(完整word版)弹性力学试题及答案

合集下载

弹性力学考试和答案

弹性力学考试和答案

弹性力学考试和答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:A2. 弹性力学中,位移场的三个基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:B3. 弹性力学中,平面应力问题与平面应变问题的主要区别是()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:C4. 弹性力学中,圣维南原理是指()。

A. 应力集中现象B. 应力释放现象C. 应力平衡现象D. 应力松弛现象答案:B5. 弹性力学中,莫尔圆表示的是()。

A. 应力状态B. 应变状态C. 位移状态D. 应力-应变关系答案:A6. 弹性力学中,平面问题的基本解法有()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A7. 弹性力学中,轴对称问题的基本解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A8. 弹性力学中,扭转问题的解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A9. 弹性力学中,平面应力问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:A10. 弹性力学中,平面应变问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:B二、多项选择题(每题3分,共15分)11. 弹性力学中,应力状态的基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:AC12. 弹性力学中,位移场的三个基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:BC13. 弹性力学中,平面应力问题与平面应变问题的主要区别包括()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:AC14. 弹性力学中,圣维南原理包括()。

弹性力学试题含答案

弹性力学试题含答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移」_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。

应力及其分量的量纲是L M T。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性_________6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量J=100MPa 口y=50MPa弋xy=10/5O MPa,则主应力6= 150MPao^nQMPa a r=35l6"。

&已知一点处的应力分量, a ^200 MPa 口y=0MPa Jy=—400 MPa,则主应力▽“=512 MPa, 二2 =-312 MPa,: 1 =-37 ° 57'。

9、已知一点处的应力分量,匚x=-2000 MPa匚y =1000 MPa,岑=-400 MPa,则主应力匚1 = 1052 MPa二2= -2052 MPa , :- "-82 ° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界________________ 条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

(完整版)弹性力学试卷及答案

(完整版)弹性力学试卷及答案

一、概念题(32分)1、如图所示三角形截面水坝,其右侧受重度为的水压力作用,左侧为自由面。

试列出下述问题的边界条件解:1)右边界(x=0)112)左边界(x=ytg )11由: 222、何谓逆解法和半逆解法。

答:1.所谓逆解法,就是先设定各种形式、满足相容方程的应力函数,利用公式求出应力分量,然后根据应力边界条件考察在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知设定的应力函数可以解决什么问题。

42.所谓半逆解法,就是针对所要求解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数,然后考察该应力函数是否满足相容方程,以及原来假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。

如果相容方程和各方面的条件都能满足,就可得到正确解答;如果某一方面不能满足,就需要另作假设,重新考察。

43、已知一点的应力状态,试求主应力的大小及其作用的方向。

200,0,400xyxyMPa MPa解:根据公式212222xyxyxy2和公式11tanxxy,求出主应力和主应力方向: 2220002000512.321400312.3222MPa 2512200tan0.7808,3757'11400o 24、最小势能原理等价于以位移表示的平衡微分(3)方程和应力(3)边界条件,选择位移函数仅需满足位移(2)边界条件。

二、图示悬臂梁,长度为l, 高度为h ,l >>h ,在梁上边界受均布荷载。

试检验应力函数523322ΦAy Bx y Cy Dx Ex y=++++能否成为此问题的解?,如果可以,试求出应力分量。

(20分)yyynx 00y x x xy x cos ,coscos ,cos()2sinl n x mn y x yl m x xy s s lmxy y ssf f cos sin 0cossinx xy s s xy y s s解:将应力函数代入到兼容方程44424224x x y y 得到,当5B A 时可作为应力函数 5根据22222xyyx xyxy3求得应力表达式:32206632222(62)Ay Bx y Cyx ByD Ey y BxyEx xy3由应力边界条件确定常数,0,222q y y xy yh y h yh 端部的边界条件220,02200h h dyydyx x h h x x 5解得333,,,,51044q q q q q A BCDEhhhh2三、应力分量(不计体力)为22346225313432231422h y x qxy h h qy y yh h q xy xyhh 2三、已知轴对称平面应力问题,应力和位移分量的表达式为:(23分)C A22,C A22,CAEu)1(2)1(10u.有一个内、外半径分别为 a 和b 的圆筒,筒外受均布压力q 作用,求其应力,位移及圆筒厚度的改变值。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案处具有相同的位移时,也能在整个公共边界上具有相同的位移。

19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。

20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

(√) 5、如果某一问题中,0===zy zx zττσ,只存在平面应力分量xσ,yσ,xyτ,且它们不沿z 方向变化,仅为x ,y的函数,此问题是平面应力问题。

(√) 6、如果某一问题中,0===zy zx zγγε,只存在平面应变分量xε,yε,xyγ,且它们不沿z 方向变化,仅为x ,y的函数,此问题是平面应变问题。

(√) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。

(√)10、当物体的位移分量完全确定时,形变分量即完全确定。

(√)14、在有限单元法中,结点力是指结点对单元的作用力。

(√)15、在平面三结点三角形单元的公共边界上应变和应力均有突变。

(√ )三、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)ByAx x+=σ,DyCx y+=σ,FyEx xy+=τ; (2))(22y x A x+=σ,)(22y x B y+=σ,Cxyxy=τ;其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s fm l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

弹性力学网考考试题及答案

弹性力学网考考试题及答案

弹性力学网考考试题及答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:A2. 弹性力学中,平面应力问题是指()。

A. 应力分量σx、σy、τxy均不为零B. 应力分量σx、σy、τxy中有一个为零C. 应力分量σx、σy、τxy中有两个为零D. 应力分量σx、σy、τxy中有三个为零答案:C3. 在弹性力学中,圣维南原理适用于()。

A. 静力平衡问题B. 热弹性问题C. 动力学问题D. 流体力学问题答案:A4. 弹性力学中,平面应变问题是指()。

A. 应变分量εx、εy、γxy均不为零B. 应变分量εx、εy、γxy中有一个为零C. 应变分量εx、εy、γxy中有两个为零D. 应变分量εx、εy、γxy中有三个为零答案:B5. 弹性力学中,主应力和主应变之间的关系是()。

A. 线性关系B. 非线性关系C. 没有关系D. 取决于材料的性质答案:A6. 弹性力学中,莫尔圆在σ-τ平面上表示的是()。

A. 应力状态B. 应变状态C. 位移场D. 速度场答案:A7. 弹性力学中,平面应力问题和平面应变问题的区别在于()。

A. 应力分量的数量B. 应变分量的数量C. 位移分量的数量D. 材料的性质答案:B8. 弹性力学中,三向应力状态下的应力分量不包括()。

A. σxB. σyC. σzD. τxy答案:D9. 弹性力学中,应力集中现象通常发生在()。

A. 光滑表面B. 尖锐转角C. 平坦区域D. 均匀区域答案:B10. 弹性力学中,弹性模量E和泊松比μ之间的关系是()。

A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+2μ)D. E = 2G(1-μ)答案:A二、多项选择题(每题3分,共15分)11. 弹性力学中,下列哪些方程是基本方程?()A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:ABCD12. 弹性力学中,下列哪些因素会影响材料的弹性模量E?()A. 材料种类B. 温度C. 应力状态D. 应变状态答案:AB13. 弹性力学中,下列哪些是平面应力问题的特点?()A. 应力分量σz为零B. 应变分量εz不为零C. 位移分量w为零D. 位移分量u和v不为零答案:AC14. 弹性力学中,下列哪些是平面应变问题的特点?()A. 应变分量εz为零B. 应力分量σz不为零C. 位移分量w不为零D. 位移分量u和v不为零答案:AD15. 弹性力学中,下列哪些是应力集中现象的影响因素?()A. 材料性质B. 几何形状C. 载荷类型D. 边界条件答案:BCD三、判断题(每题2分,共20分)16. 弹性力学中,平衡方程是描述物体内部力的平衡状态的方程。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。

2. 在弹性碰撞中,两个物体的速度满足_________定律。

3. 弹簧的弹簧常数_________,表示弹簧的_________。

4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。

5. 弹性模量是衡量材料_________的物理量。

四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。

(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。

求物体滑到斜面底部时的速度。

(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。

它们从静止开始相互碰撞,求碰撞后A和B的速度。

《弹性力学》试题(重学考试试卷 参考答案)

《弹性力学》试题(重学考试试卷  参考答案)

(1)将φ代入相容方程
4Φ x 4
2
4Φ x 2 y
2
4Φ y 4
0 ,显然满足。因此,该函数可以作为应力函数。
O
(2)应力分量的表达式:
x
2 y 2
6qx2 h3
y
4qy3 h3
3qy 3h
,
y
y
2 x 2
q 2
4y3 h3
3y h
1
xy
2 xy
6qx h3
h2 4
y2
考察边界条件:在主要边界 y=±h/2 上,应精确满足应力边界条件
响可以不计。
A.几何上等效
B.静力上等效
C.平衡 D.任意
3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A.平衡方程、几何方程、物理方程完全相同
B.平衡方程、几何方程相同,物理方程不同
C.平衡方程、物理方程相同,几何方程不同
D.平衡方程相同,物理方程、几何方程不同
(在各个方向上相同)。
2、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?(5 分)
答: 按位移法求解时,u,v 必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。 平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核 u,v 是否正确的条件。
1
3i
m
2
j
4
5
6
7
89
j
m
i
(a)
(b)
题八图
解:
因结构关于沿编码 2、5、8 的轴线对称,故可取左半部分进行分析,见下图所示。

本科弹性力学试题及答案

本科弹性力学试题及答案

本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。

答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程.它们揭示的是那些物理量之间的相互关系?在应用这些方程时.应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx .因此.决定应力分量的问题是超静定的.还必须考虑形变和位移.才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时.形变量即完全确定。

反之.当形变分量完全确定时.位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同.弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同.弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的.也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中.物体在全部边界上所受的面力是已知的.即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中.物体的一部分边界具有已知位移.因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定.它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正.沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正.沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时.采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时.采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。

如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

(5)假定位移和变形是微小的。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

4.图示曲杆,在b r =边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。

试写出其边界条件(除固定端外)。

题二(4)图(1)0 ,====br r br r q θτσ; (2)0 ,0====ar r a r r θτσ(3)sin cos θτθσθθP dr P dr b ar ba=-=⎰⎰2c o s b a P rd r b a+-=⎰θσθ5.试简述拉甫(Love )位移函数法、伽辽金(Galerkin )位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性Love 、Galerkin 位移函数法求解空间弹性力学问题的基本思想:(1)变求多个位移函数),(),,(),,(y x w y x v y x u 或),(),,(θθθr u r u r 为求一些特殊函数,如调和函数、重调和函数。

(2)变求多个函数为求单个函数(特殊函数)。

适用性:Love 位移函数法适用于求解轴对称的空间问题; Galerkin 位移函数法适用于求解非轴对称的空间问题。

三、计算题1.图示半无限平面体在边界上受有两等值反向,间距为d 的集中力作用,单位宽度上集中力的值为P ,设间距d 很小。

试求其应力分量,并讨论所求解的适用范围。

(提示:取应力函数为θθϕB A +=2sin ) (13分)题三(1)图解:d 很小,Pd M =∴,可近似视为半平面体边界受一集中力偶M 的情形。

将应力函数),(θϕr 代入,可求得应力分量:θθϕϕσ2s i n 4112222A r r r r r -=∂∂+∂∂=; 022=∂∂=r ϕσθ; )2c o s2(112B A rr r r +=⎪⎭⎫ ⎝⎛∂∂∂∂-=θθϕτθ 边界条件:(1)0 ,00000==≠=≠=r r r θθθθτσ; 0 ,00==≠=≠=r r r πθθπθθτσ代入应力分量式,有0)2(12=+B A r 或 02=+B A (1)(2)取一半径为r 的半圆为脱离体,边界上受有:θτσr r ,,和M = Pd由该脱离体的平衡,得0222=+⎰-M d r r ππθθτ将θτr 代入并积分,有0)2cos 2(12222=++⎰-M d r B A r ππθθ 02sin 22=++-M BA ππθ 得 0=+M B π (2)联立式(1)、(2)求得:ππPd M B -=-=,π2Pd A =代入应力分量式,得22sin 2rPd r θπσ-==; 0=θσ; 22sin 2r Pd r θπτθ-=。

结果的适用性:由于在原点附近应用了圣维南原理,故此结果在原点附近误差较大,离原点较远处可适用。

2.图示悬臂梁,受三角形分布载荷作用,若梁的正应力x σ由材料力学公式给出,试由平衡微分方程求出y xy στ,,并检验该应力分量能否满足应力表示的相容方程。

(12分)题三(2)图解:(1)求横截面上正应力x σ任意截面的弯矩为306x l q M -=,截面惯性矩为123h I =,由材料力学计算公式有 y x lhq I Myx 3302-==σ (1) (2)由平衡微分方程求xy τ、y σ平衡微分方程: ⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂(3) 0(2) 0Y y x X yx y yx xyx σττσ其中,0,0==Y X 。

将式(1)代入式(2),有y x lhq y xy 2306=∂∂τ 积分上式,得)(312230x f y x lhq xy +=τ 利用边界条件:02=±=hy xyτ,有0)(4312230=+x f h x lh q 即 2230143)(h x lh q x f -=)41(322230h y x lh q xy -=τ (4)将式(4)代入式(3),有0)41(62230=∂∂+-y h y x lh q y σ 或 )41(62230h y x lh q y y --=∂∂σ 积分得)()4133(62230x f y h y x lh q y +--=σ 利用边界条件:x lq hy y2-=-=σ,02=+=hy y σ得:⎪⎩⎪⎨⎧=+---=++--0)()8124(6)()8124(623330023330x f h h x lhq x l q x f h h x lh q由第二式,得x lq x f 2)(02-= 将其代入第一式,得x lqx l q x l q 00022-=--自然成立。

将)(2x f 代入y σ的表达式,有x l qy h y x lhq y 2)413(602330---=σ (5)所求应力分量的结果:y x lhq I Myx 3302-==σ )41(322230h y x lh q xy -=τ (6)x l qy h y x lhq y 2)413(602330---=σ校核梁端部的边界条件:(1)梁左端的边界(x = 0):022=⎰-=h h x xdy σ,022=⎰-=h h x xydy τ 代入后可见:自然满足。

(2)梁右端的边界(x = l ):022233022=-=⎰⎰-=-=h h lx hh lx xdy y lh x q dy σ2)4(30222232022lq dy h y lh x q dy h h l x h h lx xy=-=⎰⎰-=-=τ M l q y lh l q dy y lhxq ydy hh h h lx h h lx x=-=-=-=--=-=⎰⎰63222022333022233022σ可见,所有边界条件均满足。

检验应力分量y xy x στσ,,是否满足应力相容方程: 常体力下的应力相容方程为0))(()(22222=+∂∂+∂∂=+∇y x y x y x σσσσ 将应力分量y xy x στσ,,式(6)代入应力相容方程,有xy lh q x yx 302212)(-=+∂∂σσ,xy lh q y y x 302212)(-=+∂∂σσ024))(()(3022222≠-=+∂∂+∂∂=+∇xy lh q y x y x y x σσσσ显然,应力分量y xy x στσ,,不满足应力相容方程,因而式(6)并不是该该问题的正确解。

3.一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,梁端支承弹簧的刚度系数为k 。

梁受有均匀分布载荷q 作用,如图所示。

试:(1)构造两种形式(多项式、三角函数)的梁挠度试函数)(x w ;(2)用最小势能原理或Ritz 法求其多项式形式的挠度近似解(取1项待定系数)。

(13分)题二(3)图解:两种形式的梁挠度试函数可取为)()(23212 +++=x A x A A x x w —— 多项式函数形式)2cos1()(1∑=-=nm m lxm A x w π —— 三角函数形式 此时有:0)()(023212=+++==x x A x A A x x w0)()(2)(03222321=++++++='=x x A A x x A x A A x x w0)2cos1()(01=-===∑x nm m l xm A x w π 02sin 2)(01=='==∑x nm mlx m m l A x w ππ即满足梁的端部边界条件。

梁的总势能为[]202022)(21)(21l w k dx x qw dx dx w d EI Πl l +-⎪⎪⎭⎫ ⎝⎛=⎰⎰ 取:21)(x A x w =,有1222A dxw d =,21)(l A l w = 代入总势能计算式,有221012021)(21)2(21l A k dx A qx dx A EI Πl l +-=⎰⎰ 42131212132l kA l qA EIlA +-= 由0=Πδ,有0343411=-+l q l kA EIlA )4(34301kl EIl l q A += 代入梁的挠度试函数表达式,得一次近似解为2430)4(3)(x kl EIl l q x w += 4.已知受力物体内某一点的应力分量为:0=x σ,MPa 2=y σ,MPa 1=z σ,MPa 1=xy τ,0=yz τ,MPa 2=zx τ,试求经过该点的平面13=++z y x 上的正应力。

(12分)解:由平面方程13=++z y x ,得其法线方向单位矢量的方向余弦为1111311222=++=l ,1131313222=++=m ,1111311222=++=n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=102021210ij σ, {}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=131111n m l L[][][][]111131102021210131111⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==L L T Nσσ []MPa 64.21129111131375==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=《弹性力学》课程考试试卷学号: 姓名: 工程领域: 建筑与土木工程 题号 一 二 三 四 五 总分 得分考试时间:120分钟 考试方式:开卷 任课教师:杨静 日期:2007年4月28日一、简述题(40分)1. 试叙述弹性力学两类平面问题的几何、受力、应力、应变特征,并指出两类平面问题中弹性常数间的转换关系。

相关文档
最新文档