学习笔记:伍德里奇《计量经济学》第五版-第二章 简单回归模型

合集下载

《计量经济学导论》考研伍德里奇考研复习笔记二

《计量经济学导论》考研伍德里奇考研复习笔记二

《计量经济学导论》考研伍德里奇考研复习笔记二第1章计量经济学的性质与经济数据1.1 复习笔记一、什么是计量经济学计量经济学是以一定的经济理论为基础,运用数学与统计学的方法,通过建立计量经济模型,定量分析经济变量之间的关系。

在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,在模型通过检验后还可以利用计量模型来进行预测。

在进行计量分析时获得的数据有两种形式,实验数据与非实验数据:(1)非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。

非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。

(2)实验数据通常是通过实验所获得的数据,但社会实验要么行不通要么实验代价高昂,所以在社会科学中要得到这些实验数据则困难得多。

二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。

1.对所关心问题的详细阐述问题可能涉及到对一个经济理论某特定方面的检验,或者对政府政策效果的检验。

2构造经济模型经济模型是描述各种经济关系的数理方程。

3经济模型变成计量模型先了解一下计量模型和经济模型有何关系。

与经济分析不同,在进行计量经济分析之前,必须明确函数的形式,并且计量经济模型通常都带有不确定的误差项。

通过设定一个特定的计量经济模型,我们就知道经济变量之间具体的数学关系,这样就解决了经济模型中内在的不确定性。

在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。

一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。

4搜集相关变量的数据5用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。

三、经济数据的结构1横截面数据(1)横截面数据集,是指在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

第2章简单回归模型2.1复习笔记一、简单回归模型的定义1.简单线性回归模型一个简单的方程是:01y x uββ=++假定方程在所关注的总体中成立,它便定义了一个简单线性回归模型。

因为它把两个变量x 和y 联系起来,所以又把它称为两变量或者双变量线性回归模型。

变量u 称为误差项或者干扰项,表示除x 之外其他影响y 的因素。

1β就是y 与x 的关系式中的斜率参数,表示在其他条件不变的情况下,x 变化一个单位y 平均变化。

0β被称为截距参数,在一般的模型中除非有很强的理论依据说明模型没有截距项,否则一般情况下都要带上截距项。

2.回归术语表2-1简单回归的术语3.零条件均值假定(1)零条件均值u 的平均值与x 值无关。

可以把它写作:()()|E u x E u =当方程成立时,就说u 的均值独立于x。

(2)零条件均值假定的意义①零条件均值假定给出1β的另一种非常有用的解释。

以x 为条件取期望值,并利用()|0E u x =,便得到:()01|E y x xββ=+方程表明,总体回归函数(PRF)()|E y x 是x 的一个线性函数,线性意味着x 变化一个单位,将使y 的期望值改变1β。

对任何给定的x 值,y 的分布都以()|E y x 为中心。

1β就是斜率参数。

②给定零条件均值假定()|0E u x =,把方程中的y 看成两个部分是比较有用的。

一部分是表示()|E y x 的01x ββ+,被称为y 的系统部分,即由x 解释的那一部分,另一个部分是被称为非系统部分的u,即不能由x 解释的那一部分。

二、普通最小二乘法的推导1.最小二乘估计值从总体中找一个样本。

令(){} 1 i i x y i n =,:,…,表示从总体中抽取的一个容量为n 的随机样本。

01i i iy x u ββ=++在总体中,u 与x 不相关。

因此有:()()()0cov 0E u x u E xu ===,和用可观测变量x 和y 以及未知参数0β和1β表示为:()010E y x ββ--=()010E x y x ββ--=⎡⎤⎣⎦得到()0111ˆˆ0ni ii y x n ββ=--=∑和()0111ˆˆ0ni i ii x y x n ββ=--=∑这两个方程可用来解出0ˆβ和1ˆβ01ˆˆy x ββ=+则01ˆˆy x ββ=-一旦得到斜率估计值1ˆβ,则有:()111ˆˆ0niiii x y y x x ββ=⎡⎤---=⎣⎦∑整理后便得到:()()111ˆnniii i i i x yy x x x β==-=-∑∑根据求和运算的基本性质,有:()()211n ni i i i i x x x x x ==-=-∑∑()()()11nniii i i i x yy x x y y==-=--∑∑因此,只要有()21nii x x =->∑估计的斜率就为:()()()1121ˆnii i ni i xx y yx x β==--=-∑∑所给出的估计值称为0β和1β的普通最小二乘(OLS)估计值。

伍德里奇计量经济学知识点总结

伍德里奇计量经济学知识点总结

【伍德里奇计量经济学知识点总结】1. 基本概念伍德里奇计量经济学是指利用数学、统计学和计量经济学的方法对经济现象进行定量分析和预测的一门学科。

它是经济学的重要分支,通过建立数学模型和使用实证数据进行检验,可以揭示经济规律和进行政策分析。

2. 经典假定在伍德里奇计量经济学中,有一些经典的假定是非常重要的。

首先是线性假定,即假定经济关系是线性的;其次是随机抽样假定,即样本是随机抽取的,能够代表总体;还有就是无多重共线性、异方差和自相关等假定。

3. 模型建立在进行伍德里奇计量经济学的研究时,首先需要建立适当的计量经济模型。

常见的模型包括线性回归模型、多元回归模型、时间序列模型和横断面数据模型等。

在建立模型时,需要考虑模型的选择、变量的设定和函数形式的确定等问题。

4. 参数估计一旦模型建立完成,接下来就需要进行参数估计。

通常使用最小二乘法进行参数估计,通过最小化残差平方和来确定参数的估计值。

在进行参数估计时,需要考虑参数的一致性、有效性和假设检验等问题。

5. 模型诊断模型诊断是伍德里奇计量经济学中的重要环节,通过对模型的有效性、稳健性和适用性进行诊断,可以确保模型的准确性和可靠性。

模型诊断包括多重共线性、异方差、自相关和样本外验证等内容。

6. 预测和政策分析在进行伍德里奇计量经济学的研究时,需要对模型进行预测和政策分析。

通过对模型的预测能力和政策效应进行分析,可以为决策者提供重要的参考信息,并对经济现象进行深入理解和解释。

在我看来,伍德里奇计量经济学是一门非常有趣且重要的学科,它不仅可以帮助我们理解经济现象背后的规律,还可以为政策制定提供重要参考。

通过建立数学模型和使用实证数据进行检验,我们能够更加深入地探讨经济问题并作出合理的判断。

我也深刻意识到在进行伍德里奇计量经济学研究时,需要综合运用数学、统计学和经济学知识,这对我们的综合能力提出了更高的要求。

总结回顾起来,伍德里奇计量经济学是一门综合性强、逻辑性强的学科,在研究过程中需要我们对经济现象有着深刻的理解和分析能力。

计量经济学伍德里奇第五版中文版)答案

计量经济学伍德里奇第五版中文版)答案

第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。

也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。

对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。

(二)呈负相关关系意味着,较大的一类大小是与较低的性能。

因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。

然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。

例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。

另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。

或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。

(三)鉴于潜在的混杂因素 - 其中一些是第(ii)上市 - 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。

在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。

1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B 公司的不同?(二)公司很可能取决于工人的特点选择在职培训。

一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。

企业甚至可能歧视根据年龄,性别或种族。

也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。

此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。

(iii)该金额的资金和技术工人也将影响输出。

所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。

管理者的素质也有效果。

(iv)无,除非训练量是随机分配。

许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。

伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列回归中的序列相关和异方差)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列回归中的序列相关和异方差)【圣才出品】

第12章 时间序列回归中的序列相关和异方差12.1 复习笔记一、含序列相关误差时OLS 的性质 1.无偏性和一致性在时间序列回归的前3个高斯-马尔可夫假定(TS.1~TS.3)之下,OLS 估计量是无偏的。

特别地,只要解释变量是严格外生的,无论误差中的序列相关程度如何,ˆj β都是无偏的。

这类似于误差中的异方差不会造成ˆjβ产生偏误。

把严格外生性假定放松到()0t t E u X =,并证明了当数据是弱相关的时候,ˆjβ仍然是一致的(但不一定无偏)。

这一结论不以对误差中序列相关的假定为转移。

2.效率和推断高斯-马尔可夫定理要求误差的同方差性和序列无关性,所以,在出现序列相关时,OLS 便不再是BLUE 的了。

通常的OLS 标准误和检验统计量也不再确当,而且连渐近确当都谈不上。

在序列相关的时候,通常的方差估计量都是()1ˆVar β的有偏估计。

因为ˆj β的标准误是ˆjβ的标准差的估计值,所以在出现序列相关的时候,使用通常的OLS 标准误就不再确当。

因此,检验单个假设的t 统计量也不再确当。

因为较小的标准误意味着较大的t 统计量,所以当ρ>0时,通常的统计量常常过大。

用于检验多重假设的通常的F 统计量和LM 统计量也不再可靠。

3.拟合优度t时间序列回归模型中的误差若存在序列相关,通常的拟合优度指标R 2和调整R 2便会失效,但只要数据是平稳和弱相关的,拟合优度指标依然有效。

在横截面背景中将总体R 2定义为221/u y σσ-。

在使用平稳而又弱相关数据的时间序列回归背景中,这个定义依然确当:误差和因变量的方差都不随时间而变化。

根据大数定律,R 2和调整R 2都是总体R 2的一致估计。

拟合优度指标仍是总体参数的一致估计量。

若{y t }是一个I (1)过程,则因为Var (y t )随着t 而递增,所以就无法通过重新定义R 2为221/uy σσ-来证明;此时的拟合优度便没有什么意义。

4.出现滞后因变量时的序列相关回归中出现滞后因变量时,误差有序列相关的危险。

伍德里奇计量经济学笔记

伍德里奇计量经济学笔记

伍德里奇计量经济学笔记伍德里奇计量经济学(Wooldridge Econometrics)是一门应用计量经济学的学科,它结合了经济学和数理统计学的理论和方法。

1. 引言- 计量经济学的定义:利用数理统计学和计量经济模型来分析经济问题。

- 经济学模型包括描述经济系统和理论关系的方程。

- 计量经济学的目标是估计和测试经济模型中的参数。

2. 统计学基础- 假设检验:用统计方法来验证经济理论。

- 最小二乘法(OLS):估计经济模型中未知参数的方法。

- OLS估计结果的性质和假设:无偏性、一致性和有效性。

3. 单变量回归模型- 简单线性回归模型:一个自变量和一个因变量之间的线性关系。

- 估计参数和评估模型:OLS估计、t统计量、R方和调整的R 方。

- 解释和预测:利用估计的模型进行解释和预测。

4. 多变量回归模型- 多元线性回归模型:多个自变量和一个因变量之间的线性关系。

- 估计参数和评估模型:OLS估计、t统计量、F统计量、R方和调整的R方。

- 控制变量和决策:利用控制变量来减少混淆因素,做出更准确的决策。

5. 动态模型- 差分方程:描述变量随时间变化的关系。

- 滞后变量和滞后因变量:引入滞后变量来解释变量之间的时序关系。

- 动态因果关系:解释一些经济变量之间的长期和短期关系。

6. 面板数据模型- 面板数据:包含多个个体和多个时间观测的数据集。

- 固定效应模型和随机效应模型:解释面板数据中个体效应和时间效应。

- 引入个体和时间固定效应:控制个体特征和时间变化对变量关系的影响。

7. 工具变量估计- 决定性和随机性端变量:用于解决内生性问题的变量。

- 工具变量的选择和检验:选择有效的工具变量来估计内生性模型。

- 两阶段最小二乘法(2SLS):用工具变量估计内生性模型。

8. 非线性回归模型- 非线性函数:描述实际经济关系的复杂性。

- 估计非线性模型:使用非线性最小二乘法(NLS)估计非线性模型。

- 非线性回归模型的解释和预测:利用估计的非线性模型进行解释和预测。

伍德里奇《计量经济学导论》 第 版 笔记和课后习题详解 章

伍德里奇《计量经济学导论》 第 版 笔记和课后习题详解 章

使用普通最小二乘法,此时最小化的残差平方和为()211niii y x β=-∑利用一元微积分可以证明,1β必须满足一阶条件()110niiii x y x β=-=∑从而解出1β为:1121ni ii nii x yxβ===∑∑当且仅当0x =时,这两个估计值才是相同的。

2.2 课后习题详解一、习题1.在简单线性回归模型01y x u ββ=++中,假定()0E u ≠。

令()0E u α=,证明:这个模型总可以改写为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。

证明:在方程右边加上()0E u α=,则0010y x u αββα=+++-令新的误差项为0e u α=-,因此()0E e =。

新的截距项为00αβ+,斜率不变为1β。

2(Ⅰ)利用OLS 估计GPA 和ACT 的关系;也就是说,求出如下方程中的截距和斜率估计值01ˆˆGPA ACT ββ=+^评价这个关系的方向。

这里的截距有没有一个有用的解释?请说明。

如果ACT 分数提高5分,预期GPA 会提高多少?(Ⅱ)计算每次观测的拟合值和残差,并验证残差和(近似)为零。

(Ⅲ)当20ACT =时,GPA 的预测值为多少?(Ⅳ)对这8个学生来说,GPA 的变异中,有多少能由ACT 解释?试说明。

答:(Ⅰ)变量的均值为: 3.2125GPA =,25.875ACT =。

()()15.8125niii GPA GPA ACT ACT =--=∑根据公式2.19可得:1ˆ 5.8125/56.8750.1022β==。

根据公式2.17可知:0ˆ 3.21250.102225.8750.5681β=-⨯=。

因此0.56810.1022GPA ACT =+^。

此处截距没有一个很好的解释,因为对样本而言,ACT 并不接近0。

如果ACT 分数提高5分,预期GPA 会提高0.1022×5=0.511。

(Ⅱ)每次观测的拟合值和残差表如表2-3所示:根据表可知,残差和为-0.002,忽略固有的舍入误差,残差和近似为零。

计量经济学导论-伍德里奇02及应用

计量经济学导论-伍德里奇02及应用

误差项干扰项斜率参数截距参数对解释变量的假设解释变量X是确定变量,不是随机变量;、解释变量X在所抽取的样本中具有变异性,随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。

即;伪回归问题对随机干扰项的假设假设3、假设4、假设5、经典假设高斯(Gauss)假设经典线性回归模型yf(y)..E(y|x) = β0+ β1x...x x x x }}{{u 1u 2u 3u 4E(y|x ) = β0 + β1x ●●●●矩估计法,利用样本矩来估计总体中相应的参数计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.▪..x {●●●●●●●●=拟合值=残差例(1)线性性(2)无偏性(3)有效性(4)渐近无偏性(5)一致性(6)渐近有效性小样本性质。

最佳线性无偏估计量大样本渐近性质高斯—马尔可夫定理(Gauss-Markov theorem)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。

2、无偏性3、有效性(最小方差性),普通最小二乘估计量最佳线性无偏估计量BLUE2、随机误差项µ的方差σ2的估计在估计的参数的方差表达式中,都含有随机扰动项的方差。

由于实际上是未知的,因此的方差实际上无法计算,这就需要的对其进行估计。

由于随机项µi不可观测,只能从µi的估计——残差e i出发,对总体方差进行估计。

可以证明最小二乘估计量极大似然法σ2的极大似然估计量不具无偏性,但却具有一致性。

伍德里奇计量经济学讲义2

伍德里奇计量经济学讲义2
4
Ramsey’s RESET
RESET relies on a trick similar to the special form of the White test Instead of adding functions of the x’s directly, we add and test functions of ŷ So, estimate y = b0 + b1x1 + … + bkxk + d1ŷ2 + d1ŷ3 +error and test H0: d1 = 0, d2 = 0 using F~F2,n-k-3 or LM~χ22
8
Proxy Variables (continued)
What do we need for for this solution to give us consistent estimates of b1 and b2? E(x3* | x1, x2, x3) = E(x3* | x3) = d0 + d3x3 That is, u is uncorrelated with x1, x2 and x3* and v3 is uncorrelated with x1, x2 and x3 So really running y = (b0 + b3d0) + b1x1+ b2x2 + b3d3x3 + (u + b3v3) and have just redefined intercept, error term x3 coefficient
5
Nonnested Alternative Tests
If the models have the same dependent variables, but nonnested x’s could still just make a giant model with the x’s from both and test joint exclusion restrictions that lead to one model or the other An alternative, the Davidson-MacKinnon test, uses ŷ from one model as regressor in the second model and tests for significance

伍德里奇《计量经济学导论》复习笔记和课后习题详解-含有定性信息的多元回归分析:二值变量

伍德里奇《计量经济学导论》复习笔记和课后习题详解-含有定性信息的多元回归分析:二值变量

伍德里奇《计量经济学导论》复习笔记和课后习题详解-含有定性信息的多元回归分析:二值变量第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记考点一:带有虚拟自变量的回归★★★★★1.对定性信息的描述定性信息是指通常以二值信息(0-1)的形式出现的信息,如性别、是否结婚等。

在计量经济学中,二值变量又称为虚拟变量。

2.只有一个虚拟自变量(1)只有一个虚拟自变量的简单模型考虑决定小时工资的简单模型:wage=β0+δ0female+β1educ +u。

根据多元回归的解释方式,δ0表示控制educ不变时,female 变化1单位给wage带来的变化。

假定零条件均值假定E(u|female,educ)=0成立,那么:δ0=E(wage|female=1,educ)-E (wage|female=0,educ),其中female=1表示女性,female =0表示男性。

可以发现,在任意教育水平下,男性与女性的工资差异是固定的,女性工资比男性工资多δ0。

除了β0之外,模型中只需要引入一个虚拟变量。

因为female+male=1,所以引入两个虚拟变量会导致完全多重共线性,即虚拟变量陷阱。

(2)当因变量为log(y)时,对虚拟解释变量系数的解释当变量中有一个或多个虚拟变量,且因变量以对数的形式存在时,虚拟变量的系数可以理解为百分比的变化。

将虚拟变量的系数乘以100,表示的是在保持所有其他因素不变时y 的百分数差异,精确的百分数差异为:100·[exp(∧β1)-1]。

其中∧β1是一个虚拟变量的系数。

3.使用多类别虚拟变量(1)在方程中包括虚拟变量的一般原则如果回归模型具有g 组或g 类不同截距,一种方法是在模型中包含g-1个虚拟变量和一个截距。

基组的截距是模型的总截距,某一组的虚拟变量系数表示该组与基组在截距上的估计差异。

如果在模型中引入g 个虚拟变量和一个截距,将会导致虚拟变量陷阱。

另一种方法是只包括g 个虚拟变量,而没有总截距。

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】

β1 就是斜率参数。
②给定零条件均值假定 E(u|x)=0,把斱程中的 y 看成两个部分是比较有用的。一
部分是表示 E(y|x)的 β0+β1一个
部分是被称为非系统部分的 u,即丌能由 x 觋释的那一部分。
二、普通最小二乘法的推导
1.最小二乘估计值
表 2-1 简单回归的术语
3.零条件均值假定 (1)零条件均值 u 的平均值不 x 值无关。可以把它写作:E(u|x)=E(u)。当斱程成立时,就说 u 的均值独立亍 x。 (2)零条件均值假定的意义 ①零条件均值假定给出 β1 的另一种非常有用的觋释。以 x 为条件叏期望值,幵利用 E
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 2 章 简单回归模型
2.1 复习笔记
一、简单回归模型的定义 1.双发量线性回归模型 一个简单的斱程是:y=β0+β1x+u。 假定斱程在所关注的总体中成立,它便定义了一个简单线性回归模型。因为它把两个发 量 x 和 y 联系起来,所以又把它称为两发量戒者双发量线性回归模型。 2.回归术语
E x y β0 β1x 0
得到
1 n
n i1
yi βˆ0 βˆ1xi
0

2 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

1
n
n i 1
xi
yi βˆ0 βˆ1xi
0
这两个斱程可用来觋出 βˆ0 和 βˆ1 , y βˆ0 βˆ1x ,则 βˆ0 y βˆ1x 。
量了 yi 的样本发异,SSR 度量了 ui 的样本发异。y 的总发异总能表示成觋释了的发异和未
觋释的发异 SSR 乊和。因此,SST=SSE+SSR。

计量经济学导论(伍德里奇)第二章课后作业

计量经济学导论(伍德里奇)第二章课后作业

计量经济学导论(伍德里奇)第二章课后作业.txt明骚易躲,暗贱难防。

佛祖曰:你俩就是大傻B!当白天又一次把黑夜按翻在床上的时候,太阳就出生了*用STATA做的*文件位置:"E:\teaching*做do文件doeditcd "E:\teaching"*练习2.3 录入8名学生的ACT分数和GPA(平均积分点)input id GPA ACT1 2.8 212 3.4 243 3.0 264 3.5 275 3.6 296 3.0 257 2.7 258 3.7 30endsave zhangwenwen*回归分析reg GPA ACT,r*方程的斜率为 0.1021978,截距为 0.5681319.display _b[_cons]+_b[ACT]*20*当ACT=20时,GPA的预测值为 2.6120879.*练习2.4use BWGHT.dta , clearreg bwght cigs , rdisplay _b[_cons]+_b[cigs]*0*当吸烟数为0时,婴儿出生时的体重预测值为119.7719盎司。

display _b[_cons]+_b[cigs]*20*当吸烟数为0时,婴儿出生时的体重预测值为109.4965盎司。

*bwght=119.77-0.514cigs 从这个回归中可以得到婴儿出生体重和母亲吸烟习惯之间的关系.*母亲在怀孕期间平均每天的吸烟数增加一个单位,婴儿的体重下降0.514盎司。

*练习2.10use 401K.DTA,clearsum*计划样中平均参与率是87.36291,平均匹配率是0.7315124*下面做回归分析regress prate mrate,robust*Estimated slope(样本斜率) = 5.861079*Estimated intercept(截距) = 83.07546,*Estimated regression line: prate = 83.075+5.861mrate*样本容量是1534,R-平方=0.0747*如果mrate=0,那么参与率就是83.0754%。

计量经济学总结:计量各小章伍德里奇

计量经济学总结:计量各小章伍德里奇

Asymptotics如果OLS不是无偏的, 那consistency是对估计量的起码要求. 一致性是指在样本容量趋于无穷时, 估计量的分布会集中在估计值的点上. 在四个初始假定下, OLS估计量都是一致估计. 而如果放宽OLS的假定,把zero conditional mean拆成两个假定E(u)=0和Cov(x,u)=0, 即u的期望值为0且与x不相关, 这时候即时条件均值假定不成立, OLS不是无偏, 仍可以得到一致估计.如果任何一个x与u相关, 就会导致不一致性. 而如果遗漏一个变量x2而其又与x1相关, 就会导致不一致性. 如果被遗漏变量与任何一个其他变量都不相关, 则不会导致不一致性. 如果x1与u相关, 但x1与u都与其它变量不相关, 则只是x1的估计量存在不一致性.非正态的总体不影响无偏性和BLUE,但是要做出正确的t和F统计量估计需要有正态分布的假定(第6个假定)。

但只要样本容量足够大,根据中心极限定理,OLS是渐进正态分布的。

但这必须以homoskedasticity和Zero conditional mean为前提。

这时OLS估计量也具有最小的渐进方差。

Dummy variable用来衡量定性的信息对于dummy variable,设置0和1,便于做出自然的解释;如果在一个函数中添加了两个互补的dummy variables,就会造成dummy variable trap,导致perfect collineartiy;那个没有被加入模型的会形成互补的variable,通常被成为base group(基组)。

Intercept Dummy variable:单独作为自变量加上系数后出现。

在图上只表示为intecept shift,图形只是截距发生了平行迁移。

如果male为1,那女性截距就是α,男性截距是γ+α。

Slope Dummy variable:作为自变量的一个interaction variable出现。

计量经济学(伍德里奇第五版中文版)答案

计量经济学(伍德里奇第五版中文版)答案

第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。

也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。

对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。

(二)呈负相关关系意味着,较大的一类大小是与较低的性能。

因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。

然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。

例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。

另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。

或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。

(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。

在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。

1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。

一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。

企业甚至可能歧视根据年龄,性别或种族。

也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。

此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。

(iii)该金额的资金和技术工人也将影响输出。

所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。

管理者的素质也有效果。

(iv)无,除非训练量是随机分配。

许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。

计量经济学复习要点 (1)

计量经济学复习要点 (1)

计量经济学复习要点参考教材:伍德里奇 《计量经济学导论》 第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念习题:C1、C2 第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数)线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

伍德里奇计量经济学导论第5版笔记和课后习题详解

伍德里奇计量经济学导论第5版笔记和课后习题详解

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解目录第1章计量经济学的性质与经济数据1.1复习笔记1.2课后习题详解第一篇横截面数据的回归分析第2章简单回归模型2.1复习笔记2.2课后习题详解第3章多元回归分析:估计3.1复习笔记3.2课后习题详解第4章多元回归分析:推断4.1复习笔记4.2课后习题详解第5章多元回归分析:OLS的渐近性5.1复习笔记5.2课后习题详解第6章多元回归分析:深入专题6.1复习笔记6.2课后习题详解第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记7.2课后习题详解第8章异方差性8.1复习笔记8.2课后习题详解第9章模型设定和数据问题的深入探讨9.1复习笔记9.2课后习题详解第二篇时间序列数据的回归分析第10章时间序列数据的基本回归分析10.1复习笔记10.2课后习题详解第11章OLS用于时间序列数据的其他问题11.1复习笔记11.2课后习题详解第12章时间序列回归中的序列相关和异方差性12.1复习笔记12.2课后习题详解第三篇高级专题讨论第13章跨时横截面的混合:简单面板数据方法13.1复习笔记13.2课后习题详解第14章高级的面板数据方法14.2课后习题详解第15章工具变量估计与两阶段最小二乘法15.1复习笔记15.2课后习题详解第16章联立方程模型16.1复习笔记16.2课后习题详解第17章限值因变量模型和样本选择纠正17.1复习笔记17.2课后习题详解第18章时间序列高级专题18.1复习笔记18.2课后习题详解第19章一个经验项目的实施19.2课后习题详解本书是伍德里奇《计量经济学导论》(第5版)教材的学习辅导书,主要包括以下内容:(1)整理名校笔记,浓缩内容精华。

每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。

(2)解析课后习题,提供详尽答案。

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论摘要:一、伍德里奇《计量经济学导论》概述二、伍德里奇对计量经济学的定义与应用三、伍德里奇《计量经济学导论》的主要内容四、伍德里奇《计量经济学导论》的课后习题及其答案五、伍德里奇《计量经济学导论》的参考价值正文:一、伍德里奇《计量经济学导论》概述伍德里奇所著的《计量经济学导论》是一本广泛应用于经济学领域的经典教材,受到了全球范围内众多学者和学生的欢迎。

本书旨在介绍计量经济学的基本概念、方法和应用,帮助读者理解和掌握计量经济学的基本理论和实证分析技巧。

二、伍德里奇对计量经济学的定义与应用在《计量经济学导论》中,伍德里奇对计量经济学进行了明确的定义,认为计量经济学是一门在经济理论基础上,运用数学和统计学方法,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。

计量经济学的应用范围广泛,包括政策分析、市场预测、数据分析等诸多领域。

三、伍德里奇《计量经济学导论》的主要内容伍德里奇的《计量经济学导论》共分为六章,涵盖了计量经济学的基本概念、数据处理、回归分析、多元回归分析、假设检验和模型优化等核心内容。

具体来说,书中内容包括:1.计量经济学的性质与经济数据:介绍了计量经济学的基本概念,经济数据的来源和特点,以及如何利用经济数据进行计量分析。

2.简单回归模型:阐述了简单回归模型的基本原理,包括线性回归、最小二乘法、参数估计等。

3.多元回归分析:介绍了多元回归分析的基本概念,包括多元线性回归、多元逻辑回归等,以及如何进行多元回归模型的估计和检验。

4.假设检验:介绍了计量经济学中的假设检验原理,包括t 检验、F 检验等。

5.模型优化:探讨了如何优化计量经济模型,提高模型的预测能力和解释能力。

6.横截面数据的回归分析:介绍了横截面数据的回归分析方法,包括生产函数估计、需求函数估计等。

四、伍德里奇《计量经济学导论》的课后习题及其答案伍德里奇的《计量经济学导论》每章都配有丰富的课后习题,帮助读者巩固和拓展所学知识。

计量经济学(伍德里奇第五版中文版)答案

计量经济学(伍德里奇第五版中文版)答案

计量经济学(伍德里奇第五版中文版)答案(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。

在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。

1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。

一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。

企业甚至可能歧视根据年龄,性别或种族。

也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。

此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。

(iii)该金额的资金和技术工人也将影响输出。

所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。

管理者的素质也有效果。

(iv)无,除非训练量是随机分配。

许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。

1.3没有任何意义,提出这个问题的因果关系。

经济学家会认为学生选择的混合学习和工作(和其他活动,如上课,休闲,睡觉)的基础上的理性行为,如效用最大化的约束,在一个星期只有168小时。

然后我们可以使用统计方法来衡量之间的关联学习和工作,包括回归分析,我们覆盖第2章开始。

但我们不会声称一个变量“使”等。

他们都选择学生的变量。

第2章解决问题的办法2.1(I)的收入,年龄,家庭背景(如兄弟姐妹的人数)仅仅是几个可能性。

似乎每个可以与这些年的教育。

(收入和教育可能是正相关,可能是负相关,年龄和受教育,因为在最近的同伙有妇女,平均而言,更多的教育和兄弟姐妹和教育的人数可能呈负相关)。

(ii)不会(i)部分中列出的因素,我们与EDUC。

计量经济学简单回归模型

计量经济学简单回归模型

总体回归线(PRF): E(y|x) = b0 + b1x
y
E(y|x=x2)
.
E(y|x=x1) .
x1=1
x2 =2
E(y|x) = b0 + b1x
x
2.2 一般最小二乘法(OLS)旳推导
一般最小二乘法(OLS)旳推导: 措施一:矩估计措施
• 零条件均值假定: E(u|x) = E(u) = 0
得样本相应旳矩条件(3’)(4’)成立。
• 即:求解有关 bˆ0, bˆ1旳方程组(3’)(4’)。
一般最小二乘法旳推导
• 根据样本均值旳定义以及加总旳性质,可将第一 种条件
(3' )
• 变换为
n
n 1
yi bˆ0 bˆ1xi 0
i 1
y bˆ0 bˆ1x,
or
bˆ0 y bˆ1x
家庭人均消费 = 395.96 + 0.48 • 家庭人均收入
2023年四川省农户调查样本, n=100 ;消费和收入单位:元
了解:样本回归线,样本数据点和残差
y
y4 y3
. . û3 û4{ yˆ bˆ0 bˆ1x
yˆ 3
y2
û2{.
y3
yˆ 3
y1
.} û1
x1
x2
x3
x4
x
有关OLS旳一点阐明
0
(4'')
Q
bˆ1
n
2
i 1
xi
yi bˆ0 bˆ1xi
0
• 这两个方程与前面旳矩条件完全一致,能够用相
同旳措施求解参数 bˆ0, bˆ1
所以,零条件均值假定能够表述为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~除了x 以外影响y 的因素?
~y 和x 的函数关系?
~何以确定在其他条件不变的情况下刻画了y 和x 的关系
由以上得简单线性模型(simple linear regression model ):y = b0+ b1x + u (2.1)
y :因变量
x :自变量
u :误差项(干扰项),即“观测不到的”因素
(该模型没有限制x 和u 的关系,因此不能说明x 对y 的影响
2.4节是如何解决x 的初始值不同时,同样变化量对y 的影响的?E(u) = 0 (2.5)
(代价:方程中要包含截距b0 因为这样可以通过微调截距项来使第一个假定一定成立
对u 做的第一个假定:
E(u|x) = E(u)(2.6)
(前提:u 和x 是随机变量
均值独立假定(任何给定x 下u 的平均值都一样):E(u|x)= 0 (2.7)
结合均值独立与均值为0,得零条件期望假定:E(y|x) = b0 + b1x (2.8)
(E(y|x)称为总体回归函数(population regression function ,PRF ),说明了y 的均值是如何随着x 的变动而变动的
结合方程(2.1)和假定(2.7)得条件均值函数:
一、y 和x
关系的起点
随机变量:具有数值特征并由一个实验决定其结果的变量
•(是为了解决协方差受度量单位影响的问题,是协方差的改进)(u 和x 不相关,u 也能和x ²相关,对于大部分回归不行)相关系数(仅衡量线性相关程度):
•yi = b0 + b1xi + ui (2.9)
抽取一个容量为n 的随机样本E(u)=0 (2.10)
利用Cov(x,u)=E(xu)=0 (2.11)
和假定(2.6)得:
E(y –b0 –b1x) = 0 (2.12)E[x(y –b0 –b1x)] = 0 (2.13)因此方程(2.10)和(2.11)可写为在样本中就对应和
(2.14)
(2.15)
结合(2.9)的均值形式
(2.16)可以解出参变量(实际上就是矩法估计)
( )(前提:分母大于0,即样本中所有x 不完全相等
(含义:若样本中x 和y 正相关,则斜率系数为正
二、普通最小二乘法(如何估计参变量)
协方差:
•不相关和协方差=0可互推,但不一定独
立,独立一定不相关•矩法估计:利用要估计的参数与某种均值的关系,用样本矩 代替总体矩u 的解法。

•用样本均值 代替 是一个无偏且一致的估计。

因此得 的估计量 u y ,是一致估计量(样本均值是总体均值的无偏估计量
(样本方差是总体方差的无偏估计量
(当g(u)是u 的线性函数,则g u y 无偏e.g. u 为要估计的参数 u为均值求和运算基本性质:
•三、OLS 特征
使用提示:1.该笔记是对伍德里奇《计量经济学》第五版第二章学习过程中的内容梳理
2.由于本人水平有限,单独看该笔记估计会很吃力,且很可能出现错误,建议结合书本进行理解
3.希望能够对想学习计量经济学的人起到一点点帮助第二章简单回归模型
2020年3月16日22:32
( )拟合值:
( )残差(实际值-拟合值):
(2.22)假使让残差平方和最小:
可证明利用(2.14)和(2.15)的矩法估计就满足上述要求
3.1 普通最小二乘法名称由来
(截距
在x 为0下常常没有实际意义,可能是因为其本身并不值得关注
(样本回归函数的意思是(2.23)是通过一个样本对总体回归函数的一个估计3.2 OLS 回归线(样本回归函数,SRF ):1.OLS 残差和及其样本均值都为0(由一阶条件(2.14)可得)
( )
(因为OLS 残差的样本均值为0,所以(2.31)左式与 、 的样本协方差成比例2.回归元和OLS 残差的样本协方差为0(由一阶条件(2.15)可得):
3.点( , )总在OLS 回归线上
3.3 OLS 回归线的代数性质
(性质1. 2.可用于证明拟合值与残差是不相关的:
引出三个用于衡量变动的变量:
( )
( )
而他们的关系为(用到了拟合值和残差之间协方差为0):SST=SSE+SSR
3.4 解释OLS 回归的又一方法(表示为被解释部分和未解释部分)
R2 = SSE/SST = 1 –SSR/SST
(前提SST 不为0(只有在 都相等时才会出问题)
(当数据点全落在线上时,意味着OLS 提供了完美拟合
(可以证明,R2等于 、
的样本相关系数的平方(低R2不意味着OLS 回归方程没有用
3.5 拟合优度(用以概括OLS 回归线对数据拟合得有多好)
(此模型中左右同加一个常数不影响斜率,但影响截距
Log(y)-x :等比例增加
Log(y)-log(x):弹性不变增加
3.6 在简单回归中加入非线性因素(为了描述随着自变量值的改变估计值的改变)
y = b0 + b1x + u (2.47)
SLR.1(线性于参数)
yi = b0+ b1xi + ui (2.48)
(ui 为误差,强调与残差的区别
SLR.2(随机抽样,即我们具有服从总体模型方程(2.47)的随机样本)
SLR.3(解释变量的样本有波动,这样OLS 的斜率和截距估计值才有定义)(零条件均值与随机抽样结合导致可以将xi 视作重复样本中固定不
ui xi
SLR.4(零条件均值)
3.7 OLS 回归的统计性质(把
看做总体模型中参变量的估计量,因此要研究
在从总体中抽取不同随机样本时的分布性质)当某个范围的样本数很少时,回归出来的函数在该范围内的预测就很有可能是不准确的
因变量和自变量替换后样本回归线形状一样吗
变,但这意味着ui 和xi 是独立的
基于(2.19)、(2.48)和基本运算性质:
(2.52)(意味着以xi 的值为条件,
的随机性完全来自样本中的误差。

这些误差一般都不为零的事实,正是估计值和真实值有差异的原因利用假定SLR.1-4,有:
证明过程
(无偏性是
的抽样分布性质,我们的样本越典型,那么估计值越接近于总体值,但我们不可能确知情况是否如此
(当SLR.4不成立即误差项u 中包括了影响y 同时又与x 相关的因素时,回归模型的估计值就值得怀疑
定理2.1 OLS 的无偏性
3.7.1 OLS 估计量的无偏性(抽样分布以什么为中心)
Var(u|x) = s2
(以u和x独立为前提
证明过程
(s2 是u2的无条件期望值,s2是u 的无条件方差,所以s2称为误差方差
(u 的x 条件方差=y 的x 条件方差,即Var(u|x)=Var(y|x)SLR.5 同方差假设(SLR.1-4可算方差,但增加SLR.5更加简化)
利用假定SLR.1-5,有
( )证明过程
( )(误差方差越大,影响y 的不可观测因素波动越大,越难估计
(自变量波动越大,样本越分散,越容易估计
(样本容量扩大时,自变量总体波动增加,
方差较小定理2.2 OLS 估计量的抽样方差
3.7.2 OLS 估计量的方差(离中心大概有多远)
( )将残差写成误差的函数两者之差的期望值为0
( )另外由于s2=E(u2),所以如果能算出来 ,是个无偏估
计量。

但我们只有残差,所以用残差代替误差,这时又有偏误了(本质上时因为从误差到残差要满足OLS 两个一阶条件约束,所以自由度为n-2),调整后得到真正的无偏估计量
证明过程
在假定SLR.1-5下,有
(将误差方差估计量代入(2.57)和(2.58)可以得到OLS 估计量抽样方差的无偏估计量
( 称为回归标准误(SER),尽管
不是 的无偏估计量,但可以证明它是 的一致估计量
(当用 替换 ,得到
的标准误(任何一个估计值的标准误都能让我们了解这个估计量有多准确)
定理2.3 的无偏估计
3.7.3 误差方差的估计( 往往不知道,所以才估计)
3.8 过原点回归及对常数回归
当我们希望有如下约束:当x=0时,y的期望值为0,得
()
此时最小化残差平方和为
()
解出得
()
(前提所有的不都为0
(仅当样本均值时,它与非过原点回归的估计值才是相等的
(如果截距不为0,那么就是有偏的估计量
在过原点回归中,R2通常是通过下列式子计算的
()
(分母成立的前提是y的总体均值=0
(用这种方法计算的原因是如果用常规方法,那么结果为负值,意思
是直接用y的均值来作为估计效果更好
若对常数回归,那么截距项就是样本均值。

相关文档
最新文档