毕业设计:年产2万吨味精工艺设计

合集下载

毕业设计:年产2万吨味精工艺设计

毕业设计:年产2万吨味精工艺设计

年产2万吨味精工艺设计XXX(陕西理工学院化学学院化工专业061班,陕西汉中723001)指导教师:XXX[摘要]:本设计是年产2万吨味精工艺设计;以玉米淀粉为原料水解生成葡萄糖、利用谷氨酸生产菌进行碳代谢、生物合成谷氨酸、谷氨酸与碱作用生成谷氨酸一钠即味精为主体工艺,进行工艺计算、物料衡算、热量衡算、设备选型,并绘制了等电罐结构图,发酵工序带控制点图,糖化工序图,工厂平面布置图。

[关键词]:味精;发酵;工艺设计Annual production capacity of 20000 tonsof monosodium glutamate process designWANG Xiao-fei(Grade06, Class 1, Major of Chemical Engineering and Technique College of Chemical and environment science of Shaanxi University of Technology,Hanzhong 723001,Shaanxi)Tutor: LI Zhi-zhouABSTRACT:The design is an annual output of 20,000 tons of monosodium glutamate process design; To hydrolysis of corn starch as raw materials to generate glucose, glutamic acid producing bacteria to use carbon metabolism, biosynthesis of glutamic acid, glutamic acid and alkali to form a sodium glutamate or MSG is the main process,*for process calculation, material balance calculation,heat balance calculation, equipment selection,and mapped the structure of isoelectric tank, fermentation processes with control point map, the factory floor plan, saccharification process map.Key Words:MSG, Fermentation, Process Design目录摘要 (I)ABSTRACT (II)1.总论 (1)1.1项目依据 (1)1.1.1课题背景及味精概述 (1)1.1.2味精产业概况 (1)1.1.3味精需求现状 (2)1.2设计原则 (2)1.3设计任务 (3)1.4厂制概况 (3)1.4.1工厂组织 (3)1.4.2工作制度 (3)1.4.3人员配备 (3)1.5厂址选择 (3)1.5.1 建厂依据 (3)1.5.2 指导方针 (3)1.5.3 选厂经过 (4)1.6环境保护剂废物处理 (4)2.工艺设计 (6)2.1工艺流程设计 (6)2.1.1 工艺流程设计的重要性 (6)2.1.2 工艺流程设计的原则 (6)2.1.3 工艺流程设计 (6)2.2玉米制备淀粉工艺 (7)2.2.1湿法玉米淀粉制备工艺过程 (7)2.2.2湿法玉米淀粉生产的主要设备 (8)2.2.3玉米淀粉生产工艺技术指标 (8)2.3淀粉糖化工艺 (9)2.3.1概述 (9)2.3.2一次喷射双酶法制糖工艺流程 (9)2.3.3一次喷射双酶法制糖工艺控制要点 (9)2.4发酵工艺 (10)2.5谷氨酸提取工艺 (10)2.5.1概述 (10)2.5.2谷氨酸发酵液的特征和主要成分 (10)2.5.3等电点—离子交换法提取谷氨酸 (11)2.6谷氨酸制造味精工艺 (12)3.物料衡算 (13)3.1生产过程的总物料衡算 (13)3.1.2计算指标(以淀粉质为原料) (13)3.1.3物料衡算 (13)3.1.4总物料衡算结果 (14)3.2制糖工序的物料衡算 (15)3.3发酵工序的物料衡算 (15)3.4谷氨酸提取车间物料衡算 (18)3.4.1中和等电工序 (18)3.4.2离交工序 (19)3.4.3提取车间物料衡算验算 (19)3.5精制车间物料衡算 (20)3.5.1中和脱色工序物料衡算 (20)3.5.2精制(结晶)工序物料衡算 (21)3.6精制生产过程物料衡算图 (21)4.热量衡算 (24)4.1液化工序热量衡算 (24)4.1.1液化加热用蒸汽量 (24)4.1.2液化液冷却用水量 (24)4.2糖化工序热平衡说明 (24)4.3连续灭菌和发酵工序热量衡算 (24)4.3.1培养液连续灭菌用蒸汽量 (24)4.3.2培养液冷却用水量 (25)4.3.3发酵罐空罐灭菌用蒸汽量 (25)4.3.4发酵过程产生的热量及冷却用水量 (26)4.4谷氨酸提取工序冷量衡算 (26)4.5谷氨酸钠溶液浓缩结晶过程的热量衡算 (26)4.5.1热平衡与计算蒸汽加热量 (27)4.5.2二次蒸汽冷凝所消耗循环冷却水量 (27)4.6干燥过程的热量衡算 (28)4.7溴化锂制冷机所用蒸汽量 (29)4.8生产过程耗用蒸汽衡算汇总 (29)5.水平衡 (30)5.1糖化工序用水量 (30)5.2发酵配料及培养基灭菌后冷却用水量 (30)5.3发酵过程冷却用水量 (30)5.4谷氨酸提取工序冷却用水量 (30)5.5中和脱色工序用水量 (30)5.6精制工序用水量 (30)5.7动力工序用水量 (30)5.8用水量汇总 (30)6.主要设备选型及计算 (32)6.1.1发酵罐 (32)6.1.2种子罐 (34)6.1.3离子交换柱 (35)6.1.4尿素罐 (37)6.1.5等电罐 (37)6.1.6油罐 (38)6.2泵的选择 (38)6.3空气系统选择 (38)6.3.1流程选择的原则 (38)6.3.2空气净化设备流程 (38)6.3.3具体设备要求 (38)6.4容器、槽的选择 (40)6.5其他设备的选择 (40)6.6辅助设备选择 (41)7.全厂总平面设计.............................................. 错误!未定义书签。

年产3万吨味精工厂毕业设计

年产3万吨味精工厂毕业设计

齐齐哈尔大学毕业设计题目年产量3万吨味精厂发酵工段的设计学院食品与生物工程学院专业班级生物工程092班学生姓名解连萌指导教师李琰成绩年月日摘要味精,学名“谷氨酸钠(C5H8NO4Na)”。

谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。

我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。

味精是采用微生物发酵的方法由粮食制成的现代调味品。

本设计为年产5万吨味精厂的生产工艺,通过双酶法、谷氨酸中糖发酵以及一次等电点提取工艺生产谷氨酸钠。

了解味精生产中的原料预处理、发酵、提取部分的生产方法和生产流程,根据实际情况来选择发酵工段合适的生产流程,并对流程中的原料进行物料衡算、热量衡算及设备的选择。

最后,画出发酵工段的工艺流程图和平面布置图。

本设计的工艺流程为发酵预处理(种子培养、原料预处理,制无菌空气)→发酵→等电点提取→中和制味精→浓缩结晶→精制分装。

该处理工艺具有结构紧凑简洁,运行控制灵活等特点。

为味精生产的理想途径。

具有良好的经济效益、环境效益和社会效益。

关键词:谷氨酸钠、双酶法、糖发酵、等电点提取。

AbstractMonosodium glutamate (MSG) is the sodium salt of the non-essential amino acid glutamic acid,which is the final resolve product from protein. If we dilute the salt with 400 times water, w e can’t taste salty any more. If we dilute the sucrose with 200 times water, we can’t taste sweetness too. But even if 3000 times water, Monosodium glutamate still taste flavor.Monosodium glutamate is a modern spice made of food by using microbial fermentation.This productive technology designed for the monosodiumglutamate factory which produces 50,000 tons per year by Double Enzyme、Sugar fermentation in glutamic acid and an isoelectric point of extraction to produce glutamic acid. We know through pretreatment of raw material、fermentation、extraction to learn Monosodium glutamate’s production methods and production process. According to its situation, choose the way to fermentation which suit for production process. At the same time balance the material 、heat and choose the equipment . Finally draw out the fermentation process flow diagram and floor plan. The technological process of this design is:Fermentation pretreatment(Seed development;Pretreatment of raw materials;System sterile air)→fermentation→Isoelectric point of extraction→neutralization to Production of MSG→Concentration crystal→processing and repacking.this productive technology designed has many traits. Such as, well-knit structure, pithy quick control, lasting attacked, less sledge capacity,and its running and management is uncomplicated.Key words: MSG;Double Enzyme;Sugar fermentation; Isoelectric point of extraction目录摘要 ................................................................................................................................................ Abstract . (I)第1章绪论 0味精简介 0味精的营养价值 0味精生产历程 (1)本课题的研究意义、设计指导思想及设计范围 (1)本课题的研究意义 (1)设计指导思想 (2)第2章工厂概况 (3)厂址选择 (3)选厂原则 (3)厂址选择 (3)生产规模 (3)味精生产工艺 (4)原料预处理及淀粉水解糖制备 (4)种子扩大培养及谷氨酸发酵 (4)谷氨酸的提取及谷氨酸单钠的制备 (4)味精的精制 (5)谷氨酸提取操作中的要点 (5)味精生产工艺概述 (6)生产能力 (8)总物料衡算 (8)1000㎏纯淀粉理论上产100%的MSG的量 (8)1000㎏纯淀粉实际产100%的MSG (9)1000㎏商品淀粉(含量86%的玉米淀粉)产100%的MSG (9)淀粉单耗 (9)总收率 (9)淀粉利用率 (9)生产过程中总损失 (9)原料及中间品计算 (9)总物料衡算结果 (10)制糖工序的物料衡算 (10)淀粉浆量及加水量 (10)粉浆干物质浓度 (10)加酶量 (11)CaCl量 (11)2糖化酶量 (11)糖化液产量 (11)过滤糖渣量 (11)生产过程进入的蒸汽冷凝水及洗水量 (11)衡算结果 (12)配料、连续灭菌和发酵工序 (12)发酵培养和用糖量 (12)发酵配料 (13)配料用水 (13)接种量 (13)连续灭菌过程进入的蒸汽及补加水量 (13)发酵过程中加入99%的液氨量 (13)加消泡剂量 (14)发酵生化反应过程中所产生的水分 (14)发酵过程中从排风中带走的水分 (14)发酵过程化验取样,放管残留及其他损失 (15)约13㎏ (15)发酵终止时的数量 (15)衡算结果汇总表 (16)谷氨酸提取车间物料衡算 (16)中和等电工序 (16)离交工序 (17)提取车间物料衡算验算 (18)精制车间物料衡算 (19)中和脱色工序 (19)精制工序 (21)精制过程物料衡算图 (22)液化工序热量衡算 (25)液化加热蒸汽量 (25)液化液冷却用水量 (26)糖化工序热平衡说明 (26)连续灭菌和发酵工序热量衡算 (26)培养液连续灭菌用蒸汽量 (27)培养液冷却用水量 (28)发酵罐空消灭菌蒸汽量 (28)发酵过程产生的热量及冷却水用量 (29)谷氨酸提取工序热量衡算 (30)谷氨酸钠溶液浓缩结晶过程的热量衡算 (31)热平衡与计算蒸汽量 (31)二次蒸汽冷凝所消耗冷却水量 (32)干燥过程的热量衡算 (33)干燥时蒸发水量 (33)味精干燥过程所需热量 (33)味精干燥过程需空气量 (34)味精干燥过程中耗用蒸汽量 (34)溴化锂制冷机所用蒸汽量 (35)生产过程中耗用蒸汽衡算汇总及平衡图 (35)衡算结果 (35)生产过程蒸汽耗用汇总表 (35)平衡图 (35)第5章 全厂水衡算 (37)糖化工序用水量 (37)配料用水量(新鲜水) (37)液化液冷却用水量 (37)发酵配料及培养基灭菌后冷却用水量 (37)发酵罐配料用水量 (37)培养基冷却冷却用水量 (37)发酵过程所用冷却量 (37)谷氨酸提取工序冷却用水量 (38)中和脱色工序用水量 (38)配料用水 (38)洗碳柱及碳柱再生用水 (38)精制工序用水量 (38)结晶过程加水 (38)结晶冷却水 (39)动力工序用水量 (39)锅炉用水 (39)空压机用水 (39)用水汇总及水平衡图 (39)新鲜水用量(平均量3m /h )及味精单耗水量 (39)循环水平均量(3m /h ) (39)蒸汽冷凝水 (39)用水平衡图 (40)第6章 设备选型 (41)等电灌 (41)离子交换工艺 (42)母液暂存罐 (42)母液沉降罐 (43)板框压滤机 (43)柱前贮罐 (43)炭柱 (44)脱色液贮罐 (44)加水罐 (44)结晶罐 (44)二次蒸汽出口管径 (44)进料口 (45)蒸汽进口 ......................................................................................................................... 45 每台耗冷量:h,操作压力,密度31.650kg/m ρ ,则/s 0.9764m /h 3514.9m 11.6510005.8V 33==⨯⨯=353mm 0.353m 103.140.9764πv 4V d ==⨯⨯==........................................................... 45 放料口 .. (45)冷料水入口 (45)助晶槽 (45)味精离心机 (46)流化床干燥机 (46)液氨贮罐 (46)浓硫酸贮罐 (46)参考文献 (48)[1]张克旭.氨基酸发酵工艺学,中国轻工业出版社,1992:279-280。

年产20000t的味精发酵罐设计

年产20000t的味精发酵罐设计

目录工艺计算 (1)1. 基础数据 (1)2. 生产能力 (1)设备设计计算 (2)1. 发酵罐容量和个数的确定 (2)①发酵罐容量的确定 (2)②发酵罐个数的确定 (2)2.主要尺寸计算 (2)①筒体以及封头的计算 (2)②冷却面积的确定 (3)③搅拌器设计 (3)④搅拌轴功率的确定 (3)3.设备结构的工艺设计 (4)①空气分布器 (4)②挡板 (4)③密封方式 (4)④冷却管布置 (4)I最高热负荷下的耗水量W (4)II 冷却管组数和管径 (5)Ⅲ冷却管总长度L计算 (5)Ⅳ每组管长L0 (5)Ⅴ每组管子圈数n0 (6)Ⅵ校核布置后冷却管的实际传热面积 (6)⒋设备材料的选择 (6)⒌接管设计 (7)①接管直径的确定 (7)计算结果汇总 (8)心得体会 (9)参考文献及资料 (10)工艺计算1. 基础数据生产规模:20000t/a味精发酵生产天数:300天发酵周期:40h每生产1000kg纯度为100%的味精需要浓度为15%的糖液16.15m3 2. 生产能力产量20000t/a = 66.7t/d为了便于计算,实际取67t/d的产量来计算,则年产量为20100t/a 15%的糖液消耗量V糖为:324615m3/a = 1082.05m3/d设备设计计算1. 发酵罐容量和个数的确定①发酵罐容量的确定若取发酵罐的填充系数Φ=80%,则每天需要发酵罐总容量我V0为:V0 =V糖/Φ=1082.05/80% = 1352.5625m3现选用公称容量为200m3的机械搅拌通风发酵罐,其全容量为230m3②发酵罐个数的确定每天需要230m3发酵罐的个数N0为:N0=1352.5625/230 = 6 (个)总共需要发酵罐的个数:N1=(1352.5625×40)/(230×24) = 10 (个)每天应有6个发酵罐出料,每年工作300天,实际产量验算:230×80%×6×300/16.15 = 20508 (t)设备富裕量为:(20508-20100)/20100 = 2% ,能满足生产要求。

年产1.5万吨味精生产工艺初步设计说明书——毕业设计

年产1.5万吨味精生产工艺初步设计说明书——毕业设计

年产1.5万吨味精生产工艺初步设计说明书——毕业设计年产1.5万吨味精生产工艺初步设计摘要我国味精生产虽然发展很快,但还有生产效率低、生产成本高、脱色效果不理想、污水处理不彻底等缺陷,与国际先进水平相比仍有很大差距,造成了很大的浪费。

本设计在生产流程的各个方面加以完善,尤其在味精脱色、污水处理等方面摒弃了传统不十分理想的方法,采用了新技术,进一步消除了因脱色和污水处理不彻底造成的资源浪费。

味精脱色采用XSX-8吸附树脂,具有脱色好、投资省、处理成本低的优势;污水处理采用两步生物处理法酵母反应器和活性污泥的连续系统处理味精废水,可以去除味精废水中95%的COD,达到节能环保的要求。

关键词:味精;新技术;脱色;污水处理A PRELIMINARY DESIGN OFTECHNOLOGICAL PROCESS FOR MSGPRODUCTION 15,000 TONS PER YEARAbstractAlthough the production of monosodium glutamate in China has developed rapidly, poor colour and lustre, low productivity, high production cost and bad treatment system of wastewater, which still have a big gap compared with the international advanced level, result in lots of waste. The design improve various aspects of production processes, especially in bleaching of MSG, treatment of wastewater and so on. Those rejecte traditional method which are not good and use new technology. Therefore it saves lots of money in bleaching and treatment of wastewater. XSX - 8 polymeric adsorbent is used in MSG decoloring,which has good decoloration efficiency. It can save investment and make low cost .Wastewater treatment by two-step method of biological treatment of activated sludge and yeast reactor system, can remove monosodium glutamate wastewater treatment in 95% of COD monosodium glutamate wastewater, energy conservation and environmental protection requirement.KEY WORDS:monosodium glutamate(MSG); new technique ;decolor; treatment of wastewater目录摘要 (2)ABSTRACT (3)第一章综述 (7)1.1味精的发展 (7)1.2味精的来源 (8)1.3味精的性质与组成 (8)1.4味精的营养价值 (9)1.5本课题的研究意义、设计指导思想及设计范围 (9)1.5.1 本课题的研究意义 (9)1.5.2 设计指导思想 (10)1.5.3 设计范围 (10)第二章工厂概况 (11)2.1厂址选择 (11)2.1.1 选厂原则 (11)2.1.2 厂址选择 (11)2.2生产规模 (12)第三章味精生产工艺 (13)3.1味精生产工艺流程图 (14)3.2味精生产工艺 (15)3.2.1 原料预处理及淀粉水解糖制备 (15)3.2.2 种子扩大培养及谷氨酸发酵 (16)3.2.3 谷氨酸的提取及谷氨酸单钠的制备 (17)3.2.4 味精的精制 (18)3.3谷氨酸提取操作中的要点 (19)3.4谷氨酸发酵过程计算机控制程序 (19)3.4.1 发酵过程控制 (20)3.4.2 讨论 (22)第四章工艺计算 (23)4.1 谷氨酸发酵工艺流程示意图 (23)4.2工艺技术指标及基础数据 (24)4.3谷氨酸发酵车间的物料衡算 (25)4.415000T/A味精厂发酵车间的物料衡算结果 (27)第五章设备设计与选型 (30)5.1发酵罐 (31)5.1.1 发酵罐的选型 (31)5.1.2 发酵罐相关数据的确定 (31)5.2种子罐 (41)5.2.1 二级种子罐 (41)5.2.2 一级种子罐 (48)5.3空气分过滤器 (49)5.3.1 二级种子罐分过滤器 (49)5.3.2 一级种子罐分过滤器 (49)5.3.3 发酵罐分过滤器 (50)5.4味精厂发酵车间设备一览表 (51)第六章环境保护 (52)6.1味精厂的主要废弃物 (52)6.2味精废水的来源及水质特点 (53)6.2.1 味精废水的来源 (53)6.2.2 味精废水的水质特点 (54)6.2.3 现有工厂处理味精废水存在的主要问题 (55)6.3废水处理工艺设计 (55)6.3.1 传统上对味精废水的处理方法 (55)6.3.2 本设计对味精废水的处理方法 (56)6.4环境影响评价 (58)第七章平面布置 (59)结论 (60)参考文献 (61)附录 (62)致谢 .................................................... 错误!未定义书签。

年产万吨味精工厂发酵车间设计说明书

年产万吨味精工厂发酵车间设计说明书

安全与环保考虑:确保设备布局和流程优化符合安全和环保要求
设备选型依据:根据生产工艺要求,选择适合的设备型号和规格
设备安装与调试要求
设备安装前准备:检查设备规格、型号是否符合要求,准备安装工具和材料
设备安装过程:按照设备安装说明书进行安装,确保设备稳固、安全
设备调试要求:对设备进行调试,确保设备正常运行,达到设计要求
噪声控制:采用低噪声设备,并采取隔音措施
能源节约:优化工艺流程,降低能源消耗
应急预案与事故处理方案
应急预案:针对可能发生的事故,制定相应的应急措施和预案,包括疏散、救援、灭火等方面
事故处理方案:明确事故处理的流程和责任人,包括事故报告、调查、处理和预防等方面
安全生产与环境保护措施:加强安全生产管理,提高员工安全意识,确保生产过程符合环保要求
激励机制:根据考核结果给予相应的奖励或惩罚
培训计划:针对不同岗位制定相应的培训计划,提高员工技能水平
考核周期:按季度或年度进行考核
07
项目投资估算依据和方法
依据:设备购置费、安装工程费、建筑工程费、流动资金、其他费用等
方法:单位产品投资估算法、生产能力指数法、比例估算法等
经济效益分析指标体系建立
结论与建议:根据经济效益预测及敏感性分析结果,提出项目建设的可行性结论及建议。
感谢您的观看
成品检验与放行:对成品进行检验,确保符合质量标准后才能放行
04
主要设备选型依据
生产能力:满足年产万吨味精的生产需求
设备性能:稳定、高效、易于维护
设备材质:符合食品安全要求,耐腐蚀、耐磨损
设备布局:合理利用空间,提高生产效率
设备布局与流程优化
设备布局原则:合理规划设备布局,提高生产效率

味精工厂生产工艺流程设计方案

味精工厂生产工艺流程设计方案

发酵生产谷氨酸的原料主要是淀粉,其次还有非粮食淀粉原料。

淀粉来自粮食原料,通常利用各种各样的淀粉,如北方常用玉米淀粉,南方常用番薯淀粉等。

非粮淀粉原料主要指甜菜或甘蔗蜜糖、醋酸、乙醇、正烷烃等。

3.2.2原料预处理非粮食原料除蜜糖外,一般均不需要预处理,可直接用来配制培养基;而蜜糖中色素含量过高,虽然生产菌可以良好生长,但采用一般谷氨酸,在采用蜜糖为原料进行谷氨酸发酵生产时,常要对蜜糖进行预处理。

大多数谷氨酸发酵菌种都不能直接利用淀粉和糊精,因此用淀粉质原料进行谷氨酸发酵生产时,必须先将淀粉水解成葡萄糖,才能供发酵使用。

3.3淀粉水解糖制备淀粉的水解方法有:酸水解法、酶水解法和酸酶水解法等3种。

在工业生产上,淀粉的处理主要是指糖化,制得的水解糖叫淀粉糖。

可以用来制备淀粉糖的原料很多,主要有薯类、玉米、小麦、大米等。

我国味精生产厂有的是采用酸水解法进行淀粉水解,既是以无机酸为催化剂,在高温高压下使淀粉快速水解成葡萄糖,还有的更多的再生产上采用了酶水解法对淀粉进行水解。

先用α-淀粉酶将淀粉水解成糊精和低聚糖,然后再用糖化酶将糊精和低聚糖进一步水解成葡萄糖的方法,称为酶水解法。

这里我们主要介绍酶水解法。

3.4 种子扩大培养种子扩大培养为保证谷氨酸发酵过程所需的大量种子,发酵车间内设置有种子站,完成生产菌种的扩大培养任务。

从试管斜面出发,经活化培养,摇瓶培养,扩大至一级乃至二级种子罐培养,最终向发酵罐提供足够数量的健壮的生产种子。

3.4.1影响种子质量的主要因素种子培养基的氮源、生物素和磷盐的含量要适当高些,而葡萄糖的含量必须限制在2.5%左右,这样可以得到活力强的种子,避免由于糖多产酸,引起pH下降而引起种子老化[12]。

图3-1 味精生产总工艺流程图(1)种子对温度变化敏感。

因此,在培养过程中温度不宜太高和波动过大,以免种子老化。

(2)在种子培养过程中通风搅拌要恰当。

溶氧水平过高,菌体生长受抑制,糖的消耗十分缓慢,在一定的培养时间里,菌体数达不到所需求的数量,氧不足菌体生长缓慢,为了达到发酵所需菌体数,必须延长发酵时间。

味精工艺设计论文 (1)

味精工艺设计论文 (1)

基因重组提高了谷氨酸耐热性和谷氨酸棒状杆菌生产谷氨酸的能力摘要基因重组技术被用来改善L-谷氨酸酸产生菌染谷氨酸的耐热性。

五菌株在高温耐受性和生产力的改善上是通过紫外线照射和硫酸二乙酯诱变选出的。

五株菌通过基因组改组获得一种改进的应变(F343),如上文所述的三个回合。

同样在5升发酵罐中,44摄氏度培养24小时后F343的细胞密度比出发的高四倍,并且重要的是,L-谷氨酸的产量与出发菌株在38摄氏度下培养后的菌株密度增加了1.8倍。

葡萄糖补充和两阶段的pH值控制,F343的L-谷氨酸的酸浓度发酵30小时后达到119克/ L。

F343和它的亲本之间的遗传多样性也是由扩增的片段长度多态性分析评估的。

结果表明,L-谷氨酸的生产型和表型耐热性是从F343中演变而来的。

关键词:谷氨酸棒状杆菌,基因组改组,L—谷氨酸,温度公差简介L-谷氨酸是谷氨酸棒状杆菌的主要产品,这是1956年Dr.Kinoshita从自然界分离出来的,并被日本协和发酵用于启动发酵性的生产。

截至目前,在 L-谷氨酸发酵工业中的主要工艺是生物素亚适量,表面活性剂的添加,添加抗生素,和温敏型。

每年的味精生产是大约180万吨,世界各地以满足的需求作为增味剂、药品、化妆品和制药化合物的前体。

中国提供全球味精需求的70%以上,而目前,生物素亚适量是用于商业化生产谷氨酸的主导过程。

考虑到经济的谷氨酸发酵过程,发酵温度是直接影响生产效率的最重要因素之一,取决于使用的微生物。

谷氨酸棒杆菌生产谷氨酸的最佳温度约30摄氏度,这种微生物既不能生长,也不产生谷氨酸是在40摄氏度或以上。

此时冷却系统开启来带走微生物生长和发酵期间产生的热量,这是为了防止在工业生产中细胞活性的损失。

因此,在生产过程中由于其低成本温度控制有时会首选耐热菌株。

Delaunay et al.(1999)开发了一个分批—进料过程中的温度敏感型菌株谷氨酸棒杆菌2262,其中生产谷氨酸效价达85g/L的生物素 - 富培养基首先生长在33摄氏度然后经受温度变化到39摄氏度培养基上。

味精工艺设计

味精工艺设计

摘要 :味精的主要成分是谷氨酸钠,是一种鲜味剂。

本设计是年产味精5.9万吨(其中99%味精1.77万吨,80%味精4.13万吨),折合纯味精5.0563万吨,年生产日为320天每天生产味精158吨。

发酵车间选用18个发酵罐,日运转9个发酵罐,每天装9罐。

等电点灌车间选用18个等罐,日运转9个等电点罐,每天装9罐。

等电点提取的发酵方法生产味精。

以大米为原料,经糖化、发酵、提取、中和、精制工艺制成商品味精。

谷氨酸发酵受温度、pH、排气通风量等因素的影响,整体操作要在无菌的条件下进行。

本设计从工艺流程,物料和热量衡算,用水量,设备选型,主要设备工艺尺寸的计算。

关键词:谷氨酸钠发酵工艺Abstract :The main composition of MSG is monosodium glutamate, is a kind of freshness. This design is an annual output of 59000 tons of monosodium glutamate (99% of monosodium glutamate, 17700 tons of monosodium glutamate, 41300 tons), or pure monosodium glutamate, 50563 tons of annual production for the production of monosodium glutamate, 158 tons a day, 320 days. Selects 18 fermentation tank, fermentation workshop day nine fermentation tank, running every day 9 cans. Isoelectric point selection of filling workshop in 18, pot, nine days running isoelectric point cans, 9 pot every day.Isoelectric point extraction methods of fermentation production of MSG.Using rice as raw materials, saccharification, fermentation, extraction, neutralization, refined workmanship goods monosodium glutamate. Glutamic acid fermentation temperature, pH, exhaust ventilation rate, the influence of such factors as the overall operation under aseptic conditions. The design process, from material and heat balance, water consumption, equipment type selection, the calculation of main equipment process size, the fermentation workshop design.Keywords:monosodium glutamate fermentation process1设计产品种类1.1味精的主要性质味精的主要成分是谷氨酸钠盐(MSG),又名谷氨酸钠、味素等,它具有强烈的鲜味,是食品中添加的增鲜剂[1]。

产xxxxx吨味精的设计

产xxxxx吨味精的设计

年产xxxxx吨味精厂提取精制车间地设计目录绪论 (1)第一节设计简况 (1)第二节设计依据和原则 (1)第三节原料、辅料及各种化工产品地质量和来源 (1)工艺条件、厂址选择及其论证 (1)第一节生产工艺流程地确定及论证 (1)第二节工艺条件地确定 (1)第三节厂址选择与论证 (1)第四节各种成品、半成品质量要求工艺计算第一节味精生产能力地设计第二节制糖车间物料衡算第三节菌种培养物料衡算第四节发酵工段物料衡算第五节空气除菌物料衡算第六节提取工段物料衡算第七节精制工段物料衡算第八节专题车间能量衡算专题车间设备设计选型重点车间设计第一节车间布置第二节工艺操作要点、生产安排其他部分第一节水电气用量第二节三废排放及处理第三节电力部分第四节锅炉第五节全厂布置及人员第六节重点车间经济核算附:1.车间工艺流程设备一览表2.所用参考资料第一章(略)第二章工艺、厂址地选择及论证第一节生产工艺流程地确定及论证一全厂工艺流程图:(附工艺流程图0#图纸一张)淀粉→双酶法水解→葡萄糖液→(菌种→发酵←尿素 P Mg K 生物素)→↗99%味精(70%)↘等电离交提取→古氨酸→精制→80%味精(30%)→包装→商品味精二工艺特点及论证(一)糖化工艺特点及论证在味精生产过程中,糖化过程是指玉M淀粉转化为葡萄糖地过程.根据原料淀粉地性质及采用地催化剂地不同,水解淀粉为葡萄糖地方法有三种:酸解法、酶解法和酸酶结合法.本设计中选用双酶法水解,具有生产方便、条件温和、水解时间短、生产能力大地优点.因此此法目前为大多数工厂所采用.双酶法是用淀粉酶和糖化酶将淀粉水解成葡萄糖地工艺.双酶法水解可分为两步:加.第二步是糖化,利用糖化酶将糊精或低聚糖进一步水解,转化为葡萄糖.采用双酶法水解葡萄糖具有很多地优越性:(1)水解过程副产物少,水解糖液纯度高,比值可达98%以上.使糖液得到充分利用.(2)可以在较高地淀粉浓度下水解,水解糖液地还原糖含量可达到30%左右. (3)由于酶解反应条件温和,没有高温高压,水解过程副反应少,因此淀粉转化率高于酸解法和酶酸法.(4)双酶法制取地水解糖液营养成份丰富,可以简化发酵培养基,少加甚至不加生物素,有利于提高糖酸转化率,也有利于后续提取.(5)双酶法工艺同样适用于大M或粗淀粉原料,可以避免淀粉在加工过程中地大量流失,减少粮食消耗.(6)双酶法工艺,水解条件温和,不要求设备耐高温、高压,耐酸碱.缺点是生产周期长,夏天糖液容易变质,发酵生产不正常时,给生产调度带来困难.(二)发酵工艺地特点及论证氨基酸发酵是典型地代谢控制发酵.在味精生产过程中,发酵过程作为其重要地一个生产工段,需要严格控制其条件.在此发酵过程中,生产地产物谷氨酸是微生物地中间代谢产物,它地积累建立于对微生物正常代谢地抑制.在谷氨酸发酵过程中关键取决于其控制机制能否被解除,能否打破微生物正常代谢调节,人为地控制微生物代谢.此发酵过程为好气性发酵,在此过程中应有合适地通风搅拌.在发酵过程重要尽量避免噬菌体污染,控制最适温度,谷氨酸菌最适生长温度与产物积累温度不同,发酵前期控制在30~32℃,以利于谷氨酸菌体生长,后期温度可在34~36℃,以利于产酸.(三)等电离交提取工艺特点及论证发酵结束后,将生成地谷氨酸从发酵液中提取,这便是提取工序地主要目地.提取方法有一次等点提取、等电离交提取、离子交换法提取及电渗析法提取.离子交换法提取谷氨酸是将发酵液通过一定型号地地离子交换树脂,谷氨酸及其他阳离子先后被树脂交换吸附,然后用热碱洗脱.离子交换法提取谷氨酸具有过程简、周期短、设备省、占地少地特点,提取总收率在80~9%,是一种较好地方法.缺点是耗用大量酸碱工业原料,废液污染环境,同时树脂碎损易造成收率不稳定等弊病.(四)精制工艺特点及简要论证(1)中和液始终作为底料,母液作为补料,母液打入真空浓缩锅蒸发结晶出全部99%以上地成品味精,成品质量全部符合标准.(2)最后母液再通过二次回收地细结晶后放到提取车间结晶成湿谷氨酸,回收地细结晶与湿谷氨酸重新投料作中和液用.第二节工艺条件地确定一糖化工艺条件地确定及论证(一).液化工艺条件及论证(1)先往液化锅内泵入适量“底水”(以浸没下层蒸汽加热管为度)通入蒸汽底水加热至80℃左右,然后进料,速度要均匀,保持温度在80℃.(2)进料完毕逐步升温至规定液化温度90±2℃,保持20~25分钟左右,中间多次打开空气阀门,使锅内液化液沸腾均匀.(3)液化即将结束时,取样做碘液反应检查,直至无淀粉反应(呈棕红色或橙黄色)才算液化完全,最后升温至100℃杀菌5分钟后放料.(4)液化液过滤(一般用板框过滤机)速度要慢,一般要求大M出渣率在38%以下,M渣中淀粉含量12%左右,水分含量60%左右.(二)糖化条件及论证(1)糖液质量要求:色泽:呈浅黄色糊精反应:无还原糖含量:18%左右 DE值:90%以上透光率:60~80%左右 Ph值:4.6~4.8(2)工艺条件论证①合理控制淀粉乳浓度,适当配比盐酸,尽可能高温、快速、短时间内完成糖化,正确掌握中和、脱色地Ph值、温度和时间,借以提高糖液纯度.②糖液要清,色泽要浅,保持一定透光率.同时应不含糊精,以免引起污染.③糖液要新鲜,以免发酵变质,而且糖液贮存器要保持清洁,定期清理和清洗,防止酵母菌侵入.二发酵工艺条件及论证1 接种量 0.6~1.7%发酵培养基成份不同,谷氨酸菌种种类性质、种龄不同,所用接种量也不同,应根据实际情况和实验情况具体确定.2 温度控制前期32±0.6℃,后期可提高到33~36℃一般来讲温度升高反应速度加快,生长繁殖快,反应提前完成,但从酶反应动力学来看,酶易失活.温度越高,失活越快,菌体易衰老,影响产物生成.因此,温度地控制是发酵过程中极为重要地一环.不同地微生物都各有其最适生长温度范围,各种微生物由于种类不同,所具有地酶系及其性质不同,所要求地温度范围也不同.谷氨酸发酵前期,主要是张菌阶段,如果温度过高,菌种易衰老,严重影响菌体生长繁殖.因此,温度控制在谷氨酸最适生长温度32℃左右.在发酵后期,菌体生长基本结束,为了满足大量生成谷氨酸,可适当提高温度,控制在34~37℃.3 发酵罐内压力 1Kg/cm2(表压)4 通风量 0~8h: 1:0.1~0.11 8h~放料: 1:0.15~0.18谷氨酸发酵是好气性发酵,在此过程中供氧过大或过小均对菌体生长和谷氨酸积累有很大影响,在长菌阶段,若供氧过量,在生物素限量地情况下,抑制杂菌生长,表现为耗糖慢,长菌慢.在发酵阶段,若供氧不足,发酵地主产物由谷氨酸变为乳酸.5 搅拌转速 150rpm6 消泡培养基中加消泡剂:0.5~1斤在发酵过程中,根据泡沫情况及时添加灭菌过地消泡剂.在好气发酵中,由于通风与搅拌,产生一定量地气泡,泡沫过多,控制不好,会引起大量逃液而造成浪费和环境地污染.泡沫上升到罐顶,可能从轴封渗出,造成染菌危险.还会影响氧地传递,影响通风与搅拌.因此在发酵过程中应及时添加消泡剂,避免泡过多产生.7 尿素添加根据发酵过程中Ph值变化,确定尿素流加,当Ph值由高峰下降时,即可流加,总尿素用量为发酵液地3.5%.三等电离交工艺条件及论证(一) 等电沉淀发酵液(高流分边冷却边加硫酸调Ph)→Ph4.0~4.5发酵液(加晶种)→25℃育晶2h(边冷却边调Ph)→Ph3.0~3.2地发酵液(搅拌)→4℃静置4h→母液和谷氨酸(二)离子交换等电点母液→上柱交换→用水反洗离交柱→热水正洗和氨水洗脱→水洗树脂→树脂再生↓↓↗前流分(重新上柱)洗脱液→高流分(等电提取)↘后流分→污水处理(三)L-谷氨酸地提取(1)低温等电提取温度10℃以下,冷却截至液氨,Ph3.1~3.2(用硫酸调节)低温搅拌结晶8~10小时,发酵液经等电点法提取谷氨酸后,采用双柱法将等电电母液通过离子交换树脂柱进行交换,然后用氨水洗脱,树脂上地谷氨酸收集高流分将其与下一次发酵液合并再用等电点法提取,而前流分用于冲洗树脂,后流分废水处理.(2)母液用离氨行李自交换树脂回收.(3)分离后地谷氨酸废液为高浓度和有机废水,需进行三废处理解决环保问题. (4)等电离子交换回收率高,约≥95%四精制工艺条件及论证(一)中和与脱色用碳酸钠将谷氨酸中和为单钠盐,中和时应先加谷氨酸后加碱,开启搅拌,温度75℃左右(低于80℃),中和液浓度21~24Be,Ph.66~6.8,控制Ph不超过7,否则形成二钠盐,用粉末状活性炭,加量为3.6%(w/v),可用K活性炭.15(二)过滤用板框过滤机(三)离子交换采用树脂除贴离子等杂质(四)浓缩结晶罐内真空度0.075~0.085Mpa,温度60℃左右,加热蒸汽0.15~0.25Mpa,夹套加热,浓缩前要求透光率≥90%,浓缩到29.5~30.5Be时,加入晶种,辞职温度在65~70℃.晶种大小与投种量,以结晶罐全体积地3~5%(w/v),40目晶种6~9%,30目晶种6~12%.补料速度应与蒸发速度和解晶速度相一致,使料液浓度控制在介稳区内,使晶种以最大速度生长.结晶时间12~20小时. (五)分离干燥(1)工艺条件①用三足式离心机分离,按规定量装车,离心分离15~20分钟,分离过程中,每车加30~40℃蒸汽冷凝水淋洗一次,用水量为晶种地6~10%.②99%味精地干燥:用浮式干燥器控制温度30~40℃干燥,振动筛分离取10~28目为合格产品.③80%味精地干燥:用器流烘干控制温度70~80℃干燥,经振动筛分离取14~40目为原料,化验含量,配入精盐,真空抽取至混盐器混合15分钟,放出即为成品.(2)工艺条件论证结晶完成后离心分离晶体,一般采用三足式离心机.转速960~1250rpm,用水淋洗地目地可以溶去晶体表面地伪晶贺细晶,使晶体增加光泽,离心分离地晶体表面附着水分,如不加以干燥,则易粘结成块.干燥形式多样,我们采用气流和振动干燥.气流干燥地特点是待干燥地味精在干燥地热空气中呈悬浮状态,随着热空气地流动而被迅速干燥,它地优点是干燥速度快,干燥时间短(约1~4s),生产能力大,但是物料在热空气中悬浮运动相互间发生摩擦,对味精结晶光泽和外形不利.振动干燥地振动床振动频率120~400次/分,振幅5~10mm,这种干燥方式效果好,对结晶味精地晶体损失也少.结晶味精要求晶粒大小均匀,因此干燥好地晶体要经过振动筛分离,除去过大或过小地晶粒,使晶粒大小更加均匀.(六)晶种地制备(1) 99%味精晶种地制备气流干燥分离出大于10目地大结晶味精或其他结晶味精进行粉碎过筛,选除24~32目地作为99%味精晶种.(2) 80%味精晶种地制备 99%味精晶种制备过程中,筛出32亩以下地细结晶和气流烘干过筛40目以下地细结晶部分作为80%味精晶种用.(七)包装99%味精:1磅袋装(出口) 500g袋装(内销) 100g袋装(内销) 50g袋装(内销)80%味精(全部内销): 500g袋装 100g袋装 50g袋装 30g袋装 20g袋装第三节厂址选择一厂址选择原则1 节约用地,考虑发展2 靠近原料产地中心3 有丰富可靠地水源4 有良好地交通运输条件5 靠近电源6 利用城镇设施节约资源7 符合国家有关卫生、防火、人防方面地地规定和要求8 厂区地形英较平坦,倾斜破不易过大,厂区地耐力一般应大于14~20T/m29 山区建厂选用较平坦山坡,避开断层、塌方、滑坡、溶洞、地下暗流,避开有山风、谷风及洪水侵袭地地段.10 其他要求:厂址应考虑在产品、原材料、三废治理、综合利用、动力、给排水、交通运输、居住区建设、生活福利等方面,与邻近企业协作地可能等.二厂址不易选择地地段1 有爆破危险地范围内2 有开采价值地矿床上3 采矿崩落界限内4 低洼窝风地区,有滑坡、流沙、过于深厚地松软淤泥不稳定断层区,溶洞较严重等不良地质地区或新淤河道、古墓之上5 紧邻大水库下游,以及受山洪、内涝等水患威胁地地区6 受临近工厂严重污染地下风或下游地段7 自然保护区,水土保持禁垦区,风景区,疗养区,文物古迹考古区,妨碍少数民族风俗习惯地地区,以及集中式生活饮用水水源、第一卫生防护地带区8 地震强烈度在9度以上地地震区,超过7度,应依照国家颁布地抗震规范加以防范9 避开机场、高压输电线和城市工程管道等第四节各成品、半成品地质量要求一水解液质量要求1 透光率 90%以上2 不含糊精、低分子蛋白,防止起沫逃液3 淀粉出糖量4 DE值90~925 还原糖浓度30%以上二种子质量要求1 显微镜下检查时,菌体应大小均匀,呈单个或八字型排列.细胞呈棒状略有弯曲,革兰式染色阳性2 二级种子培养过程中,pH值变化有一定规律,从6.8上升到8.0左右然后逐步下降3 三级种子活菌浓度应达到108~109个/ml>1000微升氧/ml种子·小 4 二级种子要求活力旺盛,一般要求二级种子QO2时三谷氨酸质量要求1 离心分离后,谷氨酸含量90%左右2 氯化物≤0.2%3 应为α-结晶4 外观正常无杂色四味精质量(一)99%味精质量标准晶体粉状谷氨酸≥99% ≥99%水分≤0.2% ≤0.3%Nacl ≤0.5% ≤0.5%透光率≥95% ≥95%外观白色有光泽晶体白色粉状砷≤0.5ppm ≤0.5ppm铅≤1.0ppm ≤1.0ppm铁≤5ppm ≤5ppm锌≤5ppm ≤5ppm(二)80%味精质量标准晶体谷氨酸≥80%水分≤1.0%Nacl ≤20%透光率≥70%外观白色晶状或混盐晶体砷≤0.5ppm铅≤1.0ppm铁≤10ppm锌≤5ppm第三章工艺计算第一节味精生产能力地设计一、产量年产40000t味精,其中99%地商品味精39600 t,80%地商品味精400 t.日产味精: 40000÷300=133.33 t/d;日产纯MSG:(39600×99%+400× 80%)÷300=131.75 t/d.二、原料:玉M淀粉(淀粉纯度83%)三、全年劳动日:300天四、主要技术指标:1、淀粉出糖率:108%;2、糖酸转换率:55%;3、提取收率:95%;4、精制收率:110%.五、总物料衡算:1、1t纯淀粉理论产100%MSG量:1000×111%×81.7%×1.272=1153.50㎏2、1t纯淀粉实际产100%MSG量:1000×108%×55%×95%×110%=620.73㎏3、1t玉M淀粉(纯度为83%)产100%MSG量:620.73×83%=515.2 ㎏4、淀粉单耗:(1)理论:1t纯MSG理论消耗纯淀粉量:1000÷1153.5=0.87 t;1t纯MSG理论消耗玉M淀粉量:1000÷(1153.5×83%)=1.04 t(2)实际:1t纯MSG实际消耗纯淀粉量:1000÷620.73=1.611 t消耗玉M淀粉量:1000÷515.2=1.94 t5、原料及中间产品计算:①每日淀粉用量:1.94×131.75=255.60 t②糖化液量:255.60×108%=276.05t③发酵液量:纯Glu量:276.05×55%=151.83t/d折算为8g/dL地发酵液:151.83÷80%=1897.84m3④提取谷氨酸量:纯谷氨酸量:55.124×95%=52.368t/d折算为90%地谷氨酸量:52.368/90%=58.186t/d⑤谷氨酸废母液(采用等电—离子回收法,以排出废母液含谷氨酸0.3g/d计算:(55.124-52.368)/0.3%=918.667m3/d由上述得物料衡算表如下:其中,工业原料淀粉含量83%,糖蜜含量52%,总物料衡算结果t/年第二节糖化车间物料衡算一、浆量及加水量:(淀粉加水比例:1:2.51000kg工业淀粉浆: 1000×(1+2.5)=3500kg,加水2500kg二、粉浆干物质浓度: 1000×83%÷3500×100%=23.71%三、液化酶量:(使用а-淀粉酶) 3500×0.25%=8.75kg四、Glu量: 3500×0.25%=8.75kg五、液体糖化酶量:3500×0.25%=8.75kg六、糖化液产量: 1000×83%×1.11×1.08÷24%=4145.85 kg32%糖化液地相对密度为 1.09, 则糖化液体积:4145.85÷1.09=3803.53(L)七、加珍珠岩量:(糖化液地0.15%) 4145.85×0.15=6.22 kg八、渣产量:(含水70%废珍珠岩) 0.22÷(1-70%)=20.73 kg九、生产过程进入地蒸汽和洗水量:4145.85+20.73-3500-(8.75×3)-6.22=634.11 kg十、衡算结果:根据总物料衡算:日投入工业淀粉100.225t,制糖工序物料衡算汇总表如下:表二制糖工序物料衡算一览表第三节连续灭菌及发酵车间物料衡算一、发酵培养基数量:1、1000kg工业淀粉得到24%地糖化液4145.85kg,发酵初始糖浓度16.4g/dl,其数量为:4145.85×24%÷16.4%(w/v)=6067L16.4 g/dl地糖液相对密度为1.06:6067×1.06=6431 kg2、配料:按放罐发酵液体积计算:6067×16.4%÷16.0%=6291L玉M浆:6219×0.2%(w/v)=12.44 kg甘蔗糖蜜:6219×0.3%(w/v)=18.66 kg无机盐:(P、Mg、K等)6219×0.2%(w/v)=12.44 kg配料用水:配料时培养基地含糖量不低于19%,向24%地糖液中加水量为:4145.85×24%×19%-4145.85=1091 kg3、灭菌过程中加入蒸汽量及补水量:6431-4145.85-1091-12.44-18.66-12.44=1150.6 kg4、发酵0小时数量验算:4145.85+12.44+18.66+12.44+1091+1150.6=6431 kg其体积为6431÷1.06=6067L 与以上计算一致二、接种量:6219×1%(w/v)=62.2L62.2×1.06=66kg三、发酵过程加液氨量:为发酵液体积地2.8%6219×2.8%(w/v)=174 kg液氨地量0.62 kg/L ,174÷0.62=281 L四、加消泡剂地量:(为发酵液地0.05%)6219×0.05%(w/v)=3.1 kg消泡剂地相对密度为0.8,则体积 3.1÷0.8=3.9L五、发酵过程从排风带走地水分:进风25℃,相对湿度Φ=70%,水蒸气分压18mmHg,1mmHg=133.322Pa排风32 ,相对湿度D=100%,水蒸气分压27mmHg柱,进罐空气压力为1.5个大气压(表压)(1个大气压力为1.01325 10Pa)(表压)进出空气地含量差:X1-X2=(0.622*27*100%)/(1.5*760-27*100%)-(0.622*18*70%)/(25*760-18*70)=0.01(kg水/kg空气)通风比: 1:0.2带走水量:6219*0.2*60*36*1.157*0.001*0.01=31128其中32度时空气地密度为_kg/m3过程分析,放罐残留及其他损失52kg(6)发酵终止时地数量:6413+66+174+3.1-31-52=6591kg(7)衡量结晶总汇:年产25000吨商品msG,日投工业淀粉100.225吨.连续灭菌和发酵工序地物料衡算总汇列表:(1)进入系统离开系统100.225/1000工程1吨工业淀物t/d 工程1吨工业淀粉匹配物料kg t/d粉匹配物料kg t/d 料kg24%糖液4145.85415.518发酵液6591660.748玉M 浆 12.44 1.247 空气带走水量 31 3.508 甘蔗蜜 18.66 1.87 过程分析放罐 无机盐 12.44 1.247残留及其他损失 52 5.213 配料水 1091109.373 灭菌用蒸馏水 1150.6115.348接种量 66 6.617 液氨 174 17.444 消泡剂 3.1 0.311总计 6674 669.069 总计 6674 669.069第四节 提取工段地物料衡算采用冷冻等电结晶地工艺(按100kg 工业淀粉计算)(1)发酵液量6219升(6591千克)(2)加入98%硫酸量:6219*3.6%=224千克,98%硫酸地密度为 1.84,其体积为:224/1.84=122升 (3)Glu 产量:分离前:纯Glu 6219*8%(w/v)=497.52kg 分离后:纯Glu497.52*95%=472.64kg98%地Glu 472.64/98%=525.16kg (4)母液量: 母液含Glu0.3kg/dl 则(497.52-472.64)/0.3%=3554kg(5)分离洗水量:525.16*20%=105.03kg(6)母液回收过程用水及其酸碱地数量:8293-6219-122-105.03=1847l=1847kg(7)物料衡算结果进入系统工程1吨淀粉匹配物料kg t/d 工程1吨淀粉匹配物料kgt/d发酵液6591 660.748 98%Glu 525.16 52.634 硫酸224 22.456 母液8293 831.166 分离用洗水105.8 10.527回收加水量1847 185.162累计8767 878.673 累计8767 878.673第五节制取工序地物料衡算(1)数量:100%Glu472.61kg,90%Glu525.16kg(2)碳酸钠量:525.16*36.6%=192.21kg(3)加活性C 量:525.16*0.3%=1.58kg(4)中和液量:472.6*1.272/40%(w/v)=1503l1593*1.16=1743kg(5)中和加水量:1743-525.16-192.21-1.58=1024kg(6)产 mSG 量:100%mSG,精制收率92%,产100%mSG472.6*1.272*92%=553.1kg(7)产母液量:母液平均含mSG 25%(w/v)472.6*1.272*8%/25%=192 l母液地相对密度为1.1,则192*1.1=211.6(kg)(8)废液地活性炭数量:湿炭含水75%1.58/(1-0.75)=6.32kg(9)mSG调和洗水量:553.15*5%=27.65kg(10)中和脱色及结晶蒸发出地水量:1743+27.65-211.6-6.32-553.1=991.63kg(11)物料衡算汇总:进入系统离开系统工程1吨工业淀粉匹配物料kg t/d 工程1吨淀粉匹配物料kg t/d90%Glu 25.16 52.634 100%mSG 553.1 55.434 碳酸钠192.21 19.264 母液211.6 21.208 活性C 1.58 0.158 废C 6.32 0.633 中和加水1024 102.63 蒸发水量999.6 100.185 分离洗水27.65 2.771累计1770.6 177.458 累计1770.6 177.458味精生产过程物料汇总以投料1000千克工业淀粉为基准,所地各段中间物料及其匹配辅料标准以衡算结果汇总于下图:按年产25000吨MSG衡算结果(以日产量为基准)汇总于下:第六节提取车间热量衡算一.冷冻结晶冷量计算(设等点中和液终温是50)(1)等电点罐420m3,装液量315 m3,相对密度为:1.06,有30℃降至5℃,降温速度℃/h,其冷量为:420×103×1.06×2×3.97=2.7×106(kj/h)其中3.97位发酵液比热(kj/kg水)中和时H2SO4对水地溶解热为92 kj /mol,6h加98% H2SO45100 kj,其溶解热为:5100×98%÷6÷98×92=782(kj /h)可忽略不计.(2)2.7×106/3600=750(kw)发酵罐500 m3,装料系数0.7,每罐产100%MSG量:500×0.7×8%×95%×1.272=28.08(t)_年产2.5万吨商品味精,日产100%MSG72.891t,发酵操作时间48h(其中发酵时间38h),需发酵罐台数:72.891÷28.08×48+38=5.91取6台每日投(放)料罐次: 72.891÷28.08=2.60次日运转: 2.60×38÷48=2.05罐每天运转3.43罐,总制冷量: 2.05×750=1537.5(kw)第七节谷氨酸钠溶液浓缩结晶过程热量衡算年产2.5万吨商品味精,日产100%MSG72.891t,选用30 m3机械搅拌内热式浓缩操作,周期为24h,其中付诸实践为4h,每罐产100%MSG15t,需结晶罐台数:72.891÷(15-2.0)=5.61台,取6台一. 热平衡与计算加热蒸汽量每罐投入40g/dl地中和脱色液32m3,流加30g/dl母液32m3过程中加入6 m3,在70℃下真空蒸发结晶,浓缩3h,育晶17h,放料数量25 m31.热量衡算(1).进料带入热量:进料温度35℃,比热为3.5kj/kg水Q采料=(32×1.16+32×1.13)×3.5×3.5×103=8.92×106(kj)(2).加水带入热量:MSG比热熔1.67 kj/kg水Q夹水=6×4.18×35×103=8.8×105(kj)(3).晶种带入热量:Q夹晶=2000×1.67×20=6.7×104(kj)(4).结晶放热:MSG结晶热为12.7kj/molQ晶热=(15-2.0)×106×12.7÷187=8.9×105(kj)(5).母液带走热量:分离牧业15m3,折算为相对密度为 1.26时为19t,比热为2.83kj/kg水Q =19×103×2.83×70=3.8×106(kj)(6).随二次蒸汽带走热量:Q二蒸=(32+32+6-25)×2.626×106=1.18×108(kj)其中25为放罐时地结晶液量(7).随结晶MSG带走地热量Q出晶=15×103×1.67×70=1.75×106(kj)需供外热:Q =(Q母液+Q二蒸+Q出晶)-(Q采料+Q采水+Q采晶+Q晶热)=(3.8×106+1.18×108+1.75×106)-(8.92×106+8.8×105+6.1×104+8.9×105)=1.13×108(kj)2.计算蒸汽用量:每罐次用量,热损失按5%计算D =1.13×108÷(27.7-535)×0.95=54513(kj/罐)每罐浓缩液结晶时间为20h,每小时耗蒸汽高峰量:54513÷20=2725.65(kg/h)5.61台同时运转高峰蒸汽用量为:5.61×2725.65=15290.90(kg/h)每日用蒸汽量:54513×5.61=305817.93(kg/d)≈306(t/h)二. 冷却二次蒸汽所消耗冷却水量:1.二次蒸汽数量:即水蒸发速度:(32+32+6-25)÷20=2.25m3(水/h)2.冷却用水量:使用循环水,进口温度30℃,出口为45℃,70℃水蒸气焓为2626.8kj/kg.需冷却水量W =2.25×103×(2626.8-45×4.18)÷(45-30)÷418=8.75×104kg/h=87.5(t/h)6台罐高峰用水量:87.5×6=525(t/h)含日用水量:87.5×20×60×5.61=9817.5(t/d)平均用水量:9817.5÷24=409(t)为保证循环水不高于30℃需加二次水5000t/d第八节干燥过程地热量衡算分离之后湿MSG含水20%干燥后到10.2%,加热空气为18℃,相对湿度为70%,通过加热器使空气升至80℃,从干燥器出来地空气为60℃,年产2.5万吨商品MSG,日产湿味精78.125t,二班生产,即:78.125÷16=4.883(t/h)(78.125×2%-72891×0.2%)÷16=88.545(kg/h)18空气湿含量为70%,XO=0.009kg/kg干空气,IO=41.8kj/kg干空气加热80,I1=104.5kj/kg干空气用公式=(I2-I1)÷(X2-X1)=Q物料+Q损失-Q初温式中:空气经干燥后地热量变化(kj/kg)I1:出空气加热器地空气热焓I2:出干燥器地空气热焓IO:冷空气热焓XO:空气湿含量(kj/kg干空气)X1:进干燥器地空气湿含量X2:出干燥器地空气湿含量Q初温:物料初始湿度时地物料中每1kg水地热焓量(kj/kg)Q物料:加热物料所耗热量(kj/kg,k)Q损失:损失热量通常为有效热量地10%Q物料=8.4×103×(60-18)×0.4×4.18÷34=17349(kj/kg水) =18×4.18-17349-1987.9=-19261.7设X2=0.0108I 2=I1+(X2-X1)=104.5+(-19261.7)×(0.0108-0.009)=69.8(kj/kg干空气)空气耗量为: 88.545/(0.0108-0.009)=49192(kg/h)80时空气地比容:83m3/kg实际耗空气量为: 49192×0.83=40829m3/h耗用蒸汽量(D):使用0.1MPa(表压)蒸汽加热,热损失按15%计算D=(104.5-41.8)×49192×1.15÷(2706.7-504.7)=1610.80kg/h每日用蒸汽量: 1610.80×16+25772.80(kg/d)平均每小时用蒸汽量:25772.80÷24=1073.87(kg/h)第四章精制提取车间设备设计选型第一节等电罐一制造与防腐材料:选用钢板(5~6mm)贴玻璃布,用环氧树脂作粘合剂,此法耐腐蚀性好,但造价略高.二罐地数量和容积:1,罐数:等电点罐一般与发酵罐配合使用,即一个发酵罐地发酵液由泵送到一个等电点罐进行提取n等电点罐=n发酵罐=6台(计算见热量衡算部分)2,罐地容积:VG =(1.2~1.3)VF其中 VG----等电点罐容积VF-----发酵罐地容积取系数为1.2,则VG =1.2VF-1.2*500=600m33,罐地尺寸比例:H/D=1.2~1.5,取H/D=1.3VG=Л/4D2 H=Л/4D3*1.3=1.02D3故有D=(VG/1.02)1/3 =(600/1.02)1/3 =8.4m4,冷却面积计算:设发酵液密度ρ为 1.06,由30℃下降至5℃降温速度为2℃/h,总制冷量为2165KW,共2台,则每台1056KW按经验取K=4.187*350〔KJ/(m2*H*K)〕Δt m =(Δt1-Δt2)/ln(Δt1/Δt2)设酵液由30℃降至5℃,冷冻盐水由-5℃至2℃(先用冷水冷却后用冰盐水冷却)Δt m ={〔30-(-5)〕-(5-2)}/{ln[30-(-5)]/(20-2)}=32/ln (35/18)=48.1℃传热面积为:F=θ/(K*Δtm)=3600*1056/[(4.187*350)*48.1]=53.95m2考虑罐地散冷损失,取F=54 m2,冷却管选用57*3.5mm不锈钢管,管长L=F/(Лdcp)=54/{3.14*[57+157-2*3.5]/(1000*2)}=321.6m 设蛇管圈直径为8m,则圈数为:n=L/(Лd)=321.6/(3.14*8)=13 5,搅拌功率计算:取平直双浆搅拌器,由查表《发酵工厂设备》可得:A=6.8, m=0.2, 取转数为30r/min,d=0.65D=0.65*8.4=5.46m 取发酵液粘度为0.86cp,代入式子得:N运转={6.8/〔(30/60*5.462*1060)/0.86*10-3〕}*1060*5.465*(30/60)3=(6.8/28.37)*642953=154KWN启动=(2~3)N运转(308~462)KW取462KW取N电机=1.12 N启动=517KW第二节离子交换柱一,离子交换柱材料:采用4mm不锈钢材料.二,离子交换柱地有关计算:1树脂体积计算:选用胺型离子交换树脂,交换等量干树脂为 1.2公斤当量/m3树脂湿树脂为1.90mg当量/g.V树脂=V(GA %/147)/N树脂其中,V-上柱地母液量GA %-母液中GA地百分含量根据经验值,上柱量在70~150L/min之间,取120L/min则V=120*24*60/1000=172.8m3/d等电结晶后母液中含GA0.7%V树脂=(1000*172.8/2)*0.7%/147/1.2=3.43=4 m3 /周期设树脂地湿密度ρ为0.8t/ m3(0.75~0.85t/ m3),则树脂地重量为W=0.8V树脂=4*0.8=3.2t2树脂柱数目计算:设支离子交换柱装树脂为1 m3,则离子交换柱数量为:n=每次交换所需树脂体积/每柱装树脂量+1=4/1+1=5支(1为备用柱数)3树脂柱高度计算:取树脂层高度H=2D,柱地高径比为H/D=4:1有V=Л/4*D2* H=Л/4*D2*2D=Л/2D3故D=(2V/Л)1/3=(2*1/3.14) 1/3=0.86m取0.9m树脂层高度H=2D=1.8mH/D=4:1,故H=4D=4*0.9=3.6m取下封头为锥形,高度为0.3m,上部不设封头,则柱地总高度为H总=H+h=3.6+0.3=3.9m4洗脱剂用量WW=V*n,经验上n取2.5~3 取n=2.8W=2.8*1=2.8m3采用10%NH3·H2O洗脱,每柱需2.8 m3.第三节中和脱色罐地选取一,体积地计算:年产味精25000t,工作日320天,则日产MSG=25000/320=78.125t,中和液MSG含量40%,则中和液V=78.125/40%=195.313 m3.设用3班进行中和,则每班中和地体积:V班=195.313/3=65.104 m3取中和桶地容积系数为0.60,则中和桶V桶=65.104/0.60=108.507 m3 =109 m3.二高径比计算:取中和桶地形状为圆柱圆锥形,选D/H=1:1 ,h=0.2DV=Л/4*D2* H+1/3*Л/4*D2* h=Л/4*D3+Л/12*D2*0.2D=4/15D3D=(15/4V )1/3=(15/4*109) 1/3=7.42m圆柱高H=D=7.42m,圆锥高h=0.2D=1.48m第三节助晶槽贮晶槽是供结晶罐放出地结晶液去分离地中间贮存设备,由生产要求,选择VN=30m3地贮晶槽,各参考数如下:槽宽B=2200mm,槽体高H1=2200mm,中心高H2=1500mm,总高H=2860mm,总长L=8000mm,换热面积A=49 m3. 转速n=8r/min,电机功率P=11KW.第五章重点车间设计第一节车间布置第二节工艺操作要点、生产安排第六章其它部分一,用水量1,配料用水量:日投工业淀粉100.225t,加水比1:2.5用水量:100.225*2.5=250.563t因连续生产,平均水量=高峰水量=250.56/24=10.4(t/h)新鲜水2,液化冷却用水量:将物料由100℃→65℃,使用二次冷却水,进口20℃,出口58.7℃100.225/24=4.176t,加水为1:25,粉浆量4176*3.5=14616kg/h液化蒸汽用量:D=14616*3.53*(90-20)/(2738-377)=1529.7(kg/h)灭菌用蒸汽量:D灭=14616*3.53*(100-90)/(2738-419)=222.3(kg/h)所以冷却水量:W=(14616+1529.7+222.3)*3.53*(100-65)/〔(58.7-20)*4.18〕=12.50t/h=300t/d3,糖化冷却水用量:(使用二次用水)G化液由85℃→60℃,二次用水进口20℃,出口45℃平均用水量:(14616+1529.7+222.3)*3.53*(85℃-60℃)/〔(45℃-20℃)*4.18〕=13.8t/h要求2h内把75m3G液冷却至40℃,高峰用水:..................2,提取工序用水量:用于GA分离及冲洗水,每日用量195t/d,平均量8.15t/h高峰量:(80t/h),使用新鲜水.3,中和脱色工序用水量(1)配料用水(使用回收地结晶罐蒸汽冷凝水)第六章其它部分第一节水汽用量一,水用量1,糖化工序用水量(1)配料用水量:日投工业淀粉100.225t,加水比1:2.5用水量为:100.225*2.5=250.5t/d(2)液化液冷却用水量:平均量=高峰量=19.7t/h,=472t/d(二次水)(3)糖液冷却用水量(使用二次水):每日用水冷却量:540t/h平均量:540/24=22.5t/h,高峰量:86.25t/h。

2020年(工艺技术)年产万吨味精工厂初步工艺设计

2020年(工艺技术)年产万吨味精工厂初步工艺设计

沈阳化工大学本科毕业设计题目:年产2.2万吨味精工厂初步工艺设计院系:环境与生物工程学院专业:生物工程班级:生物0702班学生姓名:吴皓指导教师:王红艳论文提交日期:2011 年6月24 日论文答辩日期:2011年6月29 日毕业设计(论文)任务书生物工程专业07-02班学生:吴皓毕业设计(论文)题目:年产2.2万吨味精工厂初步工艺设计。

毕业设计(论文)内容:味精生产工艺流程的物料衡算、热量衡算、水衡算以及味精生产主要工艺流程工序的设计、设计味精生产的主要设备(发酵罐)的设计。

毕业设计(论文)专题部分:味精生产的工艺设计和发酵罐的设计。

起止时间:2011年3月---2011年6月指导教师:签字年月日教研主任:签字年月日学院院长:签字年月日年产2.2万吨味精工厂初步工艺设计摘要本设计是年产2万吨味精工艺设计;以玉米淀粉为原料水解生成葡萄糖、利用谷氨酸生产细菌进行碳代谢、生物合成谷氨酸、谷氨酸与碱作用生成谷氨酸一钠即味精为主体工艺,进行物料衡算、热量衡算、水衡算和发酵罐选型计算,并绘制了发酵罐结构图,发酵流程图,全厂平面布置图糖化流程图,提取与精制流程图.设计的结果和目的主要是通过工艺流程及相关设备进行计算,设计出一个具有高产量,低能耗,污染小的现代化味精生产工厂。

本次设计是通过对味精生产的四个工艺流程的物料、热量和水进行了衡算和发酵罐选型计算,得到可行的数据,并且据此选取了合适的发酵生产设备以及合理的工艺流程进行味精的工厂生产,从而提高味精生产的质量和产量,降低了生产的成本,既为味精的工厂化生产的进步提供合理的理论依据,又为环境保护和可持续发展提供重要的数据支持,因此此次味精工厂初步工艺设计是较为必要的.通过一系列计算,我们得出了此次毕业设计所需的重要数据:玉米淀粉为原料日产100% MSG 68.75吨,每日消耗的86%的玉米淀粉质量为102.12吨,日运转糖化罐2罐,投放料2罐次。

本次设计采用7台公称容积为200立方米的机械搅拌式发酵罐进行发酵,日运转6台。

味精课程设计任务书

味精课程设计任务书
[2]于信令,王宏龄.味精工业手册[M].北京:中国轻工业出版社,2009
[3]高孔荣.生物工程设备[M].北京:中国轻工业出版社,1998
[4]吴思芳.生物工厂设计概论[M].北京:中国轻工业出版社,2007
[5]王福荣.生物工业分析与检验[M].北京:中国轻工业出版社,2006
[6]姚玉英.化工原理[M].北京:天津大学出版社,1999
张云志
青海省西宁市年产16.5万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备等电罐
于得水
山东省潍坊市年产7.5万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备糖化罐
王靖宇
山东省德州市年产1万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备糖化罐
张喆
山西省霍州市年产19万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备等电罐
潘思蒙
吉林省吉林市年产3.5万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备等电罐
范紫藤
山西省吕梁市年产19.5万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备液化罐
姬巧文
陕西省渭南市年产8万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备发酵罐
于云齐
吉林省蛟河市年产7万吨味精糖化、发酵、提取工序工艺与设备设计,重点设备糖化罐
A树立正确的设计指导思想,严谨负责、实事求是、刻苦钻研、勇于探索的作风和学风。
B认真查阅资料,并根据所给资料,按照任务书中提出的要求按时独立完成,不得延误,不得抄袭他人成果。
C遵守课程设计时间安排。学生要发挥自主学习的能力,充分利用时间,安排好课程设计进程,并在设计过程中不断检查计划完成情况,及时的向教师汇报。
D树立科学、经济的设计思想,兼顾安全、劳保、环保等要求。

(完整版)年产2.5万吨味精生产工艺设计

(完整版)年产2.5万吨味精生产工艺设计

目录1前言 (2)1.1发展简介 (2)1.2味精的性质 (2)1.3味精的用途 (3)2设计任务书 (3)2.1生产的方法 (3)2.2指标与数据 (3)2.3 设计任务 (4)2.4设计要求 (4)3厂址选择方案 (4)3.1总平面设计思路 (5)4总平面图 (5)5生产工艺流程 (6)5.1淀粉的糖化 (7)5.2种子的扩大培养及谷氨酸的发酵 (7)5.3 谷氨酸的提取 (8)5.4精制 (8)6. 物料衡算及其设备选型 (8)6.1物料数据 (8)6.2热量衡算 (11)6.3水平衡 (12)6.4设备设计与选型 (13)7参考文献 (21)1前言味精,学名谷氨酸钠。

调味料的一种,主要成分为谷氨酸钠,主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。

味精是指以粮食为原料经发酵提纯的谷氨酸钠结晶。

本设计是生产纯度为99%味精设计,以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取等方法生产。

本设计对全厂进行了物料衡算、热量平衡计算、水平衡计算、耗冷量计算、无菌压缩空气消耗量计算。

对味精发酵车间进行工艺流程的设计和发酵罐的设计与选型计算。

其发展大致有三个阶段:第一阶段:1866年德国人里德豪森博士从面筋中分离到氨基酸,他们称谷氨酸,根据原料定名为麸酸或谷氨酸(因为面筋是从小麦里提取出来的)。

1908年,池田菊苗试验,从海带中分离到L—谷氨酸结晶体,这个结晶体和从蛋白质水解得到的L—谷氨酸是同样的物质,而且都是有鲜味的。

第二阶段:以面筋或大豆粕为原料通过用酸水解的方法生产味精,在1965年以前是用这种方法生产的。

这个方法消耗大,成本高,劳动强度大,对设备要求高,需耐酸设备。

第三阶段:随着科学的进步以及生物技术的发展,使味精生产发生了革命性的变化。

自1965年以后我国味精厂都采用以粮食为原料(大米、甘薯淀粉)、提取、精制而得到符合国家标准的谷氨酸钠,为市场上增加了一种安全又富有营养的调味品用了它以后使菜肴更加鲜美可口1.1味精的性质(1)性质主要成分为谷氨酸钠。

发酵工厂设计

发酵工厂设计

年产2万吨味精厂糖化工段的工艺设计[摘要]:本设计是年产2万吨味精工艺设计;以玉米淀粉为原料,采用双酶法进行糖化生产,谷氨酸产品纯度达到99%。

本设计从全厂工艺流程、物料衡算、主要设备的计算及造型、总平面布置等几个方面对糖化工段进行设计。

[关键词]:味精;糖化;工艺设计;厂址;环境保护;物料衡算;设备;计算。

一、项目建设的背景和意义味精是人们熟悉的鲜味剂,是L—谷氨酸单钠盐(Mono sodium glutamate)的一水化合物(HOOC-CH2CH(NH2)-COONa²H20),具有旋光性,有D—型和L—型两种光学异构体。

味精具有很强的鲜味(阈值为0. 03%),现已成为人们普遍采用的鲜味剂,其消费量在国内外均呈上升趋势。

1987年3月,联合国粮农组织和世界卫生组织食品添加剂专家联合委员会第十九次会议,宣布取消对味精的食用限量,再次确认为一种安全可靠的食品添加剂[1]。

味精主要用于提高菜肴及各种食物的食用鲜味,增强人们的食欲。

作为食物的可溶性成分溶于食物溶液或人的唾液中,从而刺激舌头的味蕾,通过味蕾中的味觉中枢神经传到大脑的味觉中枢,经大脑分析后产生菜食味道鲜美的味觉。

味精进入人体后,遇到胃酸会很快转化为易被人体吸收的谷氨酸,谷氨酸经消化道吸收构成蛋白质,人脑在工作时,所需要的能量主要依靠氨基酸来提供,所消耗的氨基酸中,谷氨酸所占比例最大。

在参与人体脱氨基、解氨、脱羧反应中起着重要作用。

除此之外,经研究发现,它能与血氨结合形成对人体无害的氨酰胺,谷氨酰胺的合成过程不仅是解氨毒的重要方式,也是氨的运输和储存形式。

可用于肝昏迷回复和严重且功能不全,具有调节人体酸碱平衡的作用,酸中毒,对治疗神经衰弱和防止癫病也有一定的疗效。

二、产品需求初步预测2001年,味精的全球销售达到150万吨,而我国2001年味精产量为91.29万吨;工业总产值达到137.08亿元;销售收入为94.38亿元。

近几年来,随着我国人民生活水平的提高和膳食结构的改变,以及对味精产品认识的普遍提高,味精的需求量不断增大,人均消费水平逐年提高,华东、中南、东南、西南、华南地区人均年消费量已上升为1.0kg左右。

年产2.2万吨味精工厂初步工艺设计本科毕业设计论文

年产2.2万吨味精工厂初步工艺设计本科毕业设计论文

本科毕业设计题目:年产2.2万吨味精工厂初步工艺设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

(完整版)年产2.5万吨味精生产工艺设计

(完整版)年产2.5万吨味精生产工艺设计

(完整版)年产2.5万吨味精⽣产⼯艺设计⽬录1前⾔ (2)1.1发展简介 (2)1.2味精的性质 (2)1.3味精的⽤途 (3)2设计任务书 (3)2.1⽣产的⽅法 (3)2.2指标与数据 (3)2.3 设计任务 (4)2.4设计要求 (4)3⼚址选择⽅案 (4)3.1总平⾯设计思路 (5)4总平⾯图 (5)5⽣产⼯艺流程 (6)5.1淀粉的糖化 (7)5.2种⼦的扩⼤培养及⾕氨酸的发酵 (7)5.3 ⾕氨酸的提取 (8)5.4精制 (8)6. 物料衡算及其设备选型 (8)6.1物料数据 (8)6.2热量衡算 (11)6.3⽔平衡 (12)6.4设备设计与选型 (13)7参考⽂献 (21)1前⾔味精,学名⾕氨酸钠。

调味料的⼀种,主要成分为⾕氨酸钠,主要作⽤是增加⾷品的鲜味,在中国菜⾥⽤的最多,也可⽤于汤和调味汁。

味精是指以粮⾷为原料经发酵提纯的⾕氨酸钠结晶。

本设计是⽣产纯度为99%味精设计,以⼯业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取等⽅法⽣产。

本设计对全⼚进⾏了物料衡算、热量平衡计算、⽔平衡计算、耗冷量计算、⽆菌压缩空⽓消耗量计算。

对味精发酵车间进⾏⼯艺流程的设计和发酵罐的设计与选型计算。

其发展⼤致有三个阶段:第⼀阶段:1866年德国⼈⾥德豪森博⼠从⾯筋中分离到氨基酸,他们称⾕氨酸,根据原料定名为麸酸或⾕氨酸(因为⾯筋是从⼩麦⾥提取出来的)。

1908年,池⽥菊苗试验,从海带中分离到L—⾕氨酸结晶体,这个结晶体和从蛋⽩质⽔解得到的L—⾕氨酸是同样的物质,⽽且都是有鲜味的。

第⼆阶段:以⾯筋或⼤⾖粕为原料通过⽤酸⽔解的⽅法⽣产味精,在1965年以前是⽤这种⽅法⽣产的。

这个⽅法消耗⼤,成本⾼,劳动强度⼤,对设备要求⾼,需耐酸设备。

第三阶段:随着科学的进步以及⽣物技术的发展,使味精⽣产发⽣了⾰命性的变化。

⾃1965年以后我国味精⼚都采⽤以粮⾷为原料(⼤⽶、⽢薯淀粉)、提取、精制⽽得到符合国家标准的⾕氨酸钠,为市场上增加了⼀种安全⼜富有营养的调味品⽤了它以后使菜肴更加鲜美可⼝1.1味精的性质(1)性质主要成分为⾕氨酸钠。

年产20000吨味精厂(发酵工段)设计

年产20000吨味精厂(发酵工段)设计

目录摘要 (III)ABSTRACT (IV)1、前言 (1)2、谷氨酸发酵的工艺流程 (3)2.1谷氨酸生产菌种 (3)2.2生产原料 (3)2.3培养基制备 (3)2.3.1碳源 (3)2.3.2氮源 (3)2.3.3生物素 (4)2.4培养基 (4)2.5菌种的保藏 (5)2.6灭菌的方法 (6)2.7菌种如何选育 (6)2.8种子的扩大培养 (7)2.9谷氨酸的发酵 (7)3.0谷氨酸的分离 (7)3、谷氨酸发酵的工艺控制 (8)3.1环境控制 (8)3.1.1pH (8)3.1.2温度 (8)3.1.3通风量 (8)3.1.4泡沫 (8)3.1.5染菌的防治和染菌后的处理方法 (8)3.2.细胞膜渗透性控制 (9)3.3发酵终点的判断 (10)4、发酵罐及种子罐的设计及选型 (10)4.1味精工厂发酵车间的物料衡算 (10)4.1.1工艺技术指标及基础数据 (10)4.1.2谷氨酸发酵车间的物料衡算 (11)4.13 20000t/a味精厂发酵车间的物料衡算 (13)4.2热量衡算 (14)4.2.1液化工序热量衡算 (14)4.2.2连续灭菌和发酵工序热量衡 (15)4.3发酵罐的选型 (17)4.3.1发酵罐 (17)4.3.2种子罐 (25)4.3.3空气分过滤器 (31)4.3.4味精厂发酵车间设备一览表 (32)谢辞 (33)5、参考文献 (34)摘要众所周知,日常所用的调味料味精就是L-谷氨酸单钠盐(monosodiuo gluamate,MsG)。

从1909年日本发明并工业化生产味情以后,几经变迁,已经发展成为以谷氨酸发酵为主体的世界性的氨基酸发酵工业。

1956年从日本开始,以后由面二筋豆粕和废糖蜜浓缩物水解的方向,转到以糖质为原料的细菌发酵法。

生产味精谷氨酸类氨基酸的发酵,区别于传统酿酒和抗菌素发酵,是一种以改变微生物代谢的代谢控制发酵。

本文则就以谷氨酸发酵生产过程、谷氨酸发酵机制以及研究动向等方面做研究。

年产2万吨味精生产工艺设计

年产2万吨味精生产工艺设计

目录摘要 (1)前言 (2)一.工艺方法 (4)1.1原料的预处理和淀粉水解制备 (4)1.2谷氨酸发酵 (4)1.3种子扩大培养与谷氨酸的提取 (5)1.4谷氨酸制取味精及味精成品加工 (5)二.工艺计算 (6)2.1. 味精工厂工艺技术指标 (6)2.1.1 主要经济技术指标 (7)2.1.2主要原材料质量指标 (7)2.1.3二级种子培养基 (7)2.1.4发酵培养基 (7)2.1.5接种量 (7)2.2 谷氨酸发酵车间的物料衡算 (7)2.3发酵车间的物料衡算结果 (8)三.味精生产过程中的污水处理 (8)3.1 污水处理工艺总流程 (9)四.味精厂发酵车间设备一览表 (9)结束语 (10)参考文献 (10)摘要本设计是年产两万吨味精工艺设计,以薯干原料及淀粉水解成葡萄糖。

利用谷氨酸生产菌进行碳代谢、生物生成谷氨酸、谷氨酸与碱作用生成谷氨酸钠,即味精主体工艺。

再进行工艺计算、物料衡算、热量衡算、设备选型,并绘制了等电点罐结构图,发酵工序带控制点图,糖化工序图,工厂平面布置图。

生产工艺流程设计是工艺设计的基础,所涉及面很广,是味精工厂设计的核心和重要部分。

在设计中必须做到技术先进、经济合理、成熟可靠;在保证产品质量条件下,力求工艺流程简化,生产管理方便;把各个生产过程按一定顺序、要求组合起来,编制成工艺流程图等来完成工艺流程设计。

因为工艺流程设计的质量直接决定车间的生产产品质量、生产能力、操作条件、安全生产、三废治理、经济效益等一系列根本性问题。

关键词:味精、发酵、工艺设计前言本设计是年产两万吨味精工艺设计。

通过发酵法生产及等电点—离子交换法提取工艺生产谷氨酸钠。

味精即谷氨酸钠,是L-谷氨酸的单钠盐,又称味素,学名α-氨基戊二酸钠,含有一分钠盐。

是一种无颜色无气味的晶体,在232℃时解体熔化。

谷氨酸钠的水溶性很好,在100毫升水中可以溶解74克谷氨酸钠。

味精的主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年产2万吨味精工艺设计XXX(陕西理工学院化学学院化工专业061班,陕西汉中723001)指导教师:XXX[摘要]:本设计是年产2万吨味精工艺设计;以玉米淀粉为原料水解生成葡萄糖、利用谷氨酸生产菌进行碳代谢、生物合成谷氨酸、谷氨酸与碱作用生成谷氨酸一钠即味精为主体工艺,进行工艺计算、物料衡算、热量衡算、设备选型,并绘制了等电罐结构图,发酵工序带控制点图,糖化工序图,工厂平面布置图。

[关键词]:味精;发酵;工艺设计Annual production capacity of 20000 tonsof monosodium glutamate process designWANG Xiao-fei(Grade06, Class 1, Major of Chemical Engineering and Technique College of Chemical and environment science of Shaanxi University of Technology,Hanzhong 723001,Shaanxi)Tutor: LI Zhi-zhouABSTRACT:The design is an annual output of 20,000 tons of monosodium glutamate process design; To hydrolysis of corn starch as raw materials to generate glucose, glutamic acid producing bacteria to use carbon metabolism, biosynthesis of glutamic acid, glutamic acid and alkali to form a sodium glutamate or MSG is the main process,*for process calculation, material balance calculation,heat balance calculation, equipment selection,and mapped the structure of isoelectric tank, fermentation processes with control point map, the factory floor plan, saccharification process map.Key Words:MSG, Fermentation, Process Design目录摘要 (I)ABSTRACT (II)1.总论 (1)1.1项目依据 (1)1.1.1课题背景及味精概述 (1)1.1.2味精产业概况 (1)1.1.3味精需求现状 (2)1.2设计原则 (2)1.3设计任务 (3)1.4厂制概况 (3)1.4.1工厂组织 (3)1.4.2工作制度 (3)1.4.3人员配备 (3)1.5厂址选择 (3)1.5.1 建厂依据 (3)1.5.2 指导方针 (3)1.5.3 选厂经过 (4)1.6环境保护剂废物处理 (4)2.工艺设计 (6)2.1工艺流程设计 (6)2.1.1 工艺流程设计的重要性 (6)2.1.2 工艺流程设计的原则 (6)2.1.3 工艺流程设计 (6)2.2玉米制备淀粉工艺 (7)2.2.1湿法玉米淀粉制备工艺过程 (7)2.2.2湿法玉米淀粉生产的主要设备 (8)2.2.3玉米淀粉生产工艺技术指标 (8)2.3淀粉糖化工艺 (9)2.3.1概述 (9)2.3.2一次喷射双酶法制糖工艺流程 (9)2.3.3一次喷射双酶法制糖工艺控制要点 (9)2.4发酵工艺 (10)2.5谷氨酸提取工艺 (10)2.5.1概述 (10)2.5.2谷氨酸发酵液的特征和主要成分 (10)2.5.3等电点—离子交换法提取谷氨酸 (11)2.6谷氨酸制造味精工艺 (12)3.物料衡算 (13)3.1生产过程的总物料衡算 (13)3.1.2计算指标(以淀粉质为原料) (13)3.1.3物料衡算 (13)3.1.4总物料衡算结果 (14)3.2制糖工序的物料衡算 (14)3.3发酵工序的物料衡算 (15)3.4谷氨酸提取车间物料衡算 (17)3.4.1中和等电工序 (17)3.4.2离交工序 (18)3.4.3提取车间物料衡算验算 (18)3.5精制车间物料衡算 (19)3.5.1中和脱色工序物料衡算 (19)3.5.2精制(结晶)工序物料衡算 (20)3.6精制生产过程物料衡算图 (20)4.热量衡算 (23)4.1液化工序热量衡算 (23)4.1.1液化加热用蒸汽量 (23)4.1.2液化液冷却用水量 (23)4.2糖化工序热平衡说明 (23)4.3连续灭菌和发酵工序热量衡算 (23)4.3.1培养液连续灭菌用蒸汽量 (23)4.3.2培养液冷却用水量 (24)4.3.3发酵罐空罐灭菌用蒸汽量 (24)4.3.4发酵过程产生的热量及冷却用水量 (25)4.4谷氨酸提取工序冷量衡算 (25)4.5谷氨酸钠溶液浓缩结晶过程的热量衡算 (25)4.5.1热平衡与计算蒸汽加热量 (26)4.5.2二次蒸汽冷凝所消耗循环冷却水量 (26)4.6干燥过程的热量衡算 (27)4.7溴化锂制冷机所用蒸汽量 (28)4.8生产过程耗用蒸汽衡算汇总 (28)5.水平衡 (29)5.1糖化工序用水量 (29)5.2发酵配料及培养基灭菌后冷却用水量 (29)5.3发酵过程冷却用水量 (29)5.4谷氨酸提取工序冷却用水量 (29)5.5中和脱色工序用水量 (29)5.6精制工序用水量 (29)5.7动力工序用水量 (29)5.8用水量汇总 (29)6.主要设备选型及计算 (31)6.1.1发酵罐 (31)6.1.2种子罐 (33)6.1.3离子交换柱 (34)6.1.4尿素罐 (36)6.1.5等电罐 (36)6.1.6油罐 (37)6.2泵的选择 (37)6.3空气系统选择 (37)6.3.1流程选择的原则 (37)6.3.2空气净化设备流程 (37)6.3.3具体设备要求 (37)6.4容器、槽的选择 (39)6.5其他设备的选择 (39)6.6辅助设备选择 (40)7.全厂总平面设计 ........................................................ 错误!未定义书签。

7.1总平面设计任务和步骤 (44)7.1.1总平面设计任务 (44)7.1.2工厂组织 (44)7.2总平面布置评述 (44)7.3工厂布置原则 (45)7.4竖向布置原则 (45)7.5设备布置的原则 (46)7.6厂区管线布置原则 (46)8.设计结果 (47)8.1设计成果 (47)8.2关键设备一览图 (47)总结 (48)致谢 (49)参考文献 (50)附录 (51)1.总论1.1项目依据1.1.1课题背景及味精概述(1)味精生产方法概述味精生产方法一般有水解法、合成法、从甜菜废糖蜜中提取及发酵法等。

最早的生产方法是蛋白质水解法。

此方法要耗用大量的含蛋白质的粮食,而且原料来源少,价格高,收率较低,生产周期长,浓盐酸耗最大,设备腐蚀严重,劳动强度大,劳动条件差,成本高;但质量好,收率较稳定。

甜菜废糖蜜系综合利用,但原料来源有地区局限性,同时设备庞大,生产工艺复杂,产品是L—型。

目前绝大部分生产方法已用发酵法代替。

合成法优点不用粮食,采用石油废气,但生产过程中需用高压(200大气压)、高温(120℃以上)、有毒(氯氰酸)、易燃(溶剂)。

设备投资大(比发酵法高1倍以上),生产工艺复杂、危险等。

半成品消旋谷氨酸还要进行分割,年产量少于5000t者不经济。

故生产上很少使用。

当今味精生产的主要方法为发酵法,此方法不仅原料来源广阔,可利用各种淀粉或野生物淀粉、甘蔗、糖蜜、甜菜糖蜜、石油化工产品醋酸、乙醇等。

而且设备一般,腐蚀性低,劳动强度小,可自动化、连续化生产、收率高、成本比水解法低30~50%等优点。

因此,发酵法是目前生产味精的主要方法[1]。

(2)味精的性质:味精即谷氨酸钠,是L-谷氨酸的单钠盐,又称味素,学名α-氨基戊二酸钠,含有一分子的结晶水,分子式为NaC5H8O4N·H2O,分子量为187.13。

分子结构如下:味精和谷氨酸都有旋光性,有D-型及L-型二种光学异构体。

当D-型与L-型相等时,发生消旋,称为DL-型。

在动植物体中存在的谷氨酸都是L-型,用蛋白质水解法及发酵法生产的谷氨酸钠也都是L-型,而用化学合成法生产的谷氨酸为DL-型。

味精的主要物理性质:(1)性状味精是无色至白色的柱状晶体或白色的结晶性粉末;(2)结晶系斜方晶系,柱状八面体。

轴角α=β=γ=90o,轴长a≠b≠c;(3)密度粒子相对密度1.635,视相对密度0.80~0.83;(4)溶解度及其他不溶于酒精、乙醚及丙酮等有机溶剂,易溶干水,比重为1.65;熔点为195℃;在120℃以上逐渐失去分子中的结晶水;pH为7.0。

味精的主要化学性质是:(1)与酸作用,生成谷氨酸或谷氨酸盐酸盐;(2)与碱作用,生成谷氨酸二钠盐,加酸后又生成单钠盐;(3)长时间受热会引起分子内失去水生成焦谷氨酸钠;(4)水溶液中解离。

1.1.2味精产业概况我国味精生产开始于1923年,至今已有80多年历史。

它经历了创建、转换和发展三个阶段。

上海天厨味精厂最先用水解法生产味精。

之后,1932年沈阳又开始用脱脂豆粕水解生产味精。

但在解放前,我国味精工业像其它工业一样,与国外技术与世隔绝,生产长期落后,濒临破产的状态。

直到1939年我国味精厂才有沈阳、天津和青岛味精厂三大味精生产家。

这些生产家大都以豆粕为原料,工艺采用水解法生产。

以上为创建期。

新中国成立后,味精生产如雨后春笋般的成长。

1958年有关科研单位、院校和企业合作,进行发酵法制谷氨酸的试验研究工作。

1964年上海味精厂和有关科学研究单位协作,开始采用发酵法生产味精。

特别是经过无产阶级文化大革命,味精生产迅速发展。

目前全国大部分省(市)都有了味精生产,1967年全国味精产量为1965年产量的5倍。

在发酵法生产得到了普遍应用后,在生产用菌种、原材料、发酵工艺、回收提取、以及设备和自动控制等技术方面也都有不少改进和发展。

但发展是很不平衡的,距离先进水平还有差距,需要不断地努力。

1970~1980年期间,北京等厂用醋酸原料生产味精,后因设备腐蚀等原因而停产;福建、广东、广西等省部分企业用甘蔗糖蜜生产味精。

此阶段为转换阶段。

我国味精生产自80年代开始进入高速发展阶段。

相关文档
最新文档