牛顿运动定律应用专题七滑块木板模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f f
(2)将滑块从木板上拉出时,木板受滑动摩擦力f=μmg,此时木板的加速度a2为
a2=f/M=μmg/M =1m/s2. 由匀变速直线运动的规律,有(m与M均为匀加速直线运动)
木板位移 x2= ½a2t2 ① 滑块位移 x1= ½a1t2 ②
F
位移关系 x1-x2=L ③ 将①、②、③式联立,解出a1=7m/s2
g=10m/s2,(1)现用水平向右的恒力F作用在木板M上,为了
使得m能从M上滑落下来,求F的大小范围.
(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求
m在M上滑动的时间.
mF M
[解析](1)小滑块与木板间的滑动摩擦力 f=μFN=μmg=4N…………①
f
mFቤተ መጻሕፍቲ ባይዱMf
滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度
a1=f/m=μg=4m/s2 …② 当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板 F-f=m a2>m a1 F> f +m a1=20N …………③ 即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。
(2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2'
的静摩擦力达到最大静摩擦力;②未滑动:此时m与M加速度仍相同。
受力分析如图,先隔离m,由牛顿第二定律可得:a=μmg/m=μg
再对整体,由牛顿第二定律可得:F0=(M+m)a
m
fm
解得:F0=μ(M+m) g
fm
F
M
所以,F的大小范围为:F>μ(M+m)g (2)受力分析如图,先隔离M,
fm
F
m
由牛顿第二定律可得:a=μmg/M
2、如图所示,木板静止于水平桌面 上,在其最右端放一 可视为质点的木块. 已知木块的质量m=1 kg,长L=2.5 m,上表面 光滑,下表面与地面之间的动摩擦因数µ=0.2.现用水平 恒力F=20 N向右拉木板,g取10 m/s2,求:(1)木板加速度的大小; (2)要使木块能滑离木板,水平恒力F作用的最短时间; (3)如果其他条件不变,假设木板上表面也粗糙,其上表面与木块 之间的动摩擦因数为 µ1=0.3,欲使木板能从木块的下方抽出,对 木板施加的拉力应满足什么条件? (4)若木板的长度、木块的质量、木板的上表 面与木块之间的 动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力 增加为 30 N,则木块滑离木板需要多长时间?
解得:a2'=4.7m/s2………④
设二者相对滑动时间为t,在分离之前
F
小滑块:x1=½ a1t2 …………⑤ 木板:x1=½ a2't2 …………⑥
x1
L
x2
又有x2-x1=L …………⑦ 解得:t=2s …………⑧
【练习1】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在 光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm, 开始时两者都处于静止状态,(取g=10m/s2).如图所示,试求:
解析:(1)对木板M,水平方向受静摩擦力f向右,当f=fm=μmg时,M有最大加速度,
此时对应的F0即为使m与M一起以共同速度滑动的最大值。 对M,最大加速度aM,由牛顿第二定律得:aM= fm/M=μmg/M =1m/s2
要使滑块与木板共同运动,m的最大加速度am=aM, 对滑块有F0-μmg=mam 所以 F0=μmg+mam=2N 即力F0不能超过2N
答案:以桌面为参考系,令aA表示A的加速度,aB表示B、C的加速度,sA和sB分别表 示 t时间 A和B移动的距离,则由牛顿定律和匀加速运动的规律可得
mCg-µmBg=(mC+mB)aB µ mBg=mAaA sB=½aBt2 sA=½aAt2 sB-sA=L 由以上各式,代入数值,可得:t=4.0s
M
fm
再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m) mg/M所以,F的大小范围为:F>(M+m)mg/M
二、板块的动力学问题
【例2】如图所示,有一块木板静止在光滑水平面上,木板质
量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量
m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,
(1)用水平力F0拉小滑块,使小滑块与木板以相同的速度一起滑动, 力F0的最大值应为多少?
(2)用水平恒力F拉小滑块向木板的右端运动,在t=0.5s内使滑块 从木板右端滑出,力F应为多大?
(3)按第(2)问的力F的作用,在小滑块刚刚从长木板右端滑出 时,滑块和木板滑行的距离各为多少?(设m与M之间的 最大静摩擦力与它们之间的滑动摩擦力大小相等)。
x2
L
x1
对滑块,由牛顿第二定律得:F-μmg=ma1 所以 F=μmg+ma1=8N
(3)将滑块从木板上拉出的过程中,滑块和木板的位移分别为
x1= ½a1t2= 7/8m x2= ½a2t2= 1/8m
3.如图所示,在光滑的桌面上叠放着一质量为mA=2.0kg的薄木板A和质量为mB=3 kg的金属块B.A的长度L=2.0m.B上有轻线绕过定滑轮与质量为mC=1.0 kg的物 块C相连.B与A之间的滑动摩擦因数 µ=0.10,最大静摩擦力可视为等于滑动摩擦 力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直, B位于A的左端(如图),然后放手,求经过多长时间t后 B从 A的右端脱离(设 A 的右端距滑轮足够远)(取g=10m/s2).
专题:滑块-木板模型问题探究
牛顿运动定律应用专题七 滑块-木板模型的问题探究
1.模型特点:长木板上叠放一个物体,在摩擦力的相互作用 下发生相对滑动.
2.建模指导 解此类题的基本思路:
(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求 出滑块和木板的加速度;
(2)对滑块和木板进行运动情况分析,找出滑块和木板之间 的位移关系或速度关系,建立方程.特别注意滑块和木板的 位移都是相对地面的位移.
(3)审题,画运动过程的草图,建立正确的物理情景,帮助自 己理解过程
一、板块的临界问题
核心疑难探究
【引例】木板M静止在光滑水平面上,木
板上放着一个小滑块m,与木板之间的动摩
擦因数μ,为了使得m能从M上滑落下来,
求下列情况下力F的大小范围。
F
m
F
m
M
M
解析(1)m与M刚要发生相对滑动的临界条件:①要滑动:m与M间
相关文档
最新文档