成都七中高2019届高三二诊模拟考试数学(理科)试卷

合集下载

【全国百强校首发】四川省成都市第七中学2019届高三二诊模拟考试数学(理)答案

【全国百强校首发】四川省成都市第七中学2019届高三二诊模拟考试数学(理)答案

所以,
1 1 1 ,所以 bn 1 bn 1 , an 1 an 1 1,所以,数列 {bn } 是首项为 1,公差为 1 的等差数列, a1
又 b1
故数列 {bn } 的通项公式为: bn n .-------5 分
n 1 (Ⅱ)由(Ⅰ)知, cn n 2 , 0 1 则 Sn 1 2 2 2

2
) ,∴

4
, | OP | 2 2 .-------(10)
23.(I) 当 当 当 时, 时, 时,
,不等式
,即
解集为 (II)
-------(4)
-------(10)
1 4 3 x 2 10 x 11 0, x 2 3( x 1) 2 3( x 2)( x 1) 2
记G ( x) 单调递增, G( x) G(3) 0
ln( x 2) 2( x 3) 4( x 3) 0 ,即 x 3时,f ( x) 6( x 1) ,证毕;------(12 分) 3( x 1) ln( x 2)
选做题
22.解: (Ⅰ)直线 l 的普通方程为 x y 1 0 ,极坐标方程为 cos sin 1 0 ,
曲线 C 的普通方程为 ( x 2) 2 y 2 4 ,极坐标方程为 4cos .------(4) (Ⅱ)依题意,∵ (0,
代入
,得(
)x2 +2k2 x+k2 ﹣1=0,
由韦达定理得


由直线 AB 的斜率 令 y=0,得: x=x1 ﹣y1 •
,得 AB 的方程为:y﹣y1 =
(x﹣x1 )

2019成都七中二诊理科

2019成都七中二诊理科

成都七中高2019届高三二诊模拟考试数学(理科)试卷一、选择题:(共12个小题,每小题5分,共60分.)1.已知复数z 满足:2(1)2z i i ⋅+=-,则||z 为( )A ...2 D .1 2.设全集U =R ,集合M ={x |y =lg(x 2-1)},N ={x |0<x <2},则()U N C M ⋂=( ).A .{x |-2≤x <1}B .{x |0<x ≤1}C .{x |-1≤x ≤1}D .{x |x <1}3.在)2n x 的二项展开式中,若第四项的系数为7-,则=n ( )A .9B .8 C. 7 D .64.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ).A.32B. 3 C .2 3 D .2 5.在区间[﹣π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax ﹣b 2+π有零点的概率为( )A .B .C .D .6.如果执行如图所示的程序框图,输出的S =110,则判断框内应填入的条件是( ).A .k <10?B .k ≥11?C .k ≤10?D .k >11?7.已知函数2()22cos 1f x x x =-+,将()f x 的图像上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数()y g x =的图像,若12()()9g x g x ⋅=,则12||x x -的值可能为( )A .3πB .2π C.34π D .54π 8.△ABC 外接圆的半径为1,圆心为O ,且2OA →+AB →+AC →=0,|OA →|=|AB →|,则CA →·CB →=( ). A.32 B. 3 C .3 D .2 3 9.给出下列说法:①“4x π=”是“tan 1x =”的充分不必要条件;②命题“0x R ∃∈,0012x x +≥”的否定形式是“x R ∀∈,12x x+>”. ③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为30种. 其中正确说法的个数为( )A .0B .1 C. 2 D .310.某多面体的三视图如图所示,则该几何体的体积与其外接球的体积之比为( )A.CD11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )A .B .C .D .12.已知函数1,0()3,0x e x f x x ax x -⎧>⎪=⎨⎪+≤⎩,若函数()(())2g x f f x =-恰有5个零点,且最小的零点小于-4,则a 的取值范围是( )A .(,1)-∞-B .(0,)+∞ C. (0,1) D .(1,)+∞二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 .14.已知实数x ,y 满足,若x ﹣y 的最大值为6,则实数m= .15.已知,A B 两点都在以PC 为直径的球O 的表面上,AB BC ⊥,2AB =,4BC =,若球O的体积为,则异面直线PB 与AC 所成角的余弦值为 .16.已知抛物线28y x =的焦点为F ,直线l 过F 且依次交抛物线及圆22(2)1x y -+=于点A ,B ,C ,D 四点,则||4||AB CD +的最小值为 .三、解答题 (解答应写出文字说明、证明过程或演算步骤.)17. 在数列{}n a 中,11a =,11n n n a a a +=+,设1n n b a =,*n N ∈ (Ⅰ)求证数列{}n b 是等差数列,并求通项公式n b ;(Ⅱ)设12n n n c b -=⋅,且数列{}n c 的前n 项和n S ,若R λ∈,求使1n n S c λ-≤恒成立的λ的取值范围.18. 在万众创新的大经济背景下,某成都青年面包店推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近30天的日需求量(单位:个),整理得下表:(1)根据表中数据可知,频数y 与日需求量x (单位:个)线性相关,求y 关于x 的线性回归方程;(2)以30天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数为24,记当日这款新面包获得的总利润为X (单位:元).求X 的分布列及其数学期望. 相关公式:∑∑==---=ni in i i ix x y y x x b 121^)())((∑∑==--=n i in i i i x n x y x n y x 1221 , x b y a ^^-= 19.(12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AA 1=A 1C=AC ,AB=BC ,AB ⊥BC ,E ,F 分别为AC ,B 1C 1的中点.(1)求证:直线EF ∥平面ABB 1A 1;(2)求二面角A 1﹣BC ﹣B 1的余弦值.20.已知椭圆C : +=1(a >b >0)的左焦点为F ,点P 为椭圆C 上任意一点,且|PF |的最小值为﹣1,离心率为。

四川省成都市2019届高三二诊模拟考试数学理科试卷含答案

四川省成都市2019届高三二诊模拟考试数学理科试卷含答案

2019届2018~2018学年下期二诊模拟考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,则复数.3A .3B -.3C i.4D i -2.已知全集U =R ,集合{|30}A x x =-<,那么集合U A C B ⋂等于.{|23}A x x -≤≤.{|23}B x x -<< .{|2}C x x ≤-.{|3}D x x <3.若,x y 满足约束条件02326x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =+ 的最小值是.3A -.6B.3D4.则sin 2α的值为5.执行如图所示的程序框图,输出的S 值为6. 一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积 为2 ,则此四棱锥最长的侧棱长为7.等比数列{}n a 中,20a >则25""a a <是35""a a <的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知函数()f x 对任意x ∈R 都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,则(2018)f=A. B. C. D.9、已知是双曲线的左、右焦点, 点在上若,则的离心率为A. B. C. D.10.,将()f x 图像的横坐标伸长为原来的2个单位后得到函数()g x ,在区间[0,]π上随机取一个数x ,则()1g x ≥的概率为11.若函数y =f (x )的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t ,则称函数y =f (x )为“t 函数”.下列函数中为“2函数”的个数有① y =x -x 3 ②y =x +e x ③y =x ln x ④y =x +cos xA.1个B.2 个C.3 个D.4个12、已知向量满足,若,的最大值和最小值分别为,则等于A. B.2 C. D.二、填空题:本大题共4小题,每小题5分,共20分.133项和第5项的二项式系数相等,则展开式中的常数项为 .14、已知数列{}n a 的各项都为正数,前n 项和为n S ,若2{log }n a 是公差为1的等差数列,且5=62S ,则2=a15.已知四面体ABCD 的所有棱长都为,O 是该四面体内一点,且点O 到平面ABC 、平面ACD 、平面ABD 、平面BCD 的距离分别为,x ,和y ,则+的最小值是 .16.为抛物线上一点,且在第一象限,过点作垂直该抛物线的准线于点为抛物线的焦点,为坐标原点, 若四边形的四个顶点在同一个圆上,则该圆的方程为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.(本小题满分12分)如图,,,a b c 分别是锐角ABC ∆的三个内角A B C ,,的对边,(1)求sin C 的值;(2)若点D 在边BC 上,3BD CD =,ABC ∆的面积为14,求AD 的长度.18. (本小题满分12分)2018年9月,国务院发布了《关于深化考试招生制度改革的实施意见》,某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科,每个考生,英语,语文,数学三科为必考科目,并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考,物理、化学、生物为自然科学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目,若该考生所选的社会科学科目考试的成绩获A等的概率都是0.75,所选的自然科学科目考试的成绩获A等的概率都是0.8,且所选考的各个科目考试的成绩相互独立,用随机变量X 表示他所选的三个科目中考试成绩获A等的科目数,求X的分布列和数学期望.19.(本小题满分12分)如图,在多面体ABCDEF中,矩形BDEF所在平面与正方形ABC D所在平面垂直,点M为AE的中点.(1)求证:BM//平面EFC,求直线AE与平面BDM所成角的正弦值.(2)若DE AB20、(本小题满分12分),O 为坐标原点. (1)求椭圆C 的方程;(2)若斜率大于0的直线l 交椭圆C 于A B 、两点(A 在x 轴上方),交x 轴正半轴于P 点, 若3PB PA +=0,求AOB ∆面积的最大值以及此时直线l 的方程.21.(本小题满分12分)已知a ∈R ,()(1)ln f x ax x =-(1)若2()ln f x x x x ≤--恒成立,求a 的值; (2)若()f x 有两个极值点,,求a 的范围并证明1()4f x >.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点的直线的参数方程为(t 为参数), 直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程; (2)求a 的值.23.选修4-5:不等式选讲已知函数()|32|f x x =+. (1)解不等式()4|1|f x x <--(2)若0a >,不等式||()4x a f x --≤恒成立,求实数a 的取值范围.石室中学高2019届2018-2019学年下期二诊模拟考试数学参考答案(理科)一、选择题二、填空题13. 20-; 14. 4;三、解答题17. 解:(1,因B 为锐角,所以分,分(2分分,由余弦定理,2222cos AD AB BD AB BD B =+-⋅⋅,解得5AD =…………………………12分18..(1).记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M ,分 (2)随机变量X 的所有可能取值有0,1,2,3.所以X 的分布列为:19..(1)由题知B D E F A B C ⊥面面,而B D E D ⊥,BDEF ABCD=BD 面面∩,DE BDEF ⊂面所以DE ABCD 面⊥,以DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD=1,则()1,1,0B ,,()0,0,1E ,()1,1,1F ,()0,1,0C , 所以,1,1,MB ⎛= EFC 的法向量为()1,1,1m =-,则0MB m ⋅=即MB m ⊥,又面MB EFC ⊄,所以//面MB EFC ;……………6分(2)由(1)知.1,1,MB ⎛= , 1,0,DM ⎛=所以面BDM 的法向量为()1,1,1n =- 又()1,0,1AE =-,6cos ,n AE =所以直线AE 与面BDM12分 20.解: (1)设切线为0bx ay ab +-=,则,解得224,3a b ==,所以椭圆C 的方程分 (2)设直线l 为(0,0)x my n m n =+>>,联立得222(34)63120m y mny n +++-=,设1122(,),(,)A x y B x y ,②由0∆>,可得22340m n -+>…….6分 又因为3PB PA +=0,可得123y y -=③…………7分分分满足0∆>, 所以AOB ∆面积的最大值为此时直线l 的方程为分 21. 解(1)由题:得1ln 0x a x --≥ 令:,,…………………1分 所以F,且.所以当时恒成立,此时在上单调递增,(0,1),()0x F x ∴∈<这与F矛盾;………………………………..3分 当时令,解得,所以在上单调递减,在上单调递增,即,又因为,又F(1)=0 所以………………………..6分①若0a ≥时, 知:'()f x 在(0,)+∞单调递增,不合题…分 此时知道:()f x 在1(0,)x 单减,12(,)x x 单增,2(,)x +∞单减 且易知又110ax -<<1()4f x ∴>…………………………………………………12分 22. (1)由=整理得=,∴曲线的直角坐标方程为=,直线的普通方程为=…………………………………………………….4分(2)将直线的参数方程代入曲线的直角坐标方程=中,得, 设两点对应的参数分别为,则有==,……………………………….6分∵=,∴=即=…………………………….8分∴=即,解得或者(舍去),∴的值为1…………………………………………………………………………….10分23. (1)不等式.当,,解之得;当时,,解之得;当时,,无解.综上,不等式的解集为.…………………… 5分(2)令,则当时,.欲使不等式恒成立,只需,即.又因为,所以,即…………………………….10分。

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设全集U=R,集合A={x|-1<x<3},B={x|x≤-2或x≥1},则A∩(∁U B)=()A. B.C. D. 或2.已知双曲线C:>的焦距为4,则双曲线C的渐近线方程为()A. B. C. D.3.已知向量=(,),=(-3,),则向量在向量方向上的投影为()A. B. C. D. 14.条件甲:a>b>0,条件乙:<,则甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. B. C. D.6.若,,,且,,则sinβ=()A. B. C. D.7.已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是()A. 若平面,则B. 若平面,则,C. 存在平面,使得,,D. 存在平面,使得,,8.将函数f(x)的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,若函数g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.9.已知定义域R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则f()=()A. B. C. D.10.已知a R且为常数,圆C:x2+2x+y2-2ay=0,过圆C内一点(1,2)的直线l与圆C相切交于A,B两点,当弦AB最短时,直线l的方程为2x-y=0,则a的值为()A. 2B. 3C. 4D. 511.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为()A. 479B. 480C. 455D. 45612.某小区打算将如图的一直三角形ABC区域进行改建,在三边上各选一点连成等边三角形DEF,在其内建造文化景观.已知AB=20m,AC=10m,则△DEF区域内面积(单位:m2)的最小值为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知复数z=,a R,若z为纯虚数,则|z|=______.14.已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=,则球O的表面积为______.15.在平面直角坐标系xOy中,定义两点A(x1,y1),B(x2,y2)间的折线距离为d(A,B)=|x1-x2|+|y1-y2|.已知点O(0,0),C(x,y),d(O,C)=1,则的取值范围是______.16.已知F为抛物线C:x2=4y的焦点,过点F的直线l与抛物线C相交于不同的两点A,B,抛物线C在A,B两点处的切线分别是l1,l2,且l1,l2相交于点P,则|PF|+的最小值是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}的前n项和为S,公比q>1,且a2+1为a1,a3的等差中项,S3=14.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=a n•log2a n,求数列{b n}的前n项和T n.18.为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得2×2()根据列联表,能否有的把握认为满意程度与年龄有关?(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分x(单位:分)给予相应的住房补贴y(单位:元),现有两种补贴方案,方案甲:y=1000+700x;方案乙:,<,<.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,,>12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“A类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“A类员工”的概率.附:,其中n=a+b+c+d.参考数据:19.如图①,在等腰梯形ABCD中,AB∥CD,E,F分别为AB,CD的中点,CD=2AB=2EF=4,M为DF中点.现将四边形BEFC沿EF折起,使平面BEFC平面AEFD,得到如图②所示的多面体.在图②中,(Ⅰ)证明:EF MC;(Ⅱ)求二面角M-AB-D的余弦值.20.已知椭圆C:(a>b>0)的短轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设椭圆C的左,右焦点分别为F1,F2,左,右顶点分别为A,B,点M,N为椭圆C上位于x轴上方的两点,且F1M∥F2N,记直线AM,BN的斜率分别为k1,k2,若3k1+2k2=0,求直线F1M的方程.21.已知函数,a R.(Ⅰ)若f(x)≥0,求实数a取值的集合;(Ⅱ)证明:e x+≥2-ln x+x2+(e-2)x.22.在直角坐标系xOy中,直线l的参数方程为(t为参数,α倾斜角),曲线C的参数方程为(β为参数,β[0,π]),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)写出曲线C的普通方程和直线的极坐标方程;(Ⅱ)若直线与曲线C恰有一个公共点P,求点P的极坐标.23.已知函数f(x)=|x-m|-|x+2m|的最大值为3,其中m>0.(Ⅰ)求m的值;(Ⅱ)若a,b R,ab>0,a2+b2=m2,求证:.答案和解析1.【答案】A【解析】解:∁U B={x|-2<x<1};∴A∩(∁U B)={x|-1<x<1}.故选:A.进行交集、补集的运算即可.考查描述法的定义,以及交集、补集的运算.2.【答案】D【解析】解:双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b=,∴双曲线C的渐近线方程为y=x,故选:D.先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题3.【答案】A【解析】解:由投影的定义可知:向量在向量方向上的投影为:,又∵,∴=.故选:A.本题可根据投影的向量定义式和两个向量的数量积公式来计算.本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.【答案】A【解析】解:条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立不一定有条件甲:a>b>0成立所以甲是乙成立的充分非必要条件故选:A.先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.判断一个条件是另一个条件的什么条件,应该先化简两个条件,再利用充要条件的定义进行判断.5.【答案】C【解析】解:甲的中位数为29,乙的中位数为30,故不正确;甲的平均数为29,乙的平均数为30,故正确;从比分来看,乙的高分集中度比甲的高分集中度高,故正确,不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.6.【答案】B【解析】解:,且,可得cosα=-=-.,可得sinαcosβ-cosαsinβ=-,可得cosβ+sinβ=-,即2cosβ+sinβ=-,sin 2β+cos 2β=1,解得sinβ=.故选:B .利用同角三角函数基本关系式求出cosα,通过两角和与差的三角函数化简已知条件,转化求解sinβ即可.本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,是基本知识的考查. 7.【答案】C【解析】解:由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知: 在A 中,若c 平面α,则a 与α相交、平行或a α,故A 错误;在B 中,若c 平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α,故C 正确;在D 中,若存在平面α,使得c ∥α,a α,b α,则a ∥b ,与已知a ,b 是两条异面直线矛盾,故D 错误. 故选:C .在A 中,a 与α相交、平行或a α;在B 中,a ,b 与平面α平行或a ,b 在平面α内;在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α;在D 中,a ∥b ,与已知a ,b 是两条异面直线矛盾.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 8.【答案】C【解析】解:由图象知A=1,=-(-)=,即函数的周期T=π,则=π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2×+φ=π,得φ=,则g(x)=sin(2x+),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x+)+]=sin(2x+)=sin(2x++)=cos(2x+),故选:C.根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.9.【答案】B【解析】解:∵f(x)是奇函数,且图象关于x=1对称;∴f(2-x)=f(x);又0≤x≤1时,f(x)=x3;∴.故选:B.根据f(x)的图象关于直线x=1对称,即可得出f(2-x)=f(x),从而得出,再根据f(x)是奇函数,且当0≤x≤1时,f(x)=x3,从而得出.考查奇函数的定义,函数f(x)的图象关于x=a对称时,满足f(2a-x)=f(x),以及已知函数求值的方法.10.【答案】B【解析】解:化圆C:x2+2x+y2-2ay=0为(x+1)2+(y-a)2=a2+1,圆心坐标为C(-1,a),半径为.如图,由题意可得,过圆心与点(1,2)的直线与直线2x-y=0垂直.则,即a=3.故选:B.由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x-y=0垂直,再由斜率的关系列式求解.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.11.【答案】C【解析】解:根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,有3种情况,将剩下的5个数字全排列,安排在后面的5个数位,此时有3×A55=360种情况,即有360个大于420789的正整数,,六位数的首位数字为4,其万位数字可以为7、8、9时,有3种情况,将剩下的4个数字全排列,安排在后面的4个数位,此时有3×A44=72种情况,即有72个大于420789的正整数,,六位数的首位数字为4,其万位数字为2,将剩下的4个数字全排列,安排在后面的4个数位,此时有A44=24种情况,其中有420789不符合题意,有24-1=23个大于420789的正整数,则其中大于420789的正整数个数有360+72+23=455个;故选:C.根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,,六位数的首位数字为4,其万位数字可以为7、8、9时,,六位数的首位数字为4,其万位数字为2,分别求出每种情况下的六位数的数目,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.12.【答案】D【解析】解:△ABC是直三角形,AB=20m,AC=10m,可得CB=,DEF是等边三角形,设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,△BFE中由正弦定理,可得可得x=,其中tanα=;∴x≥;则△DEF面积S=故选:D.△ABC是直三角形,DEF是等边三角形,AB=20m,AC=10m,CB=,可得∠A=60°,∠B=30°;设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,在三角形△BFE中利用正弦定理求解x的最小值,即可求解△DEF区域内面积的最小值.本题考查三角形的面积的求法,考查DEF边长的求法,角的表示求解最值问题,是中档题,解题时要注意正弦定理的合理运用.13.【答案】1【解析】解:∵z==是纯虚数,∴,即a=-1.∴z=i,则|z|=1.故答案为:1.利用复数代数形式的乘除运算化简,由实部为0且虚部不为0求得a值,得到复数z,则答案可求.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.【答案】3π【解析】解:如图,取CD中点E,连接BE,可得BE=,设等边三角形BCD的中心为G,则BG=,∴AG=,设三棱锥A-BCD的外接球的半径为R,则R2=BG2+OG2,即,解得R=.∴球O的表面积为.故答案为:3π.由题意画出图形,解三角形求得三棱锥外接球的半径,代入棱锥体积公式求解.本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.15.【答案】【解析】解:d(O,C)=|x|+|y|=1,则≥=,.故答案为:.d(O,C)=|x|+|y|=1,利用≥即可得出.本题考查了基本不等式的性质、折线距离,考查了推理能力与计算能力,属于基础题.16.【答案】6【解析】解:设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立,化为:x2-4kx-4=0,可得:x1+x2=4k,x1x2=-4,|AB|=y1+y2+p=k(x1+x2)+2+2=4k2+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得:x=(x1+x2)=2k,y=x1x2=-1.∴P(2k,-1).∴|PF|=.∴|PF|+=+,令=t≥2.则|PF|+=t+=f(t),f′(t)=1-=,可得t=4时,函数f(t)取得极小值即最小值f(4)=6.当且仅当k=时取等号.故答案为:6.设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立化为:x2-4kx-4=0,利用根与系数的关系可得|AB|=y1+y2+p=k(x1+x2)+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得P点坐标,可得代入|PF|+,利用导数研究函数的单调性极值即可得出.本题考查了抛物线的定义标准方程及其性质、利用导数研究函数的单调性极值、切线方程、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.17.【答案】解:(I)∵a2+1是a1,a3的等差中项,∴2(a2+1)=a1+a3,∴a1(q2+1)=2a1q+2,=14,化为2q2-5q+2=0,q>1,解得q=2,∴a1=2.∴a n=2n.(II)b n=a n•log2a n=n•2n.∴数列{b n}的前n项和T n=2+2•22+3•23+……+n•2n.2T n=2×2+2•23+……+(n-1)•2n+n•2n+1.∴-T n=2+22+23+……+2n-n•2n+1=-n•2n+1.解得:T n=(n-1)•2n+1+2.【解析】(I)由a2+1是a1,a3的等差中项,可得2(a2+1)=a1+a3,又a1(q2+1)=2a1q+2,=14,联立解得,即可得出.(II)b n=a n•log2a n=n•2n.利用错位相减法即可得出.本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)根据列联表可以求得K2的观测值:k==≈11.42>6.635,故有99%的把握认为满意程度与年龄有关.(2)据题意,该8名员工的贡献积分及按甲乙两种方案所获补贴情况为:设从这8名员工中随机抽取4名进行面谈,恰好抽到3名”A类员工“的概率为P,则P==.【解析】(1)根据列联表可以求得K2的观测值,结合临界值可得;(2)先得积分表可得A类员工的人数,再根据古典概型的概率公式可得.本题考查了独立性检验,属中档题.19.【答案】证明:(Ⅰ)由题意知在等腰梯形ABCD中,AB∥CD,∵E,F分别为AB,CD的中点,∴EF AB,EF CD,∴折叠后,EF DF,EF CF,∵DF∩CF=F,∴EF平面DCF,又MC平面DCF,∴EF MC.解:(Ⅱ)∵平面BEFC平面AEFD,平面BEFC∩平面AEFD=EF,且EF DF,∴DF平面BEFC,∴DF CF,∴DF,CF,EF两两垂直,以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,∵DM=1,∴FM=1,∴M(1,0,0),D(2,0,0),A(1,0,2),B(0,1,2),∴=(0,0,2),=(-1,1,0),=(-1,0,2),设平面MAB的法向量=(x,y,z),则,取x=1,得=(1,1,0),设平面ABD的法向量=(x,y,z),则,取z=1,得=(2,2,1),∴cos<,>===,∴二面角M-AB-D的余弦值为.【解析】(Ⅰ)推导出EF AB,EF CD,折叠后,EF DF,EF CF,从而EF平面DCF,由此能证明EF MC.(Ⅱ)以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-AB-D的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(I)由题意可得:2b=4,=,a2=b2+c2.联立解得:b=2,c=1,a=3.∴椭圆C的标准方程为:+=1.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).∵F1M∥F2N,根据对称性可得:N(-x2,-y2).联立,化为:(8m2+9)y2-16my-64=0,∴y1+y2=,y1y2=,∵3k1+2k2=0,∴+=0,即5my1y2+6y1+4y2=0,联立解得:y1=,y2=,∵y1>0,y2<0,∴m>0.∴y1y2=•=,∴m=.∴直线F1M的方程为x=y-1,即2x-y+2=0.【解析】(I)由题意可得:2b=4,=,a2=b2+c2.联立解出即可得出椭圆C的标准方程.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).由F1M∥F2N,根据对称性可得:N(-x2,-y2).直线方程与椭圆方程联立化为:(8m2+9)y2-16my-64=0,根据根与系数的关系及其3k1+2k2=0,+=0,联立解得m.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.21.【答案】(I)解:f′(x)=-=.(x>0).当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增,又f(1)=0.因此0<x<1时,f(x)<0.当a>0时,可得函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,∴x=a时,函数f(x)取得极小值即最小值,则f(a)=ln a+1-a≥0.令g(a)=ln a+1-a,g(1)=0.g′(a)=-1=,可知:a=1时,函数g(a)取得极大值即最大值,而g(1)=).因此只有a=1时满足f(a)=ln a+1-a≥0.故a=1.∴实数a取值的集合是{1}.(II)证明:由(I)可知:a=1时,f(x)≥0,即ln x≥1-在x>0时恒成立.要证明:e x+≥2-ln x+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.h′(x)=e x-2x-(e-2),令u(x)=e x-2x-(e-2),u′(x)=e x-2,令u′(x)=e x-2=0,解得x=ln2.可得:x=ln2时,函数u(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.即函数h′(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.而h′(0)=1-(e-2)=3-e>0.h′(ln2)<h′(1)=0.∴存在x0(0,ln2),使得h′(x0)=0,当x(0,x0)时,h′(x)>0,h(x)单调递增;当x(x0,1)时,h′(x)<0,h(x)单调递减.当x(1,+∞)时,h′(x)>0,h(x)单调递增.又h(0)=1-1=0,h(1)=e-1-1-(e-2)=0,∴对∀x>0,h(x)≥0恒成立,即e x-1-x2-(e-2)x≥0.综上可得:e x+≥2-ln x+x2+(e-2)x,成立.【解析】(I)f′(x)=-=.(x>0).对a分类讨论即可得出单调性与极值,进而得出结论.(II)由(I)可知:a=1时,f(x)≥0,即lnx≥1-在x>0时恒成立.要证明:e x+≥2-lnx+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.利用导数研究其单调性极值与最值即可得出.本题考查了利用导数研究函数的单调性极值与最值、等价转化方法、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)曲线C的参数方程为(β为参数,β[0,π]),转换为直角坐标方程为:(x-4)2+y2=4(y≥0).直线l的参数方程为(t为参数,α倾斜角),转换为极坐标方程为:θ=α.(2)由(1)可知:曲线C为半圆弧,若直线l与曲线C恰有一个公共点P,则直线l与半圆弧相切.设P(ρ,θ),由题意知:,故:,故:ρ2+22=42,解得:.所以:点P(,).【解析】1(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.【答案】解:(Ⅰ)∵m>0,∴f(x)=|x-m|-|x+2m|=,,<<,,∴当x≤-2m时,f(x)取得最大值3m.∴m=1.(Ⅱ)证明:由(Ⅰ)得,a2+b2=1,∴+===-2ab.∵a2+b2=1≥2ab,当且仅当a=b时等号成立.∴0<ab,令h(t)=-2t,0<t,则h(t)在(0,]上单调递减,∴h(t)≥h()=1,∴当0<ab时,-2ab≥1,∴+≥1.【解析】(Ⅰ)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(Ⅱ)将所证不等式转化为-2ab≥1,再构造函数利用导数判断单调性求出最小值可证.本题考查了绝对值不等式的解法,属中档题.。

四川省成都市第七中学2019届高三数学下学期二诊模拟考试试题理(含解析)

四川省成都市第七中学2019届高三数学下学期二诊模拟考试试题理(含解析)

成都七中高2019届高三二诊模拟考试数学(理科)试卷一、选择题:(共12个小题,每小题5分,共60分.)1.已知复数满足,则为A. B. C. 2 D. 1【答案】A【解析】【分析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目.2.设全集,集合,,则A. B.C. D.【答案】B【解析】【分析】由集合或,先求解,再由集合能够求出答案.【详解】因为全集,集合或,所以,所以,故选B.【点睛】本题主要考查了集合的混合运算,属于基础题,其中解答中准确计算集合和集合的交集、补集的运算是解答的关键,着重考查了推理与运算能力.3.在的二项展开式中,若第四项的系数为,则()A. B. C. D.【答案】B【解析】,,,解得:,故选B.4.在△中,,,且的面积为,则的长为()A. B. C. D.【答案】B【解析】试题分析:由题意得,因为的面积为,所以,解得,在中,由余弦定理可得,所以,故选B.考点:正弦定理;余弦定理.【方法点晴】本题主要考查了解三角形的综合问题,其中解答中涉及到三角形的正弦定理、余弦定理的应用,以及三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中根据三角形的面积公式,求得,再利用正、余弦定理是解得关键.5.在区间内随机取两个数分别记为,,则使得函数有零点的概率为()A. B. C. D.【答案】B【解析】【分析】先列出函数有零点的条件,再根据面积求几何概型概率.【详解】因为函数有零点,所以所以所求概率为,选B.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.6. 如果执行如图所示的程序框图,输出的S=110,则判断框内应填入的条件是( ).A. k<10?B. k≥11?C. k≤10?D. k>11? 【答案】C【解析】试题分析:因为,所以时结束循环,因此选C. 考点:循环结构流程图【方法点睛】研究循环结构表示算法,第一要确定是当型循环结构,还是直到型循环结构;第二要注意根据条件,确定计数变量、累加变量等,特别要注意正确理解循环结构中条件的表述,以免出现多一次循环或少一次循环的情况.7.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A. B. C. D.【答案】B【解析】【分析】首先利用余弦的倍角公式和辅助角公式对函数解析式进行化简,求得的解析式,之后根据图象变换的原则,求得的解析式,根据,得到和都是函数的最大值3,从而得出的值为周期的整数倍,求得结果.【详解】由题意得,所以,所以的最小正周期为,由,可知和都是函数的最大值3(或都是最小值-3),所以的值为周期的整数倍,所以其最小值为,故选B.【点睛】该题考查的是有关两个变量的差值的问题,涉及到的知识点有三角式的化简,三角函数的图象变换,函数的最值,函数的周期,熟练掌握相关公式是正确解题的关键.8.外接圆的半径为,圆心为,且,则()A. B. C. D.【答案】C【解析】为边BC的中点,因而,又因为,所以为等边三角形,.9.给出下列说法:①“”是“”的充分不必要条件;②命题“,”的否定形式是“,”.③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为种.其中正确说法的个数为()A. B. C. D.【答案】C【解析】【分析】根据充要关系、存在性问题否定形式以及排列组合分别判断,最后得结果.【详解】①时,反之不然,所以“”是“”的充分不必要条件;②命题“,”的否定形式是“,”, ②错;③四名学生分到三个不同的班,每个班至少分到一名学生,分法有种,其中甲、乙两名学生分到同一个班,有种,因此甲、乙两名学生不能分到同一个班的分法种数为种.综上正确说法的个数为2,选C.【点睛】充分、必要条件的三种判断方法.(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.10.某多面体的三视图如图所示,则该几何体的体积与其外接球的体积之比为()A. B. C. D.【答案】A【解析】【分析】先还原几何体,再根据锥体体积公式求体积,由长方体性质得外接球球心位置,根据球体积公式求条件,最后作商得结果.【详解】几何体为如图三棱锥S-ABC,SA=2,SC=4,BD=2,体积为,其外接球球心为SB中点,外接球半径为,所以几何体的体积与其外接球的体积之比为,选A.【点睛】若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求给定的几何体的体积.11.设双曲线()的左右焦点分别为,以为直径的圆与双曲线左支的一个交点为,若以(为坐标原点)为直径的圆与相切,则双曲线的离心率为()A. B. C. D.【答案】D【解析】试题分析:解:设以(为坐标原点)为直径的圆与相切于点 ,圆心为点,,,由题意可知:,解得:,设,则,在中可得:,据此可得:,整理可得:,则:,分解因式有:,双曲线的离心率,故:,解得:,双曲线的离心率: .本题选择D选项.点睛:在双曲线的几何性质中,涉及较多的为离心率和渐近线方程.求双曲线离心率或离心率范围的两种方法:一种是直接建立的关系式求或的范围;另一种是建立的齐次关系式,将用表示,令两边同除以或化为的关系式,进而求解.12.已知函数,若函数恰有5个零点,且最小的零点小于-4,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】设,则充分利用函数的图象,分类讨论a的取值情况,得到的取值范围.【详解】当时,,,当时,,单调递减;当时,,单调递增,故.当时,的图像恒过点,当时,;当时,.有5个零点,即方程有5个解,设,则.结合图像可知,当时,方程有三个根,,(∵,∴),于是有1个解,有1个解,有3个解,共有5个解.由,得,再由,得,∵,∴.而当时,结合图像可知,方程不可能有5个解.故选:C【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某人次上班途中所花的时间(单位:分钟)分别为,,,,.已知这组数据的平均数为,方差为,则的值为__________.【答案】【解析】【分析】结合平均数和方差的计算方法,建立方程,计算结果,即可。

2019成都市高三二诊数学理科试题及详细解析

2019成都市高三二诊数学理科试题及详细解析

〖解析〗1、【考点】①集合的表示法;②全集,补集的定义与性质;③交集的定义,性质和运算方法。

【解题思路】根据集合的表示法,运用全集,补集的运算方法求出集合B 的补集,再利用交集的定义,性质和运算方法就可得出结果。

【详细解答】U=R ,B={x|x ≤-2或x ≥1},∴U C B ={x|-2<x<1},A={x|-1<x<3},∴A (U C B )={x|-1<x<1},⇒A 正确,∴选A 。

2、【考点】①双曲线的定义与性质;②双曲线焦距的定义与性质;③双曲线渐近线的定义与求法。

【解题思路】根据双曲线焦距的定义与性质,运用双曲线实半轴a ,虚半轴B ,半焦距之间的关系先求出b 的值,再利用双曲线渐近线的基本求法,结合问题条件就可得出结果。

【详细解答】双曲线C 为:2x -22y b =1(b>0)的焦距为4,∴2c=4,⇒c=2,a=1,2c =2a +2b ,∴2b =4-1=3,⇒∴双曲线的渐近线方程为:y=±, ⇒D 正确,∴选D 。

3、【考点】①向量坐标表示的定义与性质;②向量数量积坐标运算的基本方法;③向量数量积的几何意义。

【解题思路】根据向量的坐标表示,运用向量数量积坐标运算的基本方法求出向量的数量积,在利用数量积的几何意义就可得出结果。

【详细解答】a =1),b =(-3,∴|b ,a .b =-3⨯⨯a .b =|a |.|b |cos<a ,b >,∴|b |cos<a ,b >=.||a b a ==-1,⇒C 正确,∴选C 。

4、【考点】①不等式的定义与性质;②充分条件,必要条件的定义与性质;③充分条件,必要条件,充分必要条件判断的基本方法。

【解题思路】运用充分条件,必要条件,充分必要条件判断的基本方法,结合不等式的定义与基本性质,通过判断就可得出结果。

【详细解答】由a>b>0,可以推出1a <1b ,但由1a <1b,不能推出a>b>0, ∴由条件甲可以推出条件乙,但由条件乙不能推出条件甲,⇒条件甲是条件乙的充分不必要条件,⇒A 正确,∴选A 。

成都市第七中学2019届高中毕业班零诊模拟考试数学(理)试题含答案

成都市第七中学2019届高中毕业班零诊模拟考试数学(理)试题含答案

0) , A , B 是函数 y f ( x) 图象上相邻的最高点和

x2 y2 15. 已知双曲线 a2 b2 1(a 0, b 0) 的一条渐近线方程是 y 2x ,它的一个焦点与抛物
线 y2 20x 的焦点相同,则双曲线的方程是

16. 如图,在平面四边形 ABCD 中, AB BC ,AD CD , BAD 120 ,AB AD 2 .
2k y 1 4k 2
令 x 0 ,解得 y0
6k 1 4k 2 .
由 QA ( 2, y0) , QB ( x1, y1 y0 ) ,
1
8k 2
(x k
1
4k2 ) .
QA QB 2x1 y0 ( y1 y0)
2(2 8k 2 ) 6k
4k
成都七中高 2019 届零诊模拟考试 数学试题(理科)
一、单选题(每小题 5 分,共 60 分)
1. 设全集为 R ,集合 A { x | 0 x 2} , B { x | x 1} ,则 A B ( )
A. { x | 0 x 1} B . { x |0 x 1} C . { x |1 x 2} D . { x | 0 x 2}
y k (x 2) ,
于是 A , B 两点的坐标满足方程组
y k(x x2 y2 4
2)

1
由方程组消去 y 整理,得 (1 4k 2 ) x2 16k2 x (16k 2 4) 0 ,
由 2 x1
16k 2 4 1 4k2
,得
x1
2 1
8k 2 4k 2
,从而
y1
4k 1 4k2 .
设线段 AB 的中点为 M ,则 M 的坐标为 (

成都七中2018-2019年高三二诊模拟考试数学(理)试题

成都七中2018-2019年高三二诊模拟考试数学(理)试题

(1)根据表中数据可知,频数 y 与日需求量 x (单位:个)线性相关,求 y 关于 x 的线性回归
方程;
(2)以 30 天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数
为 24,记当日这款新面包获得的总利润为 X (单位:元).求 X 的分布列及其数学期望.
n
n
相关公式: ^ b
A.32
B. 3
C.3
D.2 3
9.给出下列说法:
①“ x ”是“ tan x 1”的充分不必要条件; 4
②命题“ x0
R
, x0

1 x0

2 ”的否定形式是“ x R , x
1 x

2 ”.
③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至 少分到一名学生,且甲、乙两名学
(ⅰ)当 A 为椭圆与 y 轴正半轴的交点时,求直线 l 的方程; (ⅱ)对于动直线 l,是否存在一个定点,无论∠OFA 如何变化,直线 l 总经过此定点?
若存在,求出该定点的坐标;若不存在,请说明理由.
21.已知函数 f (x) 2x ln x 2x , g(x) a(x 1) ( a 为常数,且 a R ).
与双曲线左支的一个交点为 P,若以 OF1(O 为坐标原点)为直径的圆与 PF2 相切,则双曲线 C 的离心率为( )
A.
B.
C.
D.
12.已知函数
f
(x)

ex1 x
,x

0
,若函数 g(x) f ( f (x)) 2 恰有 5 个零点,且最小的零点
ax 3, x 0
1 ,纵坐标保持不变;再把所得图像向上平移 1 个单位长度,得到函数 y g(x) 的图像,若 2

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案

2019届高三下学期高三第二次模拟联考数学(理)试题—含答案2019学年度第二学期高三第二次模拟联考数学(理科)试卷年级班级姓名学号注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3.请将答案写在答题卡各题目的答题区域内,超出答题区域书写的答案无效。

4.作图题可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破弄皱,不准使用涂改液、修正带。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知,则()A.{1,2}B.{1,2,3}C.{0,1,2}D.{1,2,3,4,}2.设复数满足,则复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如下图的茎叶图为某次10名学生100米跑步的成绩(s),由茎叶图可知这次成绩的平均数,中位数,众数分别为()A.51.95260B.525460C.51.95360D.5253624.已知随机变量服从正态分布,且,,等于()A.0.2B.C.D.5.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.4B.2C.3D.56.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆被的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A.B.C.D.7.若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象大致是()ABCD8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.设x,y满足约束条件,则的最大值为A.B.C.-3D.310.将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是()A.函数的最小正周期为B.是函数的一条对称轴C.函数在区间上单调递增D.函数在区间上的最小值为11.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A.B.C.D.12.已知定义在R上的函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,1]时,,则()A.B.C.D.第Ⅱ卷二.填空题:本大题共4小题,每小题5分。

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案

2019届高三数学二模试卷理科附答案理科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019•乐山调研]若与互为共轭复数,则的值为()A.B.C.D.2.[2019•济南外国语]已知集合,,则()A.B.C.D.3.[2019•九江一模] 的部分图像大致为()A.B.C.D.4.[2019•榆林一模]已知向量,满足,,,则()A.2 B.C.D.5.[2019•湘潭一模]以双曲线的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为()A.B.C.D.6.[2019•武邑中学]在中,角,,的对边分别为,,,若,,,则角()A.B.C.或D.或7.[2019•新乡调研]某医院今年1月份至6月份中,每个月为感冒来就诊的人数如下表所示:()上图是统计该院这6个月因感冒来就诊人数总数的程序框图,则图中判断框、执行框依次应填()A.;B.;C.;D.;8.[2019•优创名校联考]袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为()A.B.C.D.9.[2019•成都一诊]在各棱长均相等的四面体中,已知是棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.10.[2019•长沙一模]已知是函数图象的一个最高点,,是与相邻的两个最低点.设,若,则的图象对称中心可以是()A.B.C.D.11.[2019•湖北联考]已知偶函数满足,现给出下列命题:①函数是以2为周期的周期函数;②函数是以4为周期的周期函数;③函数为奇函数;④函数为偶函数,则其中真命题的个数是()A.1 B.2 C.3 D.412.[2019•宜昌调研]已知椭圆:上存在、两点恰好关于直线:对称,且直线与直线的交点的横坐标为2,则椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.[2019•泉州质检]若函数的图象在点处的切线过点,则______.14.[2019•湖北联考]设,满足约束条件,则的最大值为____.15.[2019•镇江期末]若,,则_______.16.[2019•遵义联考]已知三棱锥中,面,且,,,,则该三棱锥的外接球的表面积为__________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019•潍坊期末]已知数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)数列满足,求数列的前项和.18.(12分)[2019•开封一模]大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:分数人数25 50 100 50 25参加自主招生获得通过的概率(1)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过的前提下认为学习先修课程与优等生有关系?优等生非优等生总计学习大学先修课程250没有学习大学先修课程总计150(2)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.(i)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;(ii)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:参考公式:,其中.19.(12分)[2019•湖北联考]如图,在四棱锥中,,,,且,.(1)证明:平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.20.(12分)[2019•河北联考]在直角坐标系中,直线与抛物线交于,两点,且.(1)求的方程;(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由.21.(12分)[2019•泉州质检]已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2019•九江一模]在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(,),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为.(1)求,的极坐标方程;(2)设点的极坐标为,求面积的最小值.23.(10分)【选修4-5:不等式选讲】[2019•湘潭一模]设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.2019届高三第二次模拟考试卷理科数学(二)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】∵,,又与互为共轭复数,∴,,则.故选A.2.【答案】C【解析】∵集合,,∴,,∴.故选C.3.【答案】B【解析】,则函数是偶函数,图象关于轴对称,排除A,D,,排除C,故选B.4.【答案】A【解析】根据题意得,,又,∴,∴,∴.故选A.5.【答案】D【解析】由题可知,所求双曲线的顶点坐标为,又∵双曲线的渐近线互相垂直,∴,则该双曲线的方程为.故选D.6.【答案】A【解析】∵,,,∴由正弦定理可得,∵,由大边对大角可得,∴解得.故选A.7.【答案】C【解析】∵要计算1月份至6月份的6个月的因感冒来就诊的人数,∴该程序框图要算出所得到的和,①当时,,没有算出6个月的人数之和,需要继续计算,因此变成2,进入下一步;②当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成3,进入下一步;③当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成4,进入下一步;④当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成5,进入下一步;⑤当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成6,进入下一步;⑥当时,用前一个加上,得,刚好算出6个月的人数之和,因此结束循环体,并输出最后的值,由以上的分析,可得图中判断框应填“”,执行框应填“”.故选C.8.【答案】C【解析】∵随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.9.【答案】C【解析】设各棱长均相等的四面体中棱长为2,取中点,连结,,∴是棱的中点,∴,∴是异面直线与所成角(或所成角的补角),,,∴,∴异面直线与所成角的余弦值为,故选C.10.【答案】D【解析】结合题意,绘图又,,∴周期,解得,∴,,令,得到,∴,令,,得对称中心,令,得到对称中心坐标为,故选D.11.【答案】B【解析】偶函数满足,即有,即为,,可得的最小正周期为4,故①错误;②正确;由,可得,又,即有,故为奇函数,故③正确;由,若为偶函数,即有,可得,即,可得6为的周期,这与4为最小正周期矛盾,故④错误.故选B.12.【答案】C【解析】由题意可得直线与直线的交点,,设,,则,,∵、是椭圆上的点,∴①,②,①﹣②得:,∴,∴,∴,∴,故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】1【解析】函数,可得,∴,又,∴切线方程为,切线经过,∴,解得.故答案为1.14.【答案】5【解析】作出,满足约束条件,所示的平面区域,如图:作直线,然后把直线向可行域平移,结合图形可知,平移到点时最大,由可得,此时.故答案为5.15.【答案】【解析】由得,即,又,解得,∴.16.【答案】【解析】取的中点,连结、,∵平面,平面,∴,可得中,中线,由,,,可知,又∵,、是平面内的相交直线,∴平面,可得,因此中,中线,∴是三棱锥的外接球心,∵中,,,∴,可得外接球半径,因此,外接球的表面积,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)∵,,成等差数列,∴,当时,,∴,当时,,,两式相减得,∴,∴数列是首项为,公比为的等比数列,∴.(2),∴,∴.18.【答案】(1)见解析;(2)见解析.【解析】(1)列联表如下:优等生非优等生总计学习大学先修课程50 200 250没有学习大学先修课程100 900 1000总计150 **** ****由列联表可得,因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.(2)(i)由题意得所求概率为.(ii)设获得高校自主招生通过的人数为,则,,,1,2,3,4,∴的分布列为0 1 2 3 4估计今年全校参加大学先修课程的学生获得大学自主招生通过的人数为.19.【答案】(1)见证明;(2)见解析.【解析】(1)∵在底面中,,,且,∴,,∴,又∵,,平面,平面,∴平面,又∵平面,∴,∵,,∴,又∵,,平面,平面,∴平面.(2)方法一:在线段上取点,使,则,又由(1)得平面,∴平面,又∵平面,∴,作于,又∵,平面,平面,∴平面,又∵平面,∴,又∵,∴是二面角的一个平面角,设,则,,这样,二面角的大小为,即,即,∴满足要求的点存在,且.方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系,且由(1)知是平面的一个法向量,设,则,,∴,,设是平面的一个法向量,则,∴,令,则,它背向二面角,又∵平面的法向量,它指向二面角,这样,二面角的大小为,即,即,∴满足要求的点存在,且.20.【答案】(1);(2)在轴的正半轴上存在一点,使得的外心在上.【解析】(1)联立,得,则,,从而.∵,∴,即,解得,故的方程为.(2)设线段的中点为,由(1)知,,,则线段的中垂线方程为,即.联立,得,解得或,从而的外心的坐标为或.假设存在点,设的坐标为,∵,∴,则.∵,∴.若的坐标为,则,,则的坐标不可能为.故在轴的正半轴上存在一点,使得的外心在上.21.【答案】(1)见解析;(2).【解析】解法一:(1),①当时,↘极小值↗∴在上单调递减,在单调递增.②当时,的根为或.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.若,即,在上恒成立,∴在上单调递增,无减区间.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.综上:当时,在上单调递减,在单调递增;当时,在,上单调递增,在上单调递减;当时,在上单调递增,无减区间;当时,在,上单调递增,在上单调递减.(2)∵,∴.当时,恒成立.当时,.令,,设,∵在上恒成立,即在上单调递增.又∵,∴在上单调递减,在上单调递增,则,∴.综上,的取值范围为.解法二:(1)同解法一;(2)令,∴,当时,,则在上单调递增,∴,满足题意.当时,令,∵,即在上单调递增.又∵,,∴在上有唯一的解,记为,↘极小值↗,满足题意.当时,,不满足题意.综上,的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1);;(2)2.【解析】(1)∵曲线的参数方程为(为参数),∴曲线的普通方程为,∴曲线的极坐标方程为,设点的极坐标为,点的极坐标为,则,,,,∵,∴,∴,,∴的极坐标方程为.(2)由题设知,,当时,取得最小值为2.23.【答案】(1);(2).【解析】(1)∵,∴的解集为.(2)∵,∴,即,则,∴.。

精品解析:【全国百强校】四川省成都市第七中学2019届高三二诊数学(理)模拟考试试题(解析版)

精品解析:【全国百强校】四川省成都市第七中学2019届高三二诊数学(理)模拟考试试题(解析版)

成都七中高2019届高三二诊模拟考试数学(理科)试卷注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

一、选择题:(共12个小题,每小题5分,共60分.)1.已知复数满足,则为A. B. C. 2 D. 1【答案】A【解析】【分析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目.2.设全集,集合,,则A. B.C. D.【答案】B【解析】【分析】由集合或,先求解,再由集合能够求出答案. 【详解】因为全集,集合或,所以,所以,故选B.【点睛】本题主要考查了集合的混合运算,属于基础题,其中解答中准确计算集合和集合的交集、补集的运算是解答的关键,着重考查了推理与运算能力.3.在的二项展开式中,若第四项的系数为,则()A. B. C. D.【答案】B【解析】,,,解得:,故选B.4.在△中,,,且的面积为,则的长为()A. B. C. D.【答案】B【解析】试题分析:由题意得,因为的面积为,所以,解得,在中,由余弦定理可得,所以,故选B.考点:正弦定理;余弦定理.【方法点晴】本题主要考查了解三角形的综合问题,其中解答中涉及到三角形的正弦定理、余弦定理的应用,以及三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中根据三角形的面积公式,求得,再利用正、余弦定理是解得关键.5.在区间内随机取两个数分别记为,,则使得函数有零点的概率为()A. B. C. D.【答案】B【解析】【分析】先列出函数有零点的条件,再根据面积求几何概型概率.【详解】因为函数有零点,所以所以所求概率为,选B.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.6. 如果执行如图所示的程序框图,输出的S=110,则判断框内应填入的条件是( ).A. k<10?B. k≥11?C. k≤10?D. k>11?【答案】C【解析】试题分析:因为,所以时结束循环,因此选C.考点:循环结构流程图【方法点睛】研究循环结构表示算法,第一要确定是当型循环结构,还是直到型循环结构;第二要注意根据条件,确定计数变量、累加变量等,特别要注意正确理解循环结构中条件的表述,以免出现多一次循环或少一次循环的情况.7.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A. B. C. D.【答案】B【解析】【分析】首先利用余弦的倍角公式和辅助角公式对函数解析式进行化简,求得的解析式,之后根据图象变换的原则,求得的解析式,根据,得到和都是函数的最大值3,从而得出的值为周期的整数倍,求得结果.【详解】由题意得,所以,所以的最小正周期为,由,可知和都是函数的最大值3(或都是最小值-3),所以的值为周期的整数倍,所以其最小值为,故选B.【点睛】该题考查的是有关两个变量的差值的问题,涉及到的知识点有三角式的化简,三角函数的图象变换,函数的最值,函数的周期,熟练掌握相关公式是正确解题的关键.8.外接圆的半径为,圆心为,且,,则().A. B. C. D.【答案】C【解析】为边BC的中点,因而,又因为,所以为等边三角形,.9.给出下列说法:①“”是“”的充分不必要条件;②命题“,”的否定形式是“,”.③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为种.其中正确说法的个数为()A. B. C. D.【答案】C【解析】【分析】根据充要关系、存在性问题否定形式以及排列组合分别判断,最后得结果.【详解】①时,反之不然,所以“”是“”的充分不必要条件;②命题“,”的否定形式是“,”, ②错;③四名学生分到三个不同的班,每个班至少分到一名学生,分法有种,其中甲、乙两名学生分到同一个班,有种,因此甲、乙两名学生不能分到同一个班的分法种数为种.综上正确说法的个数为2,选C.【点睛】充分、必要条件的三种判断方法.(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.10.某多面体的三视图如图所示,则该几何体的体积与其外接球的体积之比为()A. B. C. D.【答案】A【解析】【分析】先还原几何体,再根据锥体体积公式求体积,由长方体性质得外接球球心位置,根据球体积公式求条件,最后作商得结果.【详解】几何体为如图三棱锥S-ABC,SA=2,SC=4,BD=2,体积为,其外接球球心为SB中点,外接球半径为,所以几何体的体积与其外接球的体积之比为,选A.【点睛】若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求给定的几何体的体积.11.设双曲线()的左右焦点分别为,以为直径的圆与双曲线左支的一个交点为,若以(为坐标原点)为直径的圆与相切,则双曲线的离心率为()A. B. C. D.【答案】D【解析】试题分析:解:设以(为坐标原点)为直径的圆与相切于点 ,圆心为点,,,由题意可知:,解得:,设,则,在中可得:,据此可得:,整理可得:,则:,分解因式有:,双曲线的离心率,故:,解得:,双曲线的离心率: .本题选择D选项.点睛:在双曲线的几何性质中,涉及较多的为离心率和渐近线方程.求双曲线离心率或离心率范围的两种方法:一种是直接建立的关系式求或的范围;另一种是建立的齐次关系式,将用表示,令两边同除以或化为的关系式,进而求解.12.已知函数,若函数恰有5个零点,且最小的零点小于-4,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】设,则充分利用函数的图象,分类讨论a的取值情况,得到的取值范围.【详解】当时,,,当时,,单调递减;当时,,单调递增,故.当时,的图像恒过点,当时,;当时,.有5个零点,即方程有5个解,设,则.结合图像可知,当时,方程有三个根,,(∵,∴),于是有1个解,有1个解,有3个解,共有5个解.由,得,再由,得,∵,∴.而当时,结合图像可知,方程不可能有5个解.故选:C【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某人次上班途中所花的时间(单位:分钟)分别为,,,,.已知这组数据的平均数为,方差为,则的值为__________.【答案】【解析】【分析】结合平均数和方差的计算方法,建立方程,计算结果,即可。

四川省成都七中2019届高三下学期二诊模拟数学(理)试题

四川省成都七中2019届高三下学期二诊模拟数学(理)试题

A. { x|x 2} B. { x| 2 x 1} C. { x| x 1} D. { x| 2 x 1}
3. 正项等比数列 a n 中,若 log 2( a2a98 ) 4 ,则 a40a60 等于 ( ▲)
A.-16
B. 10
C. 16
D.256
4.某程序框图如右图所示,现输入如下四个函数,
则可以输出的函数是
16. ( 本题满分 12 分)等比数列 { an } 中,已知 a1 2, a4 16 ( I )求数列 { an} 的通项公式; (Ⅱ)若 a3, a5 分别为等差数列 {bn} 的第 3 项和第 5 项,试求数列 { bn} 的通项公式及前 n 项和 Sn 。
17.(本小题满分 12 分)已知向量 a 1 cos x,1 , b (1,a 3sin x) ( 为常数且
0 ),
· 3·
函数 f ( x) a b 在 R 上的最大值为 2 .
(Ⅰ)求实数 a 的值;
(Ⅱ)把函数 y f (x) 的图象向右平移
个单位,可得函数 y g (x) 的图象,若 y g( x) 在6来自[0, ] 上为增函数,求 4
取最大值时的单调增区间.
18.(本题满分 12 分)如图一,平面四边形 ABCD 关 于直线 AC 对称, A 60 , C 90 , CD 2 .把
( ▲)
A. f (x) x2 C. f ( x) ex
1 B . f (x)
x D. f ( x) sin x
5. (x
3
1 x
)12
展开式中的常数项为
( ▲)
A. 1320
B.1320
C. 220
D.220
x 1,

四川成都七中实验学校2019高三2月抽考-数学(理)

四川成都七中实验学校2019高三2月抽考-数学(理)

四川成都七中实验学校2019 高三 2 月抽考 - 数学(理)一、选择题〔每题 5 分,共 60 分〕1、假定会合 Ax y x 2 1 , By y x 21 ,那么A B〔 A 〕A 、B 、C 、 RD 、1,1,2、实数 b 是对于 x 的方程 x 2 6 i x 9 ai0 a R的解,那么a b(B)A 、 9B 、 6C 、 3D 、 03、函数2 cos2x, x 在 x0处不连续是由于〔 D 〕f ( x)21,x 0A 、f (x) 在x处无定义B 、lim f ( x)不存在xC 、f ( x)limD 、f ( x)f (0)lim f (x)limx 0 x 0x 04、函数y 2sin(2x)( x [ 0,])为增函数的区间是 (C)6A 、] B 、,7]C 、5D 、 5][ 0,[ 12[,][,3123665、等差数列 { a n } 中, | a 3|=| a 9| ,公差 d <0,那么使前 n 项和 S n 取最大值的正整数 n 是(B)A.4 或 5B.5 或 6C.6 或 7D.8 或 96、以点〔 2, -1 〕为圆心且与直线3x 4 y 50 相切的圆的方程为〔 C 〕A 、 ( x2)2 ( y 1)2 3 B 、 C 、 ( x2) ( y1)9D 、22( x 2)2 ( y1)2 3( x2( y232) 1) 7、函数2 32x 2ax在区间上1,4 有反函数,那么 a 的取值范围是〔 D 〕f xx103A 、, B 、C 、D 、, 162,2,16,28、设点 F 1、F 2 是双曲线 x 2y 1 的两个焦点,点 P 是双曲线上一点, 假定 3 | PF 1 | 4 | PF 2 |23那么PF 1F 2 的面积等于〔A 〕A 、3 15B 、5 3C 、4 5D 、2 109、球 O的半径是R,A、 B、 C是球面上三点,且 A 与 B、 A 与 C、B 与 C 的球面距离分别为,那么四周体OABC的体积为〔 A〕R, R,R223A、3 R3B、3C、2D、2 R3R3R312412410、过双曲线x2y21( a0, b 的一个焦点 F 引它的一条渐近线的垂线,垂足为M,a2b20)延伸 FM交y轴于 E,假定 M为 EF 中点,那么该双曲线的离心率为〔D〕A、 2B、3 C、 3D、211、假定抛物线y ax2 1上总存在两点对于直线x y 0 对称,那么实数 a 的取值范围〔A〕A、3)B、1,)C、1)D、1 3(,(4(0,(,)444412、抛物线y2 2 px( p0)与双曲线x2y21(a0, b 有同样的焦点F,点 A 是两a2b20)曲线的一个交点,且AFx 轴,假定l为双曲线的一条渐近线,那么l 的倾斜角所在的区间可能是〔 D〕A、B、C、D、(0, )(,)( ,)(,) 4644332【二】填空题:〔每题 4 分,共16 分〕13、(ax1) 5 ( x1)2 睁开式中x2系数为21,那么a =1 或 -214、假定不等式组x y50 表示的平面地区的面积为5,那么a的值为7y a20x215 、假定直线kx y 3 0 与双曲线x2y 2的右支有两个不一样的交点,那么41k __1 1,216、定义域为 D 的函数y f x,假定对于随意x D,存在正数K,都有 f x K x成立,那么称函数 yf x 是 D 上的“倍拘束函数” 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中高2019届高三二诊模拟考试数学(理科)试卷
一、选择题:(共12个小题,每小题5分,共60分.)
1.已知复数z 满足:2
(1)2z i i ⋅+=-,则||z 为( ) A .52 B .5 C .2 D .1 2.设全集U =R ,集合M ={x |y =lg(x 2-1)},N ={x |0<x <2},则()U N C M ⋂=( ).
A .{x |-2≤x <1}
B .{x |0<x ≤1}
C .{x |-1≤x ≤1}
D .{x |x <1}
3.在()2n x x -的二项展开式中,若第四项的系数为7-,则=n ( )
A .9
B .8 C. 7 D .6
4.在△ABC 中,A =60°,AB =2,且△ABC 的面积为
32
,则BC 的长为( ). A.32 B. 3 C .2 3 D .2 5.在区间[﹣π,π]内随机取两个数分别记为a ,b ,则使得函数
f (x )=x 2+2ax ﹣b 2+π有零点的概率为( )
A .
B .
C .
D .
6.如果执行如图所示的程序框图,输出的S =110,则判断框内应填入的条
件是( ).
A .k <10?
B .k ≥11?
C .k ≤10?
D .k >11?
7.已知函数2()3sin 22cos 1f x x x =-+,将()f x 的图像上的所有点的横坐标缩短到原来的12
,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数()y g x =的图像,若12()()9g x g x ⋅=,则12||x x -的值可能为( )
A .3π
B .2
π C.34π D .54π 8.△ABC 外接圆的半径为1,圆心为O ,且2OA →+AB →+AC →=0,|OA →|=|AB →|,则CA →·CB →
=( ). A.32
B. 3 C .3 D .2 3 9.给出下列说法:
①“4x π=”是“tan 1x =”的充分不必要条件; ②命题“0x R ∃∈,0012x x +≥”的否定形式是“x R ∀∈,12x x
+>”. ③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为30种. 其中正确说法的个数为( )
A .0
B .1 C. 2 D .3
10.某多面体的三视图如图所示,则该几何体的体积与其外接球的体积
之比为( )
A .618π
B .69π
C .63π
D .62π 11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )
A .
B .
C .
D .
12.已知函数1
,0()3,0x e x f x x ax x -⎧>⎪=⎨⎪+≤⎩
,若函数()(())2g x f f x =-恰有5个零点,且最小的零点
小于-4,则a 的取值范围是( )
A .(,1)-∞-
B .(0,)+∞ C. (0,1) D .(1,)+∞
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 .
14.已知实数x ,y 满足,若x ﹣y 的最大值为6,则实数m= .
15.已知,A B 两点都在以PC 为直径的球O 的表面上,AB BC ⊥,2AB =,4BC =,若球O 的体积为86π,则异面直线PB 与AC 所成角的余弦值为 .
16.已知抛物线28y x =的焦点为F ,直线l 过F 且依次交抛物线及圆22
(2)1x y -+=于点A ,B ,C ,D 四点,则||4||AB CD +的最小值为 . 三、解答题 (解答应写出文字说明、证明过程或演算步骤.) 17. 在数列{}n a 中,11a =,11
n n n a a a +=+,设1n n b a =,*n N ∈ (Ⅰ)求证数列{}n b 是等差数列,并求通项公式n b ;
(Ⅱ)设12n n n c b -=⋅,且数列{}n c 的前n 项和n S ,若R λ∈,求使1n n S c λ-≤恒成立的λ的
取值范围.
18. 在万众创新的大经济背景下,某成都青年面包店推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近30天的日需求量(单位:个),整理得下表:
(1)根据表中数据可知,频数y 与日需求量x (单位:个)线性相关,求y 关于x 的线性回归方程;
(2)以30天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数为24,记当日这款新面包获得的总利润为X (单位:元).求X 的分布列及其数学期望. 相关公式:∑∑==---=n
i i
n i i i
x x y y x x b 121
^)())((∑∑==--=n i i
n i i i x n x y x n y x 1221 , x b y a ^^-= 19.(12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,
AA 1=A 1C=AC ,AB=BC ,AB ⊥BC ,E ,F 分别为AC ,B 1C 1的中点.
(1)求证:直线EF ∥平面ABB 1A 1;
(2)求二面角A 1﹣BC ﹣B 1的余弦值.
20.已知椭圆C : +=1(a >b >0)的左焦点为F ,点P 为椭圆C 上任意一点,且|PF |的最小值为﹣1,离心率为。

(Ⅰ)求椭圆C 的方程;
(Ⅱ)若动直线l 与椭圆C 交于不同两点A 、B (A 、B 都在x 轴上方),且∠OFA +∠OFB=180°.
(ⅰ)当A 为椭圆与y 轴正半轴的交点时,求直线l 的方程;
(ⅱ)对于动直线l ,是否存在一个定点,无论∠OFA 如何变化,直线l 总经过此定点?
若存在,求出该定点的坐标;若不存在,请说明理由.
21.已知函数()2ln 2f x x x x =+,()(1)g x a x =-(a 为常数,且a R ∈).
(1)若当(1,)x ∈+∞时,函数()f x 与()g x 的图像有且只有一个交点,试确定自然数n 的值,使得(),1a n n ∈+(参考数值32 4.48,ln 20.69,
e ≈≈ln 3 1.10,ln 7 1.95≈≈) (2)当3x >时,证明:4(3)()ln(2)x
f x x ->-(其中e 为自然对数的底数)。

请考生在22,23题中任选一题作答,如果多做,按所做的第一题计分,作答时请标明题号。

22.在直角坐标系xOy 中,直线l 的参数方程是,1,x t y t =⎧⎨=+⎩
(t 为参数),曲线C 的参数方程是22cos ,2sin ,
x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求直线l 和曲线C 的极坐标方程;
(Ⅱ)已知射线1:OP θα=(其中02π
α<<)与曲线C 交于O ,P 两点,射线2:2OQ π
θα=+
与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长||OP .
23.已知
,,,设函数, Ⅰ若
,求不等式的解集; Ⅱ若函数的最小值为1,证明:。

相关文档
最新文档