高中物理解题方法---微元法

合集下载

高中物理解题中“微元法”的应用分析

高中物理解题中“微元法”的应用分析

高中物理解题中 微元法 的应用分析马㊀骞(青海省西宁市湟川中学㊀810001)摘㊀要:在对物理习题进行研究时ꎬ需借助科学的思维方式与解题思路进行专业化物理模型的构建ꎬ以便简单化原本复杂的物理题目ꎬ有利于最佳解决方法的寻找.倘若将微元法应用于高中物理解题中ꎬ以数学手段表现物理概念ꎬ不论是解题效率亦或是准确率都能得到一定的保障.关键词:高中物理解题ꎻ微元法ꎻ应用中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)01-0084-02㊀㊀ 微元法 其实就是我们常说的 化变为恒 ꎬ主要是将物体变化的本质特征抓住ꎬ通过对变化所需时间㊁空间进行限制ꎬ以不变的事物或过程取代变化的事物或过程.此类思想主要源自于物理教材ꎬ学生要想得到解题效率与准确率的提升ꎬ就必须立足于教材ꎬ在实际问题中灵活运用 微元法 .㊀㊀一㊁微元法概述在物理解题过程中ꎬ 微元法 属于不常用却极为有效的方法. 微 代表的是短暂过程或瞬间物理过程ꎬ 元 代表的是具有相对独立特性ꎬ可对整体进行一定程度反映的物理过程.微元法是在整体中选取一个微小的局部过程ꎬ以部分内在联系㊁规律为根据ꎬ依托局部过程对整个物理过程进行了解.立足于数学角度而言ꎬ该方法类似于积分与极限过程ꎬ通过叠加 微元 便可将最终结论得出.微元法的应用步骤主要分为:确定研究对象ꎬ选取 微元 ꎻ借助规律对 元 的过程进行表达ꎻ展开叠加求解的整个过程.㊀㊀二㊁高中物理解题中 微元法 的应用1.质量元Δm质量元 都有着相同的规律ꎬ我们应将其划分为多个微小的 质量元 ꎬ遵循其解题方法ꎬ以其中一个当成研究对象ꎬ并以上述应用步骤为根据将表达式得出ꎬ进而解决问题.例1㊀火车处于加速启动状态ꎬ其车厢内装有一桶水ꎬ水面与水平面夹角若为θꎬ那么火车加速行驶的具体加速度是多少?解析㊀我们应将所需 水元 (质量Δm)从水面上进行提取ꎬ图中显示出其受力情况.倘若合力F合=Δmgtanθꎬ以牛顿第二定律为根据能得到F合=Δmaꎬ那么a=gtanθꎬ方向同等于启动方向.2.时间元Δt物理问题与时间这一条件之间的联系十分密切ꎬ经常会有除时间之外都为变量的情况出现ꎬ部分题目若是不借助微元法难以得到有效解决.故而必须灵活掌握针对Δt的微元法.例2㊀阴极射线管内ꎬ产自于阴极K㊁初速为零的热电子在电压U的加速下打至阳极A板上.假设A板附近单位体积内电子数为Nꎬ电子打至A板上被吸收.那么电子打至A板中A板受到的压强为多少?(电子质量取mꎬ电量取e)解析㊀根据动能定理不难发现ꎬ电子加速eU=12mv2ꎬ电子打至A板S面积在时间Δt内的数量为Ne=N(vΔt)Sꎬ以动量定理pSΔt=N(vΔt)Smv为根据可知ꎬ压强p=Nmv2=2NeU.3.换元法的应用从实际上来看ꎬ 时间元 与 质量元 相互代换叠加演算属于 加权叠加 ꎬ此类叠加演算针对一般 权函数 而言十分复杂ꎬ而若是 权函数 在定义域内的值都相同时ꎬ那么就会变得十分简单.高中物理中ꎬ 时间元 与 质量元 的互换通常包含两种:其一ꎬ以物体受力特点为根据借助换元对力的大小求解.如一艘宇宙飞船进入空间分布密度为ρ的尘埃中ꎬ速度为v.倘若飞船与运动方向垂直处的截面积最大为Sꎬ同时飞船与尘埃碰撞后被飞船所吸附ꎬ那么飞船平均受到的尘埃制动力为多少?解析㊀设尘埃质量元Δmꎬ速度在时间Δt内相对于飞船速度v减为零ꎬ以牛顿第二定律为根据可知ꎬ质量元受飞船平均制动力F=Δmv/ΔtꎬΔm=ρSvΔtꎬ那么F=ρSv2ꎻ以牛顿第三定律为根据能够发现ꎬ飞船平均受到的尘埃制动力为Fᶄ=-F=ρSv2ꎬ方向为飞船飞行相反的方向.其二ꎬ以力做功特点为根据借助换元进行功率求解.如一枚火箭(质量为m)借助喷向于正下方的气静止在空中ꎬ倘若喷出速度为v的气体ꎬ火箭发动机具体功率为多少?解析㊀火箭喷气时会对气体做功ꎬ以一个短暂的时间进行火箭对气体所做功的求解ꎬ随后将功率定义式代入便可将火箭发动机功率得出.以Δt时间内喷出气体进行研究ꎬ以F代替火箭推气体的力ꎬ以动量定理为根据得知FΔt=Δmvꎬ由于火箭在空中处于静止ꎬ故而以牛顿第三定律㊁平衡条件为根据得知F=Mgꎬ也就是MgΔt=ΔmvꎬΔt=ΔmvMg.火箭对同一部分气体做功W=12Δmv2.因此发动机具体功率为P=wΔt=12Δmv2ΔmvMg=12MgV.新课改之后ꎬ物理学习难度有所上升ꎬ每位学生也面临了掌握 微元法 进行问题解决的要求ꎬ以便自身物理解题能力㊁效率及准确率得到提升.鉴于此ꎬ高中物理教师在具体教学实践中也需积极引导学生掌握 微元法 的概念ꎬ了解如何将 微元法 应用到实际问题的解决中.㊀㊀参考文献:[1]鲁世明.微元法在高中物理解题中的应用探讨[J].物理教师ꎬ2017ꎬ38(11):76-79.[2]曹志扬.微元法在高中物理解题过程中的应用分析[J].中学生数理化:学习研究ꎬ2017(9):84-84.[责任编辑:闫久毅]数学方法在物理平衡中的应用王天炀㊀㊀㊀㊀㊀㊀㊀㊀指导教师:李庆林㊀㊀㊀㊀(山东省肥城市泰西中学㊀271600)摘㊀要:随着新高考改革的深入及素质教育的全面推开ꎬ各学科之间的渗透不断加强ꎬ其中物理和数学是两门联系非常密切的学科之一.研究物理问题常常离不开数学方法㊁数学技巧.在对理解能力和演绎推理能力及运算能力都有很高要求的物理学科的高考中ꎬ往往将物理和一些数学方法如:三角形相似法㊁图象法㊁函数法㊁数学归纳法㊁极值法㊁正弦定理㊁余弦定理等结合在一起使用ꎬ考查学生的综合应用能力和应用数学方法解决物理问题的能力.关键词:平衡ꎻ数学方法ꎻ物理中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)01-0085-02㊀㊀物体的平衡在物理学中有着广泛的应用ꎬ历年来高考中经常出现.在解决平衡问题时用到的数学知识很多ꎬ下面列举几例说明.㊀㊀一㊁函数解析法利用函数解析法解题ꎬ要求写出所求物理量的表达式ꎬ然后根据表达式分析求解.例1㊀一盏电灯重为Gꎬ悬于天花板上A点在电线O处系一细绳OBꎬ使电线OA与竖直方向的夹角为β=30ʎꎬ如图1(a)所示ꎬ现保持β角不变ꎬ缓慢调整OB方向至OB线上拉力最小为止ꎬ此时OB与水平方向夹角α等于多少?OB绳中的最小拉力为多大?。

高三物理微元法高考物理解题方法大全(原卷版)

高三物理微元法高考物理解题方法大全(原卷版)

高中物理解题方法微元法(原卷版)高考物理卷的最后一题,有的是用微元法解的题目,题目的难度很大,是为了区分最优秀的考生与优秀的考生的,本文通过研究微元法解的题目,探究微元法解题的方法和规律。

1.什么是微元法?“微元法”是高中物理涉及到的一种数学方法,渗透着微积分的思想,是物理学发展过程中最重要的科学思维方法之一,是牛顿力学的数学基础.通过对某一微元的研究求解物理量,有些物理问题中,当我们研究某个物体或某过程而无法求解时,可以把物体或过程进行无限分割,取某个微元做为研究对象,利用这个微元在一微小位移或微小时间内所遵循的物理规律列方程求解.这种方法常常叫做微元法。

微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法(如求和)或物理思想处理,进而使问题求解。

微元法在处理问题时,从对事物的极小部分(微元)分析入手,达到解决事物整体的方法。

这是一种深刻的思维方法,是先分割逼近,找到规律,再累计求和,达到了解整体。

微元法是对某事件做整体的观察后,取出该事件的某一微小单元进行分析,通过对微元的细节的物理分析和描述,最终解决整体的方法。

微元法是个比较深奥的东西,其原理是微积分,就是将整体化为局部,在局部中进行适当的省略计算后再累加。

3.“微元法”的取元原则:选取微元时所遵从的基本原则是(1)可加性原则:由于所取的“微元” 最终必须参加叠加演算,所以,对“微元” 及相应的量的最基本要求是:应该具备“可加性”特征;(2)有序性原则:为了保证所取的“微元” 在叠加域内能够较为方便地获得“不遗漏”、“不重复”的完整叠加,在选取“微元”时,就应该注意:按照关于量的某种“序”来选取相应的“微元” ;(3)平权性原则:叠加演算实际上是一种的复杂的“加权叠加”。

微元法在高中物理中的应用

微元法在高中物理中的应用

微元法在高中物理中的应用
微元法是一种分析、解决物理问题的常用方法,其基本思想是将研究对象(物体或物理过程)进行无限细分,从而将复杂的物理问题转化为简单的、易于解决的子问题,以便更好地进行分析和求解。

在高中物理中,微元法可以应用于以下几个方面:
1.计算物体的面积和体积:通过微元法,可以将物体的面积和体
积分别分成无限小的部分,然后对这些部分进行求解,最终将这些部分的解加起来,得到物体的面积和体积。

2.计算物理过程中的变化量:通过微元法,可以将物理过程分成
无限小的部分,然后对这些部分进行求解,最终将这些部分的解加起来,得到整个物理过程中的变化量。

3.计算物理量在时间或空间上的变化率:通过微元法,可以将时
间或空间分成无限小的部分,然后对这些部分进行求解,最终将这些部分的解加起来,得到物理量在时间或空间上的变化
率。

总之,微元法在高中物理中有着广泛的应用,可以帮助我们更好地解决一些复杂的物理问题。

第22讲 微元法

第22讲   微元法

补差专用资料 :微元思想在解题中的应用(1)- 1 -高中物理解题方法----微元法一、什么是微元法:在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。

对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。

这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。

二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。

当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。

所以,微元法又叫小量分析法,它是微积分的理论基础。

三、微元法解题思想:在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。

从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。

微元法的灵魂是无限分割与逼近。

用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。

所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。

例1、 如图,岸高为h ,人用不可伸长的绳经滑轮拉船靠岸, 若当绳与水平方向为θ时,人收绳速率为v ,则该位置船的速 率为多大?例2、将质量为m 的小球从某高处以初速度v 0竖直抛出,当小球落回该抛出点时速度为v 1。

高中物理解题重要方法:微元法

高中物理解题重要方法:微元法
s = 1・ OA・ 0B







所以 = k ÷k,E ÷k。 w x x x即 p x 1・= ‘ = ‘
二 二 二
例山 顶 , 如 图4 示 的曲 线 沿 所 滑 到 山脚 , 微元 法 求 重 力 做 功 多 少 ? 用
面积 之 和 。
物 体 从 山顶 滑 到 山 脚 重 力 所 做 的 总 功 W:∑ △W = ∑ mg
A h mg 。 i = h
例4 如 图5 示 , 质 量 为 i的物 体 从 山 脚 拉 到 高 为h 山 : 所 将 n 的
顶. 且拉 力 总 是 与 物 体 所 经 过 的坡 面 平 行 , 已知 物 体 与 坡 面 的 摩 擦 系 数 为 , 山脚 到 山 顶 的 水 平 距 离 为 s求 将 物 体 从 山 脚 拉 , 到 山 顶 至 少要 做 多 少 功 7
运 动, 经过 时 间t则 物 体 的 位移 与时 间 的 关 系式 为x v【- a‘ , : X t, + -

试推导 。 解 析 : 物 体 的v t 作 —图像 , 图2 物体 的 运 动 分 割 成 若 干 如 把 个小元段 , 由于 每 一 小 元 段 时 间 △t 短 , 度 可 以 看 成 是 不 : 极 速
数 个小 元 段 。 由于 每 一小 元 段 伸 长 量 Ax 短 , 力 可 以 看 成 : 极 弹 是 不变 的 , 为F , 在 此 过 程 中 弹力 做 功 为 : 设 . 则 △W= ; ; F Ax。
小元段做 功的代 数和 : = w ∑W ; =∑F △L= ∑ △L ・ ;F F・ ̄ = 2r R
图4
变 的 , 为v, 设 :则在 此 △t 间 内 物体 的 位 移 为 x 。 ; 体 在 . 时 . At 物 一 ,

物理解题方法:微元法

物理解题方法:微元法

物理解题方法:微元法一、高中物理解题方法:微元法1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为A .0.25NB .0.5NC .1.5ND .2.5N 【答案】A【解析】【分析】【详解】由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =mv t;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSv h t .压强为:3322151011010/0.25/1060F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯,故A 正确,BCD 错误.2.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆, 登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。

假设某一建筑物垂直风速方向的受力面积为s ,风速大小为v ,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v 关系式为( )A .F =ρsvB .F =ρsv 2C .F =ρsv 3D .F =12ρsv 2 【答案】B【解析】【分析】【详解】设t 时间内吹到建筑物上的空气质量为m ,则有:m=ρsvt根据动量定理有:-Ft =0-mv =0-ρsv 2t得:F =ρsv 2A .F =ρsv ,与结论不相符,选项A 错误;B .F =ρsv 2,与结论相符,选项B 正确;C .F =ρsv 3,与结论不相符,选项C 错误;D .F =12ρsv 2,与结论不相符,选项D 错误; 故选B 。

物理解题方法:微元法压轴题知识归纳总结附答案解析

物理解题方法:微元法压轴题知识归纳总结附答案解析

物理解题方法:微元法压轴题知识归纳总结附答案解析一、高中物理解题方法:微元法1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。

设雨滴撞击伞面后无反弹,不计雨滴重力,雨水的密度为33110kg/m ⨯,伞面的面积约为0.8m 2,据此估算当时雨水对伞面的平均撞击力约为( )A .0.1NB .1.0NC .10ND .100N【答案】B 【解析】 【分析】 【详解】对雨水由动量定理得Ft mv Shv ρ=∆=则0.72N 1.0N ShvF tρ==≈所以B 正确,ACD 错误。

故选B 。

3.生活中我们经常用水龙头来接水,假设水龙头的出水是静止开始的自由下落,那么水流在下落过程中,可能会出现的现象是( )A .水流柱的粗细保持不变B .水流柱的粗细逐渐变粗C .水流柱的粗细逐渐变细D .水流柱的粗细有时粗有时细 【答案】C 【解析】 【详解】水流在下落过程中由于重力作用,则速度逐渐变大,而单位时间内流过某截面的水的体积是一定的,根据Q=Sv可知水流柱的截面积会减小,即水流柱的粗细逐渐变细,故C 正确,ABD 错误。

高考物理解题方法:微元法

高考物理解题方法:微元法

1 高考物理解题方法:微元法微元法是从事物的极小部分(微元)分析,通过对微元的细节的物理分析和描述,最终解决整体问题的方法。

在高考题中,但凡出现考查微元法的试题,其难度系数不超过0.3。

因此,学会微元法的应用,对高三学子来说就会使自己的高考成绩迈上一个新的台阶。

根据研究对象的不同,微元可分为“线元”、“面元”、“体元”、“元过程”等。

例如:例题:一个半径为R 的均匀金属圆环,带电量为q ,试求垂直通过其圆心的轴线上距离圆心为x 处的电场强度。

解析:由题意可设如图,在圆环上取一段极小的圆弧Δl (Δl →0)——“线元”,圆弧带电量Δq =Δlq /2πR ,由于Δl 极小,圆弧可视为点电荷,其在轴上距离圆心为x 处产生的场强为:由圆的对称性可知,每个微元在x 处产生的电场在平行于环面的方向上场强相互抵消,圆环在x 处产生的电场沿x 方向,大小为所有微元在x 处产生的沿x 方向的场强矢量合,即:显然,ΣΔl=2πR ,所以金属圆环在x 处产生的电场场强为:“线元”分析适用于线状物体,用“整体·隔离体”法解决不了的问题,用“微元法”即可解决。

我们来看看下面这道高考题:(2012全国)假设地球是一半径为R 、质量分布均匀的球体。

一矿井深度为d 。

已知质量分布均匀的球壳对壳内物体的引力为零。

矿井底部和地面处的重力加速度大小之比为参考答案:A ;难度系数:0.11虽然题干给出了“质量分布均匀的球壳对壳内物体的引力为零”这个条件,但在高考的考场上,若是学生第一次知道这个结论,要想立即能熟练应用,显然是不现实的,这也是本题难度系数是0.11的原因。

下面,我们应用“微元法”证明“质量分布均匀的球壳对壳内物体的引力为零”。

例题:证明:质量分布均匀的球壳对壳内物体的引力为零。

解析:如图所示,在质量分布均匀的球壳内任取一点O /,连接O /与球心O 并交于球面上O i 、O i /(图中未标出);以O i 为圆心做半径为r i (r i →0)的圆,这个圆与O /可以形成一个微小的圆锥体,延长圆锥体xα △l O R E l x R R kq r q k E i ∆⋅+=∆=)(2222π∑∑∑∆+=+⋅+∆==l x R R kqx x R x x R R l kq E E i x 2322222222cos )()(ππα2322)(x R kqx E x +=2的母线,在对侧可以形成一个类似的圆锥体(R i /、r i /)。

微元法在高中物理解题中的应用探讨

微元法在高中物理解题中的应用探讨

微元法在高中物理解题中的应用探讨微元法在高中物理解题中的应用探讨:一、微元法的定义1.什么是微元法:微元法(Mikroekonomische Methode)是一种用于处理复杂系统的系统分析方法。

它以最小的小元素来研究一个系统的组织、行为和状态,进而解释系统如何可能响应外部影响,以改进它的性能或解决它的问题。

2.微元法与宏观分析比较:宏观分析法注重宏观把握,看到的是统计数据和权力关系,而微观分析注重构造更深刻的理解,更侧重于详细的观察。

二、微元法在高中物理解题中的应用1. 从宏观上把握问題:在任何一道物理相关的解题中,最重要的是先让学生从宏观上理解问题的条件与数据,如关于物体的速度,位移,加速度等,以便读懂题意并准确要求问题中所具体答案。

2.用微元法运用公式:在计算出来涉及到动量,力,能量,压强等物体和系统间相互受力作用的计算中,采用微元法可以很准确的给出物体状态变化时,相应物理参量之间的关系,而不再停止于记忆所学相关公式,而是辅以微元法理解物理公式的含义。

3.计算曲线:在一些由实验结果得到的曲线拟合问题中,采用微元法可以更加准确的分析数据,更准确的进行函数拟合,解决相应的物理问题。

三、微元法在高中物理解题的优势1.理解计算:利用微元法解决物理解答,可以加深学生对物理知识的理解,掌握概念思想,把相关的物理问题关联起来,把物理知识与现实问题结合起来;2.创新思维:掌握微元法解物理解答,可以激发学生的创新性思维,让他们不再局限于传统的思维模式,从而形成完整的思维体系;3.考试就绪:学习微元法可以在若干学习中体现,真正达到物理思维及概念把握,把解答技巧及技术备到考试当中,从而实现解答题突破。

四、结论总之,微元法是一种系统分析方法,它既可以让学生更深刻地理解物理知识,掌握概念思想,也可以激发学生创新性思维,让他们运用微元法解决物理知识解题问题,从而课堂上的教学效果更加显著。

高考物理解题方法与技巧讲解9---微元累积法

高考物理解题方法与技巧讲解9---微元累积法

将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结
果后,再进行数学求和,这样就能得到物体复杂运动过程的规律。 典例 1.质量为 m 物体从地面以初速度 v0 竖直上抛,经过 t1 时间达最高点,在运动过 程中受到的阻力 f=kv(k 是常数),求上升的最大高度。
【解析】物体上升过程
高考物理解题方法与技巧讲解 专题 09 微元累积法
微元法是一种介于初等数学与高等数学之间的一种处理物理模型问题的方法,其
要点是:在对物理问题做整体的考察后,选取该问题过程中的某一微小单元进行分
析,通过对微元细节的物理分析和描述,找出该微元所具有的物理性质和运动变化规
律,从而获得解决该物理问题整体的方法。微元法按其研究物理模型问题可分为对象
= mv0
( ) 2
B2 +2
r
(v1∆t1l1
+
v2 ∆t 2 l 2
+
..........vn ∆t n l n
)
=
mvn

当 ∆t → 0 时,棒扫过的面积
S = v1∆t1l1 + v2∆t2l2 + .........vn ∆tnln

将⑤代入④ 得,
4 / 13
( ) B2S
2+ 2
r
(3)线框能穿过的条形磁场区域的个数 n.
5 / 13
【解析】(1R F = IBl
① ② ③
①②③联立得
F = B2l2v0 =2.8N
=
mv0
( ) S = 2 + 2 rmv0

B2
又知:
S = (x0 + x)(x ) − x0 2 x0 = v0t0

高中物理竞赛解题方法:微元法

高中物理竞赛解题方法:微元法

三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

设某一时间人经过AB 处,再经过一微小过程△t (△t →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度hH Hv t S h H H t S v A A t C C t C -=∆∆-=∆∆='→∆'→∆00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动.例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足: θθθθT G T T +∆=∆+cos θρθθcos cos Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△T θ,所以整个铁链对A 端的拉力是各段上△T θ的和,即 ∑∑∑∆=∆=∆=θρθρθcos cos L g Lg T T观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R ,所以 ∑=∆R L θcos 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度B v 的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A 时又向前运动了极短的时间△t ,由于时间极短可以认为行星在△t 时间内做匀速圆周运动,线速度为A v ,半径为a ,可以得到行星在△t 时间内扫过的面积 a t v S A a ⋅∆=21 同理,设行星在经过远日点B 时也运动了相同的极短时间△t , 则也有 b t v S B b ⋅∆=21 由开普勒第二定律可知:S a =S b 即得 A B v b a v = 此题也可用对称法求解. 例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t 时间内为匀速运动,则可计算出船的位移.设v 1、v 2分别是人和船在任何一时刻的速率,则有 21Mv mv = ① 两边同时乘以一个极短的时间△t , 有 t Mv t mv ∆=∆21 ② 由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为t v s ∆=∆11,t v s ∆=∆22由此将②式化为 21s M s m ∆=∆ ③把所有的元位移分别相加有 ∑∑∆=∆21s M s m ④即 ms 1=Ms 2 ⑤ 此式即为质心不变原理. 其中s 1、s 2分别为全过程中人和船对地位移的大小, 又因为 L=s 1+s 2 ⑥由⑤、⑥两式得船的位移 L mM m s +=2例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受拉力F 的作用,合力为 2sin 2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F F T 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θtan ⋅∆=mg T 现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1tan =θ 因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2Mg F = 设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMg R Mg x F k 222)12()12(2ππ+=-==例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角 为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的张 力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即 2222ωπθθMr T ∆=∆⋅ 解得最大角速度 MrT πω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为 I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x v F ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2= 此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力.所以在t 时刻链条对地面的总压力为 .332LMgx gx gx gx N ==+=ρρρ例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=, 右边绳长为).(21x l + 又经过一段很短的时间△t 以后, 左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分 析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉 力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度), 根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ 由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略, 所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21lx mg T g x l F +=++=λ 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T ,绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为零,则由平衡条件得: 2sin 22sin 2sinθθθ∆=∆+∆=∆T T T N 当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 RT R T L N n =∆∆=∆∆=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ②T -mg=m a ③ 由②、③解得: m M Mmg T +=2将④式代入①式得:Rm M Mmg n )(2+= 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为 222222212111)cos 2(2,)cos 2(2ααρααρr m R G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零, 则两圆环对m 的引力的合力也为零, 即2221)cos 2(2)cos 2(2ααρααρr m r G R m R G ∆⋅=∆⋅ 解得大小圆环的线密度之比为:rR =21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg 即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆= 所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆=例12:如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出.ααcos ,cos D O C O OD OC ''=''= 因此OC+O ′C ′=αcos D O OD ''+ ① 因△α极小,所以EC ′≈ED ′,EC ≈ED ,从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③ 由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13: 在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水 银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图3—12—甲所示,该体积元受重力G 、液体内部作用在面积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ, 还有上表面分界线上的张力F 1=σ△x 和下表面分界线上的 张力F 2=σ△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲 分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出. 由力的平衡条件有:0cos 21=--F F F θ即 0cos 212=∆-∆-∆x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+⨯=+=-gh 由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m.例14:把一个容器内的空气抽出一些,压强降为p ,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示.问空气最初以多大初速度冲进容器?(外界空气压强为p 0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L ,因△L 很小,所以其质量△m 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p 0-p)S ① 对进入的△m 气体, 由动能定理得:221mv L F ∆=∆ ② 而 △m=ρS △L 联立①、②、③式可得:最初中进容器的空气速度 ρ)(20p p v -=例15:电量Q 均匀分布在半径为R 的圆环上(如图3—14所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解.选电荷元 ,2RQ R q πθ∆=∆它在P 点产生的电场的场强的x 分量为: 22222)(2cos xR x x R R Q R k r q k E x ++∆=∆=∆πθα 根据对称性 322322322)(2)(2)(2x R kQx x R kQxx R kQxE E x +=+=∆+=∆=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力.当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关.由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin 2ωθ∆=∆-∆ 当△θ很小时,R m QB R T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222R m QB R T m m 解得圆环中张力为 )(2ωπωm QB R T +=例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面.现给金属杆一个水平向右的初速度v 0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t ,发生了一段极小的位移△x ,在△t 时间内,磁通量的变化为△φ △φ=BL △x tRx BL tR R I ∆∆=∆∆Φ==ε金属杆受到安培力为tRx L B ILB F ∆∆==22安 由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:Rx L B t F I ∆-=∆⋅-=∆22安 对所有的位移求和,可得安培力的总冲量为x RL B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离, 对金属杆用动量定理可得 I=0-mV 0 ②由①、②两式得:220L B R m V x = 例18:如图3—17所示,电源的电动热为E ,电容器的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同一水平面上的平行光滑长导轨,它们的电阻可以忽略不计,两导轨间距为L ,导轨处在磁感应强度为B 的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向.L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上.现将开关S 先合向1,然后合向2.求:(1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计) 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v ,则分别为L 1、L 2为研究对象得: 1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得: ∑=∆v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22Bli F i = i i i =+21所以 ∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL t BLi t BLi )(212211v m m q Q BL )()(21+=-=而Q=CE q=CU ′=CBL v所以解得小棒的最终速度 2221)(LCB m m BLCE v ++= (2)因为总能量守恒,所以热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热)(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCE m m L CB CE v m m CBLv C CE +++=+++--=+--=针对训练1.某地强风的风速为v ,设空气的密度为ρ,如果将通过横截面积为S 的风的动能全部转化为电能,则其电功率为多少?2.如图3—19所示,山高为H ,山顶A 和水平面上B 点的水平距离为s.现在修一条冰道ACB ,其中AC 为斜面,冰道光滑,物体从A 点由静止释放,用最短时间经C 到B ,不计过C 点的能量损失.问AC 和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度多大?4,如图3—22所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球此时下落的速度为v ,则C 球上升的速度多大?5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是( ) A .gh 2 B .0 C .gh 22μ D .v 0 6.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状均匀弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k (绳伸长s 时,绳中弹性张力为ks ).将绳圈从球的正上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb,b=a2,求弹性系数k;(用M、R、g表示,g为重力加速度)(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A点运动到B点过程中F做的功W F.8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1.0mA 的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为 .假设分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l 和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1: n2 .9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN垂直于这两直导线,如图所示.LN的长度为2R.试求在LN的中点O处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R的均匀带电半球面,电荷面密度为δ,求球心O处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a (a <L ),质量为m 的正方形闭合线框以初速v 0垂直磁场边界滑过磁场后,速度变为v (v <v 0),求:(1)线框在这过程中产生的热量Q ;(2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,释放后,求金属棒的加速度a .答案:1.321v S ρ 2.θ=60°)223(2hs g h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)RMg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R QqxK + 10.32Rl Q K ρ∆ 11.R k λ2 12.r k λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.gh m u u CBL 2)(21- 16.22L CB m mg a +=。

微元法高中物理例子

微元法高中物理例子

微元法高中物理例子微元法是物理学中一种常用的计算方法,它通过将整个问题划分为许多微小的部分,然后对这些微小部分进行分析,最后将这些微小部分的结果加总起来得到整体的结果。

下面是高中物理中常用微元法的一些例子:1. 弹簧振子的运动:考虑一个弹簧振子,我们可以将弹簧分成许多微小的长度元素,每个长度元素受到的弹性力可以通过胡克定律计算得到。

然后将每个长度元素的弹性力加总起来,得到整个弹簧振子的合力,从而得到振子的运动方程。

2. 摩擦力的计算:考虑一个物体在倾斜面上滑动,我们可以将倾斜面分成许多微小的长度元素,每个长度元素受到的重力和法向力可以计算得到。

然后将每个长度元素的重力和法向力分解,并根据受力平衡条件计算出每个长度元素的摩擦力,从而得到整个物体受到的摩擦力。

3. 电场力的计算:考虑一个电荷在电场中受力,我们可以将电场分成许多微小的体积元素,每个体积元素受到的电场力可以通过库仑定律计算得到。

然后将每个体积元素的电场力加总起来,得到整个电荷受到的电场力,从而得到电荷的运动方程。

4. 磁场力的计算:考虑一个带电粒子在磁场中受力,我们可以将磁场分成许多微小的面元素,每个面元素受到的磁场力可以通过洛伦兹力计算得到。

然后将每个面元素的磁场力加总起来,得到整个带电粒子受到的磁场力,从而得到带电粒子的运动方程。

5. 热传导的计算:考虑一个导热体中的热传导过程,我们可以将导热体分成许多微小的体积元素,每个体积元素受到的热传导可以通过傅里叶定律计算得到。

然后将每个体积元素的热传导加总起来,得到整个导热体的热传导,从而得到导热体的温度分布。

6. 空气阻力的计算:考虑一个物体在空气中运动,我们可以将空气分成许多微小的体积元素,每个体积元素受到的空气阻力可以通过斯托克斯定律计算得到。

然后将每个体积元素的空气阻力加总起来,得到整个物体受到的空气阻力,从而得到物体的运动方程。

7. 光的折射和反射:考虑光在介质中的传播,我们可以将介质分成许多微小的面元素,每个面元素的折射和反射可以通过斯涅尔定律计算得到。

妙用“微元法”巧解高中物理问题

妙用“微元法”巧解高中物理问题

运动的合成与分解的规律有2L =v 0t ,L =12a t 2,粒子在O 点速度沿y 轴方向的分量v y =a t ,根据数学关系有t a n α=v yv 0,所以t a n α=1,即α=45ʎ,粒子到达O 点时的速度大小为v =v 0c o s 45ʎ=2v 0.(2)粒子在电场中运动时,根据牛顿第二定律可得其加速度为a =q E m .粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力,有q v B =mv2R,根据数学关系有R =2L ,可以得出E B=v 02.处理粒子在磁场中做匀速圆周运动的习题时要能准确找到粒子的圆心和半径,并画出其运动轨迹.3㊀电场㊁磁场和重力场共存三个场共存的情况下,如果粒子做匀速圆周运动,重力和电场力一定平衡.㊀㊀图5例3㊀如图5,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,3个带正电的微粒a ㊁b ㊁c 电荷量相等,质量分别为m a ㊁m b ㊁m c .在该区域内,若a 做匀速圆周运动,b 向右做匀速直线运动,c 向左做匀速直线运动,则下面结论正确的是(㊀㊀).A.m a >m b >m c ㊀㊀B .m b >m a >m cC .m c >m a >m b ㊀㊀D.m c >m b >m a因为a 在该区域内做匀速圆周运动,所以a所受重力和电场力平衡,即m a g =qE ,b ㊁c 分别在纸面内向右和向左做匀速直线运动,有m b g =q E +B q v ,m c g +B q v =qE ,所以有m b >m a >m c ,故选项B 正确.在匀强磁场㊁匀强电场和重力场组成的复合场中,粒子所受重力和电场力是恒力,粒子所受洛伦兹力方向随速度方向变化而变化.总之,带电粒子在复合场中的运动问题涉及的知识较多,需要学生灵活运用力学㊁运动学㊁功能关系及电磁学等知识来解决,同时还要注意挖掘隐含条件,多做练习㊁多总结,做到熟练掌握.(作者单位:山东省青岛市即墨区第四中学)Җ㊀山东㊀宋致堂㊀㊀微元法 是从整体中取某一特定的微小部分作为研究对象从而认识整体的一种思维方法,它是物理学研究连续变量的一种常用方法.通俗地讲, 微元法 就是把研究对象分为无限多个微小的 元过程 ,这些具有代表性的 元 ,可以是一小段线段圆弧(线元)㊁一小段时间(时间元)㊁一小块面积(面积元)或一小部分质量(质量元)等,每个微元中变量可以看作不变,再对这些微小积累量求和,就可以得到物理量的总变化量.用该方法可以使一些复杂的物理过程简单化,用我们熟悉的物理规律迅速地解决问题.下面通过具体实例进一步阐述微元思想的应用,提升微元解题技巧.1㊀微元法 在变力做功中的应用例1㊀如图1所示,某个力F =1N作用于半径㊀㊀图1R =1m 的圆形转盘的边缘上,力F 的大小保持恒定不变,但方向始终与作用点的切线方向保持一致,则转动一周,这个力F 做的功是多少?由于力F 的方向与作㊀㊀图2用点处的速度方向时刻保持一致,因此力F 做功不为零.此力的大小恒定,方向时刻与速度方向一定,则可以考虑把圆周划分为很多 微元 来研究.当各小段的弧长Δs 足够小时,F 的方向几乎与该小段的位移重合,如图2所示,在这一小段里,力F 可看作恒力且方向与位移方向一致,则F 做的总功W =F Δs 1+F Δs 2+F Δs 3+ +F Δs n =F (Δs 1+Δs 2+Δs 3+ +Δs n )=F 2πR =2πJ .本题解法等效于将本是曲线的圆周拉直,即化曲为直 .在这里,力F 所做的功相当于力和物体运动路程的乘积.此思想方法适用于力F 大小恒定且与速度v 夹角不变的情况,其表达式为W =F s c o s θ,式中s 为路程,θ为力F 与速度v 的夹角.如物体在地面上滑动时,滑动摩擦力做功可表示为W =F f s c o s 180ʎ=-F f s ,式中F f 大小不变,s 为物体运动04的路程.2㊀微元法 在运动的合成与分解中的应用例2㊀如图3所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B㊁D,B C 段水平,当以恒定水平速度v 拉绳的自由端时,A 沿水平面前进,求当跨过B 的两段绳子的夹角为α时,A 的运动速度.图3图求物体A 的瞬时速度,可先假设物体A 在极短时间Δt 内,由G 运动到H ,然后求G H 段的平均速度,当时间Δt 趋近于无穷短时,G H 段的平均速度便为物体在G 点的瞬时速度.设经过Δt 时间物体A 由G 运动到H ,如图4所示,使D E =D B ᶄ,则绳子的自由端运动的距离为Δx =B E +B B ᶄ,当Δt 趋近于零时,角θ趋近于零,则可以认为B ᶄE ʅBD ,那么,Δx =B B ᶄc o s α+B B ᶄ=B B ᶄ(1+c o s α).当Δx 趋近于零时,v A =B B ᶄΔt ,v =Δx Δt =BB ᶄΔt(1+c o s α),因此v =v A (1+c o s α).所以A 的运动速度为v A =v1+c o s α.本题关键是用微元思想选取极短时间Δt ,在极短时间内物体和绳自由端的运动均可看作匀速直线运动,然后找出Δt 时间内两位移的关系,即可求出结果,同时要注意理解瞬时速度和极限思想.3㊀微元法 在动量定理中的应用例3㊀如图5所示,高压采煤水枪出水口的截面积为S ,水的射速为v ,射到煤层上后,水的速度为零,若水的密度为ρ.图图6如图6所示,取极短时间Δt ,则Δt 时间内冲到煤层上的水的体积ΔV =S v Δt ,这些水的质量Δm =ρS v Δt .规定初速度方向为正方向,由动量定理得-F Δt =Δm (0-v ),即F =ρS v 2,由牛顿第三定律得,水对煤层的冲力大小F ᶄ=F =ρS v 2.所取的时间Δt 足够短,液体柱长度Δl 很短,相应的质量Δm 也很小,即在水流中取很小一段水柱为研究对象,如图6所示,其水柱质量Δm 与Δt 有关,冲量I 也与Δt 有关,故可消去Δt 求得结果.4㊀微元法 在电磁感应中的应用例4㊀如图7所示,水平放置的导体电阻为R ,R与两根光滑的平行金属导轨相连,导轨间距为l ,其间有垂直导轨平面的㊁磁感应强度为B 的匀强磁场.导轨上有一质量为m 的导体棒a b 以初速度v 0向右运动.求:(1)导体棒在整个运动过程中的位移x ;(2)导体棒整个运动过程中通过闭合回路的电荷量.㊀㊀图7(1)设导体棒整个运动过程中的位移为x ,导体棒速度为v 时,回路中感应电流为i ,则i =B l vR,F 安=B i l =B 2l 2vR,由牛顿第二定律得B 2l 2v R =m a ,极短时间Δt 内有B 2l2R v Δt =m a Δt =m Δv ,则B 2l2R ðv Δt =m ðΔv ,即B 2l 2R x =m v 0,得x =m v 0RB 2l2.(2)设整个过程中通过导体棒某一截面的电荷量为q ,导体棒速度为v 时,回路中感应电流为i ,由牛顿第二定律得B i l =m a ,在极短时间Δt 内,有B i lΔt =m a Δt =m Δv ,则B l ði Δt =m ðΔv ,即B l q =mv 0,解得q =m v 0B l.该题两次运用了 微元法 ,很好地体现了化变为恒 的重要思想.微元法 解题可归纳为以下3个步骤:1)选取微元;2)列微元方程;3)累积求和.在不涉及累积求和时,可只用前两步骤,如上面的例2和例3.总之, 微元法 是分析㊁解决物理问题中的常用方法,也是高考提倡的处理问题的数学方法,是高考的热点.运用这一方法不仅丰富了处理问题的手段,拓展了学生的思维,还为后续学习奠定了方法基础.(作者单位:山东省滕州市第一中学)14。

专题05 微元法-高中物理难题解题的五大方法

专题05 微元法-高中物理难题解题的五大方法

微元法解题归纳江苏省特级教师戴儒京高考物理卷的最后一题,有的是用微元法解的题目,题目的难度很大,是为了区分最优秀的考生与优秀的考生的,本文通过研究微元法解的题目,探究微元法解题的方法和规律。

1.什么是微元法?“微元法”是高中物理涉及到的一种数学方法,渗透着微积分的思想,是物理学发展过程中最重要的科学思维方法之一,是牛顿力学的数学基础.通过对某一微元的研究求解物理量,有些物理问题中,当我们研究某个物体或某过程而无法求解时,可以把物体或过程进行无限分割,取某个微元做为研究对象,利用这个微元在一微小位移或微小时间内所遵循的物理规律列方程求解.这种方法常常叫做微元法。

微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法(如求和)或物理思想处理,进而使问题求解。

微元法在处理问题时,从对事物的极小部分(微元)分析入手,达到解决事物整体的方法。

这是一种深刻的思维方法,是先分割逼近,找到规律,再累计求和,达到了解整体。

微元法是对某事件做整体的观察后,取出该事件的某一微小单元进行分析,通过对微元的细节的物理分析和描述,最终解决整体的方法。

微元法是个比较深奥的东西,其原理是微积分,就是将整体化为局部,在局部中进行适当的省略计算后再累加。

3.“微元法”的取元原则:选取微元时所遵从的基本原则是(1)可加性原则:由于所取的“微元” 最终必须参加叠加演算,所以,对“微元” 及相应的量的最基本要求是:应该具备“可加性”特征;(2)有序性原则:为了保证所取的“微元” 在叠加域内能够较为方便地获得“不遗漏”、“不重复”的完整叠加,在选取“微元”时,就应该注意:按照关于量的某种“序”来选取相应的“微元” ;(3)平权性原则:叠加演算实际上是一种的复杂的“加权叠加”。

物理解题方法:微元法习题复习题含答案

物理解题方法:微元法习题复习题含答案

物理解题方法:微元法习题复习题含答案一、高中物理解题方法:微元法1.我国自主研制的绞吸挖泥船“天鲲号”达到世界先进水平.若某段工作时间内,“天鲲号”的泥泵输出功率恒为4110kW ⨯,排泥量为31.4m /s ,排泥管的横截面积为20.7 m ,则泥泵对排泥管内泥浆的推力为( ) A .6510N ⨯ B .7210N ⨯C .9210N ⨯D .9510N ⨯【答案】A 【解析】 【分析】 【详解】设排泥的流量为Q ,t 时间内排泥的长度为:1.420.7V Qt x t t S S ==== 输出的功:W Pt =排泥的功:W Fx =输出的功都用于排泥,则解得:6510N F =⨯故A 正确,BCD 错误.2.如图所示,粗细均匀的U 形管内装有同种液体,在管口右端用盖板A 密闭,两管内液面的高度差为h ,U 形管中液柱的总长为4h 。现拿去盖板A ,液体开始流动,不计液体内部及液体与管壁间的阻力,则当两液面高度相等时,右侧液面下降的速度是A gh8B 4gh C 2gh D gh 【答案】A 【解析】试题分析:拿去盖板,液体开始运动,当两液面高度相等时,液体的机械能守恒,即可求出右侧液面下降的速度.当两液面高度相等时,右侧高为h 液柱重心下降了1 4h ,液柱的重力势能减小转化为整个液体的动能.设管子的横截面积为S ,液体的密度为ρ.拿去盖板,液体开始运动,根据机械能守恒定律得211442hSg h hSv ρρ⋅=,解得8ghv =,A 正确.3.如图所示,粗细均匀,两端开口的U 形管内装有同种液体,开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度大小是( )A 8gh B 6gh C 4gh D 2gh 【答案】A 【解析】 【分析】 【详解】设U 形管横截面积为S ,液体密度为ρ,两边液面等高时,相当于右管上方2h高的液体移到左管上方,这2h 高的液体重心的下降高度为2h ,这2h高的液体的重力势能减小量转化为全部液体的动能。

高中物理解题技巧----数学方法

高中物理解题技巧----数学方法

高中物理解题技巧数学方法泸县九中黄坤继知识概要中学物理考试大纲明确要求考生必须具备:“应用数学处理物理问题的能力能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论,必要时能运用几何图形、函数图像进行表达、分析。

”物理解题运用的数学方法通常包括估算法、函数法、数列法、比例法、微元法等。

1.估算法估算题,是指根据日常生活和生产中的一些物理数据对所求物理量的数值和数量级大致推算的一种近似方法。

其特点是在“理”不在“数”。

在求解估算题时,要抓住事物的本质特征和影响事物发展的主要因素,忽略次要因素,不要求精确严密地求解,一般只要求一位或两位有效数字,但数量级必须准确,推算方法必须简易合理,使估算值有较高的可信度。

解决估算题的一般思路:通过审题挖掘隐含条件,寻找相关规律建立物理模型,理顺简明思路,合理选取解题数据进行求解。

常见估算问题包括:不可接近的物体,微观量(如对液体、固体来说,微观模型是分子紧密排列,可将物质分子看作小立方体或小球.气体分子不是紧密排列的,所以上述微观模型对气体不适用,但上述微观模型可用来求气体分子间的距离.阿伏加德罗常数N A=6.02×1023 mol-1是联系微观世界和宏观世界的桥梁),宏观量(如天体的质量、密度或者天体之间的距离、轨道半径等),功和能,力等等。

运用物理知识对具体问题进行合理的估算,是考生数学能力、科学素质的重要体现.2、微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

具体地说微元法就是将研究对象分割成许多微小的单元,或将复杂的物理过程分解为众多微小的“元过程”,而且每个“元过程”都遵循相同的规律,再从研究对象或过程上选取某一微元或某一“元过程”运用必要的数学方法或物理思想加以分析,从而可以化曲为直,使变量、难以确定的量为常量、容易确定的量,使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决。

使用此方法求解物理问题能加强我们对已知规律的再思考和再认识,从而提高学科思维能力。

高中物理解题(微元法)

高中物理解题(微元法)

高中奥林匹克物理竞赛解题方法微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

设某一时间人经过AB 处,再经过一微小过程△t (△t →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=∆∆-=∆∆='→∆'→∆00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动.例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足: θθθθT G T T +∆=∆+cos θρθθcos cos Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△T θ,所以整个铁链对A 端的拉力是各段上△T θ的和,即 ∑∑∑∆=∆=∆=θρθρθcos cos L g Lg T T观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R ,所以 ∑=∆R L θcos 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度B v 的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A 时又向前运动了极短的时间△t ,由于时间极短可以认为行星在△t 时间内做匀速圆周运动,线速度为A v ,半径为a ,可以得到行星在△t 时间内扫过的面积 a t v S A a ⋅∆=21 同理,设行星在经过远日点B 时也运动了相同的极短时间△t , 则也有 b t v S B b ⋅∆=21 由开普勒第二定律可知:S a =S b 即得 A B v b a v = 此题也可用对称法求解. 例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t 时间内为匀速运动,则可计算出船的位移.设v 1、v 2分别是人和船在任何一时刻的速率,则有 21Mv mv = ① 两边同时乘以一个极短的时间△t , 有 t Mv t mv ∆=∆21 ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为t v s ∆=∆11,t v s ∆=∆22由此将②式化为 21s M s m ∆=∆ ③把所有的元位移分别相加有 ∑∑∆=∆21s M s m ④即 ms 1=Ms 2 ⑤ 此式即为质心不变原理. 其中s 1、s 2分别为全过程中人和船对地位移的大小, 又因为 L=s 1+s 2 ⑥由⑤、⑥两式得船的位移 L m M m s +=2 例5:半径为R 的光滑球固定在水平桌面上,有一质量 为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈 的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙. 先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受拉力F 的作用,合力为 2sin 2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F F T 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θtan ⋅∆=mg T 现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1tan =θ因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2Mg F = 设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:R Mg R Mg x F k 222)12()12(2ππ+=-== 例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的张 力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即 2222ωπθθMr T ∆=∆⋅ 解得最大角速度 MrT πω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x v F ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2=此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力.所以在t 时刻链条对地面的总压力为 .332L Mgx gx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大? 解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=, 右边绳长为).(21x l + 又经过一段很短的时间△t 以后, 左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分 析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉 力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度), 根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ 由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略, 所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21lx mg T g x l F +=++=λ 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T ,绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为零,则由平衡条件得: 2sin 22sin 2sinθθθ∆=∆+∆=∆T T T N 当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 RT R T L N n =∆∆=∆∆=θθ ①以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ②T -mg=m a ③ 由②、③解得: m M Mmg T +=2 将④式代入①式得:Rm M Mmg n )(2+= 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为 222222212111)cos 2(2,)cos 2(2ααρααρr m R G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零,则两圆环对m 的引力的合力也为零, 即 2221)cos 2(2)cos 2(2ααρααρr m r G R m R G ∆⋅=∆⋅ 解得大小圆环的线密度之比为:rR =21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg 即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆= 所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆= 例12:如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出. ααcos ,cos D O C O OD OC ''=''= 因此OC+O ′C ′=αcos D O OD ''+ ① 因△α极小,所以EC ′≈ED ′,EC ≈ED ,从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13: 在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水 银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图3—12—甲所示,该体积元受重力G 、液体内部作用在面积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ, 还有上表面分界线上的张力F 1=σ△x 和下表面分界线上的 张力F 2=σ△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲 分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:0cos 21=--F F F θ即 0cos 212=∆-∆-∆x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+⨯=+=-gh 由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m.例14:把一个容器内的空气抽出一些,压强降为p ,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示.问空气最初以多大初速度冲进容器?(外界空气压强为p 0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L ,因△L 很小,所以其质量△m 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p 0-p)S ① 对进入的△m 气体,由动能定理得:221mv L F ∆=∆ ② 而 △m=ρS △L 联立①、②、③式可得:最初中进容器的空气速度 ρ)(20p p v -=例15:电量Q 均匀分布在半径为R 的圆环上(如图3—14所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解. 选电荷元 ,2RQ R q πθ∆=∆它在P 点产生的电场的场强的x 分量为: 22222)(2cos x R x x R R Q R k r q k E x ++∆=∆=∆πθα 根据对称性 322322322)(2)(2)(2x R kQx x R kQxx R kQxE E x +=+=∆+=∆=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力.当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关.由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小. 在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin2ωθ∆=∆-∆ 当△θ很小时,R m QB R T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222R m QB R T m m Θ 解得圆环中张力为 )(2ωπωm QB R T += 例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面.现给金属杆一个水平向右的初速度v 0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t ,发生了一段极小的位移△x ,在△t 时间内,磁通量的变化为△φ △φ=BL △x tR x BL tR R I ∆∆=∆∆Φ==ε金属杆受到安培力为tRx L B ILB F ∆∆==22安 由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:Rx L B t F I ∆-=∆⋅-=∆22安 对所有的位移求和,可得安培力的总冲量为x RL B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离, 对金属杆用动量定理可得 I=0-mV 0 ②由①、②两式得:220LB R mV x = 例18:如图3—17所示,电源的电动热为E ,电容器的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同一水平面上的平行光滑长导轨,它们的电阻可以忽略不计,两导轨间距为L ,导轨处在磁感应强度为B 的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向.L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上.现将开关S 先合向1,然后合向2.求:(1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计) 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v ,则分别为L 1、L 2为研究对象得: 1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得: ∑=∆v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22Bli F i = i i i =+21所以 ∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL t BLi t BLi )(212211v m m q Q BL )()(21+=-=而Q=CE q=CU ′=CBL v所以解得小棒的最终速度 2221)(L CB m m BLCE v ++=(2)因为总能量守恒,所以热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热 )(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCE m m L CB CE v m m CBLv C CE +++=+++--=+--=针对训练1.某地强风的风速为v ,设空气的密度为ρ,如果将通过横截面积为S 的风的动能全部转化为电能,则其电功率为多少?2.如图3—19所示,山高为H ,山顶A 和水平面上B 点的水平距离为s.现在修一条冰道ACB ,其中AC 为斜面,冰道光滑,物体从A 点由静止释放,用最短时间经C 到B ,不计过C 点的能量损失.问AC 和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度多大?4,如图3—22所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球此时下落的速度为v ,则C 球上升的速度多大?5.质量为M的平板小车在光滑的水平面上以v0向左匀速运动,一质量为m的小球从高h 处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m,碰撞弹力N>>g,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是()A.gh2B.0 C.gh22 D.v06.半径为R的刚性球固定在水平桌面上.有一质量为M的圆环状均匀弹性细绳圈,原长2πa,a=R/2,绳圈的弹性系数为k(绳伸长s时,绳中弹性张力为ks).将绳圈从球的正上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb,b=a2,求弹性系数k;(用M、R、g表示,g为重力加速度)(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A点运动到B点过程中F做的功W F.8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1.0mA的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为.假设分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1: n2.9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN 垂直于这两直导线,如图所示.LN 的长度为2R.试求在LN 的中点O 处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R 的均匀带电半球面,电荷面密度为δ,求球心O 处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L ),质量为m 的正方形闭合线框以初速v 0垂直磁场边界滑过磁场后,速度变为v (v <v 0),求:(1)线框在这过程中产生的热量Q ;(2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,释放后,求金属棒的加速度a .答案:1.321v S ρ 2.θ=60°)223(2hs g h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)R Mg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+8.6.25×1015,2:1 9.2322)(x R QqxK + 10.32R l Q K ρ∆ 11.R k λ2 12.r k λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.g h m u u CBL 2)(21- 16.22L CB m mg a +=。

高考物理物理解题方法:微元法易错题知识归纳总结

高考物理物理解题方法:微元法易错题知识归纳总结

高考物理物理解题方法:微元法易错题知识归纳总结一、高中物理解题方法:微元法1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为 A .0.25N B .0.5NC .1.5ND .2.5N【答案】A 【解析】 【分析】 【详解】由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =mvt;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSvht.压强为:3322151011010/0.25/1060F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯,故A 正确,BCD 错误.2.如图所示,粗细均匀的U 形管内装有同种液体,在管口右端用盖板A 密闭,两管内液面的高度差为h ,U 形管中液柱的总长为4h 。现拿去盖板A ,液体开始流动,不计液体内部及液体与管壁间的阻力,则当两液面高度相等时,右侧液面下降的速度是A gh8B 4gh C 2gh D gh 【答案】A 【解析】试题分析:拿去盖板,液体开始运动,当两液面高度相等时,液体的机械能守恒,即可求出右侧液面下降的速度.当两液面高度相等时,右侧高为h 液柱重心下降了1 4h ,液柱的重力势能减小转化为整个液体的动能.设管子的横截面积为S ,液体的密度为ρ.拿去盖板,液体开始运动,根据机械能守恒定律得211442hSg h hSv ρρ⋅=,解得8ghv =,A 正确.3.如图所示,水龙头开口处A 的直径d 1=1cm ,A 离地面B 的高度h =75cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,则该水流束在地面B 处的截面直径d 2约为(g 取10m/s 2)( )A .0.5cmB .1cmC .2cmD .应大于2cm ,但无法计算 【答案】A 【解析】 【详解】设水在水龙头出口处速度大小为v 1,水流到B 处的速度v 2,则由22212v v gh -=得24m/s v =设极短时间为△t ,在水龙头出口处流出的水的体积为2111π()2dV v t =∆⋅水流B 处的体积为2222π()2d V v t =∆⋅ 由12V V =得20.5cm d =故A 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理解题方法----微元法
一、什么是微元法:
在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。

对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。

这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。

二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。

当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。

所以,微元法又叫小量分析法,它是微积分的理论基础。

三、微元法解题思想:
在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。

从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。

微元法的灵魂是无限分割与逼近。

用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。

所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。

例1、如图所示,岸高为h,人用不可伸长的绳经滑轮拉船靠岸,若当绳与水平方向
为θ时,人收绳速率为υ,则该位置船的速率为多大?
例2、如图所示,长为L的船静止在平静的水面上,立于船头的人质量为m,船
的质量为M,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?
例3、如图所示,半径为R,质量为m的匀质细圆环,置于光滑水平面上,若圆环以角
速度ω绕环心O转动,试证明:(1)圆环的张力
π
ω
2
2R
m
T=
(2)圆环的动能2)
(
2
1
R
m
E
k
ω
=
例4、一根质量为M,长度为L的匀质铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图所示,求链条下落了长度x时,链条对地面的压力为多大?
例5、如图所示,半径为R的半圆形绝缘细线上、下1/4圆弧上分别均匀带电+q和-q,求圆心处的场强.
例6、如图所示,在离水平地面h高的平台上有一相距L的光滑轨道,左
端接有已充电的电容器,电容为C,充电后两端电压为U1.轨道平面处于
垂直向上的磁感应强度为B的匀强磁场中.在轨道右端放一质量为m的金
属棒,当闭合S,棒离开轨道后电容器的两极电压变为U2,求棒落在离平
台多远的位置.
例7、(1)试证明:质量为M的匀质球壳,对放置在空腔内任意一点的质量为m的质点的万有引力为零。

(2)若将上述质点移至球壳外距球心O距离为r
处,求此时系统具有的引力势能为多少?规定


r时,系统引力势能为零
1、如图所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。

现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?
2、平面上有两直线夹角为θ(θ<90°),若它们各以垂直于自身大小为v 1和v 2的速度在该平面上作如图所示的匀速运动,试求交点相对于纸面的速度。

3、如图所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮
带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球此时下落的速度为v ,则C 球上升的速
度大小为
4、如图所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度大小为
5、如图所示,电量Q 均匀分布在一个半径为R 的细圆环上,求圆环轴上与环心相距为x 的点电荷q 所受的电场力的大小.
6、如图所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,导轨电阻不计,并从静止释放金属棒开始计时,求金属棒的速度v 跟运动时间t 关系式。

O
1
2
v 2 v 1
θ
7、在无风的天气,雨滴从离地(足够高)H处由静止下落,已知雨滴下落过程中所受空气阻力始终跟它的速度大小成正比,即f=kv,k为已知常量。

试求:
(1)雨滴接近地面时的收尾速度
(2)雨滴下落的时间8、电量为Q的点电荷固定在图中O点,另一电量为q的点电荷距离Q距离为r,若规定两者相距无穷远时,系统电势能为零,试求上述系统具有的电势能。

相关文档
最新文档