初一上学期数学期末复习(综合专题类)单元练习(附答案)
七年级上册数学全册单元试卷综合测试卷(word含答案)
七年级上册数学全册单元试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,直线AB、CD相交于点O,已知,OE把分成两个角,且::3(1)求的度数;(2)过点O作射线,求的度数.【答案】(1)解:,,::3,;(2)解:,,,OF在的内部时,,,,OF在的内部时,,,,综上所述或【解析】【分析】(1)根据对顶角相等得出,然后根据::3 即可算出∠BOE的度数;(2)根据角的和差,由算出∠DOE的度数,根据垂直的定义得出∠EOF=90°;当OF在的内部时,根据,算出答案;OF在的内部时,根据,算出但,综上所述即可得出答案。
人教版七年级数学上册期末复习综合训练(含答案)
人教版七年级数学上册期末复习综合训练一.选择题1.﹣2的倒数是()A.﹣2B.﹣C.D.22.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.0.18×107B.1.8×105C.1.8×106D.18×1053.下列关于x的方程,解为x=0的是()A.3x+4=2x﹣4B.2x=x C.x+4﹣7=3D.x+=﹣4.下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.3m+3n=6mnC.4xy﹣3xy=1D.2m2n﹣2mn2=05.若,则下列结论正确的是()A.a<0,b<0B.a>0,b>0C.ab>0D.ab≤06.下列解方程变形正确的是()A.由方程1﹣2x=3x+2,得3x﹣2x=2﹣1B.由方程1﹣2(3x﹣1)=3(1﹣x),得1﹣6x﹣2=3﹣3x C.由方程﹣1=,得3x﹣1=2x D.由方程4(x﹣1)﹣3=2x,得4x﹣2x=4+37.下列说法错误的有()①﹣a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A.1个B.2个C.3个D.4个8.已知x﹣2y=3,则代数式2x﹣4y﹣12的值为()A.6B.﹣6C.9D.﹣99.一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要()天才能完成该工程.A.6B.7C.6D.710.对于任意的实数m,n,定义运算“⊗”,规定m⊗n=,例如:3⊗2=32+2=11,2⊗3=22﹣3=1,计算(1⊗2)⊗(2⊗1)的结果为()A.﹣4B.0C.6D.12二.填空题11.比较大小:﹣2020﹣.(填“>”“<”“=”)12.如图,已知线段AB=60cm,P是线段AB靠近点A的四等分点,Q是线段PB的中点,则线段AQ=cm.13.如图,在数轴上A、B两点表示的数分别为﹣4、3,则线段AB的长为.14.如图,已知点O是直线AB上一点,∠AOC=63°,射线OD、OE将∠BOC三等分,则∠AOD=.15.实数a,b,c在数轴上的对应点的位置如图所示,化简|b﹣c|+|c﹣a|﹣|b|的结果是.16.剪纸是中国民间艺术的一种独特形式,如图其中的“△”代表窗纸上所贴的剪纸,例如:第一个图中所贴的剪纸“△”有6个,则第n个图中所贴的剪纸“△”的个数为.三.解答题17.计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣).18.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=19.先化简,再求值:﹣xy,其中x=3,y=﹣.20.出租车司机小王某天上午营运全是在东西走向的光明大道上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时,小王距上午出车时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王共耗油多少升?21.如图,在平面内有不共线的三个点A、B、C.(1)作直线AB,射线AC,线段BC;(2)尺规作图:延长BC到点D,使CD=BC,连接AD;(3)在(2)中,若BC=2时,直接写出BD的长度.22.已知x=,y=2,且A=x2﹣3xy+2y2,B=2x2+xy﹣y2.(1)化简A﹣(B﹣2A);(2)对(1)的化简结果求值.23.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.24.为发展校园足球运动,我校决定购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服的价格比每个足球多40元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买5套队服,送1个足球;乙商场优惠方案是:若购买队服超过100套,则购买足球打八折.(1)求每套队服和每个足球的价格各是多少?(2)若我校购买150套队服和a个足球(a>30),请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?并说明理由.25.如图,在直线上顺次取A,B,C三点,使得AB=40cm,BC=280cm,点P、点Q分别由A、B点同时出发向点C运动,点P的速度为3cm/s,点Q的速度为lcm/s.(1)如果点D是线段AC的中点,那么线段BD的长是cm;(2)①求点P出发多少秒后追上点Q;②直接写出点P出发秒后与点Q的距离是20cm;(3)若点E是线段AP中点,点F是线段BQ中点,则当点P出发秒时,点B,点E,点F,三点中的一个点是另外两个点所在线段的中点.参考答案一.选择题1.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.解:1800000这个数用科学记数法可以表示为1.8×106,故选:C.3.解:∵x=0时,左边=3×0+4=4,右边=2×0﹣4=﹣4,4≠﹣4,∴x=0不是3x+4=2x﹣4的解.∵x=0时,左边=2×0=0,右边=0,左边=右边,∴x=0是2x=x的解.∵x=0时,左边=0+4﹣7=﹣3,右边=3,﹣3≠3,∴x=0不是x+4﹣7=3的解.∵x=0时,左边=0+=,右边=﹣,≠﹣,∴x=0不是x+=﹣的解.故选:B.4.解:A.2a2+3a2=5a2,正确,故本选项符合题意;B.3m与2n不是同类项,所以不能合并,故本选项不合题意;C.4xy﹣3xy=xy,故本选项不合题意;D.2m2n与﹣2mn2不是同类项,所以不能合并,故本选项不合题意.故选:A.5.解:∵,∴,∴ab≤0,故选:D.6.解:A、由方程1﹣2x=3x+2,得3x+2x=1﹣2,不符合题意;B、由方程1﹣2(3x﹣1)=3(1﹣x),得1﹣6x+2=3﹣3x,不符合题意;C、由方程﹣1=,得3x﹣6=2x,不符合题意;D、由方程4(x﹣1)﹣3=2x,得4x﹣2x=4+3,符合题意,故选:D.7.解:①﹣a不一定是负数,原命题错误;②若|a|=|b|,则a=b或a=﹣b,原命题错误;③一个有理数不是整数就是分数,正确;④一个有理数不是正数就是负数,也可能是0,原命题错误;故选:C.8.解:∵x﹣2y=3,∴2x﹣4y﹣12=2(x﹣2y)﹣12=2×3﹣12=6﹣12=﹣6故选:B.9.解:设甲还需要x天才能完成该工程,(+)×2+x=1解得:x=7,故选:D.10.解:∵m⊗n=,∴(1⊗2)⊗(2⊗1)=(12﹣2)⊗(22+1)=(﹣1)⊗5=(﹣1)2﹣5=1﹣5=﹣4故选:A.二.填空题11.解:∵﹣1<﹣<0,∴﹣>﹣2020,故答案为<.12.解:∵线段AB=60cm,P是线段AB靠近点A的四等分点,∴AP=60÷4=15(cm),∴BP=AB﹣AP=60﹣15=45(cm),∵点Q为PB的中点,∴PQ=45÷2=22.5(cm),∴AQ=AP+PQ=15+22.5=37.5(cm),故答案为:37.5.13.解:∵A、B两点表示的数分别为﹣4、3,∴线段AB的长=3﹣(﹣4)=7.故答案为7.14.解:∵点O是直线AB上一点,∠AOC=63°,∴∠BOC=180°﹣63°=117°,又∵射线OD、OE将∠BOC三等分,∴∠COD=∠BOC=39°,∴∠AOD=∠AOC+∠COD=63°+39°=102°,故答案为:102°.15.解:由数轴可知:c<a<0<b,∴|b﹣c|+|c﹣a|﹣|b|=b﹣c+a﹣c﹣b=a﹣2c,故答案为a﹣2c.16.解:设第n个图中所贴的剪纸“△”的个数为a n(n为正整数).观察图形,可知:a1=6=4×1+2,a2=10=4×2+2,a3=14=4×3+2,…,∴a n=4n+2(n为正整数).故答案为:4n+2(n为正整数).三.解答题17.解:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣)=1﹣3÷(﹣3)×=1+3×=1+=.18.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.19.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.20.解:(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=39(千米),答:小王距上午出车时的出发点39千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升)答:这天上午小王共耗油7.8升.21.解:(1)如图,直线AB,射线AC,线段BC为所作;(2)如图,CD为所作;(3)∵CD=BC∴BD=BC+CD=2BC=4.22.解:(1)∵A=x2﹣3xy+2y2,B=2x2+xy﹣y2,∴A﹣(B﹣2A)=A﹣B+2A=3A﹣B=3(x2﹣3xy+2y2)﹣(2x2+xy﹣y2),=3x2﹣9xy+6y2﹣2x2﹣xy+y2,=x2+7y2﹣10xy;(2)当x=,y=2时,原式=x2+7y2﹣10xy=+7×4﹣10××2=18.23.解:(1)∵∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∴∠AOC=∠BOD,∵∠AOD=120°,∠AOB=75°,∴∠AOC=∠BOD=120°﹣75°=45°,∴∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为:30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为:50;(3)不变;∵∠COD=∠AOB=75°,∠AOC=∠BOD,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.24.解:(1)设每个足球的价格是x元,则每套队服的价格是(x+40)元,依题意,得:2(x+40)=3x,解得:x=80,∴x+40=120.答:每套队服的价格是120元,每个足球的价格是80元.(2)在甲商场购买所需费用为120×150+80×(a﹣)=(80a+15600)元.在乙商场购买所需费用为120×150+80×0.8a=(64a+18000)元.(3)当80a+15600<64a+18000时,解得:a<150,即30<a<150;当80a+15600=64a+18000时,解得:a=150;当80a+15600>64a+18000时,解得:a>150.答:当30<a<150时,选择甲商场购买比较合算;当a=150时,选择两家商场费用相同;当a>150时,选择乙商场购买比较合算.25.解:(1)∵AB+BC=AC,∴AC=320,∵D是线段AC的中点,∴AD=160,∴BD=AD﹣AB=120cm.(2)①设ts后P点追上Q点,根据题意列出方程可知:3t=t+40,∴t=20,答:20s后点P追上点Q.②当P在Q的左侧时,此时3t+20=40+t,解得:t=10,当P在Q的右侧时,此时3t=40+t+20,解得:t=30,答:当t=10或30s时,此时P、Q相距20cm.(3)设点A对应数轴上的数为0,点B对应数轴上的数为40,则ts后,点P对应的数为3t,点Q对应的数为40+t,∵点E是线段AP中点,∴点E表示的数为=t,∵点F是线段BQ中点,∴点F表示的数为=40+,当B是EF的中点时,∴=40,解得:t=20,当E是BF的中点时,∴=,∴t=32,当F是BE的中点时,∴=40+,∴t=80,综上所述,t=20或32或80.故答案为:(1)120;(2)10或30;(3)20或32或80。
初一上学期数学期末复习(综合专题类)单元练习(附答案)
初⼀上学期数学期末复习(综合专题类)单元练习(附答案)综合专题类⼀、分类讨论1、⽆图分类讨论(1)已知线段AB=10cm,直线AB 上有⼀点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是 cm .(2)若∠AOB=8175' ,∠AOC=3527' ,则∠BOC= 。
2、绝对值要分类讨论(1)若|x-1|=3, 则x= 。
(2)已知∠AOC=60°,∠AOB ︰∠AOC=2︰3,则∠BOC 的度数是______________.⼆、三⾓板拼图3、⽤⼀副三⾓板(两块)画⾓,不可能画出的⾓的度数是().A .1350B .750C .550D .1504、如图,⼀副三⾓板(直⾓顶点重合)摆放在桌⾯上,若∠AOD=150°,则∠BOC 等于…【】A .30°B .45°C .50°D .60°5、把两块三⾓板按如图所⽰那样拼在⼀起,则∠ABC 等于( )A .70°B .90°C .105°D .120°三、折纸6、把⼀张长⽅形的纸⽚沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB=12∠MFE.则∠MFB=() A.30° B.36° C.45° D.72°四、时钟问题7、王⽼师每晚19:00都要看央视的“新闻联播”节⽬,这⼀时刻钟⾯上时针与分针的夹⾓是度.8、钟表上2点30分时,时针与分针所夹的⾓的度数是()A .90°B .105°C .110°D .120°五、⽅案优选9、某班将买⼀些乒乓球和乒乓球拍,现了解情况如下:甲、⼄两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买⼀副球拍赠⼀盒乒乓球,⼄店全部按定价的9折优惠.该班需球拍5副,乒乓球若⼲盒(不⼩于5盒).问:1)当购买乒乓球多少盒时,两种优惠办法付款⼀样?2)当购买30盒乒乓球时,若让你选择⼀家商店去办这件事,你打算去哪家商店购买?为什么?第3题图 N MF E D C B A10、某校计划购买20张书柜和⼀批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A 超市的优惠政策为每买⼀张书柜赠送⼀只书架,B 超市的优惠政策为所有商品⼋折。
人教版七年级数学上册期末专项复习四套含答案
人教版七年级数学上册 期末专项复习01—有理数一、选择题(每小题3分,共30分)1.如果气温上升5℃记为5+℃,则8-℃表示( ) A .下降3℃B .上升3℃C .下降8℃D .上升8℃2.12020的相反数是( ) A .12020-B .12020C .2020-D .20203.下列说法中,正确的是( ) A .0是最小的整数B .最大的负整数是1-C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列各组数中,相等的一组是( ) A .2-和()2--B .2--和()2--C .2和2-D .2-和2-5.若a 是有理数,则下列说法正确的是( ) A .a 一定是正数 B .a -一定是正数 C .a --一定是负数D .1a +一定是正数6.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断错误的是( )A .0a b +<B .0a b ->C .0a b ⨯>D .a b <7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片,现在中国高速铁路营运里程将达到22 000公里,将22 000用科学记数法表示应为( ) A .42.210⨯B .32210⨯C .32.210⨯D .50.2210⨯8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( ) A .它精确到千分位B .它精确到0.01C .它精确到万位D .它精确到十位9.()()1352013201524620142016+++++-+++++L L =( ) A .0B .1-C .1008D .1008-10.若()212102x y -++=,则23x y +的值是( ) A .38B .18C .18-D .38-二、填空题(每小题2分,共16分)11.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是________. 12.已知7a =,3b =,且0a b +>,则a =________. 13.有理数 3.7-,2,243,23-,0,0.83中,属于正数的有________,属于负数的有________. 14.若a 、b 互为倒数,c 、d 互为相反数,则式子()343ab c d -+=________.15.已知()23a -与1b -互为相反数,则式子a b b a ⎛⎫- ⎪⎝⎭的值为________.16.计算()()()20202019202020201101-+-++-=________.17.A 点为数轴上表示4-的对应点,B 点对应的数为1-的相反数,若固定A 点不动,将B 点________个单位后,B 与A 相距1个单位.(请填上移动方向和距离)18.用“●”“○”定义新运算:对于实数a ,b ,都有a b a =●和a b b =d .例如323=●,322=d ,则()()2200920100210009=d d ●________.三、解答题(共54分)19.(12分)计算.(尽可能用简便方法)(1)()31664 5.66577⎡⎤++--⎢⎥⎣⎦;(2)()11731348126424⎛⎫-+-⨯- ⎪⎝⎭;(3)()2413111421412⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭;(4)()()()()23220202231-----÷-20.(5分)若3x -与2y +互为相反数,求3x y ++的值.21.(6分)按下列程序进行计算(如图),如果第一次输入的数是20,而结果不大于100时,那么就把结果作为输入的数再进行第二次运算,直到符合要求为止,当输入值为20时,请计算输出结果.22.(6分)小明家与学校相距2.5千米,小华家与学校相距32千米.请你想一下,小明家和小华家处在学校什么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科学记数法表示)24.(9分)某天晚上,一辆治安巡逻车从A地出发,在东西方向的马路上巡逻,第七次巡逻到达B地后结束,如果规定向东行驶为正,向西行驶为负,七次巡逻的纪录如下:(单位:千米)(1)在第________次巡逻时离开A地最远.(2)求第七次巡逻结束时B地与A地的距离与方向.(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.25.(10分)观察下列一组有规律的数,解答下列问题.第1个数记为:1111 2122 ==-⨯;第2个数记为:1111 62323 ==-⨯;第3个数记为:1111 123434==-⨯;(1)第7个数记为________,190是第________个数;(2)计算:①1111 12233420192020 ++++⨯⨯⨯⨯L;②1111 13355720172019 ++++⨯⨯⨯⨯L;期末专项复习—有理数答案解析一、1.【答案】C 【解析】由题意,得8-℃表示下降8℃.故选C .2.【答案】A 【解析】12020的相反数是12020-.故选A . 3.【答案】B 【解析】没有最小的整数,故A 错误;B 正确;有理数包括0、正有理数和负有理数,C 错误;有理数的平方是非负数,D 错误.故选B .4.【答案】C5.【答案】D 【解析】A 选项,0a =时,0a =,不是负数,故本选项错误;B 选项,0a =时,0a -=,不是正数,故本选项错误;C 选项,0a =时,0a --=,不是正数,故本选项错误;D 选项,11a +≥,一定是正数,故本选项正确.故选D .6.【答案】C 【解析】由图可知,a ,b 异号,故0a b ⨯<,C 错误,符合题意,其他选项都正确,不符合题意.故选C .7.【答案】A 【解析】422000 2.210=⨯.故选A .8.【答案】D 【解析】4.609万中的9在原数46090中的十位上,所以4.609万精确到了十位.故选D . 9.【答案】D【解析】()()1352013201524620142016+++++-+++++=L L ()()()123420152016-+-++-=L()()()1111008-+-++-=-L .故选D .10.【答案】B 二、11.【答案】7-或912.【答案】713.【答案】2,243,0.83 3.7-,23- 14.【答案】3b 15.【答案】22316.【答案】117.【答案】向左移动4个单位或6个单位 18.【答案】2010 三、19.【答案】(1)31664 5.6657731664 5.665773166 5.646577512751.7⎡⎤++-⎢⎥⎣⎦⎡⎤=+--⎢⎥⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+- ⎪⎝⎭=-()- (2)117313481264241173134848484812642444+5636+262⎛⎫-+-⨯- ⎪⎝⎭=⨯-⨯-⨯-⨯-==()()-()+()-()--(3)421311142141213111014121⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭⎛⎫=---⨯ ⎪⎝⎭=-() (4)232202022314891489=3.-----÷-=--÷=+-()()()()()- 20.【答案】解:因为3x -与2y +互为相反数,所以320x y -++=.因为30x -≥,20y +≥,所以30x -=,20y +=.即30x -=,20y +=.所以3x =,2y =-.所以()33234x y ++=+-+=.21.【答案】解:当输入20时,211201044010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入40-时, 211402048010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入80时,2118040416010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入160-时,21116080432010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()>,故输出的结果为320. 22.【答案】解:当小明家和小华家处在学校两侧,且在一条直线上时相距最远,最远为()2.5 1.54+=千米;当小明家和小华家处于学校同侧,且在一条直线上时相距最近,最近为()2.5 1.51-=千米.23.【答案】解:1个草履虫每天吞食细菌:()460302443200 4.3210⨯⨯==⨯个,100个草履虫每天吞食细菌:()46100 4.3210 4.3210⨯⨯=⨯个.24.【答案】解:(1)Q 第一次:()044+-=-, 第二次:()43-=+7, 第三次:()396+-=-, 第四次:()682-=+, 第五次:268+=, 第六次:()853+-=, 第七次:()321+-=, ∴第五次巡逻时离开A 地最远.(2)第七次巡逻结束后,B 地在A 地东边1千米处.(3)()()4798652100124110012 4.92-+++-+++++-+-÷⨯=÷⨯=升,故该晚巡逻车共耗油4.92升.25.【答案】解:(1)1111567878==-⨯ 9 (2)①原式1111111111223342018201920192020111111111122334201820192019202020192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-+-+-=…+…+ ②原式11111111111123235257220172019111111111233557201720191112201910092019⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=⨯-+-+-+- ⎪⎝⎭⎛⎫=⨯- ⎪⎝⎭=…+…+人教版七年级数学上册 期末专项复习02—整式的加减一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习03—一元一次方程一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习04—几何图形初步一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .平角是一条直线 B .周角是一条射线C .用2倍的放大镜看1cm 长的线段,这条线段变成了2cmD .用2倍的放大镜看°30的角,这个角变成了°602.如图所示,在AOB ∠的内部有4条射线,则图中角的个数为( )A .10B .15C .5D .203.下面说法:①若线段AC BC =,C 是线段AB 的中点;②两点之间直线最短;③延长直线AB ;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有( ) A .0个B .1个C .2个D .3个4.如图所示,小于平角的角有( )A .9个B .8个C .7个D .6个5.如图,C ,D 是线段AB 上两点,4cm CB =,7cm DB =,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm6.小明由点A 出发向正东方向走10m 到达点B ,再由点B 向东南方向走10m 到达点C ,则下列结论正确的是( ) A .°22.5ABC ∠= B .°45ABC ∠= C .°67.5ABC ∠=D .°135ABC ∠=7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式正确的是( )A .12COD AOB ∠=∠ B .23AOD AOB ∠=∠C .13BOD AOB ∠=∠D .23BOC AOD ∠=∠8.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来9.射线OA 上有B 、C 两点,若8OB =,2BC =,线段OB 、BC 的中点分别为D 、E ,则线段DE 的长为( ) A .5B .3C .1D .5或310.如图,AOB COD ∠=∠,若°110AOD ∠=,°70BOC ∠=,则以下结论正确的有( )①°90AOC BOD ∠=∠=;②°20AOB ∠=;③AOB AOD AOC ∠=∠-∠;④211AOB BOD ∠=∠ A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:°35.12=________°________′________″. 12.已知°4231α∠=′,则α∠的余角的补角是________. 13.延长线段AB 到点C ,使12BC AB =,反向延长线段AC 到点D ,使12AD AC =.若8cm AB =,则CD =________cm .14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.15.如图所示,C 是线段AB 外一点,那么AC BC +________AB (填“>”“<”或“=”),理由是________.16.如图所示,A 、O 、B 在一条直线上,°1302AOC BOC ∠=∠+,OE 平分BOC ∠,则BOE ∠=________.17.有公共顶点的两条射线分别表示南偏东°15与北偏东°25,则这两条射线组成的角的度数为________. 18.延长线段AB 到C ,使13BC AB =,D 为AC 的中点,且6cm DC =,则AB 的长是________cm . 三、解答题(共46分)19.(8分)已知平面上的三点,如图所示. (1)按下列要求画出图形:①画直线AC ;②画射线BC ;③画线段AB .(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求x y z ++的值.21.(6分)若:::1234134:1::∠∠∠∠=,而且°1231048∠∠∠∠=+++,那么这四个角分别为多少度?22.(8分)如下图,某轮船上午8时在A 处,测得灯塔S 在北偏东°60的方向上,向东行驶至中午12时,轮船到达B 处,在B 处测得灯塔S 在北偏西°30的方向上,已知轮船行驶速度为20千米/时. (1)在图中画出灯塔S 的位置;(2)量出船在B 处时,离灯塔S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段AB 上一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果0cm 1AB =,3cm AM =,求NC 的长.(2)如果6cm MN =,求AB 的长.24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n (n 为大于等于2的整数)条射线,则会得到多少个角?如果8n =时,检验你所得的结论是否正确.期末专项复习—几何图形初步答案解析一、 1.【答案】C 2.【答案】B 3.【答案】B【解析】①如图,C 不是线段AB 的中点,故①不正确;②两点之间线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确.故选B . 4.【答案】C【解析】符合条件的角中以A 为顶点的角有1个,以B 为顶点的角有2个,以C 为顶点的角有1个,以D 为顶 点的角有1个,以E 为顶点的角有2个,共有121127++++=(个)角,故选C . 5.【答案】B【解析】因为7cm DB =,4cm CB =所以743cm DC DB CB =-=-=.根据D 是AC 的中点,得2236cm AC DC ==⨯=.6.【答案】D【解析】由题意作图如下:由图可得°°°9045135ABC ∠=+=. 7.【答案】D【解析】设COD x ∠=,因为OD 平分BOC ∠, 所以BOD COD x ∠=∠=,2BOC x ∠=. 又OC 平分AOB ∠, 所以2AOC BOC x ∠=∠=,则4AOB x ∠=,所以14COD AOB ∠=∠,34AOD AOB ∠=∠,14BOD AOB ∠=∠,23BOC AOD ∠=∠,故 选D . 8.【答案】D【解析】根据正方体的表面展开图的特征,易知与“你”字所在面相对的面上标的字是“来”,与“遇” 字所在面相对的面上标的字是“的”,与“见”字所在面相对的面上标的字是“未”,故选D .9.【答案】D【解析】如图1,3DE =;如图2,5DE =.图1图210.【答案】C【解析】因为°110AOD ∠=,°70BOC ∠=,所以°40COD AOB ∠+∠=,又因为AOB COD ∠=∠,所以°20AOB COD ∠=∠=,所以°90AOC BOD ∠=∠=,故①②正确;AOD AOC COD AOB ∠-∠=∠=∠,故③正确;29AOB BOD ∠=∠,故④不正确.所以正确的有3个. 二、11.【答案】35 7 12 12.【答案】°13231′ 13.【答案】18 14.【答案】2415.【答案】>两点之间线段最短 16.【答案】°50 17.【答案】°140 18.【答案】9 三、19.【答案】解:(1)如图所示:(2)图中有3条线段,分别是线段AB 、AC 、BC .(3)图中的射线有:射线CE 、CF 、AG 、AF 、CG 、BE . (4)图中的直线有:直线AC 20.【答案】421.【答案】°120∠=,°260∠=,°380∠=,°420∠=. 22.【答案】解:(1)灯塔S 的位置如下图:(2)量得图中2cm BS =,轮船上午8时到中午12时行驶了4小时,则行驶的路程为20480⨯=(千米).而图 中AB 的距离为4cm ,故该图的比例为418010001002000000=⨯⨯.所以轮船离灯塔S 的实际距离为 20000002400000040⨯==(厘米)千米.23.【答案】(1)因为M 为AC 的中点,所以2AC AM =.因为3cm AM =,所以236cm AC =⨯=.因为10cm AB =,所以10cm 6cm 4cm BC AB AC =-=-=,又因为N 为BC 的中点,所以12cm 2NC BC ==. (2)因为M 为AC 的中点,所以12MC AC =.因为N 为CB 的中点,所以12CN CB =,所以 111222MC CN AC CB AC CB +=+=+(),即12MN AB =,而6cm MN =,所以12cm AB =. 24.【答案】解:当2n =时,角的个数为1;当3n =时,角的个数为123+=;当4n =时,角的个数为1236++=; 当5n =时,角的个数为123410+++=;当射线的条数为n 时,角的个数为112342112n n n n ++++-+-=-…()()().当8n =时,1118182822n n -=⨯-⨯=()().所以n 条射线可 得到112n n -g ()个角的结论也是正确的.。
人教版七年级数学上册期末综合复习题含答案
人教版数学七年级上学期期末综合检测卷分值:120分时间:100分钟姓名:一、选择题(本大题共14道小题,共42分)1.据探测,月球表面白天阳光垂直照射的地方温度高达,而夜晚温度可降低到零下根据以上数据推算,在月球上昼夜温差有A. B. C. D.2.下列说法错误的是A. 是二次三项式B. 不是单项式C. 的系数是D. 是二次单项式3.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是A. 传B. 统C. 文D. 化4.已知、且,则a、b、、的大小关系是A. B.C. D.5.下列运算正确的是A. B.C. D.6.若是关于x的方程的解,则的值是A. 10B.C. 8D.7.如图,O是直线AB上一点,OD平分,,若,则为A. B. C. D.8.如果一个角的补角比它的余角度数的3倍少,则这个角的度数是A. B. C. D.9.若单项式与的和仍是单项式,则的值为A. B. C. 9 D. 810.若关于x的方程mx m是一元一次方程,则这个方程的解是A. xB. xC. xD. x11.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利,另一件亏损,则在这次买卖中,商家A. 亏损8元B. 赚了12元C. 亏损了12元D. 不亏不损12.多项式与的和不含二次项,则m等于A. 2B.C. 4D.13.按一定规律排列的单项式:,,,,,,第n个单项式是A. B. C. D.14.如图,已知,,OM平分,ON平分,则的度数是A. B. C. D.二、填空题(本大题共5小题,共15分)15.已知,,且,则的值等于______.16.计算:______结果用科学记数法表示17.已知,,则__________,__________。
18.如果关于x的方程和方程的解相同,那么a的值为______.19.如图,图1是“杨辉三角”数阵;图2是的展开式按b的升幂排列若的展开式按x的升幂排列得:,则______.三、解答题(本大题共7小题,共63分)20.计算:21.化简下列各式:22.先化简再求值:,其中.23.解方程24.已知:如图,三条直线AB,CD,EF相交于O,且,,若OG 平分求.25.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36800元,试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两车型的数量比进行投放,且投资总价值达到184万元,请问投放后城区有A型车与B型车各多少辆?26.点O为直线AB上一点,过点O作射线OC,使,将一直角三角板的直角顶点放在点O处.如图,将三角板MON的一边ON与射线OB重合时,则______;如图,将三角板MON绕点O逆时针旋转一定角度,此时OC是的角平分线,求旋转角和的度数;将三角板MON绕点O逆时针旋转至图时,,求的度数.参考答案一、选择题(本大题共14道小题,共42分)1、C2、D3、C4、D5、C6、C7、B8、D9、D 10、C 11、C 12、C 13、C 14、C二、填空题(本大题共5小题,共15分)15、或 16、 17、;. 18、4 19、990三、解答题(本大题共7小题,共63分)20、解:;.21、解:原式,,;;22、解:原式,当时,原式.23、解:去括号得:,移项合并得:,解得:;方程整理得:,去分母得:,移项合并得:,解得:.24、解:根据对顶角,,,,,平分,,.25、解:设本次试点投放的A型车有x辆,则B型车有辆,根据题意,得:,解得:,答:本次试点投放的A型车有60辆,则B型车有40辆;由知A,B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆,B型车2a辆,根据题意,得:,解得:,答:整个城区全面铺开时投放的A型车3000辆,B型车2000辆.26、;,OC是的角平分线,,,,.。
人教版 七年级数学上册 期末综合复习(含答案)
人教版 七年级数学上册 期末综合复习一、选择题1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短2. 下列式子中是方程的是( )A .5x +4B .3x -5<7 C.34x -2=6D .3×2-1=5 3. 计算-2×3×(-4)的结果是( )A .24B .12C .-12D .-24 4. 如图,数轴上的单位长度为1,有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 表示的数是 ( )A .-2B .0C .1D .45. 在式子:①2x+1;②1+7=15-8+1;③1-x=x -1;④x+2y=3中,方程共有( )A .1个B .2个C .3个D .4个6. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是( )A.①②B.①③C.②③D.①④7. 计算(-2)2020÷(-2)2019所得的结果是()A.22019B.-22019C.-2D.18. 已知∠α=39°18',∠β=39.18°,∠γ=39.3°,下面结论正确的是()A.∠α<∠γ<∠βB.∠γ>∠α=∠βC.∠α=∠γ>∠βD.∠γ<∠α<∠β9. 温度由-4 ℃上升7 ℃是()A.3 ℃ B.-3 ℃C.11 ℃ D.-11 ℃10. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分.若小明得了94分,则小明答对的题数是()A.17 B.18 C.19 D.20二、填空题11. 计算:7x-4x=________.12. 比较大小:-2________-3.(选填>,=或<)13. 原价为a元的书包,现按8折出售,则售价为________元.14. 方程x+3=1-2x变形为x+2x=1-3的依据是____________;方程-5x=6变形为x=-65的依据是____________.15. 若一个数的相反数是8,另一个数是绝对值最小的数,则这两个数的和是________.16. 小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,需付手工费5元,则小红购买珠子应该花费____________元.17. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.18. 已知2+23=22×23;3+38=32×38;4+415=42×415;…若10+a b =102×a b (a ,b 为正整数),则a +b =________.三、解答题19. 解下列方程:(1)4x -9x =10; (2)3x -5x =6+2;(3)-52y +32y =5;(4)3x +2x -9x =30-3×6.20. 解方程:2352246x x ---=21. 某商场的一种彩电标价为m 元/台.节日期间,商场按九折的优惠价出售,商场销售n 台彩电共得多少元?你所得到的单项式的系数和次数分别是多少?22. 一种长方体肥皂盒,它的长、宽、高分别是16厘米、6厘米、3厘米,一箱装30块肥皂,请你设计一种包装箱,符合下列要求:①肥皂盒装箱时,面积相同的面互相对接;②包装箱是一个长方体;③装入肥皂盒后不留空隙.怎样设计才能使包装箱所用材料最少?23. 下面是小红做的一道题,请你判断她的解答过程是否正确,若不正确,请改正.解方程:x +30.2-0.4x -10.5=-2.5.解:原方程可变形为10x +302-4x -105=-25,5(10x +30)-2(4x -10)=-25×10,42x =-420,x =-10.24. 张亮同学在解关于y 的方程3y -a 4-5y -7a 6=1去分母时,忘记将方程右边的1乘12,从而求得方程的解为y =10,现请你帮助张亮同学求出原方程的解.人教版 七年级数学上册 期末综合复习-答案一、选择题1. 【答案】D2. 【答案】C3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】A [解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.7. 【答案】C8. 【答案】C[解析] ∵∠α=39°18'=39.3°,39.18°<39.3°, ∴∠α=∠γ>∠β.故选C .9. 【答案】A 【解析】温度上升,-4℃+7℃=3℃,故本题选A.10. 【答案】B二、填空题11. 【答案】3x12. 【答案】> 【解析】℃负数比较大小,绝对值大的反而小,∴-2>-3.13. 【答案】45a14. 【答案】等式的性质1等式的性质215. 【答案】-8 [解析] 因为一个数的相反数是8,所以这个数是-8.又因为绝对值最小的数是0,所以这两个数的和是-8+0=-8.16. 【答案】(3a+4b+5)17. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t,根据题意,得(100-60)t=100,解得t=2.5.所以100t=100×2.5=250,即速度快的人要走250步才能追上速度慢的人.18. 【答案】109[解析] 仔细观察式子特点可知:3=22-1,8=32-1,15=42-1,故当a=10时,b=102-1=99,则a+b=10+99=109.三、解答题19. 【答案】[解析] “合并同类项”在解方程的过程中的作用体现在将方程化为ax=b(a≠0)的形式,然后运用等式的性质2求解.解:(1)合并同类项,得-5x=10.系数化为1,得x=-2.(2)合并同类项,得-2x=8.系数化为1,得x=-4.(3)合并同类项,得-y=5.系数化为1,得y=-5.(4)合并同类项,得-4x=12.系数化为1,得x=-3.20. 【答案】81321. 【答案】解:共得0.9mn元,单项式的系数是0.9,次数是2.22. 【答案】解:设计各种方案,计算各种方案的表面积,得出两种方案所用材料最少.方案一:以16×3的面相对连放三块构成底层,再如此总共放10层,整个表面积为2616平方厘米;方案二:以16×3的面相对连放五块构成底层,再如此总共放6层,整个表面积仍为2616平方厘米.23. 【答案】解:不正确.改正如下:原方程可变形为 10x +302-4x -105=-2.5. 去分母、去括号,得50x +150-8x +20=-25. 移项、合并同类项,得42x =-195.系数化为1,得x =-6514.24. 【答案】4352解:方程3y -a 4-5y -7a 6=1.张亮同学去分母时方程右边的1忘记乘12, 则原方程变为3(3y -a)-2(5y -7a)=1, 此时方程的解为y =10,代入得3(30-a)-2(50-7a)=1.去括号,得90-3a -100+14a =1.移项、合并同类项,得11a =11.解得a =1.将a =1代入方程3y -a 4-5y -7a 6=1,得3y -14-5y -76=1.去分母,得3(3y -1)-2(5y -7)=12. 去括号,得9y -3-10y +14=12.移项、合并同类项,得y =-1.即原方程的解为y =-1.。
七年级数学上册期末考试综合复习练习题(含答案)
七年级数学上册期末考试综合复习练习题(含答案)一、选择题1.有理数2-,12-,0,32中,绝对值最大的数是( )A .2-B .12-C .0D .322.下列互为倒数的是( ) A .3和13B .2-和2C .3和13-D .2-和123.下列去括号或添括号的变形中,正确的是( ) A .2a -(3b -c )=2a -3b -c B .3a +2(2b -1)=3a +4b -1 C .a +2b -3c =a +(2b -3c )D .m -n +a -b =m -(n +a -b )4.在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭5.下列说法正确的个数是( )①-2022的相反数是2022;②-2022的绝对值是2022;③12022的倒数是2022. A .3B .2C .1D .06.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是( ) A .1x ≤-B .1x ≤-或2x ≥C .12x -≤≤D .2x ≥7.2022的相反数是( ) A .2022B .2022-C .12022D .12022-8.若有理数a 、b 满足等式│b -a │-│a +b │=2b ,则有理数数a 、b 在数轴上的位置可能是( )A .B .C .D .9.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2m C .3m D .3m -10.对于有理数x ,y ,若0xy<,则||||||xy y x xy y x ++的值是( ). A .3-B .1-C .1D .311.计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.如图,下列四个式子中,不能表示阴影部分面积的是( )A .()232x x ++B .x (x +3)+6C .2x +5D .()()322x x x ++-二、填空题13.若多项式22571--+-x mxy y xy (m 为常数)不含xy 项,则m =____________. 14.如果关于x 的方程(m 2﹣1)x =1无实数解,那么m 满足的条件是________. 15.已知某铁路桥长1600米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米. 16.一个长方体包装盒展开后如图所示(单位:cm ),则其容积为 _____cm 3.17.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.18.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk的解总是x =2,则ab =_________.三、解答题 19.(1)计算:33212223333+++; (2)计算:1010432122222333333++⋯++++;(3)计算:4322222233333n +⋯++++.20.解方程(1)3116x += (2)12134x x ++=21.已知关于x 的多项式||43252a A ax bx x +=+-+,5334B x x x =-+. (1)若整式+A B 不含5x 项和不含3x 项,求a 、b 的值;(2)若整式A B -是一个五次四项式,求出a 、b 满足的条件.22.某汽车制造厂计划每周生产400辆新能源汽车,由于工人实行轮休,每日上班人数不一定相等,实际每日产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数): 星期一二三 四五六日增减(辆) +15 +17 -2+11 +14 -15 -12(1)本周实际产量与计划产量相比,是增加了还是减少了?是多少?(2)若生产此款新能源汽车每辆利润约为0.2万元,求本周该厂家生产车辆的总利润.23.如图所示,在数轴上点A ,B ,C 表示得数为﹣2,0,6,点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,点A 与点C 之间的距离表示为AC .(1)求AB 、AC 的长;(2)点A ,B ,C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB 的值是否随着运动时间t 的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.24.我们知道数形结合是解决数学问题的重要思想方法,例如|3-1|可表示为数轴上3和1这两点的距离,而31+即()|31|--则表示3和-1这两点的距离.式子1x -的几何意义是数轴上x 所对应的点与1所对应的点之间的距离,而()22x x +=--,所以2x +的几何意义就是数轴上x 所对应的点与-2所对应的点之间的距离.根据以上发现,试探索: (1)直接写出|8(2)|--=____________.(2)结合数轴,找出所有符合条件的整数x ,235x x -++=的所有整数的和.(3)由以上探索猜想,对于任何有理数x ,46x x ++-是否有最小值?如果有,请写出最小值并说明理由;如果没有,请说明理由.25.如图,正方形ABCD 和正方形ECGF 的边长分别为a 和6,点C 、D 、E 在一条直线上,点B 、C 、G 在一条直线上,将依次连接D 、E 、F 、B 、D 所围成的阴影部分的面积记为S 阴影.(1)试用含a 的代数式表示S 阴影,并按a 降幂排列;(2)当12a =时,比较S 阴影与BFG 面积的大小;当15a =时,结论是否改变?为什么?26.问题探索:如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为 cm .(2)图中点A 所表示的数是 ,点B 所表示的数是 .实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦! ”请问妙妙现在多少岁了?27.2021年国庆档电影《长津湖》以抗美援朝为背景,讲述了中国人民志愿军在极端严酷惨烈的环境下,凭借钢铁意志最终取得了长津湖战役的胜利,该电影也再次扻起了全民爱国热潮,国安民才安,有国才有家!据猫眼数据,截止10月8日,《长津湖》累计票房超过60亿,成为2021年全球票房冠军!该电影9月30日在莱芜的票房为6.7万元,接下来国庆假期7天的票房变化情况如下表(正数表示比前一天增加的票房,负数表示比前一天减少的票房).(1)国庆假期7天中,10月4日的票房收入是______万元;(2)国庆假期7天中,票房收入最多的一天是10月______日;(3)国庆假期7天中,求票房收入最多的一天比最少的一天多多少万元?参考答案1.A2.A3.C4.A5.A6.C7.B8.D9.B10.B11.A12.C13.714.±115.20016.660017.月18.419.解:(1)3323212223223333333+++=++ 22122333=++ 23233=+ 1233=+ 1=;(2)1010432122222333333++⋯++++ 109432322222...333333=++++++ 99432122222 (333333)=++++++ ……22122333=++ 23233=+ 1233=+ 1=;(3)4322222233333n +⋯++++ 43212222213333333n n n=++⋯++++- 114321222221 (3333333)n n n --=++++++- ……2212213333n =++- 2321333n=+- 121333n =+- 113n=-. 20.(1)解:3116x +=315x =5x =;(2)12134x x ++= 4(1)3(21)x x +=+4463x x +=+ 4634x x -=- 21x -=-12x =. 21.(1)因为||432535234a A B ax bx x x x x ++=+-++-+, 当+A B 不含5x 项和不含3x 项时有3330bx x -=和||450a ax x ++=, 因为3(3)0b x -=,30b -=, 所以=3b .因为||45a +=,||1a =,所以1a =-或=1a (不符合题意). 所以1a =-. (2)①∵|a |+4≥4, ∴a =0,b +3=0时, 即a =0,b =-3,②当|a |+4=5(a -1)x 5+(b +3)x 3是一项, ∴a -1≠0,b +3=0, ∴a =-1,b =3,∴=0=1=3=3a a b b ---⎧⎧⎨⎨⎩⎩或 22.(1)解:∵()()()151721114151228++-+++-+-=, ∴本周实际产量与计划产量相比,是增加了, ∵40028428+=,∴本周的实际产量为428辆车; (2)解:4280.285.6⨯=万元,∴本周该厂家生产车辆的总利润是85.6万元.23.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4. 24.(1)|8(2)|--=10, 故答案为10;(2)2x -表示x 与2的距离,3x +表示x 与-3的距离, ∵235x x -++=, ∴32x -≤≤,∴整数x =-3,-2,-1,0,1,2, 和为-3-2-1+0+1+2=-3;(3)46x x ++-有最小值10,理由如下:设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,当P 在点A 左侧时,()46221010x x PA PB PA PA AB PA AB PA ++-=+=++=+-+>, 当P 在点B 右侧时,()46210210x x PA PB AB PB PB AB PB PB ++-=+=++=+=+>, 当P 在A 、B 之间时,4610x x PA PB AB ++-=+==, ∴46x x ++-的最小值为10. 25.(1)解:∵226ABCD ECGF S S a +=+正方形正方形,212ABDSa =, 1(6)63(6)2BGF S a a =⨯+⨯=+△,∴ABD BGF ABCD ECGF S S S S S =+--△△阴影正方形正方形 ()222163(6)2a a a =+--+213182a a =-+, 故所求的阴影部分的面积表达式为213182a a -+.(2)解:∵213183(6)2BGF S a a a S ⎛⎫-=-+-+ ⎪⎝⎭△阴影()221161222a a a a =-=-, ∴当12a =时,()2112121202BGF S S -=-⨯=△阴影, ∴当12a =时,BGF S S =△阴影,即S 阴影与BFG 面积的大小一样. 当15a =时,S 阴影与BFG 面积的大小不一样. ∵()2115121502BGF S S -=-⨯>△阴影, ∴BGF S S >△阴影,即S 阴影比BFG 的面积大.26.解:(1)观察数轴可知三根木棒长为30−6=24(cm ),则这根木棒的长为24÷3=8(cm ); 故答案为8. (2)6+8=14, 14+8=22.所以图中A 点所表示的数为14,B 点所表示的数为22. 故答案为:14,22.(3)当奶奶像妙妙这样大时,妙妙为(35)-岁, 所以奶奶与妙妙的年龄差为[115(35)]350--÷=(岁), 所以妙妙现在的年龄为115505015--=(岁).27.(1)解: 10月4日的票房收入是:6.7+7.6+2.7+2.5+4.7=24.2(万元), 故答案为:24.2;(2)解:10月1日票房收入为:6.7+7.6=14.3(万元), 10月2日票房收入为:14.3+2.7=17(万元), 10月3日票房收入为:17+2.5=19.5(万元),10月4日票房收入为:19.5+4.7=24.2(万元),10月5日票房收入为:24.2+2=26.2(万元),10月6日票房收入为:26.2−0.6=25.6(万元),10月7日票房收入为:25.6−13.8=11.8(万元),故国庆假期7天中,票房收入最多的一天是10月5日.故答案为:5;(3)解:26.2−11.8=14.4(万元),故票房收入最多的一天比最少的一天多14.4万元.。
人教版七年级数学上册期末综合复习试题(有答案)
人教版七年级数学上册期末综合复习试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列算式中,运算结果为负数的是A. B. C. D.2. “把弯曲的公路改直,就能缩短路程”其中蕴含的数学道理是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.直线比曲线短3. 下列说法中正确的是()A.正数和负数统称有理数B.零是最小的有理数C.互为相反数的两数之和为零D.绝对值相等的两数相等4.下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线②角的两边越长,角的度数越大③多项式是一次二项式④的系数是A. B. C. D.5. 下列计算正确的是()A. B.C. D.6. 如图所示,在数轴上点表示的数可能是()A. B. C. D.7. 用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. B. C. D.8. 下列对于,叙述正确的是( )A.读作的次幂B.底数是,指数是C.表示个相乘的积的相反数D.表示个相乘的积9. 已知长方形的长为,宽比长少,则这个长方形的周长是()A. B. C. D.10. 如图,小于平角的角共有()A.个B.个C.个D.个二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 下列式子中的等式有________,一元一次方程有________.(填序号)①;②;③;④;⑤;⑥;⑦;⑧.12. 如图,点、、在一条直线上,,是的平分线,则________度.13. 若,,则________(填“”或“”).14. 若与互为相反数,则的值是________.15. 已知与互补,若,则的度数是________.16. 的倒数是________;相反数是________;的绝对值是________.17. 一件工作,甲单独做小时完成,乙单独做小时完成.现在由甲先单独做小时,剩下的由甲、乙合作.还须几小时完成?若设剩下的部分需要小时完成,则可列方程为________.18. 一件夹克衫先按成本价提高标价,再将标价打折出售,结果获利元,则这件夹克衫的成本价为________元.19. 在学校秋季运动会中,小明的跳远比赛跳出了米,若小明的跳远成绩记做米,那么小东跳出了米,记作________米.20. 在数轴上与数相距个单位长度的点表示的数为________.绝对值小于的所有整数是________.所有绝对值不大于的负整数的乘积是________.三、解答题(本题共计6 小题,共计60分,)21. 计算(1)(2)22. 如图,利用尺规,在的边上方作=,在射线上截取=,连接,并证明:(尺规作图要求保留作图痕迹,不写作法)23. 一个边长为厘米的正方体,它是由个边长为厘米的小正方体组成的,为上底面的中心,如果挖去的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是厘米的小正方体?24. 将下列平面图形绕直线旋转一周,所得的几何体分别是什么?25. 一名学生从小学一年级到大学本科毕业,一般要读年书,如果一年在校就读时间为天,每天个小时,用科学记数法表示在校就读的小时数.26. 某条工作流水线上有四个工作台、、、,以工作台为起点,以工作台的右边为正,已知台在台的右边米处,在台的右边米处,在台的右边米处.如果有一个工人先从台向左走了米,然后又向右走米.求:(1)这个工人现在的位置距台有多少米?是在台的左边还是右边?(2)这个工人的位置离台有多少米?(3)这个工人的位置离台有多远?在台右边多少米处?(4)这个工人的位置离台有多远?参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:,,,,,,,.故选.2.【答案】C【解答】解:“把弯曲的公路改直,就能缩短路程”其中蕴含的数学道理是两点之间线段最短,故选:.3.【答案】C【解答】解:、整数和分数统称有理数,而有理数包括正有理数,和负有理数,故本选项错误;、负数都小于,没有最小的有理数,故本选项错误;、互为相反数的两数之和为零,故本选项正确;、绝对值相等的两数相等或者互为相反数,故本选项错误.故选.4.【答案】C【解答】解:①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线,正确;②叫的度数与角的两边的长度没有关系,故错误;③多项式是二次一项式,故错误;④的系数是,故错误.故选.5.【答案】D【解答】解:、合并同类项系数相加字母及指数不变,故错误;、合并同类项系数相加字母及指数不变,故错误;、合并同类项系数相加字母及指数不变,故错误;、合并同类项系数相加字母及指数不变,故正确;故选:.6.【答案】C【解答】在数轴上点表示的数可能是,7.【答案】B【解答】解:以为圆心,为半径画交于,连结,在上取,以为圆心,为半径画弧,再以为圆心,为半径画弧交前面所画弧于,连结,,即为所求之角.根据上述作图方法,可知在与中,,,.故选.8.【答案】C【解答】解:,读作:负的的次幂,∴故不正确;,的底数是,指数是,∴故不正确;,表示个相乘的积的相反数,∴故正确;,表示个相乘的积的相反数,∴故不正确.故选.9.【答案】C【解答】∵长方形的长为,宽比长少,∴长方形的宽为=,∴这个长方形的周长是:==;10.【答案】B【解答】解:小于平角的角有,,,,,,,,,共个.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】①③④⑤⑦⑧,⑤⑧【解答】解:①③④⑤⑦⑧是等式;②是代数式;⑥是不等式;⑤由原方程,得,符合一元一次方程的定义;⑧由原方程,得,符合一元一次方程的定义;∴⑤⑧是一元一次方程.故答案是:①③④⑤⑦⑧;⑤⑧.12.【答案】【解答】解:∵与是邻补角,∴,∵,∴,∵平分,∴.故答案为:.13.【答案】【解答】解:,,∵,∴.故答案为:.14.【答案】【解答】解:∵与互为相反数,∴,解得.故答案为:.15.【答案】【解答】解:∵与互补,∴.∵,∴.故答案为:.16.【答案】,,【解答】∵,=.∴的倒数是;∵==,∴相反数是;∵=.的绝对值是.17.【答案】【解答】解:设剩下的部分需要小时完成,由题意得,.故答案为:.18.【答案】【解答】解:设这件夹克衫的成本价为元,由题意,得,解得:.则这件夹克衫的成本价为元.故答案为:.19.【答案】【解答】解:小明的跳远比赛跳出了米,若小明的跳远成绩记做米,那么小东跳出了米,记作米,故答案为:.20.【答案】,,【解答】解:∵,,∴数轴上与数相距个单位长度的点表示的数为、.∵绝对值小于的所有整数的绝对值是、或,∴绝对值小于的所有整数是:、、.∵所有绝对值不大于的负整数有、、、,∴所有绝对值不大于的负整数的乘积是:.故答案为:、;、、;.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式;(2)原式.【解答】解:(1)原式;(2)原式.22.【答案】图象如图所示,∵=,∴,∵=,=,∴,∴=,∴.【解答】图象如图所示,∵=,∴,∵=,=,∴,∴=,∴.23.【答案】最后剩下的立体图形中包含个完整的边长是厘米的小正方体.【解答】解:根据题干分析可得:剩下的立体图形是底面为正方形的正四棱锥,如图,从正侧面看,共有层,从下数第一层完整的正方体个数为:(个),第二层也是(个),三层个,四层个,第五层没有完整的正方体;所以(个);24.【答案】解:图是两个同底得圆锥;图是圆台的下面去掉了一个圆锥;图圆柱的上面加了一个圆锥.【解答】解:图是两个同底得圆锥;图是圆台的下面去掉了一个圆锥;图圆柱的上面加了一个圆锥.25.【答案】解:,将用科学计数法表示为:.【解答】解:,将用科学计数法表示为:.26.【答案】解:(1),所以,距台有米,是在台的右边;(2)这个工人的位置离台有米;(3)这个工人的位置离台米,在台右边米处;(4)这个工人的位置离台有米.【解答】解:(1),所以,距台有米,是在台的右边;(2)这个工人的位置离台有米;(3)这个工人的位置离台米,在台右边米处;(4)这个工人的位置离台有米.。
人教版七年级上册数学期末综合复习解答题专题训练(含答案)
人教版七年级上册数学期末综合复习解答题专题训练一、有理数的计算:1.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9).(2).(3).(4)﹣24+3×(﹣1)6﹣(﹣2)3.2.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)3.计算(1);(2);(3);(4).4.为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?5.已知13=1=×12×22,13+23=9=×22×32,13+23+33=36=×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.6.定义新运算“@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.二、解一元一次方程:7.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).8.解方程:(1)5x﹣4=2(2x﹣3);(2)﹣=1;(3)﹣=1+;(4)﹣=0.75.9.解方程(1)3x﹣5=8;(2)﹣2x+3=4x﹣9;(3)3(x+2)﹣2(x+2)=2x+4;(4).10.解下列方程.(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2;(3)﹣=1+(4)=0.75三、整式的加减11.若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.12.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.14.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.15.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.16.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣)],其中x=﹣1,y=2.17.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.18.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,﹣a+c0(2)化简:|c﹣b|+|a|.19.化简已知a,b,c在数轴上的位置如图所示:(1)化简:|a+b|﹣|c﹣b|+|b﹣a|(2)若a的绝对值的相反数是﹣2,﹣b的倒数是它本身,c2=4,求﹣a+2b+c﹣(a+b﹣c)的值.20.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.四、几何图形初步:21.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=6cm,BC=4cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2:1,且线段CN=2cm,求线段AB的长.22.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.(2)如果M是CD的中点,MD=2cm,求线段AB的长.23.如图,延长线段AB到点F,延长线段BA到点E,若点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=24cm,求线段MN的长.24.如图,点C在线段AB上,点M、N分别是线段AC,BC的中点.线段AB=14cm.(1)求线段MN的长;(2)若点C在线段AB的延长线上,求线段MN的长;(3)若点C在直线AB上,求线段MN的长.25.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则线段BC的长度.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.27.如图,直线AB,CD相交于点O,EO⊥CD于点O,FO⊥AB于点O.若∠AOE=50°,求∠BOC和∠COF.28.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠AOD的度数;(2)若∠BOC=2∠AOC,求∠DOE的度数.参考答案1.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101.(2)=﹣18﹣1÷(﹣16)=﹣18﹣(﹣)=﹣17.(3)=(5﹣5×)×(﹣4)=(5﹣)×(﹣4)=×(﹣4)=﹣15.(4)﹣24+3×(﹣1)6﹣(﹣2)3=﹣16+3×1﹣(﹣8)=﹣16+3+8=﹣5.2.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.3.解:(1)=++﹣=﹣+=﹣=﹣;(2)=(﹣)×÷(﹣6)2﹣1=(﹣)×÷36﹣1=(﹣)××﹣1=﹣1=﹣;(3)=﹣1×(﹣9×﹣2)×(﹣)=﹣1×(﹣4﹣2)×(﹣)=﹣1×(﹣6)×(﹣)=﹣9;(4)=×(﹣25)﹣49×(﹣+)=(﹣1)﹣49×+49×﹣49×=(﹣1)﹣42+﹣1=﹣33.4.解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王师傅在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.5.解:(1)13+23+33+43+53=225=×52×62(2)猜想:13+23+33+…+n3=×n2×(n+1)2(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+...+393+403﹣(13+23+33+ (103)=×402×412﹣×102×112=672400﹣3025=6693756.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.7.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.8.解:(1)5x﹣4=2(2x﹣3),5x﹣4=4x﹣6,x=﹣2.(2)﹣=1,5(x﹣3)﹣2(4x+1)=10,5x﹣15﹣8x﹣2=10,﹣3x=10+15+2,x=﹣9;(3)﹣=1+,6x﹣2(5x+11)=12+4(2x﹣4),6x﹣10x﹣22=12+8x﹣16,6x﹣10x﹣8x=12﹣16+22,﹣12x=18,x=﹣;(4)﹣=0.75,﹣=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=﹣.9.解:(1)3x﹣5=8移项,3x=8+5.合并同类项,3x=13.x的系数化为1,x=.∴这个方程的解为x=.(2)﹣2x+3=4x﹣9移项,﹣2x﹣4x=﹣9﹣3.合并同类项,﹣6x=﹣12.x的系数化为1,x=2.∴这个方程的解为x=2.(3)3(x+2)﹣2(x+2)=2x+4去括号,3x+6﹣2x﹣4=2x+4.移项,3x﹣2x﹣2x=4+4﹣6.合并同类项,﹣x=2.x的系数化为1,x=﹣2.∴这个方程的解为x=﹣2.(4)去分母,3(3y﹣1)﹣12=2(5y﹣7).去括号,9y﹣3﹣12=10y﹣14.移项,9y﹣10y=﹣14+12+3.合并同类项,﹣y=1.y的系数化为1,y=﹣1.∴这个方程的解为y=﹣1.10.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项合并得:5x=﹣5,解得:x=﹣1;(3)去分母得:3x﹣5x﹣11=6+4x﹣8,移项合并得:﹣6x=9,解得:x=﹣1.5;(4)方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.11.解:原式=2mx2﹣x2+5x+8﹣7x2+3y﹣5x=(2m﹣8)x2+3y+8,因为此多项式的值与x无关,所以2m﹣8=0,解得:m=4.m2﹣[2m2﹣(5m﹣4)+m]=m2﹣(2m2﹣5m+4+m)=﹣m2+4m﹣4,当=4时,原式=﹣42+4×4﹣4=﹣4.12.解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.14.解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.15.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.16.解:原式=4xy﹣(x2+5xy﹣y2﹣2x2﹣6xy+y2)=4xy﹣(﹣x2﹣xy)=5xy+x2,因为x=﹣1,y=2,所以原式=5×(﹣1)×2+(﹣1)2=﹣9.17.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a﹣b﹣a﹣c+b﹣c=﹣2c.18.解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)c﹣b>0,a+b<0,﹣a+c>0;(2)原式=c﹣b﹣a.故答案为:>,<,>.19.解:(1)∵a+b>0,c﹣b<0,b﹣a<0,∴原式=a+b+c﹣b﹣b+a=2a﹣b+c;(2)由题意,得a=2,b=﹣1,c=﹣2,∴﹣a+2b+c﹣(a+b﹣c)=﹣a+2b+c﹣a﹣b+c=﹣2a+b+2c=﹣4﹣1﹣4=﹣9.20.解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.21.解:(1)因为M,N分别是AC,BC的中点,所以,,所以MN=CM+CN=3+2=5(cm).(2)因为线段CM与线段CN的长度之比为2:1,CN=2cm,所以线段CM=4cm.因为M,N分别是AC,BC的中点,所以AC=2CM=8cm,BC=2CN=4cm,所以AB=AC+BC=8+4=12(cm).22.解:(1)相等,因为AD=7cm,CB=7cm.所以AD=CB,因为AC=AD﹣CD,BD=CB﹣CD,所以AC=BD;(2)因为M是CD的中点,所以CM=MD,由(1)得,AC=BD,所以AC+CM=BD+MD,所以AM=MB,因为AD=7cm,MD=2 cm,所以AM=7﹣2=5(cm),所以AB=2AM=10(cm).23.解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=24cm,∴6x=24,解得:x=4,∴MN=4x=16cm.24.解:(1)∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC+CN=AC+BC=AB=7cm.(2)当点C在线段AB的延长线上时,如下图:∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC﹣NC==AC﹣BC=AB=7cm.(3)由(1)、(2)小题知,当点C在线段AB上或点C在线段AB的延长线上时,MN=AB=7cm.当点C在线段AB的反向延长线上时,如下图:点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=NC﹣MC=BC﹣AC=AB=7cm.综上:当点C在直线AB上时MN=7cm.25.解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.26.解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB==x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°﹣∠BOD=180°﹣70°=110°,∵FO⊥CD,∴∠BOF=90°﹣∠BOD=90°﹣70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.所以∠AOD和∠EOF的度数分别为:110°、55°.27.解:∵EO⊥CD于点O,∴∠DOE=90°,∴∠AOD=∠DOE﹣∠AOE=90°﹣50°=40°,∵∠BOC和∠AOD为对顶角,∴∠BOC=∠AOD=40°,∵FO⊥AB于点O,∴∠BOF=90°,∴∠COF=∠BOF+∠BOC=90°+40°=130°.28.解:(1)∵EO⊥AB,∴∠BOE=90°,∵∠EOC=35°,∴∠BOC=∠BOE+∠EOC=125°.∴∠AOD=∠BOC=125°,答:∠AOD的度数为125°;(2)∵∠AOC+∠BOC=180°,∠BOC=2∠AOC,∴∠AOC+2∠AOC=180°∴∠AOC=60°,∴∠BOD=∠AOC=60°,∴∠EOD=∠BOE+∠BOD=90°+60°=150°,答:∠DOE的度数为150°.。
数学七年级上册全册单元试卷综合测试卷(word含答案)
数学七年级上册全册单元试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.2.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。
第一学期初一数学上册全章期末复习单元练习(附答案)
第一学期初一数学期末复习第一章有理数一、正负数的运用1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A .18℃~20℃B .20℃~22℃C .18℃~21℃D .18℃~22℃2、我市某年12月21日至24日每天的最高气温与最低气温如下表:日期12月21日12月22日12月23日12月24日最高气温8℃7℃5℃6℃最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【】A .12月21日B .12月22日C .12月23日D .12月24日二、数轴(在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【】A .-1B .-2C .-3D .-4(思考:如果没有图,结果又会怎样?)(第3题)(第5题)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______.5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是()A .a +b>0B .ab >0C .110abD .110ab6、b a 、两数在数轴上位置如图3所示,将b a b a 、、、用“<”连接,其中正确的是()A .a <a <b <bB .b <a <a <bC .a <b <b <aD .b <a <b <a(第6题)(第7题)7、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是()A .0abB .0a b C .1a bD .0ab 8、有理数a 、b 、c 在数轴上的位置如图4所示,且a 与b 互为相反数,则c b c a = .9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A点表示的数是.a0 cb 图4三、相反数(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是( )A .)1(与1B .(-1)2与1 C .1与1 D .-12与1四、倒数(互为倒数的两数的积为1)11、-3的倒数是________.五、绝对值(|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2等于()A .-2B .12C .2D .1213、若ab ≠0,则等式a b ab 成立的条件是______________14、若有理数a, b 满足(a-1)2+|b+3|=0,则a-b=15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a 的结果是_____________.六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别;(-1)奇与(-1)偶的区别] 16、下列计算中正确的是()A .532aaaB .22aaC .33)(aa D .22()a a七、科学计数法(表示形式a ×10n)17、青藏高原是世界上海拔最高的高原,它的面积约为 2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【】A .精确到十分位B .精确到个位C .精确到百位D .精确到千位19、下面说法中错误的是().A .368万精确到万位B .2.58精确到百分位C .0.0450有精确到千分位D .10000精确到万位表示为“1万”或“1×104”九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25(2)-22+2×[(-3)2-3÷12](3))23(24)32(412)3(22---×++÷÷(4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] .(6)计算:2431(2)453十、综合应用21、已知4个数中:(―1)2005,2,-(-1.5),―32,其中正数的个数有().A .1B .2C .3D .4 22、下列说,其中正确的个数为()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a 一定在原点的左边。
七年级数学上册期末复习综合测试题(含答案)
七年级数学上册期末复习综合测试题(含答案)一.精心选择(本大题有12小题,每小题2分,共24分)1.12021-的倒数是( ) A .2021- B .12021- C .2021 D .120212.关于直线,下列说法正确的是( )A .可以量长度B .有两个端点C .可以用两个小写字母来表示D .没有端点 3.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和a 的积C .2a 是偶数D .2a 是单项式4.下列各组中的两项,是同类项的为( ) A .25x y 与xyB .25x y -与2yxC .25ax 与2yx D .38与3x5.在下列方程中:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是( ). A .1 B .2 C .3 D .46.钟表上的时间指示为两点半,这时时针和分针之间的夹角为( ) A .120° B .105° C .100° D .90° 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .12-B .12C .56-D .568.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的正方形的面积是( )A .abB .2()a b +C .22a b - D .2()a b -9.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,31px qx ++的值为( ) A .2019- B .2021- C .2020 D .202110.如图,将一副三角板的直角顶点重合放置于点A 处(两块三角板看成在同一平面内),将其中一块三角板绕点A 旋转的过程中,下列结论一定成立的是( )A .BAD DAC ∠=∠B .BAD EAC ∠≠∠C .90BAE DAC ∠-∠=︒D .180BAE DAC ∠+∠=︒11.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.7160%6()3x x +=- B .0.7160%6()3x x +=+ C .0.7160%6(3)x x +=-D .0.7160%6(3)x x +=+12.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是( )A .150B .200C .355D .505二.准确填空(本大题有6个小题,每小题3分,共18分)13.如果零上2℃记为2+℃,那么3-℃表示_______________. 14.3015︒'=__________°.15.一个长方形的宽为cm x ,长比宽的2倍多1 cm ,这个长方形的周长为__________cm .16.若27x a b 与3ya b -的和为单项式,则xy =_______.17.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为32cm ,若12AP PB =,则这条绳子的原长为__________cm .18.做一个数字游戏:第一步:取一个自然数18n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ;…,以此类推,则2021a =__________.三.细心解答(本大题有8个小题,共58分)19.(本小题满分6分)计算:()32142⎛⎫-⨯- ⎪⎝⎭20.(本小题满分6分)已知232A a ab b =-+-,22B a ab =-,化简2A B -.21.(本小题满分6分) 以下是小明解方程1323x x +--=1的解答过程. 解:去分母,得31231()()x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.小明的解答过程是否有错误?如果有错误,写出正确的解答过程. 22.(本小题满分6分)已知:如图,点D 、C 、E 是线段AB 上依次排列的三点,当点C 、D 分别是AB 和AE 的中点,且15AB =, 4.5CE =时,求线段CD 的长.23.(本小题满分8分)将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五个数,所框五个数的和能等于2020吗?若能,写出这五个数;如不能,请说明理由. 24.(本小题满分8分)为了预防新冠肺炎的发生,学校免费为师生提供防疫物品.某校购进洗手液与84消毒液共400瓶.已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶,总共消费了7200元.该校购进洗手液和84消毒液各多少瓶?25.(本小题满分9分)已知:点O 是直线AB 上的一点,90COD ∠=︒.OE 是BOD ∠的平分线. (1)当点C 、D 、E 在直线AB 的同侧(如图)时,①若35COE ∠=︒,求AOD ∠的度数. ②若COE α∠=,则AOD ∠=________.(用含α的式子表示) (2)当点C 与点D 、E 在直线AB 的两侧(如图)时,(1)中②的结论是否仍然成立?请给你的结论并说明理由.26.(本小题满分9分)如图,甲、乙两人(看成点)分别在数轴3-和5的位置上,沿数轴做移动游戏.每次的移动游戏规则如下:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若第一次移动游戏,甲、乙两人都猜对了,则甲、乙两人之间的距离是_______个单位; (2)若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m .请你用含n 的代数式表示m ; (3)经过_______次移动游戏,甲、乙两人相遇。
七年级数学上册全册单元试卷复习练习(Word版 含答案)
七年级数学上册全册单元试卷复习练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.4.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
七年级(上)期末数学综合复习训练题(一)及答案
A 很满意B 满意C 说不清D 不满意DC 9%B 38%A 46%七年级(上)期末数学综合复习训练题(一)(满分120分,时间90分钟)一、填一填,要相信自己的能力!(每小题3分,共30分)1.甲地的海拔高度是-126米,乙地的海拔高度是-390米,则甲地比乙地高出 米.2.如果m 、n 互为相反数,则6-+n m = .3.一件商品打八折比打九折少花6元,则这件商品的原价是 元.4.下表示某月的日历,在日历上任意圈出一个竖列上相邻的3个数,如果被圈出的三个数之和为66,则这三个数中最大的数是 .5.如果线段AB=6cm ,BC=3cm ,且A 、B 、C 在同一直线上,那么A 、C 两点间的距离是_________厘米.6.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件: 。
7.如图1所示,把长方形的一角折叠,得到折痕EF ,已知∠EFB=30°,则∠BFC= .8.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图2所示,根据图中给出的信息,这200名学生中对该食堂的服务质量表示很满意的有 ____________人.图1 图29.有若干张卡片,上面写有数字,且后一张卡片比前一张的数大8,有一只小狗叼走了相邻的三张卡片,且它们之和为48,则这三张卡片上的数分别是________.10.某市按以下规定收取水费,若每月用水不超过5立方米,按每立方米0.8元收费;如果超过5立方米,ACBFE超过部分按每立方米1.5元收费.已知7月份某用户的水费平均每立方米1.15元,那么7月份该用户应交水费 元.二、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.如图3所示,是某物体的三视图,则该物体是( ).A.圆柱B.圆锥C.圆台D.球主视图左视图俯视图图32.将0.38×55×107的结果用科学记数法表示,其正确的是( ) A .7109.20⨯B .91009.2⨯C .81009.2⨯D .111009.2⨯3.给出以下四个结论:(1)圆柱体的上下两个圆一样大.(2)圆柱、圆锥的底面都是圆. (3)圆柱是由两个面围成的.(4)长方体的面不可能是正方形. 其中正确的结论个数为:( )A 、1个B 、2个C 、3个D 、4个. 4.下列是同类项的一组是( )A. –a 2b 与2ab B. xyz 与8xy C. 3mn 2与4m n 2 D. 23a 与a5.若要反映某种商品价格的变化情况,应该选择的统计图是( ).A.条形统计图B.扇形统计图C.折线统计图D.三种都可以 6.下列事件是不可能事件的是( ).A.某人买了一张彩票中了大奖.B.两个偶数之和是奇数.C.连续掷五次硬币,结果都是正面朝上.D.小明的数学连续三次考试都是100分. 7.如图4所示的四张图中,经过折叠可以围成一个棱柱的是( )ABCD图48. 在2223)3(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于( )A.6B.8C.5-D.5 9.点E 在线段CD 上,下面的等式:①CE=DE ;②DE=21CD ;③CD=2CE ;④CD=21DE. 其中能表示E 是CD 中点的有( ).A.1个B.2个C. 3个D. 4个 10.如图5所示,已知∠AOC=∠BOD=80°,∠BOC=30°, 则∠AOD 的度数为( ).A.160°B.110°C.130°D.140°三、做一做,要注意认真审题呀!(共60分) 图5 1.(8分)(1)15-(-18)-(-8)×(-6) (2)45)23(312÷-⨯-.2.(10分)解方程:(1)13)21(32=--x x (2)231225=+-+x x3.(10分)如图6所示,AB ∥CD ,E 是AD 上一点.(1)过E 做CD 的平行线段,交BC 于F . (2)EF 与AB 的位置关系是什么?为什么?图6OABCD4.(10分)某汽车行驶时,油箱中余油量Q(千克)与行驶时间t(小时)之间的关系如下表所示:⑴写出用时间t表示余油量Q的代数式;⑵当t=3.5时,求余油量Q的值;⑶根据所列代数式回答,汽车行驶之前,油箱中有多少千克汽油?⑷油箱中原有汽油可以供汽车行驶多少小时?5.(10分)某班对班上60名学生上学的方式做了一次调查,调查结果如下:骑自行车上学的同学有30人,坐公交车上学的同学有18人,步行上学的同学有12人,请画出扇形统计图表示这个班同学选择各种上学方式的人数占总人数的百分比.6.(12分)某天,一水果个体户用90元钱从水果批发市场批了苹果和香蕉共80kg 到菜市场去卖,苹果和香蕉这天的批发价和零售价如下表所示:问:他当天卖完这些苹果和香蕉能赚多少钱?参考答案一、填空题1.答案:264米。
人教版七年级上册数学期末复习全册综合检测试卷(含答案)
人教版七年级上册数学期末复习全册综合检测试卷一.选择题(本题包括10小题,每小题2分,共20分)1.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么a﹣2=b﹣3C.如果,那么a=b D.如果a2=3a,那么a=32.如图,表示互为相反数的两个点是()A.M与Q B.N与P C.M与P D.N与Q3.对于下列四个式子:①;②;③;④.其中不是整式的是()A.①B.②C.③D.④4.同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为()A.36×106B.0.36×108C.3.6×106D.3.6×1075.当|a|=﹣a时,则a是()A.a≤0B.a<0C.a≥0D.a>06.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣27.关于x的方程3x+k=(2k﹣1)x﹣1的解是x=﹣1,则k的值为()A.0B.2C.﹣1D.18.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.D B.C C.B D.A9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.已知整数a1、a2、a3、a4、……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……,a n+1=﹣|a n+n|(n为正整数)依此类推,则a2020值为()A.﹣1008B.﹣1009C.﹣1010D.﹣1011二、填空题(本题包括8小题,每小题3分,共24分)11.某种苹果的单价是x元/kg(x<10),用50元买5kg这种苹果,应找回元.12.计算:﹣5a+(3a﹣2)﹣(3a﹣7)的结果为.13.若∠AOB=46°24',则它的余角的度数为.14.已知|a|=3,且a+|a|=0,则a3+a2+a+1=.15.方程=x﹣4与方程=﹣6的解相同,则m=.16.如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM =∠EFM,则∠BFM=度.17.在灯塔O处观测到轮船A位于北偏西60°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为.18.在同一条数轴上,点B表示的数是﹣8,点C表示的数是16,若点B以每秒6个单位长度的速度向右匀速运动,同时点C以每秒2个单位长度的速度向左匀速运动,当运动秒时,BC=8个单位长度.三.解答题(本大题包括7小题,共56分)19.(6分)计算:(1)[2+(+﹣)×24]÷(﹣5).(2)0.5+7×(﹣)﹣(﹣2)3÷(﹣2)4.20.(8分)解方程:(1)5x﹣2=7x+8(2)12(2﹣3x)=4x+4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合专题类 一、分类讨论 1、无图分类讨论
(1)已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是 cm .
(2)若∠AOB=8175'ο,∠AOC=3527'ο,则∠BOC= 。
2、绝对值要分类讨论
(1)若|x-1|=3, 则x= 。
(2)已知∠AOC=60°,∠AOB ︰∠AOC=2︰3,则∠BOC 的度数是______________.
二、三角板拼图
3、用一副三角板(两块)画角,不可能画出的角的度数是( ).
A .1350
B .750
C .550
D .150
4、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,
则∠BOC 等于…【 】
A .30°
B .45°
C .50°
D .60°
5、把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )
A .70°
B .90°
C .105°
D .120°
三、折纸
6、把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位
置,且∠MFB=12∠MFE.则∠MFB=( ) A.30° B.36° C.45° D.72°
四、时钟问题
7、王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是
度.
8、钟表上2点30分时,时针与分针所夹的角的度数是( )
A .90°
B .105°
C .110°
D .120°
五、方案优选
9、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).
问:1)当购买乒乓球多少盒时,两种优惠办法付款一样?
2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?
为什么?
A B C 第3题图 N M
F E D C B A
10、某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张
210元,书架每只70元,A 超市的优惠政策为每买一张书柜赠送一只书架,B 超市的优惠政策为所有商品八折。
(1)若规定只能到其中一个超市购买所有物品,什么情况下到A 超市购买合算?
(2)若学校想购买20张书柜和100只书架,且可到两家超市自由选购.你认为至少要
准备多少货款,请用计算的结果来验证你的说法。
11、周末,七年级一班准备邀请所有教师14人和全班48名同学去公园举行游园活动,已知公园有两种售票方式:①成人票8元/人,学生票5元/人;②团体票统一按成人票的7折计算(50人以上可买团体票)。
(1)若师生均到齐,选用哪种方式购票较合算?
(2)若教师没有到齐,用第二种购票方式共需336元,你能算出有几位教师没有到吗?
六、列举法
12、在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是 .
七、规律探索
13、下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是 .
14、填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )
A .110
B .158
C .168
D .178
15、一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……
1)写出第一次移动后这个点在数轴上表示的数为 ;
2)写出第二次移动结果这个点在数轴上表示的数为 ;
3)写出第五次移动后这个点在数轴上表示的数为 ;
4)写出第n 次移动结果这个点在数轴上表示的数为 ;
5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.
16、下列一组规律排列数:4,8,16,32…第 n 个数是 ;第2016个数是 .
17、瑞士中学教师巴尔末成功的从光谱数据:59
,1216,2125,32
36,……中得到巴尔末公式,从而打开光谱奥妙的大门。
请你根据以上光谱数据的规律写出它的第七个数据______
18、对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则6 2 22 4 2 0 4 8 8 4 44 6 m 10 ……
自然数82的分裂数中最大的数是 .
八、按程序求值 19
20、已知a -b =2,那么2
a -2
b +5=_________.
21、已知3=+y x ,1=xy ,求代数式)53()25(y xy x --+的值。
22、已知代数式x+ 2y 的值是3,则代数式2x+ 4y+1的值是( )
A. 1
B. 4
C. 7
D. 不能确定。
23、已知整式622+-x x 的值为9,则2246x x -++的值为 .
十、数轴法和特殊值法
24、如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )
A .a <ab <2ab
B .a <2ab <ab
C .ab <2ab <a
D .2ab <a <ab 十一、定义新运算
25、“*”是规定的一种运算法则:a*b=a 2-b.
(1)求4*(-1)的值为
(2)若3*x=2,求x 的值;
(3)若(-4)*x=2+x, 求x 的值.
26、若定义一种新的运算,规定a b ad bc c d =-,且1123x --与14
-互为倒数,则x =_________.
22
1
3 32 1 5 3 7 42 1 5 3 ……
专题类 1.(1)8或12;(2)0,10311或0,4725;
2.(1)4或-2;(2)200或1000;
3.C ;
4.A ;
5.D ;
6.B ;
7.1500;
8.B ;
9. 解:(1)设购买x 盒乒乓球时,两种优惠办法付款一样,
则在甲店付款为:30×5+(x ﹣5)×5=5x +125(元),
在乙商店付款为:(30×5+5x )×0.9=135+4.5x (元),
由题意,得5x +125=135+4.5x ,解得:x=20.
答:当购买乒乓球20盒时,两种优惠办法付款一样;
(2)当购买30盒乒乓球时:甲店需付款30×5+(30﹣5)×5=275(元),
乙店需付款(30×5+30×5)×0.9=270(元).
因为275>270,所以,购买30盒乒乓球时,选择乙商店合算.
10. (1)解:设买x 张书架时,到A 超市购买合算,
根据题意得A 超市所花钱数为:20×210+70(x ﹣20),B 超市所花钱数为:0.8(20×210+70x ), ∵20×210+70(x ﹣20)<0.8(20×210+70x ),
解得:x <40,∴当20≤x <40时到A 超市合算;
(2)因为买一个书柜赠一个书架相当于打7.5折,
所以应该到A 超市购买20个书柜和20个书架,到B 超市购买80个书架,共需8680元.
11. 解:(1)14×8+48×5=352(元).(14+48)×8×0.7=347.2(元).
第一种方式的费用为352元;第二种方式的费用为347.2元.因此,选用第二种方式较合算.
(2)设有x 位老师没到,则(14﹣x +48)×8×0.7=336,x=2.故有2位教师没有到. 12.24;13.82;
14. 解:根据排列规律,10下面的数是12,10右面的数是14,
∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选B .
15.分析】(1)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位,实际上点A 最后向左移动了1个单位,则第一次后这个点表示的数为1+2=3;
(2)第二次先向左移动3个单位,再向右移动4个单位,实际上点A 最后向左移动了1个单位,则第二次后这个点表示的数为2+2=4;(3)根据前面的规律得到第五次移动后这个点在数轴上表示的数是5+2=7;(4)第n 次移动后这个点在数轴上表示的数是n +2;(5)由(4)得到第m 次移动后这个点在数轴上表示的数为m +2,则m +2=56,然后解方程即可.
【解答】解:(1)第一次移动后这个点在数轴上表示的数是3;
(2)第二次移动后这个点在数轴上表示的数是4;
(3)第五次移动后这个点在数轴上表示的数是7;
(4)第n 次移动后这个点在数轴上表示的数是n +2;
(5)m +2=56,解得m=54.故答案为3,4,7,n +2,54.
16.120152,2n ;17.8177
;18.15;19.231;20.9;21.14;22.C ;23.0;24.B ;25.(1)17,(2)7.(3)7;26.6.。