七年级数学上册有理数乘除运算单元测试卷
七年级数学上册有理数的乘除练习题
七年级数学上册有理数的乘除练习题【例1】下列说法正确的是( )A .5个有理数相乘,当负因数为3个时,积为负B .﹣1乘以任何有理数等于这个数的相反数C .3个有理数的积为负数,则这3个有理数都为负数D .绝对值大于1的两个数相乘,积比这两个数都大 【变式1-1】在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若 a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【变式1-2】已知a +b >0且a (b ﹣1)<0,则下列说法一定错误的是( ) A .a >0,b >1B .a <﹣1,b >1C .﹣1≤a <0,b >1D .a <0,b >0【变式1-3】下列说法:①若a 、b 互为相反数,则a b=−1;②若b <0<a ,且|a |<|b |,则|a +b |=﹣|a |+|b |;③几个有理数相乘,如果负因数的个数为奇数个,则积为负;④当x =1时,|x ﹣4|+|x +2|有最小值为5;⑤若ab =c d,则c a=d b;其中错误的有( )【例2】若3a ﹣12没有倒数,则a = ;已知m ﹣11的倒数为−17,则m +1的相反数是 . 【变式2-1】(2022•杨浦区校级期中)如果a +3的相反数是﹣513,那么a 的倒数是 . 【变式2-2】(2022秋•贵港期末)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a +b ,cd ,m 的值; (2)求m +cd +a+b m的值.【变式2-3】已知a 与2互为相反数,x 与3互为倒数,则代数式a +2+|﹣6x |的值为( ) A .0B .﹣2C .2D .无法确定【例3】下列计算正确的是( ) A .﹣30×37−20×(−37)=1507B .(−23+45)÷(−115)=﹣2C .(12−13)÷(13−14)×(14−15)=310D .−45÷(+45)×(−827)=0【变式3-1】(1)(−35)×(﹣312)÷(﹣114)÷3 (2)[(+17)﹣(−13)﹣(+15)]÷(−1105)【变式3-2】计算: (1)619÷(﹣112)×1924. (2)﹣125×0.42÷(﹣7)【变式3-3】计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9).【例4】写出下列运算中每一步所依据的运算律或法则: (﹣0.4)×(﹣0.8)×(﹣1.25)×2.5 =﹣(0.4×0.8×1.25×2.5)(第一步) =﹣(0.4×2.5×0.8×1.25)(第二步) =﹣[(0.4×2.5)×(0.8×1.25)](第三步) =﹣(1×1)=﹣1.第一步: ;第二步: ;第三步: . 【变式4-1】计算:(12−34+18)×(﹣24). 【变式4-2】用简便方法计算 (1)991718×(﹣9)(2)(﹣5)×(﹣367)+(﹣7)×(﹣367)+12×(﹣367)【变式4-3】用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34(2)(−13−14+15−715)×(﹣60)【例5】(2022•利辛县月考)下面是小明同学的运算过程. 计算:﹣5÷2×12.解:﹣5÷2×12=−5÷(2×12)...第1步 =﹣5÷1...第2步 =﹣5 (3)请问:(1)小明从第 步开始出现错误; (2)请写出正确的解答过程.【变式5-1】计算:(−109)×(−35).解:(−109)×(−35)=−109×35①=−23.②(1)找错:第 步出现错误; (2)纠错:【变式5-2】阅读下面解题过程: 计算:5÷(13−212−2)÷6 解:5÷(13−212−2)×6=5÷(−256)×6…① =5÷(﹣25)…② =−15⋯③回答:(1)上面解题过程中有两处错误,第一处是第 步,错因是 ,第二处是 ,错因是 . (2)正确结果应是 . 【变式5-3】阅读下列材料: 计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124112=124×3−124×4+124×12=1124. 解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4.所以,原式=14.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:(−142)÷(16−314+23−27).【例6】(1)三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值.(2)三个有理数a ,b ,c 满足abc <0,求|a|a+|b|b+|c|c的值;(3)若a ,b ,c 为三个不为0的有理数,且|a|a +|b|b+|c|c=−1,求abc|abc|的值.【变式6-1】已知非零有理数a ,b ,c 满足ab >0,bc >0. (1)求|ab|ab +ac|ac|+|bc|bc的值;(2)若a+b+c<0,求|a|a +b|b|+|c|c+|abc|abc的值.【变式6-2】已知|x|=3,|y|=7(1)若x<y,求x﹣y的值;(2)若xy>0,求x+y的值;(3)求x2y﹣xy2+21的值.【变式6-3】若a+b+c<0,abc>0,则ab|ab|+2•|−bc|bc−3•ac|ac|+4•|abc|abc的最大值为()A.6B.8C.10D.7【例7】考察下列每一道算式,回答问题:算式:63×67=4221 72×78=5616561×569=3192009 1814×1816=3294224(1)两个因数个位上的数字之和是多少?其余各位上的数字有何特征?(2)根据四个式子的计算,请你猜想符合上述特征的两个数相乘的运算规律.(3)再举两道符合上述特征的计算题,并用你猜想的规律进行计算.【变式7-1】已知C32=3×21×2=3,C53=5×4×31×2×3=10,C64=6×5×4×31×2×3×4=15,…观察以上规律计算C85=,C10a=45,则a=.【变式7-2】有一列数a1,a2,a3,…a n,若a1=12,从第二个数开始,每一个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4;(2)根据以上计算结果,试猜测a2016、a2017的值.【变式7-3】已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、直接地写出积的规律吗?请用文字描述这个规律;(3)证明你发现的规律;(4)在已知算式中,找出所有可以应用(或经过转化可以应用)上述规律的算式,并将它们写在横线上:.【例8】(2022•江宁区校级月考)天龙顶国家山地公园,位于岑溪市南渡镇吉太附近,距岑溪市35公里,天龙顶是桂东最高峰,史上早已成名,被誉为“土主龙楼”天龙顶形成于远古冰川,由整块红色砂岩劈凿而成,拔地而起,是极限攀岩、野外露营及登山爱好者的天堂.某年寒假,小昌与小勇一起去游天龙顶,他们想知道山的高度.小昌说可以利用温度计测量山峰的高度,小昌在山顶测得温度约是﹣1℃,小勇此时在山脚测得温度约是8.6℃,已知该地区每年增加100米,气温大约下降0.8℃,小昌很快算出了答案,你知道天龙顶的高度约是多少米吗?【变式8-1】妈妈身高多少厘米?【变式8-2】某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):﹣34﹣12﹣5进出数量(单位:吨)进出次数21332(1)这天仓库的原料比原来增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.【例9】若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【变式9-1】定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n 喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.【变式9-2】“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算46×71,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果计入相应的方格中,最后沿斜线方向相加得3266.(1)如图2,用“格子乘法”计算两个两位数相乘,则x=,y=;(2)如图3,用“格子乘法”计算两个两位数相乘,得2176,则m=,n=;(3)如图4,用“格子乘法”计算两个两位数相乘,则k=.【变式9-3】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f(4,1)=,f(5,3)=;2(2)关于“有理数的除方”下列说法正确的是.(填序号)①f(6,3)=f(3,6);②f(2,a)=1(a≠0);③对于任何正整数n,都有f(n,﹣1)=1;④对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式;(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:f(5,3)×f(4,13)×f(5,﹣2)×f(6,12).。
七年级数学有理数的乘除法同步测试题
七年级数学有理数的乘除法同步测试题要想学好数学就必须大量反复地做题,为此,精品小编为大家整理了这篇七年级数学有理数的乘除法同步测试题,以供大家参考!一、填空题1.的相反数为,倒数为.考察说明:此题考察的知识点是相反数和倒数。
答案与解析:0.2,-5。
相反数就是改变符号,倒数就是相乘得1。
2.6.868。
同号得正,异号得负,并把绝对值相除,分数就是除法,再把除法化成乘法。
4.___________考察说明:此题考察多个有理数相乘时的符号法那么。
奇数个负号因数,积取负号。
另外还考察了利用乘法的结合律进展简化计算。
答案与解析:-100。
-2.5×1.25×40×0.8=-(2.5×40)×(1.25×0.8)=-100×1 =-100。
5. ___________考察说明:此题考察了两种非负数的性质,一种是“绝对值〞,一种是“完全平方〞,以及多个有理数相乘时的符号法那么。
答案与解析:6。
因为0,0,0,++=0,所以=0,=0,=0,所以a-1=0,b+2=0,c-2=0,所以a=2,b=-2,c=2,所以-abc=6。
二、选择题6. ,且的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或-1考察说明:此题主要考察绝对值意义,乘法法那么。
关键找好分组情况。
答案与解析:B。
因为,所以x=,y=2,因为xy0,所以xy异号,所以只有两种情况:x=3,y=-2或x=-3,y=2。
7. 以下说法正确的选项是()A.同号两数相乘符号不变B.异号两数相乘取绝对值较大因数的符号C.两数相除,商是正,被除数的绝对值大于除数的D.两数相除,假设商为正,那么这两数同号考察说明:此题把有理数加、减、乘、除四种法那么综合起来运用。
答案与解析:D。
A是错的,因为乘法法那么:同号得正,和加法法那么混淆了。
B是错的,因为乘法法那么:异号得负,和加法法那么混淆了。
人教版七年级上册数学有理数的加、减、乘、除混合运算测试题
人教版七年级数学测试卷(考试题)1.4 有理数的乘除法1.4.2 有理数的除法第2课时 有理数的加、减、乘、除混合运算1计算:1/5÷5等于( )A.1B.25C.1/25D.1/52、下列方程的解x 是正数的有( )(1)4x=-8; (2)-4x=12; (3)-4x=-36; (4)-1/5x=0.A.1个B.2个C.3个D.4个 3、一个非零的有理数和它的相反数之积( )A.符号必为正B.符号必为负C.一定不小于零D.一定不大于零4、当a <5时,|a-5|÷(5-a)=( ) (5题)A .4—2a ;B .0;C .1;D .—1.5、右图是一数值转换机,若输入的x 为-3,则输出的结果为( )A 、11B 、-11C 、-30D 、306、已知代数式x -5y 的值是100,则代数式2x -10y +5的值是( )A 、100B 、200C 、2005D 、不能确定7、已知a 、b 、c 都是非正数且∣x —a ∣+∣y —b ∣+∣z —c ∣=0,则(xyz )5的值是( )A 、负数B 、非负数C 、正数D 、非正数8、磁悬浮列车是一种科技含量很高的新型交通工具,它的速度快,爬坡能力强,能耗低等优点.它每个座位的平均能耗仅为飞机每个座位平均能耗的四分之一,汽车每个座位平均能耗的65%.那么,汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A 、1/65B 、1/13C 、5/13D 、13/59、下列运算正确的是( )A .236222⨯=B .22÷2=1C .(-2)3÷1/2=-16D .842222÷=10、 ( )A .—1 B.1 C. —25 D. —62511、若a <0,则|4a÷(—2a )|的结果是_____。
12、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,则(a+b )x 3+x 2-cdx =__。
北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)
北师大版七年级数学上册第 2章有理数及其运算单元测试卷一、选择题(本大题共10小题,共30分)1. 如果“盈利5%”记作+5%,那么−3%表示( )A. 盈利2%B. 亏损8%C. 亏损3%D. 少赚2%2. 在有理数−3,0,3,4中,最小的有理数是( )A. −3B. 0C. 3D. 43. 下列运算正确的是( )A. −22=4B. (−213)3=−8127 C. (−12)3=−18 D. (−2)3=−64. −22−(−2)4的值是( )A. −20B. 16C. −16D. −125. 数轴上点A 、B 表示的数分别是−3、8,它们之间的距离可以表示为A. −3+8B. −3−8C. |−3+8|D. |−3−8|6. 下列说法中正确的有( )①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积. A. 1个B. 2个C. 3个D. 4个7. 高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是( ) A. −4℃B. −14℃C. −24℃D. 14℃8. 一个数的立方是它本身,那么这个数是( )A. 0B. 0或1C. −1或1D. 0或−1或19. 为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为( ) A. 0.35×104B. 3.5×103C. 3.5×102D. 35×10210. 计算:3−2×(−1)=( )二、填空题(本大题共6小题,共24分)11.若规定一种运算:a∗b=ab+a−b,则1∗(−2)=___________.12.绝对值小于2的所有整数的和是______.13.如果向南走5米,记作+5米,那么向北走8米应记作______米.14.在实数范围内定义运算“☆”,其规则为:a☆b=a2−b2,则(4☆3)☆6=__________。
人教版七年级数学上册单元测试题:第1章_有理数
数学七年级上第一章有理数单元检测参考完成时间:60分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法中不正确的是().A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2 000既是负数,也是整数,但不是有理数D.0是正数和负数的分界2.-2的相反数的倒数是().A.2 B.12C.12−D.-23.比-7.1大,而比1小的整数的个数是().A.6 B.7 C.8 D.94.如果一个数的平方与这个数的差等于0,那么这个数只能是().A.0 B.-1 C.1 D.0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为().A.63×102千米B.6.3×102千米C.6.3×104千米D.6.3×103千米6.有理数a,b在数轴上的位置如图所示,下列各式正确的是().A.a>0 B.b<0C.a>b D.a<b7.下列各组数中,相等的是().A.32与23B.-22与(-2)2C.-|-3|与|-3| D.-23与(-2)38.在-5,110−,-3.5,-0.01,-2,-212各数中,最大的数是().A.-12 B.1 10−C.-0.01 D.-59.如果a+b<0,并且ab>0,那么().A.a<0,b<0 B.a>0,b>0C.a<0,b>0 D.a>0,b<010.若a表示有理数,则|a|-a的值是().A.0 B.非负数C.非正数D.正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.123−的倒数是________,123−的相反数是______,123−的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13.计算:-|-5|+3=__________.所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,12−,13,14−…,第2 013个数是________.15.比132−大而比123小的所有整数的和为________.16.若|x-2|与(y+3)2互为相反数,则x+y=__________.17.近似数2.35万精确到__________位.18.对于任意非零有理数a,b,定义运算如下:a b=(a-b)÷(a+b),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分)19.计算:(每小题4分,共20分)(1)-20+(-14)-(-18)-13;(2)172×314÷(-9+19);(3)-24×131243⎛⎫−+−⎪⎝⎭;(4)(-81)÷12 4+49÷(-16);(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,43−−,0,227,-3.14,2 006,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合{…}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化日期1日2日3日4日5日6日7日人数变化 1.60.80.4-0.4-0.80.2-1.2(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C点拨:A中-3.14不是-π,是负分数,C选项中-2 000是负整数,更是有理数,所以说法错误.故选C.2答案:B3答案:C点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D点拨:A中科学记数法表示为2位数错,B、C中10的指数错,只有D正确,故选D.6答案:D点拨:a在原点左侧为负数,b在原点右侧为正数,所以A、B、C均错,只有D正确.7答案:D点拨:32=9,23=8,故A错;-22=-4,(-2)2=4,所以B错,-|-3|=-3,|-3|=3,所以C错;-23=-8,(-2)3=-8,相等,故选D.8答案:C点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A点拨:a+b<0,所以a,b中一定至少有一个负数,且负数的绝对值较大.又因为ab>0,所以a,b同号,且同为负号.10答案:B点拨:可以用特殊值法求解,当a=2时,|a|-a=|2|-2=0;当a=0时,|a|-a=|0|-0=0;当a=-2时,|a|-a=|2|-(-2)=4,故选B.11答案:37−123123点拨:根据概念分别写出.12答案:-9或-1点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1.13答案:-2点拨:-|-5|=-5,14答案:12013点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是1 2013.15答案:-3点拨:比132−大而比123小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1点拨:|x-2|与(y+3)2互为相反数,所以|x-2|+(y+3)2=0,所以x-2=0,y+3=0,所以x=2,y=-3,所以x+y=-1.17答案:百18答案:-4点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4.19解:(1)―20+(―14)―(―18)―13=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)172×314÷(-9+19)=1571571211024241016⨯÷=⨯⨯=;(3)-24×131243⎛⎫−+−⎪⎝⎭=12-18+8=2;(4)(-81)÷12 4+49÷(-16)=(-81)×49+49×116⎛⎫− ⎪⎝⎭=-36-136=13636−;(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3―(―3)2]=-1-12÷3×(3―9)=-1-12×13×(-6)=-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:22,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭;(2)负数集合:44,, 3.14,(5),3⎧⎫−−−−−+⋅⋅⋅⎨⎬⎩⎭;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:422, 3.14,, 1.88,37⎧⎫−−−+⋅⋅⋅⎨⎬⎩⎭.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏.21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a人,它们相差:(a+1.6+0.8+0.4)-(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a+1.6+0.8+0.4-a-1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人),所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a人,所以到3日时的人数是(a+1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16=+17+7+5+16+11-15-3-6-8-9=56-41=+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米.(2)出租司机最远处离出发点有17千米.(3)56+|-41|=97(千米),0.08×97=7.76(升).答:这天共耗油7.76升.。
人教版七年级上册数学第一章有理数《单元综合检测题》带答案
第一章有理数测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个4.-|-2017|的相反数是()A. 2017B.C. -2017D. -5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1068.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×239.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 7710.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.12.已知,数轴上表示点A、B、C、D的四个数分别是-1,2,3,-4,离原点距离最远的点是_______.13.用四舍五入法得到的近似数5.10×104精确到________位.14.已知有理数-7,8,-12,通过有理数的加减混合运算,若使运算结果最大,则可列式为__________.15.已知n为正整数,计算:=__________.16.已知31=3,32=9,33=27, 34=81,35=243,36=729,….推测32017的个位数字是__.三、解答题(本大题共6小题,共52分)17.计算:(1)2×(-5)+22-3÷;(2)48×().18.用数轴上的点表示下列各有理数:-1.5,-22,-(-),+5,-|-3|,并把它们按从大到小的顺序用”>”号连接起来.19.北京航天研究院所属工厂制造飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,检查结果(单位:mm)如下:+0.01,-0.018,+0.026,-0.025,+0.015. (1)指出哪些产品符合要求.(2)指出符合要求的产品中哪个质量较好一些.20.根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.21.我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填”增多了”或”减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?附加题(共20分,不计入总分)23.已知a是有理数,下列各式:(-a)2=a2;-a2=(-a)2;(-a)3=a3;|-a3|=a3.其中一定成立的有()A. 1个B. 2个C. 3个D. 4个24.符号”f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算规律,写出f(2017)=__________;(2)计算:f(1)•f(2)•f(3)•…•f(100)的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨【答案】C【解析】【分析】根据正负号表示相反意义的量解答.【详解】解:依据题意,”+”表示”运入”,则运出为”-”,运出5吨为-5,故选择C.【点睛】本题考查了正负号的实际意义.2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -【答案】B【解析】【分析】互为相反数的两数和为0.【详解】解:由题意可知两数互为相反数,则与-5的和为0的数是5,故选择B.【点睛】本题考查了相反数的性质.3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个【答案】C【解析】【分析】由实数的大小关系逐一写出即可.【详解】解:有实数的大小关系可知,大于-0.5而小于4的整数为0,1,2,3,共4个,故选择C.【点睛】本题考查了实数的大小及整数的概念.4.-|-2017|的相反数是()A. 2017B.C. -2017D. -【答案】A【解析】【分析】-|-2017|去绝对值后得-2017,再求该数的相反数即可.【详解】解:-|-2017|去绝对值后得-2017,-2017的相反数为2017,故选择A.【点睛】本题考查了相反数.5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】试题分析:因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.考点:正负数.6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×106【答案】C【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.3710000=3.71×.故选:C.考点:科学记数法——表示较大的数.8.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×23【答案】B【解析】【分析】只有符号不同的两个数互为相反数,对各选项进行整理对比即可.【详解】解:A选项,-32=-9,-23=-8,故不是相反数;B选项,(-3)2=9,-32=9,故是相反数;C选项,-23=-8,(-2)3=-8,故不是相反数;D选项,(-3×2)3=-216,-3×23=-216,故不是相反数;故选择B.【点睛】本题考查了相反数的定义.9.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A. 42 B. 49 C. 76 D. 77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方10. 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边【答案】C【解析】试题分析:当原点在A时,则最大;当原点在点C的右边,则,当原点在点A和点B之间,则最大,则只有当原点在点B和点C之间才符合条件.考点:(1)、数轴;(2)、绝对值二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.【答案】2【解析】=+(5-3)=2;故答案是2。
初一数学七年级人教版上册第1章《有理数》单元综合测试题答案解析
初一数学七年级人教版上册第1章《有理数》单元综合测试题一.选择题1.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为()A.957×108B. 95.7×109C.9.57×1010D.0.957×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将957亿用科学记数法表示约为:9.57×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算结果为正数的是()A. ﹣32B. ﹣3÷2C. ﹣1+2D. 0×(﹣2018)【答案】C【解析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.解:∵-32=-9,-3÷2=-32,-1+2=1,0×(-2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A. 20B. ﹣20C. 10D. 8【答案】A【解析】观察四个数,不难得出,选择﹣4与﹣5相乘,得到的积最大.﹣4与﹣5乘积最大,为20.故选A.【点评】本题主要掌握有理数的乘法运算法则,两数相乘,同号得正,异号得负,并把绝对值相乘.4.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A. 2个B. 3个C. 4个D. 5个【答案】C【解析】①最大的负整数是1,故不正确;②2和-2的绝对值相等,则数轴上表示数2和-2的点到原点的距离相等,故命题正确;③正确;④正确;⑤正确.故选C.【考点】1.有理数的乘方;2.有理数;3.数轴;4.绝对值;5.有理数大小比较.5.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A. 2个B. 3个C. 4个D. 5 个【答案】B【解析】根据正数与负数的定义求解.解:在-112,15,-10,0,-(-5),-|+3|中,负数有-112、-10、-|+3|这3个,故选:B.【点评】本题考查了正数和负数:在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.6.如图,在数轴上点A最可能表示的数的绝对值是()A. ﹣2.5B. 2.5C. ﹣3.5D. 3.5【答案】B【解析】根据数轴的定义即可求出答案.解:由数轴可知:点A表示的数为a,∴-3<a<-2,∴在数轴上点A最可能表示的数的绝对值是2.5.故选:B.【点评】本题考查数轴的性质,解题的关键是正确理解数轴的定义,本题属于基础题型.7.a,b,c三个数的位置如图所示,下列结论不正确的是()A. a+b<0B. b+c<0C. b+a>0D. a+c>0【答案】C【解析】根据数轴上点的位置判断出a,b,c的大小,利用有理数的加法法则判断即可.解:根据数轴上点的位置得:-4<b<-3<-1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.【点评】此题考查了有理数的加法,以及数轴,熟练掌握运算法则是解本题的关键.8.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b﹣c|﹣|c﹣a|( )A. b﹣2c+aB. b﹣2c﹣aC. b+aD. b﹣a【答案】D【解析】观察数轴,可知:c<0<b<a,进而可得出b﹣c>0、c﹣a<0,再结合绝对值的定义,即可求出|b﹣c|﹣|c﹣a|的值.观察数轴,可知:c<0<b<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c﹣a|=b﹣c﹣(a﹣c)= b﹣c﹣a+c=b﹣a.故选D.【点评】本题考查了数轴以及绝对值,由数轴上a、b、c的位置关系结合绝对值的定义求出|b﹣c|﹣|c﹣a|的值是解题的关键.9.下列结论成立的是( )A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.【答案】B【解析】若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则a,b的大小不能确定.A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为负数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立.故选B.【点评】本题考查了的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.10.若ab≠0,则aabb+的值不可能是()A. 0B. 1C. 2D. ﹣2 【答案】D【解析】当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,由此即可判断.解:当a、b同号时,a ba b+=±2,当a、b异号时,a ba b+=0,故选:D.【点评】本题考查有理数的加法法则以及乘法法则,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二.填空题11.计算:|-3|-1=__.【答案】2【解析】根据有理数的加减混合运算法则计算.解:|﹣3|﹣1=3-1=2.故答案为:2.【点评】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.【答案】4.【解析】分析:在数轴上点向右平移几个单位,则就加上几;在数轴上点向左平移几个单位,则就加上几.详解:根据题意可得:-1+5=4.【点评】本题主要考查的是数轴上点的平移法则,属于基础题型.理解平移的性质是解决这个问题的关键.13.145-的倒数是_____.【答案】521.【解析】求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可,是小数的化成分数后据此求出,据此解答.解:145-=145,1 4 5的倒数是521.故答案为:5 21.【点评】本题主要考查求一个分数的倒数的方法:把这个分数的分子和分母互换位置即可.14.已知:|m﹣n|=n﹣m,|m|=4,|n|=3,则m﹣n=_______【答案】-1或-7【解析】根据绝对值的代数意义和有理数的减法法则,结合已知条件分析解答即可.∵|m-n|=n-m,|m|=4,|n|=3,∴m≤n,m=±4,n=±3,∴m=-4,n=±3,∴当m=-4,n=3时,m-n=-4-3=-7;当m=-4,n=-3时,m-n=-4-(-3)=-4+3=-1.综上所述,m-n=-1或-7.故答案为:-1或-7.【点评】熟悉“有理数的减法法则和绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”是解答本题的关键.15.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为_____.【答案】3027.【解析】根据题意得出规律:当n为奇数时,A n-A1=n-12,当n为偶数时,A n=A1-n2,把n=2018代入求出即可.解:根据题意得:当n为奇数时,A n-A1=n-12,当n为偶数时,A n-A1=-n2,2018为偶数,代入上述规律, A2018-A1=-2018/2=-1009,解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.16.已知a,b互为相反数,c,d互为倒数,则﹣5a+2017cd﹣5b=_____.【答案】2017【解析】根据相反数及倒数的定义得出a+b=0,cd=1,再代入所求代数式进行计算即可.解:根据题意得:a+b=0,cd=1,则原式=-5(a+b)+2017cd=-5×0+2017×1=2017.故答案为2017.【点评】本题考查的是有理数的混合运算,熟知相反数、倒数的定义是解答此题的关键.三.解答题17.计算:(1)﹣18×(125 236+-);(2)(﹣1)3﹣(1﹣12)÷3×[2﹣(﹣3)2].【答案】(1)-6;(2)16;【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-12×13×(-7)=-1+76=16.【点评】本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.18.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.【答案】(1)a=﹣2,b=±3,c=﹣1;(2)24;【解析】(1)根据相反数、绝对值、倒数的定义解答即可;(2)把所给的整式去括号合并同类项化为最简后,再代入求值即可.(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查了代数式求值,相反数的定义,绝对值的性质,倒数的定义,是基础题,比较简单,但要注意b的两种情况.19.下表给出了七(三)班6位同学的体重情况:(单位:kg)(1)完成表中空白部分;(2)这6位同学体重的和多少千克.【答案】(1)答案见解析;(2)282千克;【解析】(1)先算出标准体重为45kg,再算出个人体重与班级平均体重的差值,填表即可;(2)将这6个人的个人体重相加即可.(1)如表:(2)﹣1+2+0﹣3+4+10+45×6=282(kg),答:这6位同学体重的和是282千克;【点评】本题考查了有理数的混合运算,以及正负数所表示的意义.20.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?【答案】(1)-25吨;(2)505吨;【解析】(1)理解“+”表示进库“-”表示出库,把粮库3天内发生粮食进出库的吨数相加就是库里现在的情况; (2)利用(1)中所求即可得出3天前粮库里存粮数量.(1)26+(﹣32)+(﹣25)+34+(﹣38)+10=﹣25(吨).答:粮库里的粮食是减少了25吨;(2)480﹣(﹣25)=505(吨).答:3天前粮库里存粮有505吨;【点评】此题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,明确正数和负数的定义,并且注意0这个特殊的数字,既不是正数也不是负数.21.为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天行驶记录如下(单位:km ):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B 地在A 地哪个方向?距A 地多少千米?(2)若该警车每千米耗油0.2L ,警车出发时,油箱中有油20L ,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【答案】(1)在A 地的西方,距A 地4千米;(2)需加油5.6L ;【解析】(1)把这些数值相加,根据结果就可知道在那个方向,相距多少千米.(2)绝对值相加,乘以每小时耗油量即可,由此即可进行判断.解:(1)18-19-13+15+10-14+19-20=-4所以B 地在A 地的西方,相距4千米;(2)0.2×(18+19+13+15+10+14+19+20)=25.6升25.6﹣20=5.6故中途给警车加过油,至少加5.6升.【点评】本题考查有理数的加减混合运算,以及正负数的意义,从而可求出解.22.把下列各数填在相应的括号内:–19,2.3,–12,–0.92,35,0,–14,0.563,π 正数集合{ ……};负数集合{ ……};负分数集合{ ……};非正整数集合{ ……}【答案】正数集合:32.30.5635,,,π⎧⎫⎨⎬⎩⎭负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,,负分数集合:10.924⎧⎫--⎨⎬⎩⎭,,非正整数集合:{}19120--,,【解析】利用正数,负数,负分数,非整数的定义进行分类即可. 正数集合:32.30.5635π⎧⎫⎨⎬⎩⎭,,, 负数集合:119120.924⎧⎫----⎨⎬⎩⎭,,,, 负分数集合:10.924⎧⎫--⎨⎬⎩⎭,, 非正整数集合:{}19120--,,23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A→B(+1,+4),从B 到A 记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程;(4)若图中另有两个格点M 、N ,且M→A (3-a ,b-4),M→N (5-a ,b-2),则N →A 应记为什么?【答案】(1)3;4;2;0;D ;-2;(2)见解析;(3)10;(4)N →A 应记为(-2,-2) .【解析】(1)根据规定及实例可知A→C 记为(3,4)C→D 记为(1,-1);A→B→C→D 记为(1,4),(2,0),(1,-1);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据M→A(3-a,b-4),M→N(5-a,b-2)可知5-a-(3-a)=2,b-2-(b-4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;(2)P点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C;p记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2).【点评】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.。
七年级数学上册第一章有理数1.4有理数的乘除法检测试卷(含解析)新人教版(2021年整理)
2018-2019学年度七年级数学上册 第一章 有理数 1.4 有理数的乘除法同步检测试卷(含解析)(新版)新人教版1 / 1212018-2019学年度七年级数学上册 第一章 有理数 1.4 有理数的乘除法同步检测试卷(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年度七年级数学上册 第一章 有理数 1.4 有理数的乘除法同步检测试卷(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为2018-2019学年度七年级数学上册 第一章 有理数 1.4 有理数的乘除法同步检测试卷(含解析)(新版)新人教版的全部内容。
1.4 有理数的乘除法一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)题号12345678910选项1.﹣2×(﹣5)的值是()A.﹣7 B.7 C.﹣10 D.102.如果□×(﹣)=1,则“□”内应填的实数是()A.B.2018 C.﹣D.﹣20183.四个互不相等的整数的积为4,那么这四个数的和是()A.0 B.6 C .﹣2 D.24.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<05.如图,下列结论正确的个数是( )①m+n>0;②m﹣n>0;③mn<0;④|m﹣n|=m﹣n.A.1个B.2个C.3个D.4个6.的倒数是()A.2018 B.﹣2018 C.﹣D.7.若a与﹣3互为倒数,则a等于()A.B. C.3 D.﹣38.计算﹣100÷10×,结果正确的是( )A.﹣100 B.100 C.1 D.﹣19.下列几种说法中,正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.互为倒数的两个数的积为1D.两个互为相反的数(0除外)的商是010.下列说法中正确的是()A.除以一个不等于0的数,等于乘这个数的相反数2 / 122B.乘积是1的两个数互为相反数C.积比每个因数都大D.几个不是0的数相乘,负因数的个数是偶数时,积为正二、填空题(每空2分,总计20分)11.若a、b是互为倒数,则2ab﹣5= .12.已知|x|=5,y 2=1,且>0,则x﹣y= .13.计算= .14.绝对值不大于3的所有整数的积是.15.已知|a|=2,|b|=3,且ab<0,则a+b的值为.16.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为元.17.若m<n<0,则(m+n)(m﹣n) 0.(填“<”、“>”或“=")18.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c= .19.在数﹣5,4,﹣3,6,﹣2中任取三个数相乘,其中最大的积是.20.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x﹣y= .三.解答题(共6题,总计50分)21.阅读后回答问题:计算(﹣)÷(﹣15)×(﹣)解:原式=﹣÷[(﹣15)×(﹣)]①=﹣÷1 ②=﹣③(1)上述的解法是否正确?答:若有错误,在哪一步?答:(填代号)错误的原因是:3 / 123(2)这个计算题的正确答案应该是: .22.已知a、b、c、d均为有理数,其中a是绝对值最小的有理数,b是最小的正整数,c2、4,c、d互为倒数,求:(1)a×b的值;(2)a+b+c﹣d的值.23.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0。
人教版数学七年级上册第一章有理数《单元测试》附答案
人教版数学七年级上学期第一章有理数测试时限:100分钟满分:120分一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定5.下列各组数中,数值相等是()A. 32和23B. ﹣23和(﹣2)3C. ﹣32和(﹣3)2D. ﹣3×22 和(﹣3×2)26.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和07.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<08.计算16×(-6)÷(-16)×6值为( )A. 1B. 36C. -1D. +69.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.710.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-2212.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.14.绝对值小于6的所有数的积是_____________.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是_.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.18.数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 319.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]20.按要求解答下列各题(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2.试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值.(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a36×b7×c6)的值.21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?答案与解析一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小的数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数【答案】A【解析】【分析】根据有理数0的意义进行分析.【详解】0不是最小的数,比0小的数是负数;0的相反数是0;0没有倒数;0是绝对值最小的数.故选A【点睛】本题考核知识点:0的意义. 解题关键点:理解有理数0的意义.2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)【答案】B【解析】【分析】根据:只有符号不同的两个数互为相反数.逐个化简分析即可.【详解】A .+(-3)=-3与-3, 不是互为相反数;B.+(+3)=3与-3 , 是互为相反数;C.-(-3)=3与3, 不是互为相反数;D.3 与+(+3)=3, 不是互为相反数.故选B【点睛】本题考核知识点:相反数. 解题关键点:理解相反数的定义.3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数【答案】D【解析】试题分析:若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数,也可能一个加数为正数,另一个加数为0,不可能两加数为负数.故选D.考点:有理数的加法.4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定【答案】B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键5.下列各组数中,数值相等的是()A 32和23 B. ﹣23和(﹣2)3 C. ﹣32和(﹣3)2 D. ﹣3×22 和(﹣3×2)2【答案】B【解析】【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【详解】A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选B6.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和0【答案】C【解析】【分析】绝对值相等的两个不同的数互为相反数,因为他们的距离是10,所以他们的绝对值是5.【详解】依题意可得,这两个数的绝对值是5,所以这两个数是5和-5.故选C【点睛】本题考核知识点:绝对值. 解题关键点:理解绝对值的意义.7.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<0【答案】C【解析】试题分析:根据数轴上点的特点,可知a<b<0<c,且︱a︱>︱c︱>︱b︱,因此a+b<0,故A正确;a+c<0,故B正确;a-b<0,故C错误;b-c<0,故D正确.故选C考点:数轴8.计算16×(-6)÷(-16)×6的值为( )A. 1B. 36C. -1D. +6 【答案】B【解析】【分析】先把除法运算化为乘法运算,再根据有理数乘法法则进行计算.【详解】16×(-6)÷(-16)×6=16×(-6)×(-6)×6=36故选B【点睛】本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法.9.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 45-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【解析】【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.10.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方【答案】B【解析】【分析】某同学从家里出发,向西走了500米,接着又向西走了-700米,相当于向东走700米,最后离家向东200米. 【详解】依题意分析可得,向西走了-700米,相当于向东走700米,所以,该同学最后离家向东200米.即在学校.故选B【点睛】本题考核知识点:负数的意义,数轴. 解题关键点:理解负数的意义.11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-22【答案】D 【解析】解:∵﹣22=﹣4,(﹣12)2=14,(﹣13)3=﹣127,∴(﹣12)2>(﹣13)3>﹣22;故选D.点睛:本题考查了有理数大小的比较,不是最简的化到最简,然后根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小得出答案.12.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27【答案】D【解析】由题意得:-1=2解得:x=3或x=-1那么=27或-1故选D二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.【答案】3.8×105【解析】【分析】把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】38万=3.8×105.故答案为3.8×105【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学计数法的意义.14.绝对值小于6的所有数的积是_____________.【答案】0【解析】【分析】先求出绝对值小于6的所有数,再求他们的积.要注意,其中有一个是0.【详解】绝对值小于6的所有数有无数个,但其中一个是0,所以,他们的积是0.故答案为0【点睛】本题考核知识点:有理数乘法. 解题关键点:记住0与任何数相乘等于0.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.【答案】-8或-2【解析】【分析】与A点相距3个单位长度的点可能在A的左侧或在A的右侧.【详解】与A点相距3个单位长度的点可能在A的左侧或在A的右侧,所以,对应的数是:-5-3=-8,或-5+3=-2. 故答案为-8或-2【点睛】本题考核知识点:数轴上两点距离、有理数加减. 解题关键点:运用有理数加减法求两点的距离.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到最大乘积是_.【答案】30 ;【解析】根据正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.解:最大乘积是:(-3)×(-2)×5=3×2×5=30.故答案为30.“点睛”本题考查了有理数的乘法,以及有理数的大小比较,比较简单,熟记运算法则是解题的关键.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.【答案】(1)见解析;(2)正整数的集合【解析】【分析】根据有理数的分类解答即可.【详解】(1)如图,(2)∵5,+2是正整数,∴两个圈的重叠部分表示的是正整数的集合.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.在数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 3【答案】见解析【解析】【分析】先按要求画好数轴,在数轴上表示各数,根据数轴上右边的数大于左边的数进行连接. 【详解】解:如图:-2.5<-1.3<0<1.5<3.【点睛】本题考核知识点:利用数轴表示数的大小. 解题关键点:画好数轴,表示各数.19.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]【答案】(1)0 (2)12(3)-35912(4) 25(5)-27 (6)-136【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-14)-15-(-0.25)=15-15- 14+0.25=0(2)(-81)÷94×49÷(-32)=81×49×49×132= 1 2(3)292324×(-12)= (30- 124) ×(-12)= 30×(-12) -1 24× (-12)=-35912(4)25×3 4-(-25)×12+25×(-14) =25×(34+1 2-1 4) =25×1=25 (5)-24-(-4)2 ×(-1)+(-3)3 = -16+16-27= -27(6)3.25-[(-12)-(-52)+(-5 4)+243] =31 4+1 2 -5 2+5 4-243 1515234442231242423122423136=++--=--=-=- 【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则.20.按要求解答下列各题(1)已知a 、b 互为相反数,c 、d 互为倒数,x=(-2)2.试求x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值. (2)已知有理数a 、b 、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a 36×b 7×c 6)的值.【答案】(1)13 (2)13【解析】【分析】(1)由已知可得a+b=0,cd=1,x=4,再代入原式可得;(2)由非负数性质得a-1=0,b-3=0,3c-1=0.求出a,b,c,再代入求值.【详解】解:(1)因为a 、b 互为相反数,c 、d 互为倒数,x=(-2)2所以,a+b=0,cd=1,x=4,所以,x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016=42-(0+1)×4+02015+(-1)2016=16-4+0+1=13.(2)因为|a-1|+|b-3|+|3c-1|=0,所以,根据非负数性质得:a-1=0,b-3=0,3c-1=0.所以,a=1,b=3,c=13, 所以,(a×b×c)178 ÷(a 36×b 7×c 6) =(1×3×13)178 ÷[136×37×(13)6] =1÷3 =13. 【点睛】本题考核知识点:非负数、倒数、相反数的应用. 解题关键点:理解非负数、倒数、相反数的性质. 21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?【答案】(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克), 则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?【答案】(1)34.5元 (2)36.5元、30元(3)盈利830元.【解析】【分析】(1)根据题意得:28+4+4.5−2=34.5(元);(2)算出每天股价,再作比较;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),可得收益.【详解】解:(1)根据题意得:28+4+4.5−2=34.5(元),则星期三收盘时,每股34.5元;(2)本周的股价分别为28+4=32(元);32+4.5=36.5(元);36.5−2=34.5(元);34.5+1.5=36(元);36−6=30(元),则本周内最高价是每股36.5元,最低价是每股30元;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),则张先生在星期五收盘时将全部股票卖出,他的收益情况为830元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,根据实际列出算式并正确运算.。
人教版七年级数学上1.4有理数的乘除法测试题含答案及解析
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
人教版七年级上册:第1章《有理数》单元测试卷含答案
《有理数》单元测试卷一、选择题1. 下列有关“0”的叙述中,错误的是( )A. 不是正数,也不是负数B. 不是有理数,是整数C. 是整数,也是有理数D. 不是负数,是有理数 2. 如果把收入100元记作+100元,那么支出80元记作( )A. +20元B. +100元C.+80元D. -80元3. -2的相反数是() A. 2B. -2C. 1/2D. -1/2 4. -2018的绝对值是( )A. 1/2018B. -2018C. 2018D. -1/2018 5. 计算|-5+2|的结果是( )A. 3B. 2C.D.6、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数7.抚顺一天早晨的气温是-21℃,中午的气温比早晨上升了14℃,中午的气温是( )A. 14℃B. 4℃C. -7℃D. -14℃8.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )(A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 9.下列说法错误的是( )A. -2的相反数是2B. 3的倒数1/3C. (-2)-(-1)=1D. -11、0、4这三个数中最小的数是010.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为()A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米二、填空题11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“-8”表示______.12.数轴上表示点A的数是-4,点B在点A的左边,则点B表示的数可以是______.(写一个即可)13.请写出一对互为相反数的数:______和______.14.计算:|-7+3|=______.15.-1/5的倒数是。
七年级数学上册(有理数的乘除法)同步练习1 试题
币仍仅州斤爪反市希望学校数学:有理数的乘法与除法同步训练〔七年级上〕第一卷〔选择题 共30分〕一 选择题〔共10小题,每题3分,共30分〕1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积〔 〕A.一定为正B.一定为负C.为零D.可能为正,也可能为负2.如果|x-1|+|y+2|+|z-3|=0,那么(x+1)(y-2)(z+3)的值是〔 〕A. 48B. -48C. 0D.xyz3. 以下说法中,错误的选项是( )A.一个非零数与其倒数之积为1B.一个数与其相反数商为-1C.假设两个数的积为1,那么这两个数互为倒数D.假设两个数的商为-1,那么这两个数互为相反数4.两个有理数的商为正,那么〔 〕A.和为正B.和为负C.至少一个为正D.积为正数5. 一个数加上5,减去2然后除以4得7,这个数是〔 〕A.35B.31C.25D.28008个数的乘积为0,那么〔 〕A.均为0 B.最多有一个为0 C. 至少有一个为0 D.有两个数是相反数7.以下计算正确的选项是〔 〕 A.43143-=÷⨯- B.4)151(5=-÷- C. 91)53()52()65()32(-=-÷---⨯- D. 4)2()32()3(-=+⨯+⨯+8.114-的倒数与4的相反数的商为〔 〕 A .+5 B .15 C .-5 D .15- 9.假设a+b <0,ab <0,那么 ( )A.a >0,b >0B. a <0,b <0C.a,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a,b 两数一正一负,且负数的绝对值大于正数的绝对值10.一服装店进了一批单价50元衬衫,标价80元,为了促销五一期间打7折销售,那么该商店每件〔 〕A. 赚6元B. 亏了6元C. 赚了30元D. 亏了26 元第二卷〔非选择题 共90分〕二、填空题〔共8小题,每题3分,共24分〕11.:0,0≠=+b b a ,那么=-b a ________;:1||-=ba ,那么=+||ab ________. 12.有理数m<n<0时,〔m+n 〕(m-n)的符号是__________.#13.规定a ﹡b=5a+2b-1,那么(- 4)﹡6的值为 .14.如果b a ⋅<0,那么=++abab b b a a . #15.在一次“节约用水,保护水资源〞的活动中,提倡每人每天节约0.1升水,如果该约有5万学生,估计该全体学生一年的节水量为___________.#16.根据二十四点算法,现有四个数-2、4、-5、-10,每个数用且只用一次进行加、减、乘除,使其结果等于24,那么列式为 =24.&17. 假设2||=a ,3||=b ,a ,b 异号,那么-ab =______________18. 根据如下列图的程序计算,假设输入x 的值为3,那么输出y 的值为 . 三、解答题〔共7小题,共66分〕19.〔8分〕〔1〕 38()(4)(2)4⨯-⨯-⨯- 〔2〕 12(13)(5)(6)(5)33-÷-+-÷- &20. 〔9分〕现定义两种运算:“〞,“〞,对于任意两个整数a ,b ,a b=a+b-1,a b =a ×b-1,求4【〔68〕〔35〕】的值.21.〔10分〕〔)322492249524()836532125(⨯+⨯-⨯⨯+-+- 22.在5.10与它的倒数之间有a 个整数,在5.10与它的相反数之间有b 个整数.求2)()(+-÷+b a b a 的值.23.〔10分〕〔8分〕某超以50元进了A 、B 两种商品,然后以A 商品提价20%,B 商品降价10%出售,在某一天中,A 商品10件,B 商品20件, 问这一天里超作这两种买卖是赚了还是赔了?并说明理由. #24.〔10分 〕王明再一次期中考试时,假设以语文90分为HY ,其他科分数和语文成绩的相差分数如下表 求:(1)数学的分数;〔2〕假设七科平均分数是95分,生物的分数是多少?〔3〕最高分与最低分相差多少分? 科目 语文 数学 英语 历史 地理 生物 政治相差分数 0 +9 +6 -4 +3 ? +2#25.观察以下等式 111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. 〔1〕猜想并写出:1(1)n n =+ . 〔2〕直接写出以下各式的计算结果:输入x输出y 平方乘以2 减去4 假设结果大于否那①1111 12233420072008++++=⨯⨯⨯⨯;②1111122334(1)n n++++=⨯⨯⨯+.答案:一、选择题1. A2. B 提示:根据题意 x-1=0,y+2=0,z-3=0,即x=1,y=-2,z=3.3.B4. D提示:商的符号与积的符号一样,既然两数商为正,那么它们积也为正.5. C6. C提示:几个因数相乘,如果有一个数是0,那么积为0 ,所以至少有一个是0 .7. D 8.B9. D提示:因为 ab<0,可知a,b异号,a+b<0,所以负数的绝对值大于正数的绝对值.10. A提示:销售结果是80 ×0.7-50=+6〔元〕.二、填空题11. 1,0 12. + 13.– 9 14 .-115. 1 825 000升 16. (-2)×(-5)-(-10)+ 4=24 17. 61三、解答题19.解:〔1〕38()(4)(2)4⨯-⨯-⨯-38424⨯⨯⨯=-48-=〔2〕原式=121356533÷+÷11211363535⨯+⨯=20.解:根据新运算的定义,〔68〕=6+8-1=13,〔35〕=3×5-1=14,那么〔68〕〔3 5〕=1314=13+14-1=26那么4【〔68〕〔35〕】=4 26=4×26-1=10321. 解:通过细心观察算式的数值之间的关系,可先对第2个括号逆用乘法分配律,简便运算后,再对第1个括号正用乘法分配律,再次进行简便运算,使问题巧妙获解. =124)836532125()]329295(24[)836532125(⨯⨯+-+-=+-⨯+-+-=5920161024832465243224125-=+-+-=⨯+⨯-⨯+⨯-. 22.解:a=10,b=21,〔a+b 〕÷〔a -b 〕+2的值为119-. 23.解:在一天的两种商品的买卖中,超不赚不赔.〔2分〕理由:10件A 商品一共卖了10×〔1+20%〕×50=600〔元〕,20件B 商品一共卖了20×〔1-10%〕×50=900〔元〕那么这30件商品一共卖了600+900=1500〔元〕,而这30件商品的进价为1500元,超不赚不赔.24.解:〔1〕90+〔+9〕=99〔分〕答:数学分数是99分.〔2〕93×7-〔90×6+0+9+6-4+3+2〕=651-〔540+0+9+6-4+3+2〕=651-556=95〔分〕答:生物的分数是95分.〔3〕99-86=13〔分〕答:最高分和最低分相差13分.25. 解:〔1〕1n -11n + 〔2〕20072008 1n n +。
人教版数学七年级上册第一章有理数《单元综合测试卷》附答案
人教版数学七年级上学期 第一章有理数测试一、单选题1.下列各个运算中,结果为负数是( ) A. 2-B. ()2--C. 2(2)-D. 22-2.3的倒数是( ). A.13B. -13C. 3D. -33.计算(-8)×(-2)÷(- 12)的结果为( ) A. 16B. -16C. 32D. -324.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为( ). A. 0.778×105B. 7.78×105C. 7.78×104D. 77.8×1035.下列各组中的两个项,不属于同类项的是( ) A. 2x 2y 与﹣12yx 2B.213m n 与n 2m C. a 2b 与5a 2bD. 1与﹣326.下列各组数的大小关系正确的是( ) A. 1167-> B. 3423->- C.110001000<- D. -3.5>-3.67.如果单项式x m+2n y 与x 4y 4m ﹣2n 和是单项式,那么m,n 的值为( ) A. m=﹣1,n=1.5 B. m=1,n=1.5C. m=2,n=1D. m=﹣2,n=﹣18.单项式23m hπ的系数和次数分别是( )A.3π,1 B.3π ,2 C.3π ,3 D.3π ,4 9.如果a =a 3成立,则a 可能的取值有( ) A. 1个B. 2个C. 3个D. 无数个10.已知等式3a =2b +5,则下列等式不一定成立的是( )A. 3a ﹣5=2bB. 3a +1=2b +6C. 3ac =2bcD. a =2533b + 11.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A. 363(1+2x)=300 B. 300(1+x 2)=363 C. 300(1+x)2=363D. 300+x 2=36312.若x=-3是方程2(x-m )=6的解,则m 的值为( ) A. 6B. 6-C. 12D. 12-二、填空题13.比-1小2的数是______.14.3.1415精确到百分位的近似数是_____. 15若|x|=3,则x=_____.16.已知A=x 2+32y 2-5xy,B=2xy+2x 2-y 2,则A-3B 的值为_________17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12-,则这个常数是_______. 18.若x 2m +1=3是关于x 一元一次方程,则m=______.三、解答题19.计算: (1)11623⎛⎫-⨯- ⎪⎝⎭(2)42÷2-243()92⨯-. 20.解方程:(1)30564x x--= (2) 1.7210.70.3x x --=21.已知30.5x m n -与45y m n 是同类项,求2223232(543)(2532)x y x y x x x y y x y --+---- 的值22.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表:若每袋标准质量为450g,则这批样品的总质量是多少?与标准质量差值(单位:g) -3 -2 0 1 1.5 2.5袋数(单位:袋) 1 4 3 4 5 324.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的2 3,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?25.(1)已知x=2是关于x的一元一次方程(a-1)x2+(b+2)x=2的解,求a,b的值(2)一个三角形的周长是48,第一边长为3a+2b,第二边长比第一边的2倍少a,求第三边长.26.燕尾槽的截面如图所示(1)用整式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积答案与解析一、单选题1.下列各个运算中,结果为负数的是( ) A. 2- B. ()2--C. 2(2)-D. 22-【答案】D 【解析】 【分析】先把各项分别化简,再根据负数的定义,即可解答. 【详解】A 、|-2|=2,不是负数; B 、-(-2)=2,不是负数; C 、(-2)2=4,不是负数; D 、-22=-4,是负数. 故选D .【点睛】本题考查了正数和负数,解决本题的关键是先进行化简. 2.3的倒数是( ). A.13B. -13C. 3D. -3【答案】A 【解析】乘积为1的两数互为倒数,故选A 3.计算(-8)×(-2)÷(- 12)的结果为( ) A. 16 B. -16C. 32D. -32【答案】D 【解析】 【分析】先把除法转化为乘法,然后根据乘法法则计算即可. 【详解】(-8)×(-2)÷(- 12) =(-8)×(-2) ×(- )=-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.4.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为().A. 0.778×105B. 7.78×105C. 7.78×104D. 77.8×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.所以确定n的值是看小数点向左移动的个数.【详解】解:77800=7.78 ×104.故选:C【点睛】本题考查科学记数法,掌握科学计数法的形式是本题的解题关键.5.下列各组中的两个项,不属于同类项的是( )A. 2x2y与﹣12yx2 B. 213m n与n2mC. a2b与5a2bD. 1与﹣32【答案】B【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A、2x2y与-12yx2符合同类项的定义,是同类项;B、13m2n与n2m不符合同类项的定义,不是同类项;C、a2b与5a2b符合同类项的定义,是同类项;D、1与-32符合同类项的定义,是同类项.故选B.【点睛】本题考查了同类项,同类项是字母项且相同字母的指数也相同.6.下列各组数的大小关系正确的是( )A. 1167-> B. 3423->- C.110001000<- D. -3.5>-3.6【答案】D 【解析】 【分析】根据有理数的大小比较方法比较即可求出答案. 【详解】A. ∵ 1167-< ,故不正确; B. ∵3423->-,∴ 3423-<- ,故不正确; C. ∵110001000>-,故不正确; D. ∵ 3.5 3.6-<-,∴ -3.5>-3.6,故正确; 故选D.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.7.如果单项式x m+2n y 与x 4y 4m ﹣2n 的和是单项式,那么m,n 的值为( ) A. m=﹣1,n=1.5 B. m=1,n=1.5C. m=2,n=1D. m=﹣2,n=﹣1【答案】B 【解析】分析:根据两个单项式的和还是单项式可知它们是同类项,根据同类项的概念列出方程组,解答即可. 详解:两个单项式的和还是单项式可知它们是同类项,24421,m n m n +=⎧∴⎨-=⎩ 解得:11.5.m n =⎧⎨=⎩故选B.点睛:所含字母相同,并且相同字母的指数也相同的项叫做同类项. 8.单项式23m hπ的系数和次数分别是( )A.3π,1 B.3π ,2 C.3π ,3 D.3π ,4 【答案】C 【解析】 【分析】数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和. 【详解】单项式23m hπ的系数是3π,次数分别是3. 故选C.【点睛】本题考查了单项式的有关概念,解决本题的关键是熟练掌握单项式的概念. 9.如果a =a 3成立,则a 可能的取值有( ) A. 1个 B. 2个C. 3个D. 无数个【答案】C 【解析】 【分析】根据乘方的意义求解即可. 【详解】∵03=0,13=1,(-1)3=-1, ∴a 可能的取值有0,1,-1. 故选C.【点睛】本题考查了乘方的意义,正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,0的任何正整数次幂都等于0.10.已知等式3a =2b +5,则下列等式不一定成立的是( ) A. 3a ﹣5=2b B. 3a +1=2b +6C. 3ac =2bcD. a =2533b + 【答案】C 【解析】 【分析】根据等式的性质,依次分析各个选项,选出等式不一定成立的选项即可. 【详解】解:A .3a =2b +5,等式两边同时减去5得:3a ﹣5=2b ,即A 项正确, B .3a =2b +5,等式两边同时加上1得:3a +1=2b +6,即B 项正确,C .3a =2b +5,等式两边同时乘以c 得:3ac =2bc +5c ,即C 项错误,D .3a =2b +5,等式两边同时除以3得:a =2533b +,即D 项正确, 故选C .【点睛】本题考查了等式的性质,正确掌握等式的性质是解题的关键.11.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A. 363(1+2x)=300 B. 300(1+x 2)=363 C. 300(1+x)2=363 D. 300+x 2=363【答案】C 【解析】 【分析】这两年小明收到的微信红包的年平均增长率为x ,则2017年收到300(1+x ),2018年收到300(1+x )2,根据题意列方程解答即可. 【详解】由题意可得, 300(1+x )2=363. 故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a (1+x )n =b ,其中n 为共增长了几年,a 为第一年的原始数据,b 是增长后的数据,x 是增长率. 12.若x=-3是方程2(x-m )=6的解,则m 的值为( ) A. 6 B. 6-C. 12D. 12-【答案】B 【解析】把x=-3代入方程2(x ﹣m)=6得,2(-3-m)=6,解得:m=-6, 故选B.二、填空题13.比-1小2的数是______. 【答案】-3 【解析】 【分析】用-1减2计算出结果即可. 详解】-1-2=-3. 故答案为-3.【点睛】本题考查了有理数的减法,解答本题的关键是根据题意正确列出算式. 14.3.1415精确到百分位的近似数是_____. 【答案】3.14 【解析】 分析】把千分位四舍五入得到的数就是精确到百分位的数. 【详解】3.1415精确到百分位的近似数是3.14. 故答案为3.14.【点睛】】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近视数的最后一个数字实际在什么位上,即精确到了什么位.取近似数的时候,要求精确到某一位,应当对下一位的数字进行四舍五入. 15.若|x|=3,则x=_____. 【答案】±3. 【解析】 ∵|x|=3, ∴x=±3.16.已知A=x 2+32y 2-5xy,B=2xy+2x 2-y 2,则A-3B 的值为_________【答案】2251135x xy y --+【解析】 【分析】把A =x 2+32y 2-5xy ,B =2xy +2x 2-y 2代入则A -3B ,然后去括号合并同类项即可. 【详解】把A =x 2+32y 2-5xy ,B =2xy +2x 2-y 2代入则A -3B ,得 A -3B = x 2+32y 2-5xy -3(2xy +2x 2-y 2) = x 2+32y 2-5xy -6xy -6x 2+3y 2 =2251135x xy y --+.故答案为2251135x xy y --+.【点睛】本题考查了整式的加减,即去括号合并同类项.解去括号法则:当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号.17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 【答案】1 【解析】 【分析】设¤=a ,把y = 12- 代入122y y +=--¤,解关于a 的方程即可求出a 的值. 【详解】设¤=a ,把y = 12- 代入122y y +=--¤,得1112? 222⨯-+=---()()a ,∴11122-+=-a ,∴a =1, ∴¤=a =1. 故答案为1.【点睛】本题考查了一元一次方程解得定义,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.本题也考查了一元一次方程的解法.18.若x 2m +1=3是关于x 的一元一次方程,则m=______. 【答案】0.5 【解析】 【分析】根据未知数的次数等于1列式求解即可. 【详解】由题意得, 2m =1, ∴m =0.5. 故答案为0.5.【点睛】本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.三、解答题19.计算:(1)11623⎛⎫-⨯-⎪⎝⎭ (2)42÷2-243()92⨯-. 【答案】(1)-1;(2)7.【解析】【分析】(1)根据乘法的分配律计算即可;(2)根据先算乘方,再算乘除,后算加减顺序计算即可.【详解】(1)11623⎛⎫-⨯-⎪⎝⎭ =-6×12-(-6)×13=-3+2=-1; (2)22434292⎛⎫÷-⨯- ⎪⎝⎭=16÷2-4994⨯ =8-1=7.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 20.解方程:(1)30564x x --= (2) 1.7210.70.3x x --= 【答案】(1)30 ;(2)1417 .【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)先化整,然后按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)30564x x --= , 2x -3(30-x )=60,2x -90+3x =60,2x +3x =60+905x =150,x =30;(2) 1.7210.70.3x x --=, 101720173x x --=, 30x-7(17-20x )=21,30x -119+140x =21,30x +140x =21+119,170x =140,x =1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.21.已知30.5x m n -与45y m n 是同类项,求2223232(543)(2532)x y x y x x x y y x y --+----的值【答案】-95.【解析】【分析】先根据30.5x m n -与45y m n 是同类项求出x 和y 的值,再把()()22232325432532x y x y x x x y y x y --+----去括号合并同类项,然后把x 和y 的值代入计算即可. 【详解】∵30.5x m n -与45y m n 是同类项,()()22232325432532x y x y x x x y y x y --+---- =222543x y x y x --+-32322532x x y y x y +++=2223x y x -+-3323x y +当x =4,y =3时,原式=2223x y x -+-3323x y +=-2×42×3+3×42-2×43+3×33=-96+48-128+81=-224+129=-95.【点睛】本题是整式的加减—化简求值类型的题目,解决本题需要掌握整式的加减法运算法则、合并同类项、代数式求值等知识点22.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?【答案】甲种货物装200吨,乙种货物装300吨.【解析】试题分析:设甲种货物装x 吨,根据货舱容积2000立方米,可载重500吨,即可列方程求解.设甲种货物装x 吨,则乙种货物装(500-x)吨,由题意得7x+2(500-x)=2000解得x=200,500-x=300答:甲种货物装200吨,乙种货物装300吨.考点:本题考查了一元一次方程的应用点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表:若每袋标准质量为450g,则这批样品的总质量是多少?【答案】9008.【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,求出20袋食品与标准质量差值的和,再与20袋食品的标准质量的和相加即可.【详解】(-3)×1+(-2)×4+0×3+1×4+1.5×5+2.5×3=-3-8+0+4+7.5+7.5=8(g),20×450+8=9008(g).∴这批样品的总质量是9008g.【点睛】主要考查了有理数混合运算在实际生活中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的2 3,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?【答案】(1)11215a,641156a ax;(2)19.2.【解析】【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可.【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a ; 六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +; (2)由题意得,11215a =641156a ax +, ∵a >0, ∴11215=641156x +, 解得x =19.2.∴六月份零售票应按每张19.2元定价.【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了.25.(1)已知x=2是关于x 一元一次方程(a-1)x 2+(b+2)x=2的解,求a,b 的值(2)一个三角形的周长是48,第一边长为3a+2b ,第二边长比第一边的2倍少a ,求第三边长.【答案】(1)a=1,b=-1; (2)48-8a-6b.【解析】【分析】(1)根据一元一次方程的定义求出a 的值,然后把x =2代入(b +2)x =2可求出b 的值;(2)先根据第一边长为3a +2b ,第二边长比第一边的2倍少a 求出第二条边的长,然后用周长减去第一和第二条边的长即可求出第三条边的长.【详解】(1)∵方程(a -1)x 2+(b +2)x =2是一元一次方程,∴a -1=0,∴a =1;把x =2代入(b +2)x =2,得2(b +2)=2,解之得,b =-1;(2)第二边:2(3a +2b )-a = 5a +4b ,第三边:48-(3a +2b )-(5a +4b )=48-3a -2b -5a -4b=48-8a -6b .【点睛】本题考查了一元一次方程的定义及解法,整式加减的应用,熟练掌握一元一次方程的定义和整式的加减法则是解答本题的关键.26.燕尾槽的截面如图所示(1)用整式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积【答案】(1)y(x-y); (2)6.【解析】【分析】(1)由图可知,阴影部分是两个直角三角形,根据三角形的面积公式求解即可,(2)把x =5,y =2代入(1)中的结果计算即可.【详解】(1)()()122y x y y x y ⨯-=-; (2)把x =5,y =2代入y (x -y ),得y (x -y )=2×(5-2)=6.【点睛】本题考查了列代数式,仔细观察图形,得出阴影部分是两个直角三角形是解答本题的关键.。
七年级数学上册《第一章-有理数乘除混合运算》练习题附答案-人教版
七年级数学上册《第一章有理数乘除混合运算》练习题附答案-人教版一、选择题1.与﹣2的乘积为1的数是( )A.2B.﹣2C.12D.﹣122.下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的两个数的积是13.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大4.两个有理数的和为正数,积为负数,则这两个有理数是( )A.两个正数B.两个负数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.﹣4÷49×(﹣94)的值为( )A.4B.﹣4C.814D.﹣8146.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.7.计算﹣6÷12×2﹣18÷(﹣6)的结果是( )A.﹣ 21B.﹣ 3C.4D.78.计算﹣4÷49×94的结果是( )A.4B.﹣ 4C.2014 D.﹣ 20149.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b﹣a)(a+1)>0D.(b﹣1)(a﹣1)>010.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
右面两个图框是用法国“小九九”计算78和89的两个示例。
若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A.2,3B.3,3C.2,4D.3,411.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1.其中正确的有( )A.1个B.2个C.3个D.4个12.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A ×B=( )A.6EB.72C.5FD.B0二、填空题13.计算:﹣2×3= .14.绝对值不大于4.5的所有整数的和为__________,积为__________;15.﹣54的绝对值是,倒数是.16.一个数与﹣34的积为12,则这个数是____________17.某学生将某数乘以﹣1.25时漏了一个负号,所得结果比正确结果小0.25则正确结果应是 .18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.三、解答题19.计算:(114﹣56+12)×(﹣12);20.计算:15÷(﹣32+56);21.计算:|﹣2|÷(﹣12)+(﹣5)×(﹣2);22.计算:﹣112÷34×(﹣0.2)×134÷1.4×(﹣35).23.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?24.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25.用加、减、乘、除号和括号将3,6,﹣8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.26.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如14524÷=,14342÷=所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.27.请观察下列算式,找出规律并填空211⨯=1﹣21, 321⨯=21﹣31, 431⨯=31﹣41,541⨯=41﹣51则: (1)第10个算式是 = . (2)第n 个算式为 = . (3)根据以上规律解答下题:211⨯+321⨯+431⨯+… +202420231⨯的值.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】C9.【答案】C.10.【答案】C11.【答案】D12.【答案】A13.【答案】﹣6.14.【答案】0,015.【答案】54﹣4516.【答案】﹣2 317.【答案】1 818.【答案】4.19.【答案】原式=114×(﹣12)+(﹣56)×(﹣12)+12×(﹣12)=﹣15+10+(﹣6)=﹣1120.【答案】原式=﹣22.5;21.【答案】原式=6;22【答案】原式=﹣3 1023.【答案】解:(1)该出租车停在出发地西面4km处;(2)该出租车一共行驶了164 km.24.【答案】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15; (2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;25.【答案】解:答案不唯一,如(﹣8)÷(3﹣5)×6=24,6÷(3﹣5)×(﹣8)=24等. 26.【答案】解:(1)∵49594÷= 493161÷=∴49不是“差一数” ∵745144÷= 743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4 ∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399 ∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2 ∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390 ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 27.【答案】解:(1)第10个算式是11110111101-=⨯; (2)第n 个算式为()11111+-=+n n n n ; (3)原式=2024120231202312022141313121211-+-++-+-+- =202411-=20242023.。
新人教版七年级数学上册《第1章 有理数》单元测试卷
新人教版七年级数学上册《第1章有理数》单元测试卷一、选择题(本大题共9小题,共27.0分)1.下列各数中,小于−2的数是()A. −12B. −πC. −1D. 12.计算|−12|−12的结果是()A. 0B. 1C. −1D. 143.一个数的绝对值等于它的相反数,这个数不会是()A. 负整数B. 负分数C. 0D. 正整数4.若三个有理数的和为0,则()A. 三个数可能同号B. 三个数一定为0C. 一定有两个数互为相反数D. 一定有一个数等于其余两个数的和的相反数5.−3的负倒数()A. 3B. −3C. 13D. −136.如果|a|=−a,下列成立的是()A. a>0B. a<0C. a>0或a=0D. a<0或a=07.若a+b<0,ab<0,则下列说法正确的是()A. a,b异号,且负数的绝对值大B. a,b异号,且a>bC. a,b异号,且a的绝对值大D. a,b异号,且正数的绝对值大8.已知有理数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A. |m|<1B. mn<0C. n>1D. m−n>09.下列各组数中,数值相等的有()①−27与(−2)7;②−22与(−2)2;③(−1)2018与−1;④455与1625.A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共11小题,共33.0分)10.一个数的相反数是最大的负整数,这个数是______;若|−x|=5.5,则x=______;若|−a|=a,则a______0.11.|−8|=______.12.用“>”“<”或“=”号填空:−78______ −89;−2.5______ −212;−|−13|______ 14.13.−3的倒数是______ ,−3的绝对值是______ .14.(−1)99+(−1)100=______ .15.若|−a|=|−513|,则a=______.16.用科学记数法表示:32200000=______ ;0.00002004=______ .17.(−45)5中,底数是______ ,指数是______ .18.小明在玩“24点”游戏时,抽到下列四个数2,−3,1,4,每个数只能用一次,把上面四个数进行混合运算,使运算结果为24,他列出算式为__________=24.19.如图是一组数值转换机的示意图.当输入值为9时,输出值为.20.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+⋯+32018的结果的个位数字是.三、计算题(本大题共1小题,共6.0分)21. 画出数轴,把下列各组数分别在数轴上表示出来,并用“<”连接起来:−12,2,0,−3,|−0.5|,−(−412),−22.四、解答题(本大题共5小题,共44.0分)22. 计算:(−2)2−|−7|+3−2×(−12).23. 若|m −2|+|n −5|=0,求(m −n)2的值.24.某次数学单元检测,七年级(10)班某小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,不足80分的分数记为负,成绩记录如下(单位:分):+10,−2,+15,+8,−15,−7.(1)本次检测成绩最好的为多少分?(2)本次检测小组成员中成绩最高与最低相差多少分?(3)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?25.规定一种新运算“∗”,即m∗n=(m+2)×3−n,例如3∗4=(3+2)×3−4=11,根据规定解答下列问题:(1)求2∗(−5)的值;(2)求[3∗(−2)]∗(−8)的值。
2019—2020年人教版七年级数学第一学期《有理数的乘除法》同步测试题及答案.docx
1.4有理数的乘除法同步测试题一、选择题1.下列说法正确的是( )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02.两个有理数的商是负数,则这两个数一定是( )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( )A .1B .-1C .0D .25.计算1357×316,最简便的方法是( ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166.下列说法正确的是( )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有( )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab____0;若a >0,b <0,则ab____0;若a <0,b >0,则ab____0;若a <0,b<0,则ab____0.15.若a >0,则|a|a =____,若a <0,则|a|a=______. 16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc________0,abcd________0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是_______ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(____________)=[4×(8×125)-5]×25(____________)=4 000×25-5×25.(____________)19.在如图所示的运算流程中,若输入的数为3,则输出的数为________.20.计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=________.三、解答题(1)14×(-16)×(-45)×(-114);(2)(-81)÷214×49÷(-16);(3)(-12)×(-23)×(-3);(4)317×(317÷713)×722÷1121.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.23.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少?参考答案一、选择题1.下列说法正确的是( C )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02. 两个有理数的商是负数,则这两个数一定是( C )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( C )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( B )A .1B .-1C .0D .25. 计算1357×316,最简便的方法是( C ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166. 下列说法正确的是( C )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( C )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( B )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( B ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有(B )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( B )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( B ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( C )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab__>__0;若a >0,b <0,则ab__<__0;若a <0,b >0,则ab__<__0;若a <0,b <0,则ab__>__0.15.若a >0,则|a|a =__1__,若a <0,则|a|a=__-1____.16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc___>_____0,abcd____>____0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是____+___ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(__乘法交换律__________)=[4×(8×125)-5]×25(____乘法结合律________)=4 000×25-5×25.(_______乘法分配律_____)19.在如图所示的运算流程中,若输入的数为3,则输出的数为___-2_____.20. 计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=____1____.[三、解答题(1)14×(-16)×(-45)×(-114); 解:原式=-(14×16×45×54)=-4.(2)(-81)÷214×49÷(-16);解:原式=81×49×49×116=1.(3)(-12)×(-23)×(-3); 解:原式=-(12×23×3)=-1.(4)317×(317÷713)×722÷1121. 解:原式=227×37×722×2122=922.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.解:∵|a|=4,|b|=5,∴a =±4,b =±5,∵ab <0,∴a =4,b =-5或a =-4,b =5,∴a +b =4+(-5)=-1或a +b =(-4)+5=1,即a +b 的值为-1或123.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少? 当a>0,b<0时,原式=a a +b b +ab ab=1+1+1=3; 当a>0,b>0时,原式=a a +b -b +ab -ab=1+(-1)+(-1)=-1; 当a<0,b>0时,原式=a -a +b b +ab -ab=-1+1+(-1)=-1; 当a<0,b<0时,原式=a -a +b -b +ab ab=-1+(-1)+1=-1. 即a |a|+b |b|+ab |ab|的值为3或-1.。
北师大版七年级上册数学 第二章 有理数及其运算 单元综合测试(含解析)
第二章有理数及其运算单元综合测试一.选择题1.下列说法中,正确的为()A.一个数不是正数就是负数B.0是最小的数C.正数都比0大D.﹣a是负数2.如图,A,B,C,D是数轴上的四个点,其中最适合表示数π的点是()A.点A B.点B C.点C D.点D3.下列说法正确的是()A.若两个数的绝对值相等,则这两个数必相等B.若两数不相等,则这两数的绝对值一定不相等C.若两数相等,则这两数的绝对值相等D.两数比较大小,绝对值大的数大4.若x=|﹣2|,|y|=3,则x﹣y的值为()A.﹣1B.5C.﹣1或5D.±1或±55.将式子﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)写成省略加号的形式,正确的是()A.﹣+5﹣+6﹣10B.﹣﹣5﹣+6﹣10C.﹣5﹣+6﹣10D.+5﹣+6﹣106.下列计算:①;②;③(﹣0.2)3=0.008;④﹣32=9;⑤.其中正确的是()A.1个B.2个C.3个D.4个7.如果|a+2|+(b﹣1)2=0,那么(a+b)2019的值等于()A.1B.﹣2019C.﹣1D.20198.2020年是“双11”的第12个年头,受前期疫情影响消费习惯发生大幅改变以及直播电商的快速发展,今年双11人们消费热情空前高涨.阿里巴巴数据显示,在11日0分26秒,天猫双11达到58.3万笔/秒的订单创建新峰值.把58.3万这个数据用科学记数法表示为()A.583×103元B.5.83×106元C.5.83×105元D.0.583×106元9.下列变形正确的是()A.B.C.D.10.设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25二.填空题11.若上升15米记作+15米,那么下降2米记作米.12.点A表示数轴上的一个点,将点A向右移动5个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.13.数轴上有点A和点B,点A到原点的距离为m,点B到原点的距离为n,且点B在点A 的左边,若m<n,则点A与点B的距离等于.14.比较大小:﹣﹣;﹣(﹣0.3)|﹣|.(填“<”,“=”,“>”)15.如图,化简代数式|b﹣a|﹣|a﹣1|+|b+2|的结果是.16.把(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)写成省略加号和的形式为.17.以下四个数:﹣22、(﹣1)3、﹣(+5).(﹣)2其中正数有个.18.若a、b互为相反数,c、d互为倒数,那么(a+b)2+|﹣cd|=.19.在长为20米、宽为15米的长方形地面上修筑一条宽度为2米的道路(图中阴影部分),余下部分作为耕地,则耕地面积为平方米.20.有一种“二十四点”游戏,其游戏规则是:任取四个1~13之间的自然数,将这四个数(每个数用且只用﹣次)进行加减乘除四则运算,使其结果等于24.例如1,2,3,4可作运算:(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:①,②.③.另有四个数1,3,5,13,可通过运算式使其结果等于24.三.解答题21.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣2(1)这一天检修小组行驶的路程是多少?(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.22.计算:(1)(﹣3)+40+(﹣32)+(﹣8);(2)(﹣)÷(﹣)×(﹣);(3)(﹣24)×()+(﹣2)3;(4)﹣(﹣3)2+(﹣5)3÷(﹣2)2﹣18×|﹣(﹣)2|;(5)﹣12019﹣[﹣3×(2÷3)2﹣÷22].23.若非零数a、b互为相反数,c、d互为倒数,|m|=3,求(cd)2016+(a+b)2017+()2018+m的值.24.解答下列各题.(1)已知a、b互为倒数,c、d互为相反数,|x|=|﹣2|,求2x2﹣(ab﹣3c﹣3d)+|ab+3|的值.(2)已知当x=﹣3时,代数式ax3+bx+1的值为8,求当x=3时,代数式ax3+bx+1的值.25.规定运算△为:若a>b,则a△b=a+b;若a<b,则a△b=a×b;若a=b,则a△b=a﹣b+1.(1)计算6△(﹣4)的值;(2)计算[(﹣2)△3]+(4△4)+(7△5)的值.26.已知有理数a,b,c在数轴上的位置如图,且|a|=|b|.(1)求﹣﹣+的值.(2)化简|a﹣c|﹣2|2a﹣b|﹣.参考答案一.选择题1.解:A、0既不是正数也不是负数,故本选项不合题意;B、负数比0小,故本选项不合题意;C、正数都比0大,说法正确,故本选项符合题意;D、当a≤0时,﹣a是非负数,故本选项不合题意;故选:C.2.解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.3.解:A、若两个数的绝对值相等,则这两个数相等或互为相反数,故本选项不合题意;B、若两数不相等,则这两数的绝对值一定不相等,说法错误,互为相反数的两个数的绝对值相等,故本选项不合题意;C、若两数相等,则这两数的绝对值相等,说法正确,故本选项符合题意;D、两数比较大小,绝对值大的数大,说法错误,如0与﹣1,0的绝对值小于﹣1的绝对值,0>﹣1,故本选项不合题意.故选:C.4.解:∵x=|﹣2|,|y|=3,∴x=2,y=±3,当x=2,y=3时,x﹣y=2﹣3=﹣1;当x=2,y=﹣3时,x﹣y=2﹣(﹣3)=5,综上所述,x﹣y的值为﹣1或5.故选:C.5.解:﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)=﹣+5﹣+6﹣10.故选:A.6.解:①,正确;②()2=,故本选项不正确;③(﹣0.2)3=﹣0.008,故本选项不正确;④﹣32=﹣9,故本选项不正确;⑤﹣(﹣)2=﹣,故本选项不正确;其中正确的是①;故选:A.7.解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2019=(﹣2+1)2019=﹣1.故选:C.8.解:58.3万=583000=5.83×105.故选:C.9.解:A、乘除混合运算,从左到右依次计算,故A选项错误;B、除法没有分配律,故B选项错误;C、根据乘方定义,故C选项错误;D、多个数相乘,从左到右依次计算,故正确;故选:D.10.解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣++…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.二.填空题11.解:若上升15米记作+15米,那么下降2米记作﹣2米.故答案为:﹣2.12.解:0+4﹣5=﹣1.故点A表示的数是﹣1.故答案为:﹣1.13.解:∵点A到原点的距离为m,点B到原点的距离为n,且点B在点A的左边,m<n,∴﹣n<0<m或﹣n<﹣m<0,当﹣n<0<m时,点A与点B的距离为m﹣(﹣n)=m+n,当﹣n<﹣m<0时,点A与点B的距离为﹣m﹣(﹣n)=﹣m+n,故答案为:m+n或﹣m+n.14.解:∵||=,|﹣|=,,∴;∵﹣(﹣0.3)=0.3,||=,∴﹣(﹣0.3)<|﹣|.故答案为:<;<.15.解:由有理数a、b、c在数轴上的位置,可得,﹣1<b<0,1<a<2,所以有b﹣a<0,a﹣1>0,b+2>0,因此|b﹣a|﹣|a﹣1|+|b+2|=a﹣b﹣(a﹣1)+(b+2)=a﹣b﹣a+1+b+2=3,故答案为:3.16.解:(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)=﹣3﹣4+6﹣7+2.故答案为:﹣3﹣4+6﹣7+2.17.解:﹣22=﹣4,(﹣1)3=﹣1,﹣(+5)=﹣5,(﹣)2=,所以四个数中正数有1个.故答案为1.18.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴原式=02+1=1.故答案为:1.19.解:根据题意可得,耕地面积为20×15﹣2×(20+15﹣2)=234平方米.答:耕地面积为234平方米.20.解:①(10﹣4)×3+6=6×3+6=18+6=24;②3×(4﹣6+10)=3×8=24;③3×6﹣4+10=18﹣4+10=24.(13﹣5)×3×1=8×3×1=24.故答案为:(10﹣4)×3+6=24;3×(4﹣6+10)=24;3×6﹣4+10=24;(13﹣5)×3×1.三.解答题21.解:(1)这一天检修小组行驶的路程为:4+7+9+8+6+5+2=41(千米),所以这一天检修小组行驶的路程为41千米;(2)﹣4+7﹣9+8+6﹣5﹣2=+1,故收工时在A的东面,距A地1千米.22.解:(1)原式=(﹣3﹣32﹣8)+40=(﹣43)+40=﹣3;(2)原式=﹣××=﹣;(3)原式=﹣24×﹣24×(﹣)﹣24×﹣8=﹣3+8﹣6﹣8=﹣9;(4)原式=﹣9﹣125×﹣18×=﹣9﹣20﹣2=﹣31;(5)原式=﹣1﹣(﹣﹣)=﹣1+=.23.解:根据题意得:a+b=0,=﹣1,cd=1,m=3或﹣3,当m=3时,原式=1+0+1+3=5;当m=﹣3时,原式=1+0+1﹣3=﹣1.24.解:(1)∵a、b互为倒数,c、d互为相反数,|x|=|﹣2|,∴ab=1,c+d=0,x2=4,∴2x2﹣(ab﹣3c﹣3d)+|ab+3|=2x2﹣[ab﹣3(c+d)]+|ab+3|=2×4﹣(1﹣3×0)+|1+3|=8﹣(1﹣0)+4=8﹣1+4=7+4=11;(2)∵当x=﹣3时,代数式ax3+bx+1的值为8,∴a×(﹣3)3+b×(﹣3)+1=8,∴﹣27a﹣3b=7,∴27a+3b=﹣7,当x=3时,ax3+bx+1=a×33+3b+1=27a+3b+1,=﹣7+1=﹣6.25.解:(1)由题意可得,6△(﹣4)=6+(﹣4)=2;(2)由题意可得,[(﹣2)△3]+(4△4)+(7△5)=(﹣2)×3+(4﹣4+1)+(7+5)=(﹣6)+1+12=(﹣5)+12=7.26.解:(1)由数轴可知:a<c<0<b,∴abc>0,则原式=﹣﹣+=﹣1﹣1+1+1=0;(2)∵a<c<0<b,且|a|=|b|>|c|,∴a﹣c<0,2a﹣b<0,a﹣c﹣b<0,则原式=c﹣a+2(2a﹣b)+=a﹣b+c.。
人教版数学七年级上学期:有理数乘除运算 单元测试卷
《有理数乘除运算》单元测试卷班级_ 姓名_ 学号 得分_ 题号 1 2 3 4 5 6 7 8 9 1 0 答案一、选择题(每题3分,共30分)1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( ) A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)×(-3)D.(-7)÷(-1) 3.下列运算结果不一定为负数的是( ) A.异号两数相乘 B.异号两数相除C.异号两数相加D.奇数个负因数的乘积(没有因数为0) 4.下列运算有错误的是( ) A.13÷(-3)=3×(-3) B. 1(5)5(2)2⎛⎫-÷-=-⨯- ⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)5、乘积为1-的两个数叫做互为负倒数,则2-的负倒数是( ) A.2- B.21-C.21D.2 6.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( ) A.互为相反数但不等于零; B.互为倒数; C.有一个等于零; D.都等于零 7、一个数的倒数是它本身的数 是( )A 、1B 、-1C 、±1D 、0 8.下列运算正确的是( ) A. 113422⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-= ⎪⎝⎭; D.(-2)÷(-4)=2 9.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-1 10.若干个不等于0的有理数相乘,积的符号( ) A.由因数的个数决定 B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定二、填空题(每空2分 共20分) 11. 0.125的相反数的倒数是______ 12.如果410,0a b >>,那么ab_____0(.填>或<) 13.如果两个有理数的积是负的,那么这两个因数的符号一定_______. 14.直接写出结果:① 12(6)3⎛⎫-⨯- ⎪⎝⎭= ② (-7.6)×0.5= ③38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭= ④ 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭= 15. -112的倒数的绝对值是 16.已知3,8==b a ,且a >0,b <0,则a -b= .17.若a<0,则aa=____.三、计算题(每题5分共35分)(1)113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭. (2) 375÷(-32)×(-23) (3) 38(4)(2)4-⨯-⨯- (4) ⎪⎭⎫⎝⎛-+-127659521()36-⨯(5) -18÷(216131+- ) (6) (-45119)÷9(6) (-1117)×15+(+517)×15+(-13713)÷5+(+11313)÷5;四、列式计算(每题4分共8分)(1) -4与-2的差乘以-12(2)一个数与1931的积是-19184,求这个数五、(10分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值 (单位:千克)-3 -2 -1.5 0 1 2.5筐数1423 28(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)六、若│x -3│+│y+4│+│z -5│=0,求x, y, z 的乘积。
新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)
新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)1.(3分)(2024九下·唐河模拟)中原熟,天下足.处于中原的河南一直是我国重要的粮食大省,最近几年粮食总产量更是连续突破1300亿斤,为保证国家粮食安全做出了突出贡献.数据“1300亿”用科学记数法表示为()A.1.3×1011B.1.3×1010C.0.13×1012D.0.13×10102.(3分)(2017九下·莒县开学考)已知P=210×3×58,则P可用科学记数法表示为()A.12×108B.1.2×109C.1.2×108D.12×1093.(3分)(2023七上·石家庄月考)下列各组中互为相反数的是()A.−2与−12B.|−2|和2C.−2.5与|−2|D.−12与|−1 2|4.(3分)(2024九下·哈尔滨模拟)某冰箱冷藏室的温度是5℃,冷冻室的温度是−20℃,则冷藏室比冷冻室温度高()A.15℃B.−15℃C.−25℃D.25℃5.(3分)(2023七上·天河期中)两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数6.(3分)(2024七上·长安月考)下图是某地十二月份某一天的天气预报,则该天的温差是()A.7℃B.8℃C.−7℃D.13℃7.(3分)(2024七上·孟村期末)已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.a>b B.ab<0C.b−a>0D.a+b>08.(3分)(2023七上·上思期中)若|x|=−x,则x是()A.正数B.负数C.正数或零D.负数或零9.(3分)(2022·泗县模拟)第七次全国人口普查数据显示,全国人口共141178万人,比第六次人口普查增加7206万人.数据“7206万”用科学记数法表示正确的是()A.0.7206×108B.7.206×106C.7.206×107D.72.06×107 10.(3分)(2017七上·下城期中)下列计算正确的是().A.(−3)−(−5)=−8B.−32=−9C.√−4=−2D.√9=±3二、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2023七上·襄州期中)定义一种新运算,对于任意有理数a和b,规定a▲b=-a+b,如:2▲(-1)=-2+(-1)=-3,则-3▲4的值为12.(3分)(2023七上·淮安期中)比较大小:−|−2|−(−3)(用“>”、“<”、“=”填空)13.(3分)(2024·福田一模)如图1,“幻方”源于我国古代夏禹时期的“洛书”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册有理数乘除运算单元测试卷
班级_ 姓名_ 学号 得分_ 题号 1 2 3 4 5 6 7 8 9 1 0 答案
一·选择题(每题3分,共30分)
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( ) A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.下列运算结果为负值的是( )
A.(-7)×(-6)
B.(-6)+(-4);
C.0×(-2)×(-3)
D.(-7)÷(-1) 3.下列运算结果不一定为负数的是( ) A.异号两数相乘 B.异号两数相除
C.异号两数相加
D.奇数个负因数的乘积(没有因数为0) 4.下列运算有错误的是( ) A.
13÷(-3)=3×(-3) B. 1(5)5(2)2⎛⎫
-÷-=-⨯- ⎪⎝⎭
C.8-(-2)=8+2
D.2-7=(+2)+(-7)
5·乘积为1-的两个数叫做互为负倒数,则2-的负倒数是( ) A.2- B.2
1-
C.21
D.2
6.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( ) A.互为相反数但不等于零; B.互为倒数; C.有一个等于零; D.都等于零 7·一个数的倒数是它本身的数 是( )
A ·1
B ·-1
C ·±1
D ·0 8.下列运算正确的是( ) A. 113422⎛
⎫⎛⎫---
= ⎪ ⎪
⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫
⨯-= ⎪⎝⎭
; D.(-2)÷(-4)=2 9.下列说法正确的是( )
A.负数没有倒数
B.正数的倒数比自身小
C.任何有理数都有倒数
D.-1的倒数是-1 10.若干个不等于0的有理数相乘,积的符号( ) A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定
D.由负因数和正因数个数的差为决定
二·填空题(每空2分 共20分) 11. 0.125的相反数的倒数是______ 12.如果
410,0a b
>>,那么a
b _____0(.填>或<)
13.如果两个有理数的积是负的,那么这两个因数的符号一定_______. 14.直接写出结果:① 12(6)3⎛⎫-⨯- ⎪⎝
⎭
= ② 〔-7.6)×0.5= ③38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭= ④ 38(4)(2)4⎛⎫
⨯-⨯-⨯- ⎪⎝⎭
= 15. -1
1
2
的倒数的绝对值是 16.已知3,8==b a ,且a >0,b <0,则a -b= . 17.若a<0,则
a
a
=____. 三·计算题(每题5分共35分)
(1)113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝
⎭
. 〔2) 375÷(-32)×(-2
3) (3) 38(4)(2)4-⨯-⨯- (4) ⎪⎭
⎫
⎝⎛-+-127659521()36-⨯
(5) -18÷(21
6131+- ) (6) (-4511
9)÷9
(6) (-1117)×15+(+517)×15+(-13713)÷5+(+1131
3
)÷5;
四·列式计算(每题4分共8分)
(1) -4与-2的差乘以-12
(2)一个数与1931的积是-19
18
4,求这个数
五·(10分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正·负数来表示,记录如下:
与标准质量的差值 (单位:千克)
-3 -2 -1.5 0 1 2.5
筐数
1
4
2
3 2
8
(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)
六·若│x -3│+│y+4│+│z -5│=0,求x, y, z 的乘积。
(5分)
七·已知a,b 互为相反数,c,d 互为倒数,1-x =2.求x x b a x
cd
-++)(的值(6分)
八·已知ab>0,试求ab
ab b b a a |
|||||+
+的值(6分) 参考答案 1~10 ABCACACBDC
11.-8, 12.>,13. 异号, 14.①14,②-3.8③22④-48 15.3
2
16.11, 17,-1 三·(1)
449 (2)4
3375 (3)2 (4)-7 (5)54 (6)111
5- 四·(1)24 (2)11
47
-
五·(1)5.5 (2)8 (3)1321元 六·-60 七·23
2
2--或
八·3或-1。