π-⎢⎥⎣⎦⎰312844(1)3y y 2=π=-π-=π3⎰. 三、 定积分的经济学应用1. 由边际函数求总函数设某产品的固定成本为C 0,边际成本函数为C ′(Q),边际收益函数为R ′(Q ),其中Q 为产量,并假定该产品处于产销平衡状态,则根据经济学的有关理论及定积分的微元分析法易知:总成本函数C (Q )=00()d QC Q Q C '+⎰; 总收益函数R (Q )= 0()d QR Q Q '⎰;总利润函数L (Q )=[]0()()d QR Q C Q Q C ''--⎰.例7设某产品的边际成本为C ′(Q )=4+4Q(万元/百台),固定成本C 0=1(万元),边际收益R ′(Q )=8-Q (万元/百台),求:(1) 产量从100台增加到500台的成本增量; (2) 总成本函数C (Q )和总收益函数R (Q );(3) 产量为多少时,总利润最大?并求最大利润.解 (1) 产量从100台增加到500台的成本变化量为2555111()d (4)d 41948Q Q C Q Q Q Q ⎛⎫'=+=+= ⎪⎝⎭⎰⎰ (万元). (2) 总成本函数200()()d (4)d 14148Q QQ Q C Q C Q Q C Q Q '=+=++=++⎰⎰,总收益函数200()()d (8)d 82Q QQ R Q R Q Q C Q Q Q '=+=-=-⎰⎰.(3)总利润函数2225()()()(8)(41)41288Q Q L Q R Q C Q Q Q Q Q =-=--++=-+-,5()44L Q Q '=-+.令L ′(Q )=0,得惟一驻点Q =3.2(百台),又因L ″(3.2)= - 54<0,所以当Q =3.2(百台)时,总利润最大,最大利润为L (3.2)=5.4(万元).2. 消费者剩余和生产者剩余图6-15市场经济中,生产并销售某一商品的数量可由这一商品的供给曲线与需求曲线来描述.供给曲线描述的是生产者根据不同的价格水平所提供的商品数量,一般假定价格上涨时,供应量将会增加.因此,把供应量看成价格的函数,这是一个增函数,即供给曲线是单调递增的.需求曲线则反映了顾客的购买行为.通常假定价格上涨,购买量下降,即需求曲线随价格的上升而单调递减(图6-15).需求量与供给量都是价格的函数,但经济学家习惯用纵坐标表示价格,横坐标表示需求量或供给量.在市场经济下,价格和数量在不断调整,最后趋向于平衡价格和平衡数量,分别用P *和Q*表示,也即供给曲线与需求曲线的交点E .在图6-15中,P 0是供给曲线在价格坐标轴上的截距,也就是当价格为P 0时,供给量是零,只有价格高于P 0时,才有供给量;P 1是需求曲线的截距,当价格为P 1时,需求量是零,只有价格低于P 1时,才有需求;Q 1则表示当商品免费赠送时的最大需求量.在市场经济中,有时一些消费者愿意对某种商品付出比他们实际所付出的市场价格P *更高的价格,由此他们所得到的好处称为消费者剩余(C S ).由图6-15可以看出:C S =()d Q D Q Q P Q ***-⎰,式中,()d Q D Q Q *⎰表示消费者愿意支出的货币量.P Q **表示消费者的实际支出,两者之差为消费者省下来的钱,即消费者剩余.同理,对生产者来说,有时也有一些生产者愿意以比市场价格P *低的价格出售他们的商品,由此他们所得到的好处称为生产者剩余(PS ),如图6-15所示,有PS 0()d Q P Q S Q Q ***=-⎰.例8 设需求函数D (Q )=24-3Q ,供给函数为S (Q )=2Q +9,求消费者剩余和生产者剩余. 解 首先求出均衡价格与供需量. 由24-3Q =2Q +9,得Q *=3, P *=15.C S 32300327(243)d 153(24)4522Q Q Q Q =--⨯=--=⎰;。

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。

本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。

一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。

通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。

定积分的结果是一个数值。

二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。

例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。

这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。

三、定积分的物理应用定积分在物理学中有广泛的应用。

例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。

定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。

四、定积分的经济学应用定积分在经济学领域也被广泛应用。

例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。

定积分可以将变化的价格和数量转化为面积,以方便计算。

五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。

例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。

定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。

六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。

例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。

定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。

七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。

根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。

八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。

六章定积分应用ppt课件

六章定积分应用ppt课件

WF(ba)
F
a
b
若F 为变力,力对
物体所作的功W=?
例1 带电量为q0与q1的正电荷分别放在空间两点, 求当q1沿a与b连线从a移到b时电场力所作的功。
解: 如图建立坐标系:在上述移动过程中,电场
对q1作用力是变化的。
(i)取r为积分变量,则 r[a,b] q0
q1
(ii)相应于[a,b]上任一小区间[r,r+dr] o a
br
的功元素
dW Fdrkq0q1dr
(iii)所求功
r2
W
b
k
a
qr0q21dr
kq0q1
(1) r
b a
kq0q1(1ab1)
例2 在底面积为S的圆柱形容器中盛有一定量的气体。在等 温条件下,由于气体膨胀,把容器中的一个活塞(面积为S) 从点a推移至b,计算在移动过程中气体压力所作的功。
解: 如图建立坐标系,活塞位置可用坐标x表示。
引力
问题的提出:从物理学知道,质量分别为m1、m2,相
距为r的两质点间的引力大小为
F Gmr1m2 2
其中G为引力系数,引力的方向沿着两质点的连线。
如何计算一根
细棒对一个质点的 引力F=?
r
o
m1
m2 x
例6 设有一长度为l、线密度为的均匀细棒,在
其中垂线上距棒a单位处有一质量为m 的质点M。
试计算该棒对质点M的引力。
x
问题的解决方法: 定积分元素法
以液面为y轴,x轴铅直向下。
设平板铅直位于液体中形状如图。
o
距离液面x、高为dx、宽为f(x) 的
矩形平板所受压力的近似值,即压力 元素为
a x x+dx

定积分及其应用

定积分及其应用

①.若a=b, 则
b
f (x)dx 0.
a
②.若a>b, 则
b
a
f(x)dx f(x)dx.
a
b
从而可消除对定积分上下限的大小限制.
四.定积分的几何意义
由定义1知, 当连续函数
f (x) 0 且a<b时, 定积分
b f ( x ) d x 表示一个在 x 轴上方的曲边梯形的面积; a
当 f (x) 0, 且 a < b时,
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0,
故可将此区间的高近似看为一个常量,
从而此区间对应的小窄曲边梯形CEFH
y
y=ƒ(x)
A
C
B
Δy {
DH
的面积近似等于小窄矩形DEFH的面积.
oa
EF
x x+Δx b x
因而, 如果把区间[a, b]任意地划分为n个小区间, 并在每一
就有定积分的定义:
定义1.设ƒ(x)在[a, b]上有定义, 点 a x 0 x 1 x 2 x n 1 x n b
将区间[a, b]任意地划分为n个小区间; 每个小区间
[ xi1 , xi ]
的长度为 xi xi xi1(i1,2, ,n),在每个小区间 [ xi1 , xi ]
n
个区间上任取一点, 再以该点的高来近似代替该小区间上窄曲边 梯形的高, 从而每个窄曲边梯形就可近似地
视为一个小窄矩形, 而且全部窄矩形的面积之和也可作为曲边 梯形面积的近似值.
要想得精确值, 只需区间[a, b]的分法无限细密(即每个小区 间的长度Δ x →0)时, 全部窄矩形的面积之和的极限一定是曲边

第六章 定积分及其应用

第六章 定积分及其应用
β α
称为定积分的换元公式. 称为定积分的换元公式
定理2.4 设u(x),v(x)在区间 在区间[a,b]上有连续导数,则 上有连续导数, 定理 在区间 上有连续导数
∫ u( x) v′( x) dx = u( x)v( x)
a
b
b a
− ∫ u ′( x ) v ( x ) dx.
a
b
称为定积分的分部积分公式. 称为定积分的分部积分公式 例2 计算下列定积分
注: (1)定积分仅与被积函数及积分区间有关 , 而与积分变量 定积分仅与被积函数及积分区间有关 用什么字母表示无关.即 用什么字母表示无关 即

b
a
f ( x ) d x = ∫ f (t ) d t = ∫ f (u ) d u.
a a
b
b
(2)定积分的几何意义 定积分的几何意义: 定积分的几何意义
A=∫
b
1
1 1 dx = − 2 x x

1
1 = 1− . b
b
性质2 被积函数中的常数因子可以提到积分号的前面,即 性质 被积函数中的常数因子可以提到积分号的前面,

b
a
k f ( x ) dx = k ∫ f ( x ) dx
a
b
性质3 如果积分区间[a,b]被分点 分成区间 被分点c分成区间 性质 如果积分区间 被分点 分成区间[a,c]和[c,b],则 和 则
s ≈ ∑ v(ξ i ) ∆ t , (λ = max ∆ t i ).
i =1 1≤ i ≤ n n
(2)近似求和: )近似求和: (3)取极限: )取极限:
s = lim ∑ v (ξ i ) ∆ t i

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要内容之一,经常被应用于实际问题的解决中。

本文将从三个方面来论述定积分的应用。

一、定积分在几何中的应用首先,定积分可以用于求曲线下面的面积。

以 y=f(x) 为例,若f(x)>0,则曲线 y=f(x) 与 x 轴的两点 a、b 组成的图形的面积为S=∫baf(x)dx这时,可以将曲线 y=f(x) 分成许多小块,每块宽度为Δx,高度为 f(xi),从而可以得到其面积为ΔS=f(xi)Δx因此,当Δx 趋于 0 时,所有小块的面积之和就等于图形的面积,即∑ΔS→S因此,用定积分就可以求出图形的面积。

其次,定积分还可以用于求旋转体的体积。

以曲线 y=f(x) 在 x 轴上旋转360°为例,其体积为V=π∫baf(x)^2dx这里,π为圆周率。

最后,定积分还可以用于求某些奇特图形的长、面积等等。

二、定积分在物理中的应用物理中也有许多问题可以通过定积分来解决。

比如,运动问题中的速度、加速度,可以通过位移的变化来求得。

若某运动物体的速度为 v(t),则其位移 s(t) 为s(t)=∫v(t)dt同样,若某运动物体的加速度为 a(t),速度为 v(t),则其位移为s(t)=∫v(t)dt=∫a(t)dt最后,定积分还可以用于求密度、质量等物理量。

三、定积分在工程中的应用定积分在工程中的应用也非常广泛。

比如,在流体力学中,对于一条管道中的液体,可以通过惯性和重力等因素,求出其中液体的流量和压力。

而这些流量和压力可以通过定积分计算得出。

在电学中,电量、电荷、电流和电势等都可以通过定积分来求解。

在结构设计中,定积分也常常被用来计算约束力、杠杆比例等。

总之,定积分在几何、物理和工程等领域中都有着广泛应用。

熟练地掌握定积分的方法和应用,对于科学研究和实际问题的解决都有着非常积极的帮助。

微积分第2版-朱文莉第6章 定积分及其应用习题详解

微积分第2版-朱文莉第6章 定积分及其应用习题详解

第六章 定积分及其应用习题 6.1 (A)1、 利用定积分的定义计算积分baxdx ⎰;解 将区间[]b a ,n 等分, 则每个小区间的长度均为nab x i -=∆,取每个小区间的左端点为i ξ,则)1,...,2,1,0(,-=-+=n i i nab a i ξ, 所以⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-++++-+-=--+=∆=∑∑-=-=)1...210(1)()()(110n n a b na n a b n a b i n a b a x f S n i n i i i n ξ ⎥⎦⎤⎢⎣⎡-⋅-+-=⎥⎦⎤⎢⎣⎡-⋅-+-=)11(2)(2)1()(2n a b a a b n n n a b a a b 两边取极限,得)(21)2)(()11(2)(lim lim 22a b a b a a b n a b a a b S n n n -=-+-=⎥⎦⎤⎢⎣⎡-⋅-+-=∞→∞→ 所以221()2baxdx b a =-⎰.2、利用定积分的几何意义,证明下列等式。

(1)4π=⎰; (2)322cos 0xdx ππ-=⎰;(3)22sin 0xdx ππ-=⎰;(4)12π-=⎰。

证明 (1) 因为圆122=+y x 在第一象限的方程为21x y -=,所以根据定积分的几何意义知0⎰为圆在第一象限的面积,故4π=⎰.(2) 因为当ππ232≤≤-x 时,曲线x y cos =在x 轴的上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知322cos 0xdx ππ-=⎰.(3) 因为当22ππ≤≤-x 时,曲线x y sin =在x 轴上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知22sin 0xdx ππ-=⎰.(4) 因为圆122=+y x 在x 轴上方的方程为21x y -=,所以根据定积分的几何意义知1-⎰为圆在第一二象限的面积,故12π-=⎰.(B)1、利用定积分定义计算由抛物线21y x =+,两直线()x a x b b a ==>,及横轴所围成的图形的面积。

高等数学(微积分)课件--64定积分的应用

高等数学(微积分)课件--64定积分的应用

b
a
dA
b
a
f
( x)dx.
元素法(微元法)思想
• 一般说来,如果所求量U与x的变化区间[a,b]有关,且关于区间[a,b]具有可加性, 在[a,b]中的任意小区间[x,x+x]上找出U的部分量的近似值dU=f(x)dx,那么
U
b
dU
b f xdx
a
a
求量U的这种方法叫做定积分的元素法。
253
11
.
12
例题与讲解(选择适当的方法)
• 例:计算由曲线y2=2x和y=x-4直线所围成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2,2), (8,4).
y x4
y2 2x
选 y 为积分变量 y [2, 4]
dA
y
4
y2 2
dy,
A
4
dA 18.
2
12
例题与讲解
• 例*:求摆线
d
r ( )
d
面积元素 dA 1[ ( )]2 d
2
o
x
曲边扇形的面积
A 1[ ( )]2 d . 2
14
例题与讲解
• 例:求双纽线2=a2cos2所围平面图形的面积.
解 由对称性知总面积=4倍
第一象限部分面积
Hale Waihona Puke A 4A1A 4 4 0
1 a2 cos 2d
2
a2.
A
1
0 (
x
x2 )dx
2 3
3
x2
x3 3
1 0
1. 3
9
平面图形的面积(关于y积分)
• 1:介绍关于y轴积分的平面图形面积计算公式 • 2:重新做前面例题

定积分的计算与应用

定积分的计算与应用

定积分的计算与应用定积分是微积分的重要概念之一,用于计算曲线下的面积、质量、体积等问题。

本文将介绍定积分的计算方法和应用场景。

一、定积分的计算方法定积分的计算基于微积分中的积分运算,可以通过以下方法进行计算:1. 几何解释法:定积分可以视为曲线下的面积,因此可以利用几何图形的面积公式进行计算。

将曲线下的区域分割成无数个小矩形,并求取它们的面积之和,即可得到定积分的近似值。

通过增加小矩形的个数,可以不断提高计算精度。

2. 集合解释法:定积分可以被视为一组数的和,其中这组数是将函数值与对应的间隔长度相乘而得到的。

通过将曲线下的区域分割成若干个小区间,并计算每个小区间内的函数值与对应的间隔长度的乘积,再将这些乘积进行加和,即可得到定积分的近似值。

3. 牛顿-莱布尼茨公式:对于可微函数,可以使用牛顿-莱布尼茨公式进行定积分的计算。

该公式表达了函数的原函数(即不定积分)与定积分之间的关系。

通过求取函数的原函数,并在积分的上下限处进行代入计算,即可得到定积分的准确值。

二、定积分的应用场景定积分在物理学、经济学、工程学等领域都有广泛的应用。

以下将介绍一些常见的应用场景:1. 面积计算:最简单的应用是计算平面图形的面积。

通过确定曲线的方程以及积分的上下限,可以计算出曲线所围成区域的面积。

2. 质量计算:如果将曲线下的区域视为物体的密度分布,则可以利用定积分计算物体的质量。

通过将物体分割成无数个小区域,并计算每个小区域内的密度值与对应的区域面积的乘积,再将这些乘积进行加和,即可得到物体的总质量。

3. 体积计算:类似质量计算,定积分可以被用于计算三维物体的体积。

通过将物体分割成无数个小体积,并计算每个小体积的大小,再将这些体积进行加和,即可得到物体的总体积。

4. 概率计算:在概率论中,定积分可以用于计算随机变量的概率密度函数下的概率。

通过计算概率密度函数在某个区间上的定积分,可以得到该区间内事件发生的概率。

5. 积累量计算:定积分还可以用于计算积累量,例如距离、速度、加速度等。

(整理)微积分第六章定积分的应用

(整理)微积分第六章定积分的应用

第六章 定积分的应用本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。

一、教学目标与基本要求:使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题;掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等)二、本章教学内容的重点难点:找出未知量的元素(微元)的方法。

用元素法建立这些几何、物理的公式解决实际问题。

运用元素法将一个量表达为定积分的分析方法§6.1定积分的微小元素法一、内容要点1、复习曲边梯形的面积计算方法,定积分的定义面积A ⎰∑=∆==→bani i i dx x f x f )()(lim 1ξλ面积元素dA =dx x f )(2、计算面积的元素法步骤: (1)画出图形;(2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形;(3)计算出面积元素;(4)在面积元素前面添加积分号,确定上、下限。

二、教学要求与注意点掌握用元素法解决一个实际问题所需要的条件。

用元素法解决一个实际问题的步骤。

§6.2 定积分在几何中的应用一、内容要点1、在直角坐标系下计算平面图形的面积方法一面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰第一步:在D 边界方程中解出y 的两个表达式)(1x y ϕ=,)(2x y ϕ=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ϕ)(2x ϕ=解出,b x a ≤≤,)()(21x y x ϕϕ≤≤,面积S =x x x bad )]()([12ϕϕ-⎰方法二面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dcd )]()([12ϕϕ-⎰第一步:在D 边界方程中解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=.第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ϕ)(2y ϕ=解出,d y c ≤≤,)()(21y x y ϕϕ≤≤,面积S =y y y d cd )]()([12ϕϕ-⎰例1 求22-=x y ,12+=x y 围成的面积解⎪⎩⎪⎨⎧+=-=1222x y x y ,1222+=-x x ,1-=x ,3=x 。

微积分教学课件第6章定积分第4节定积分的应用

微积分教学课件第6章定积分第4节定积分的应用

y
y f (x)
y | f (x)|
ao
b
x
2
(2) 由连续曲线 y=f(x), y=g(x), 直线 x=a, x=b (a<b)
所围成的平面图形的面积:
若 f (x) g(x),
y
y f (x)
面积:
y g(x)
a o x x dx
b
x
b
S a [ f ( x) g( x)]dx
第四节 定积分的应用
一、平面图形的面积
(1) 由连续曲线 y = f (x) ( f (x) 0), 直线 x=a, x=b (a<b)及x轴所围成的平面图形的面积
y
y f (x)
面积
S
b
f ( x)dx
a
a o x x dx b x
1
若f (x)有正有负, 则曲边梯形面积

b
S a | f ( x) |dx .
S(x)
a
x x+dx
bx
b
V a S( x)dx
14
例7 一平面经过半径为 R 的圆柱体的底圆中
心, 并与底面交成角 ,计算这平面截圆柱体所
得立体的体积.
解 建立坐标系如图,
R
垂直于 x轴的截面为直角
o
x
y
三角形,
R
截面面积 S( x) 1 (R2 x2 ) tan ,
x
2
所以立体体积
V 1 R (R2 x2 ) tan dx 2 R3 tan .
2 R
3
15
微元法
设V是总量,它是一些部分量ΔV 的和,在用定 积分求总量V 时,通常采用“微元法”,具体做法是:

高等数学-第六章-定积分的应用

高等数学-第六章-定积分的应用

两段积分, 故以 y 为积分变量.
y
A 3 (2y 3) y2 dy 32
1
3
3 y
s
弧线段局部
3
1 1 4 y2 dy
直线段局部
3 1
1 22 dy
O 1
3 37 5 5 1 ln(6 37) ln(2
4
x2y3 0 x
x y2
5)
作业
P284 3; 12; 18
第三节
第六章
定积分在物理学上的应用
一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题
一、 变力沿直线所作的功
设物体在连续变力 F(x) 作用下沿 x 轴从 x a 移动到
x b , 力的方向与运动方向平行, 求变力所做的功 .
在[a ,b]上任取子区间[x, x d x],在其上所作的功元
y
a
(1
cos
t)
(a 0)
y 2a
x x2 ( y)
绕 y 轴旋转而成的体积为
O
πa 2πa x
Vy
2a 0
π
x22 ( y) d
y
2 0
a
π
x12
(
y)
d
y
x x1( y)
π πa2 (t sin t)2 a sin t d t
注意上下限 !
2 π
π πa2 (t sin t)2 a sin t d t
y y f (x)
x a , x b (a b) 及 x 轴所围曲
边梯形面积为 A , 那么
Oa x bx x dx
dA f (x) dx
b
A a f (x) dx

定积分的计算及应用

定积分的计算及应用

定积分的计算及应用定积分是微积分中的重要内容,主要用于计算曲线下的面积、求函数的平均值和求解各种几何问题。

本文将介绍定积分的计算方法和应用。

一、定积分的计算方法1.函数的不定积分和定积分在介绍定积分之前,先来了解一下不定积分。

不定积分是求函数的原函数,即给定一个函数f(x),求出它的一个原函数F(x),满足F'(x)=f(x)。

然后,定积分是不定积分的一个推广。

对于一个函数f(x),我们可以将其在[a,b]区间内的曲线下的面积分成无穷多个矩形小面积,然后将这些小面积相加,得到的极限值就是函数f(x)在[a,b]区间上的定积分。

2.基本积分法则计算定积分常用的方法是基本积分法则,它是通过一些基本的积分公式来计算积分。

下面是一些常见的基本积分公式:- 常数函数积分:∫k dx = kx + C,其中k为常数,C为常数;- 幂函数积分:∫x^n dx = (x^(n+1))/ (n+1) + C,其中n≠-1,C 为常数;- 指数函数积分:∫e^x dx = e^x + C,C为常数;- 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C,C为常数。

3.定积分的计算方法对于函数f(x)在[a,b]区间上的定积分,有以下计算方法:-用基本积分法则计算不定积分F(x);-确定积分上下限,将F(x)在a和b处的值代入,得到F(b)-F(a);-F(b)-F(a)即为函数f(x)在[a,b]区间上的定积分。

二、定积分的应用1.曲线下的面积定积分最常用的应用是计算曲线下的面积。

给定一个函数f(x),要计算它在[a,b]区间上曲线下的面积,可以通过定积分来实现。

具体步骤如下:-将[a,b]区间划分成n个小区间,每个小区间的宽度为Δx=(b-a)/n;- 在每个小区间上确定一个点xi,其中i=1,2,3,...,n;- 计算每个小区间上的矩形面积,即ΔS= f(xi) * Δx;-将n个小矩形的面积相加,即S≈Σ(ΔS);- 当n趋向于无穷大时,即Δx趋向于0,Σ(ΔS)趋向于定积分∫f(x)dx。

定积分的应用公式总结

定积分的应用公式总结

定积分的应用公式总结定积分是微积分中的重要概念,具有广泛的应用范围。

在实际问题中,定积分可以用于求解曲线下的面积、求解容积、质量、中心矩等问题。

接下来,我们将总结定积分的应用公式,包括面积、体积、质量、中心矩等几个重要应用。

1. 曲线下的面积定积分最常见的应用是求解曲线下的面积。

对于一个函数f(x),在区间[a, b]上,曲线y=f(x)与x轴所围成的面积可以通过定积分来计算。

公式为:S = ∫(a到b)f(x)dx其中S表示曲线下的面积,∫表示定积分,f(x)是函数曲线在x轴上的对应值。

2. 旋转体的体积定积分还可以用于计算旋转体的体积。

考虑一个曲线y=f(x),在[a, b]区间上绕x轴旋转一周,所形成的旋转体体积可以通过定积分来计算。

公式为:V = π∫(a到b)f(x)^2dx其中V表示旋转体的体积,π表示圆周率。

3. 弧长定积分可以用于计算曲线的弧长。

设有曲线y=f(x),在区间[a,b]上的弧长可以通过定积分来计算。

公式为:L = ∫(a到b)√(1+(f'(x))^2)dx其中L表示曲线的弧长,f'(x)表示f(x)的导数。

4. 质量和质心对于一条位于直角坐标系中的线密度分布曲线,其质量可以通过定积分来计算。

设密度函数为ρ(x),曲线上的质量可以表示为:m = ∫(a到b)ρ(x)dx其中m表示曲线上的质量,ρ(x)表示密度函数。

同时,还可以通过定积分来计算曲线的质心。

曲线的质心可以通过以下公式来计算:x_c = (1/m)∫(a到b)xρ(x)dxy_c = (1/m)∫(a到b)yρ(x)dx其中x_c和y_c表示曲线的质心的坐标。

以上的公式总结了定积分的一些重要应用,包括面积、体积、弧长、质量和质心等。

在实际问题中,我们可以根据具体的问题情况,选择适当的公式来计算所需的结果。

这些公式可以帮助我们更好地理解和应用定积分的概念,解决实际问题。

定积分应用与解析

定积分应用与解析

定积分应用与解析定积分是微积分中一个重要的概念,它在多个领域中都有广泛的应用。

本文将针对定积分的应用和解析进行探讨,以及一些与定积分相关的概念和定理的介绍。

一、定积分的概念定积分是微积分中的一个概念,它表示函数在一定区间上的“积分”或者“面积”。

简单来说,定积分可以用来计算曲线与坐标轴之间的面积。

在数学表示上,我们通常用符号∫ 来表示定积分。

对于函数 f(x) 在区间 [a, b] 上的定积分表示为:∫[a, b] f(x)dx其中,f(x) 是在区间 [a, b] 上的一个函数,dx 表示自变量 x 的微元。

二、定积分的应用定积分的应用非常广泛,下面我们将介绍几个常见的应用场景。

1. 计算曲线下的面积如前所述,定积分可以用来计算曲线与坐标轴之间的面积。

对于一条曲线和两条垂直于 x 轴的直线所夹的面积,可以通过计算函数 f(x)在区间 [a, b] 上的定积分来得到。

2. 求解函数的平均值与平均数定积分还可以用于求解函数在一定区间上的平均值。

对于函数 f(x) 在区间 [a, b] 上的平均值,可以通过计算定积分∫[a, b] f(x)dx,然后再除以区间的长度 (b - a) 来得到。

3. 计算物体的质量与重心在物理学中,质量和重心是重要的概念。

通过将物体分割成无穷小的小块,可以将物体的质量表示为每个小块的质量之和,而每个小块的质量可以通过计算密度与体积的乘积得到。

类似地,重心可以通过计算每个小块的质量与其对应位置的乘积后再除以总质量得到。

三、定积分的解析定积分的解析主要包括定积分的计算和一些与定积分相关的定理。

1. 定积分的计算一般来说,定积分的计算需要根据具体的函数和区间来进行。

对于简单的函数,可以直接使用基本的积分公式进行计算。

而对于复杂的函数,可能需要使用一些积分方法,如分部积分、换元积分等。

2. 定积分的性质与定理在定积分的解析中,还有一些与定积分相关的性质和定理。

例如,定积分的线性性质允许我们将积分运算进行分解和合并。

微积分 第六章 第四节 定积分的应用

微积分 第六章 第四节 定积分的应用

4ab
1
ab .
0
22
2 0
sinn
xdx
n
n
n
n
1 1
n n n n
3 2 3 2
3 4 4 5
1 2 2 3
, n为正偶数
2
, n为大于1的奇数
19
例4 计算由曲线 y2 2x 和直线 y x 4所围成
的图形的面积. 解 两曲线的交点
y
y2 2x
(8, 4)
2
Vy 2
1 x 2x2dx .
0
o 1x
35
例12 求由曲线 y ( x 1)( x 2) 和 x 轴所围平面图
形绕 y 轴旋转一周而成的旋转体体积.

Vy 2
2
x( x 1)( x 2)dx
.
1
2
y
y
a
b
12
o
xo
x
y f (x)
“套筒法”推广:
由平面图形 0 a x b, f ( x) y 0 绕 y 轴
t (t 2 x2 )dx
1
(
x2
t
2
)
dx
0
t
y
1
y = x2
[t 2 x
x3 3
]
t 0
x3 [
3
t
2
x]
1 t
4t 3 t 2 1 , 0 t 1
3
3
t2
S2
S1
o
t1 x
S 4t 2 2t

2t(2t 1)
0 ,得驻点:
t
0, t
1,
2
经比较,当t 1 时两面积和最小.

定积分的应用

定积分的应用

定积分的应用定积分是数学中的一个重要概念,它在许多领域中具有广泛的应用。

本文将介绍定积分的基本概念和性质,并探讨其在几何学、物理学和经济学等领域中的应用。

首先,让我们回顾一下定积分的定义。

在数学中,定积分是一个函数与另一个函数之间的一种关系,通常表示为∫f(x)dx。

其中,f(x)是被积函数,x是积分变量,dx表示对x的微小变化。

定积分表示的是函数f(x)在给定区间[a,b]上的面积或曲线下的总体积。

定积分具有以下几个重要的性质。

首先,如果f(x)是[a,b]上的连续函数,那么定积分存在且唯一。

这一性质保证了定积分的可靠性和确定性。

其次,定积分的值可以通过积分的上限和下限来计算。

换句话说,定积分是一个函数的区间值。

最后,定积分的值可以通过一种基本定理来计算,即牛顿—莱布尼茨公式。

该公式告诉我们,如果F(x)是f(x)的一个原函数,那么定积分可以通过求F(x)在区间[a,b]上的差值来计算。

在几何学中,定积分有着广泛的应用。

通过计算曲线下的面积,我们可以求解两个曲线之间的交集、计算物体的体积等。

例如,如果我们要求解一个曲线和x轴之间的面积,我们可以将该曲线表示为y=f(x),然后计算∫f(x)dx在所给区间上的值。

同样地,我们可以使用定积分来计算曲线的弧长,通过公式∫√(1+(dy/dx)^2)dx来实现。

定积分在几何学中的应用还包括求解曲线的重心和弦长等问题。

物理学是另一个应用定积分的领域。

在物理学中,物体的质量、力、功和能量等都与空间的分布有关。

通过将物体分成许多微小的部分,并计算每个部分的质量或力的大小,我们可以使用定积分来对整个物体的质量或力进行求和。

例如,我们可以使用定积分来计算一个线密度为λ(x)的细线段的质量,通过公式∫λ(x)dx来实现。

同样地,我们可以使用定积分来计算一个变力F(x)在区间[a,b]上所做的功,通过公式∫F(x)dx来实现。

定积分在物理学中的应用还包括计算速度、加速度和热量等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 定积分的应用本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。

一、教学目标与基本要求:使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题;掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等)二、本章教学内容的重点难点:找出未知量的元素(微元)的方法。

用元素法建立这些几何、物理的公式解决实际问题。

运用元素法将一个量表达为定积分的分析方法§6.1定积分的微小元素法一、内容要点1、复习曲边梯形的面积计算方法,定积分的定义面积A ⎰∑=∆==→bani i i dx x f x f )()(lim 1ξλ面积元素dA =dx x f )(2、计算面积的元素法步骤: (1)画出图形;(2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形;(3)计算出面积元素;(4)在面积元素前面添加积分号,确定上、下限。

二、教学要求与注意点掌握用元素法解决一个实际问题所需要的条件。

用元素法解决一个实际问题的步骤。

§6.2 定积分在几何中的应用一、内容要点1、在直角坐标系下计算平面图形的面积 方法一面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰第一步:在D 边界方程中解出y 的两个表达式)(1x y ϕ=,)(2x y ϕ=.第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ϕ)(2x ϕ=解出,b x a ≤≤,)()(21x y x ϕϕ≤≤,面积S =x x x b ad )]()([12ϕϕ-⎰方法二面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dcd )]()([12ϕϕ-⎰第一步:在D 边界方程中解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=.第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ϕ)(2y ϕ=解出,d y c ≤≤,)()(21y x y ϕϕ≤≤,面积S =y y y dc d )]()([12ϕϕ-⎰例1 求22-=x y ,12+=x y 围成的面积解⎪⎩⎪⎨⎧+=-=1222x y x y ,1222+=-x x ,1-=x ,3=x 。

当31<<-x 时1222+<-x x ,于是面积⎰--=+-=--+=31313223210)331()]2()12[(x x x dx x x例2 计算4,22-==x y x y 围成的面积解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时)45.02+<y y面积=⎰--+422]5.04[dy y y =18。

2、在曲边梯形)(x f y =、0=y 、a x =、b x =(b a x f <≥,0)()中,如果曲边)(x f y =的方程为参数方程为⎩⎨⎧==)()(t y t x φϕ,则其面积dx y A ba ⎰= =dt t t )(')(ϕφβα⎰,其中)(),(βϕαϕ==b a例3 求x 轴与摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t 围成的面积解 面积⎰⋅-=π202)cos 1(dt t a ⎰++-=π202)22cos 1cos 21(dt tt a π202)22cos 1sin 223(t t t a ++-=23a π= 例4 星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos (0>a )围成的面积.解 面积⎰⎰-==a dt t t t a ydx 02232)sin )(cos 3(sin 44π=⎰=-20364283)sin (sin 12ππa dt t t a3、极坐标系下计算平面图形的面积。

极坐标曲线)(θρρ=围成的面积的计算方法: 解不等式0)(≥θρ,得到βθα≤≤。

面积=θθρβαd 2)]([21⎰ 4、平行截面面积为已知的空间物体的体积过x 轴一点x 作垂直于x 轴的平面,该平面截空间物体的 截面面积为)(x A ,b x a ≤≤,则该物体的体积dx x A V ba )(⎰=例1 一空间物体的底面是长半轴10=a ,短半轴5=b 的椭 圆,垂直于长半轴的截面都是等边三角形,求此空间体的体积。

解 截面面积)1001(2533221)(2x y y x A -⋅=⋅=⎰-==1010325)(dx x A V ⎰-=-1010233100)1001(dx x5、旋转体体积在],[b a 上0)(≥x f ,yx曲线)(x f y =、直线0,,===y b x a x 围成的曲边梯形 1)绕x 轴旋转一周形成旋转体,其截面面积)()(2x f x A π=, 旋转体体积⎰=ba dx x f V )(2π。

2)绕y 轴旋转一周形成旋转体:位于区间[x,x+dx]上的部分绕y 轴旋转一周而形成的旋转体体积)()()(22x f x x f dx x v ππ-⋅+≈∆dx x xf )(2π≈,原曲边梯形绕y 轴旋转一周形成的旋转体体积dx x xf V ba)(2⎰=π。

例2摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )20(π≤≤t 与x 轴围成的图形1)绕x轴旋转形成的旋转体体积dx y V a220⎰=ππdt t a 3320)cos 1(-=⎰ππ3a π=dt t t t )cos cos 3cos 31(3220-+-⎰π=225a π2)绕y 轴旋转形成的旋转体体积πππ2220=⋅=⎰ydx x V adt t t t a 2320)cos 1)(sin (--⎰π=dtt t a 2203)cos 1([2-⎰ππ])cos 1(sin 220dt t t -⋅-⎰π336a π=3)绕a y 2=旋转形成的旋转体的截面面积)4(])2()2[(22y a y y a a -=--ππ。

绕a y 2=旋转形成的旋转体体积dx y a y V a )4(20-=⎰ππdt t t t a )cos 1)(cos 3)(cos 1(320-+-=⎰ππdt t t t a )cos cos cos 53(32203++-=⎰ππ327a π=例3 求心形线)cos 1(4ϕρ+=与射线0=ϕ、2/πϕ=围成的绕极轴旋转形成的旋转体体积解 心形线的参数方程为x )cos (cos 42ϕϕ+=,)cos 1(sin 4ϕϕ+=y ,旋转体体积dx y V 280⎰=π=ϕϕϕϕϕππd )cos 21(sin )cos 1(sin 642202/+⋅+-⎰=π1606、平面曲线的弧长 曲线方程 自变量的范围弧微分22dy dx ds +=弧长ds s ba⎰=y y=2aO a π2 x)(r r =cos r x =sin r y =sin )(cos )(''r r x -=θθθθcos )(sin )(''r r y +=,弧微分θd y x ds 22''+=θd r r 22'+=。

例1求摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )0)(20(>≤≤a t π的长解dt t a dx )cos 1(-=,tdt a dy sin =,a dt t a dy dx ds 2)1cos 21(222=+-=+=dt t2sin 。

弧长a t a dt t a s 82cos 42sin 22020=-==⎰ππ例2摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 上求分摆线第一拱成1:3的点的坐标解 设A 点满足要求,此时c t =。

根据例2摆线第一拱成弧长a 8,a ds 2=dt t 2sin 。

由条件弧OA 的长为a 2,即a dt t a c 22sin 20=⎰,32π=c ,点A 的坐标为)23,)2332((a a -π例3 求星形线323232a y x =+的全长 解星形线的参数方程为⎪⎩⎪⎨⎧==t a y ta x 33sin cos ,π20≤≤t , tdt t a dx sin cos 32-=,tdt t a dy 2sin cos 3=,t t t ta ds 4224sin cos sin cos 3+=dt t t a dt |cos sin |3=.弧长a tdt t a s 6cos sin 3420==⎰πa t 6sin 202=π。

例4 求对数螺线ϕρ2e =上0=ϕ到πϕ2=的一段弧长 解 ϕρ22'e =,弧长ϕρρπd s 2'220+=⎰=ϕϕπd e 2205⎰=)1(254-πe二、教学要求与注意点掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积一、直角坐标的情形定理1:由两条连续曲线)(),(21x f y x f y ==, )()(21x f x f ≤以及直线x=a,x=b 所围平面图形的面积为:dx x f x f A ba⎰-=))()((12证明:有微小元素法:dx x f x f dA ))()((12==,则⎰-=badx x f x f A )]()([12注意:1. 从几何意义容易看出⎰⎰-=babadx x f dx x f A )()(122. 若无)()(21x f x f ≤这一条件,则面积⎰-=b adx x f x f A |)()(|12 3. 同理,曲线),(),(21y g x y g x ==与y=c,y=d 所围区域的面积为⎰-=dcdy y g y g A )]()([12,其中)()(21y g y g ≤例1:求抛物线3x 4x y 2-+-=及其点)3,0(-和)0,3(处的切线所围成图形的面积 解:4x 2y K+-='=在)3,0(-点处,4K 1=,切线方程3x 4y -= 在)0,3(点处,2K 2-=,切线方程6x 2y +-=⎩⎨⎧+-=-=6x 2y 3x 4y 得交点⎪⎭⎫⎝⎛3,23 []d x x xx S ⎰-+---=2302)34(34[]d x x xx ⎰-+--+-+3232)34(62⎰⎰+-+=32322302)96(dx x x dx x498989=+=定理2:若平面曲线由参数方程给出,))((),(21t t t t y t x ≤≤==ψφ且)(),(t t ψφ在[21,t t ]连续,0)(>'t φ,则曲线与x=a,x=b 以及x 轴所围的曲边梯形的面积为:⎰⎰'==bat t dt t t dx x f A 21)(|)(||)(|φψ例1. 求摆线x=a(t-sint),y=a(1-cost) (a>0)的一拱与x 轴所为的面积解:22220203)cos 1(])sin ()[cos 1(a dt t a dt t t a t a A πππ=-='--=⎰⎰二、极坐标的情形定理3:设曲线)(θφ=r 且 )(θφ在[βα,]上连续,非负παβ2≤-则有曲线)(θφ=r 与射线βθαθ==,所围区域(称为曲边扇形)的面积为:θθφβαd A ⎰=)(212证明:又微小元素法[θθθd +,]上的面积微元是:θθφd dA )(212=,所以θθφβαd A ⎰=)(212例1、 求双纽线θ2cos 22a r =所围的平面图形的面积。

相关文档
最新文档